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1 Introduction

To pursue further the study that we began in [19,20], we consider in this paper the equation

(I −∆)su = a(x)|u|p−2u in R
N , (1.1)

where a ∈ L∞(RN ), N > 2, 0 < s < 1 and 2 < p < 2⋆
s = 2N/(N − 2s).

When s = 1, (1.1) formally reduces to the semilinear elliptic equation

−∆u+ u = a(x)|u|p−2u,

which has been widely studied over the years. This equation can be seen as a particular case of
the stationary Nonlinear Schrödinger Equation

−∆u+ V (x)u = a(x)|u|p−2u in R
N . (1.2)

When both V and a are constants, we refer to the seminal papers [7, 8] and to the references
therein. Since the non-compact group of translations acts on R

N , when V and a are general
functions the analysis becomes subtler, and solutions exist according to some properties of these
potentials. For instance, when both V and a are radially symmetric, (1.2) is invariant under
rotations, and it becomes legitimate to look for radially symmetric solutions: see [12].
Without any a priori symmetry assumption, the lack of compactness in (1.2) must be overcome
with a careful analysis, and the behavior of V and a at infinity plays a crucial rôle. The first
attempt to solve (1.2) in the case lim|x|→+∞ V (x) = +∞ and a is a constant appeared in [16].
With similar techniques, it is possible to solve (1.2) under the assumption lim sup|x|→+∞ a(x) ≤

0. So many papers dealing with (1.2) (or with even more general equations) appeared in the
literature afterwards that we refrain from any attempt to give a complete overview.

If 0 < s < 1, our equation becomes non-local, since the fractional power (I−∆)s of the positive
operator I −∆ in L2(RN ) is no longer a differential operator. It is strictly related to the more
popular fractional laplacian (−∆)s, but it behaves worse under scaling. We offer a very quick
review of this operator.

For s > 0 we introduce the Bessel function space

Ls,2(RN ) =
{

f ∈ L2(RN ) | f = Gs ⋆ g for some g ∈ L2(RN )
}

,

where the Bessel convolution kernel is defined by

Gs(x) =
1

(4π)s/2Γ (s/2)

∫ ∞

0
exp

(

−
π

t
|x|2

)

exp
(

−
t

4π

)

t
s−N

2
−1 dt.

The Bessel space is endowed with the norm ‖f‖ = ‖g‖2 if f = Gs⋆g. The operator (I−∆)−su =
G2s ⋆ u is usually called Bessel operator of order s.
In Fourier variables the same operator reads

Gs = F−1 ◦

(

(

1 + |ξ|2
)−s/2

◦ F

)

,

so that
‖f‖ =

∥

∥

∥(I −∆)s/2f
∥

∥

∥

2
.
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For more detailed information, see [2, 22] and the references therein.
In the paper [13] the pointwise formula

(I −∆)su(x) = cN,s P.V.
∫

RN

u(x) − u(y)

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dy + u(x)

was derived for functions u ∈ C2
c (RN ). Here cN,s is a positive constant depending only on N

and s, P.V. denotes the principal value of the singular integral, and Kν is the modified Bessel
function of the second kind with order ν (see [13, Remark 7.3] for more details). However a
closed formula for Kν is not known.

We summarize the main properties of Bessel spaces. For the proofs we refer to [14, Theorem
3.1], [22, Chapter V, Section 3].

Theorem 1.1. 1. Ls,2(RN ) = W s,2(RN ) = Hs(RN ), where the sign of equality must be

understood in the sense of an isomorphism.

2. If s ≥ 0 and 2 ≤ q ≤ 2∗
s = 2N/(N − 2s), then Ls,2(RN ) is continuously embedded into

Lq(RN ); if 2 ≤ q < 2∗
s then the embedding is locally compact.

3. Assume that 0 ≤ s ≤ 2 and s > N/2. If s − N/2 > 1 and 0 < µ ≤ s − N/2 − 1, then

Ls,2(RN ) is continuously embedded into C1,µ(RN ). If s−N/2 < 1 and 0 < µ ≤ s −N/2,

then Ls,2(RN ) is continuously embedded into C0,µ(RN ).

Remark 1.2. According to Theorem 1.1, the Bessel space Ls,2(RN ) is topologically undistin-
guishable from the Sobolev fractional space Hs(RN ). Since our equation involves the Bessel
norm, we will not exploit this characterization.

Going back to (1.1), it must be said that in the case s ∈ (0, 1) less is known than in the local

case s = 1. Equation (1.1) arises from the more general Schrödinger-Klein-Gordon equation

i
∂ψ

∂t
= (I −∆)sψ − ψ − f(x, ψ)

describing the the behaviour of bosons, spin-0 particles in relativistic fields. We refer to [15,
19–21] for very recent results about the existence of variational solutions. When s = 1/2, the

operator (I −∆)1/2 =
√

I −∆ is also called pseudorelativistic or semirelativistic, and it is very
important in the study of several physