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Weihua Hea, Jun Luob, Chao Yangb,∗, Wei Yuanb

aDepartment of Applied Mathematics, Guangdong University of Technology, Guangzhou, China
bSchool of Mathematics, Sun Yat-Sen University, Guangzhou, China

Abstract

Lin-Lu-Yau introduced an interesting notion of Ricci curvature for graphs and obtained a complete

characterization for all Ricci-flat graphs with girth at least five [1]. In this paper, we propose a

concrete approach to construct an infinite family of distinct Ricci-flat graphs of girth four with

edge-disjoint 4-cycles and completely characterize all Ricci-flat graphs of girth four with vertex-

disjoint 4-cycles.
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1. Introduction

A manifold is Ricci-flat if the Ricci curvature vanishes everywhere. Calabi-Yau manifolds are a

special type of Ricci-flat manifolds, which provide a potential model to describe the physical world

[2]. The study of Ricci curvature on manifolds has inspired several attempts to bring the concept

of Ricci curvature to graphs. Ollivier introduced the Ricci curvature of Markov chains on metric5

spaces, including graphs [3]. By modifying Ollivier’s definition, Lin-Lu-Yau proposed a slightly

different definition for Ricci curvature of graphs [4]. These new concepts have received considerable

discussions. See for example [5, 6]. These new notions even find applications within combinatorics

and computer science. Among others, we refer to [7] for the relation between Ollivier’s Ricci

curvature and the coloring of graphs and [8] for the employment of Ricci curvature in understanding10

the Internet topology.

This paper considers the Ricci curvature in the sense of Lin-Lu-Yau. We are especially inter-

ested in Ricci-flat graphs, whose Ricci curvature vanishes on every edge. A very recent pioneering

work by Lin-Lu-Yau [1] completely characterizes all Ricci-flat graphs with girth at least five.

Theorem 1. A Ricci-flat graph with girth at least five is isomorphic to: (1) the infinite path, (2)15

a cycle of length at least six, (3) the dodecahedral graph, (4) the half-dodecahedral graph, or (5) the

Petersen graph.

✩This work was supported by the National Natural Science Foundation of China (No. 11201496 and No.
11601093).

∗Corresponding author: yangchao0710@gmail.com, yangch8@mail.sysu.edu.cn.

Preprint submitted to Discrete Mathematics June 16, 2021

http://arxiv.org/abs/1807.07253v1


The authors of [1] also gave infinitely many examples of Ricci-flat graphs with girth four. We

note that, in all their examples, the 4-cycles have common edges. Even if 4-cycles having common

edges are not allowed, we can still construct infinitely many Ricci-flat graphs with edge-disjoint20

4-cycles, see Figure 1.

......

Figure 1: A family of Ricci-flat graphs with edge-disjoint 4-cycles

Then, the remaining Ricci-flat graphs with girth four are those in which every two 4-cycles are

vertex-disjoint, i.e. having no common vertices. For those graphs, we obtain the following simple

characterization, which is the main result of this paper.

Theorem 2. A Ricci-flat graph with girth four such that no vertex is shared by two 4-cycles is25

isomorphic to one of the following two graphs.

Figure 2: The graphs R1 (left) and R2 (right)

The rest of this paper is arranged as follows. Section 2 recalls the notion of Ricci curvature

on graphs. Section 3 reviews the local structures of Ricci-flat graphs. And Section 4 presents the

proof of Theorem 2.

2. Preliminaries30

We follow Lin-Lu-Yau for the definition of Ricci curvature [4, 1]. Let G be a simple undirected

graph with vertex set V and edge set E. For x, y ∈ V , let N(x) be the set of neighbors of x,

dx = |N(x)| be the degree of vertex x, and d(x, y) be the distance between x and y in G.
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A probability distribution is a function m : V → [0, 1] with
∑

x∈V m(x) = 1. To define Ricci

curvature for each edge of the graph, we only consider distributions mα
x in the following form,

mα
x(v) =























α, v = x;

1−α
dx

, x ∈ N(x);

0, otherwise,

where α ∈ [0, 1] and x ∈ V .

Let xy ∈ E, and let mα
x and mα

y be two distributions. A transportation problem between the

two distributions can be stated as a linear programming problem. That is, to find the minimum

transportation distance

min
∑

u,v∈V

d(u, v)Xuv,

subject to the constraints






















∑

v∈V Xuv = mα
x(u), u ∈ V ;

∑

u∈V Xuv = mα
y (v), v ∈ V ;

Xuv > 0,

where the variable Xuv denotes the amount transfered from vertex u to vertex v.35

Define the transportation distance between mα
x and mα

y to be optimal solution to the above

linear programming problem, namely

W (mα
x ,m

α
y ) = min

∑

u,v∈V

d(u, v)Xuv.

Ricci curvature is definable on any unordered pair of vertices x and y, but for our purpose, we

only need the case that x and y are adjacent. For any edge xy ∈ E, the Ricci curvature κ(x, y) is

defined to be

κ(x, y) = lim
α→1

1−W (mα
x ,m

α
y )

1− α
.

Recall that a graph G is Ricci-flat if κ(x, y) = 0 for all edges xy ∈ E.

A function f over the vertex set V of G is said to be c-Lipschitz if |f(u) − f(v)| 6 c · d(u, v)

for all u, v ∈ V . By the theory of linear programming, the dual problem of the above defined

transportation problem between mα
x and mα

y is to find the maximum value

max
∑

u∈V

f(u)(mα
x (u)−mα

y (u))

subject to

|f(u)− f(v)| 6 d(u, v), u, v ∈ V.

In other words, the maximum is taken over all 1-Lipschitz function f . Because the optimal solution

of a linear programming problem is equal to that of its dual problem, we have

W (mα
x ,m

α
y ) = max

∑

u∈V

f(u)(mα
x(u)−mα

y (u)).
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Thus, we have the following lemma.

Lemma 1 ([1]). Let f be any 1-Lipschitz function, then

W (mα
x ,m

α
y ) >

∑

u∈V

f(u)(mα
x(u)−mα

y (u)).

3. Local Structures

Before our discussion on the local structure of Ricci-flat graphs of girth 4, we recall a lemma

from [1].40

Lemma 2 ([1]). Suppose that an edge xy in a graph G is not in any 3-cycles or 4-cycles, and

assume dx 6 dy, then one of the following statements holds.

1. dx = dy = 2, and xy is not in any 5-cycle.

2. dx = dy = 3, and xy is shared by two 5-cycles.

3. dx = 2, dy = 3. Let x1 be the other neighbor of x besides y, and let y1 and y2 be the two45

neighbors of y besides x, then {d(x1, y1), d(x1, y2)} = {2, 3}.

4. dx = 2, dy = 4. Let x1 be the other neighbor of x besides y, and let y1, y2 and y3 be the three

neighbors of y besides x, then at least two of y1, y2, y3 have distance 2 from x1.

yx yx x y x y

Figure 3: Local Structures for girth at least five

The above lemma lends us important ideas in analyzing the the local structure of Ricci-flat

graphs of girth 4. Actually, we will obtain the following very useful lemmas.50

Lemma 3. Let xy be an edge of a graph G, and xy is in exactly one 4-cycle but is not in any

3-cycle. Then κ(x, y) 6 2
dx

+ 2
dy

− 1.
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Proof. Since the edge xy is in a unique 4-cycle, let z be the other neighbor of x in this cycle.

Let

f(u) =























0 if u ∈ N [x] \ {y, z},

2 if u ∈ N(y) \ {x},

1 otherwise.

Obviously, f is a 1-Lipschitz function over graph G. By lemma 1,

W (mα
x ,m

α
y ) >

∑

u∈V

f(u)[mα
y (u)−mα

x(u)]

= (α−
1− α

dx
) + (0−

1− α

dx
) + 2(dy − 1)(

1− α

dy
− 0)

= (2− α)− (1− α)(
2

dx
+

2

dy
).

So55

κ(x, y) = lim
α→1

1−W (mα
x ,m

α
y )

1− α
6

2

dx
+

2

dy
− 1.

�

The next lemma characterizes the local structures for edges in a 4-cycle of a Ricci-flat graph

G with girth 4 and disjoint 4-cycles.

Lemma 4. Suppose that G is a graph with girth 4, and the 4-cycles of G are mutually vertex-

disjoint. Let xy be an edge of G in a 4-cycle with Ricci curvature κ(x, y) = 0. Without loss of60

generality, we assume dx 6 dy, then one of the following statements holds.

1. dx = 2, dy = 4, and xy is not in any 5-cycle.

2. dx = dy = 3, and xy is not in any 5-cycle.

3. dx = 3, dy = 4. Let x1 and x2 be the two neighbors of x besides y with x1 in the 4-cycle, and

let y1 and y2 be the two neighbors of y not in the 4-cycle, then either d(x1, y1) = d(x2, y2) = 265

(Type A), or d(x2, y1) = d(x2, y2) = 2 (Type B).

4. dx = dy = 4. Let x1 and x2 be the two neighbors of x not in the 4-cycle, and let y1 and y2

be the two neighbors of y not in the 4-cycle, then d(x1, y1) = d(x2, y2) = 2.

Remark 1. Lemma 4 claims that under certain conditions, for each edge xy with Ricci curvature

0, there are four possible degree combinations {dx, dy}. But there are two possible local structures70

in the {3, 4} combination, which are denoted by type A and type B, resulting in five local structures

in all.
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yx x y x y

Type A

x y

Type B

x y

Figure 4: Local Structures in 4-cycle

Proof. By Lemma 3 and the hypothesis that κ(x, y) = 0, we have 0 6 2
dx

+ 2
dy

− 1. Solving this

inequality, we have the following solutions.

(A) dx = 2, dy > 2.75

(B) dx = 3, dy = 3, 4, 5, 6.

(C) dx = dy = 4.

Because the 4-cycles of G are disjoint, the vertex y must be incident to another edge which is

not in any 3-cycles or 4-cycles, if dy > 3. By Lemma 2, dy 6 4. So the possible values of dx and

dy become the following.80

(A) dx = 2, dy = 2, 3, 4.

(B) dx = 3, dy = 3, 4.

(C) dx = dy = 4.

Simple calculation shows that if dx = dy = 2, then κ(x, y) = 1. So no local structure is possible

for this degree combination.85

If dx = 2 and dy = 3, let x1 be the other neighbor of x besides y, and let y1 be the neighbor of

y that is not in the 4-cycle. Because the 4-cycles of G are disjiont, d(x1, y1) > 2. If d(x1, y1) = 2,

we have κ(x, y) = 1
2
. If d(x1, y1) > 3, we have κ(x, y) = 1

3
.

If dx = 2 and dy = 4, let x1 be the other neighbor of x besides y, and let y1 and y2 be the

two neighbors of y that is not in the 4-cycle. If d(x1, y1) = 2 or d(x1, y2) = 2, then κ(x, y) = 1
4
. If90

d(x1, y1) > 3 and d(x1, y2) > 3, then κ(x, y) = 0. Therefore, the edge xy is not in any 5-cycle.

6



dx dy d(x1, y1) d(x1, y1), d(x1, y2) κ

2 2 - - 1

2 3 2 - 1
2

2 3 > 3 - 1
3

2 4 - 2,> 2 or > 2, 2 1
4

2 4 - > 3,> 3 0

Table 1: dx = 2

d(x1, y1), d(x1, y2) d(x2, y1), d(x2, y2) κ

3, 3 3, 3 − 1
3

3, 3 2, 3 − 1
12

3, 3 2, 2 0

2,> 2 3, 3 − 1
4

2, 2 2, 3 0

2, 3 2, 3 − 1
12

2,> 2 3, 2 0

2,> 2 2, 2 1
12

Table 2: dx = 3, dy = 4

The above calculations for the case (A) dx = 2 and dy = 2, 3, 4 can be summarized in Table 1.

If dx = 3 and dy = 3, let x1 and x2 be the other neighbors of x besides y, with x1 in the 4-cycle.

And let y1 and y2 be the two neighbors of y besides x, with y1 in the 4-cycle. If d(x2, y2) = 2, then

κ(x, y) = 1
3
. If d(x2, y2) > 3, then κ(x, y) = 0.95

If dx = 3 and dy = 4, let x1 and x2 be the other neighbors of x besides y, with x1 in the 4-cycle.

And let y1 and y2 be the two neighbors of y not in the 4-cycle. Note that either d(xi, yj) = 2 or

d(xi, yj) = 3 for all i, j = 1, 2, so the complete calculations are divided into 8 subcases according to

the distances between x1, x2 and y1, y2. The result are listed in Table 2. In three of the subcases

(Lines 4,6,8 of the table), the Ricci curvature of edge xy vanishes. Line 4 is Type B. Since the100

vertices y1 and y2 are interchangeable, line 6 and line 8 of the table can be combined to obtain the

local structure of Type A.

If dx = 4 and dy = 4, let x1 and x2 be the two neighbors of x not in the 4-cycle. And let y1 and

y2 be the two neighbors of y not in the 4-cycle. Table 3 shows the Ricci curvature of edge xy for

different subcases. The unique subcase that the Ricci curvature vanishes is illustrated in bottom105

right of Figure 4.

�
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d(x1, y1), d(x1, y2) d(x2, y1), d(x2, y2) κ

3, 3 3, 3 − 1
2

2, 3 > 2, 3 − 1
4

2,> 2 > 2, 2 0

Table 3: dx = 4, dy = 4

Lemma 2 and Lemma 4 will be applied repeatedly in proving the main result in the next

section.

4. The Main Result110

This section proves Theorem 2 by exhausting all possible cases.

Proof of Theorem 2. We start by investigating a 4-cycle of G. By Lemma 4, the degree se-

quence of a 4-cycle of G in cyclic order can be only one of the following cases.

1. (2,4,2,4)

2. (2,4,4,4)115

3. (3,3,3,3)

4. (3,3,3,4)

5. (3,3,4,4)

6. (3,4,4,4)

7. (3,4,3,4)120

8. (4,4,4,4)

We will show that in the first six cases, the graph G could not exist. And in the last two cases,

exactly one graph is possible for each case.

Case 1. (2,4,2,4). Let a, b, c, d be the four vertices of the 4-cycle, in the order of the degree

sequence. That is d(a) = d(c) = 2 and d(b) = d(d) = 4. Let b1 and b2 the other two neighbors125

of b, and let d1 and d2 be the other two neighbors of d. Obviously, bi and dj (1 6 i, j 6 2) are

distinct vertices, otherwise there would be 4-cycles with common edges. In the remaining cases,

we will denote and refer to the vertices in the 4-cycle and their neighbors in a similar manner.

Because the edge bb1 does not lie in any 4-cycle by the hypothesis of the theorem, so it must

satisfy the local structure of Lemma 2. Since d(b) = 4, so d(b1) = 2. By the same reason130

d(b2) = d(d1) = d(d2) = 2. Let z be the other neighbor of b1 besides b. See Figure 5. Note that z

8



must be distinct from d1 or d2. Suppose to the contrast that the other neighbor of b1 is d1, then

the edge b1d1 does not satisfy Lemma 2.

Now we apply Lemma 2 to edge bb1, at least two vertices of a, c, b2 have distance 2 from z. But

this is impossible (because there is no way to form a 2-path from z to either a or c), so no graph135

exists for this case.

ba

d c

d1

d2

z

b2

b1

Figure 5: Case 1. (2,4,2,4)

Case 2. (2,4,4,4). See Figure 6. The same as Case 1, because the degree of vertices b, c, d

are 4, the degree of vertices bi, ci, di (i = 1, 2) are all 2. By applying Lemma 4 to edge bc, without

loss of generality, let zi be the common neighbor of bi and ci (i = 1, 2). By applying Lemma 4

again to edge cd, we know that the vertices ci and di have a common neighbor, for i = 1, 2. But140

since all the vertices c1, c2, d1, d2 have degree 2, the common neighbor of ci and di has to be zi, for

i = 1, 2. Now, all vertices in Figure 6 cannot be extended except z1 and z2. Therefore, the edge

bb1 does not satisfy Lemma 2 (the edge bb1 does not lie in two 5-cycles), no graph exists for this

case, either.

ba

d c

d1 c1

d2 c2
z1

z2

b2

b1

Figure 6: Case 2. (2,4,4,4)

Case 3. (3,3,3,3). In this case, each vertex of the 4-cycle, a, b, c and d, has exactly one145
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neighbor outside the 4-cycle, denoted by a1, b1, c1 and d1, respectively. By Lemma 2, the degree

of a1, b1, c1 and d1 can be either 2 or 3.

If d(b1) = 3, by Lemma 2, the edge bb1 is shared by two 5-cycles, this contradicts with the fact

the the edge ab cannot lie in any 5-cycles. If d(b1) = 2, by Lemma 2, the edge bb1 need to form a

5-cycle with either ab or bc, which is also a contradiction. So no graph exists for this case.150

Case 4. (3,3,3,4). The same as Case 3, by applying Lemma 2 to edge bb1, there will be a

contradiction. So no graphs exists for this case.

Case 5. (3,3,4,4). See Figure 7. Both a1 and b1 must have degree 2, otherwise by the same

argument in Case 3 the edge ab lies in a 5-cycle, a contradiction. Also, the degree of c1, c2, d1 and

d2 are all 2. By applying Lemma 4 to edge cd, let zi be the common neighbor of ci and di, for155

i = 1, 2. Thus the edges bc and da have no way to satisfy the local condition. Again, no graph

exists for this case.

ba

d c

d1 c1

d2 c2
z1

z2

b1a1

Figure 7: Case 5. (3,3,4,4)

Case 6. (3,4,4,4). The structure of the graph is similar to that of Case 2, except that a

will have a neighbor a1. To satisfy the local condition for edges ab and da, the vertex a1 must

be adjacent to both z1 and z2, see Figure 8. But then the edge a1z1 does not satisfy the local160

condition. So no graph exists for this case.

Case 7. (3,4,3,4). The degree combination for the two vertices of each edge in the 4-cycle

is {3, 4}. There are two types of local structures for the {3, 4} combination, namely type A and

type B. It is easy to show that the four edges in the 4-cycle must satisfy the same type of local

condition. If all of them are type A, no graph is possible. If all of them are type B, we obtain the165

graph R2, see Figure 2.

Case 8. (4,4,4,4). By applying Lemma 4 to edge ab, let zi be the common vertex of ai and

bi (i = 1, 2), respectively (See Figure 9). Then by applying Lemma 2 to edge bb1, the degree of b1

must be two. In other words, b1 has no other neighbors besides b and z1. Now by applying Lemma

4 to edges bc and cd, we obtain the graph R1, see Figure 2.170
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ba

d c

d1 c1

d2 c2
z1

z2

b2

b1

a1

Figure 8: Case 6. (3,4,4,4)

ba

d c

c2

a2

c1
z2

z1

b1

b2

a1

d1

d2

Figure 9: Case 8. (8,4,4,4)

Finally, it is easy to check that the graphs R1 and R2 are indeed Ricci-flat. �

Remark 2 (Further Study). Our method in proving Theorem 2 might be extended further to

study the Ricci-flat graphs of girth 4 and with edge-disjoint 4-cycles. In such an extension, more

involved discussions are expected, especially when one wants to generalize the result of Lemma 4 so

that more local degree combinations for an edge xy in a 4-cycle are included. By the examples given175

in Figure 1, we see that any characterization of Ricci-flat graphs of girth 4 and with edge-disjoint

4-cycles must contain infinitely many types.
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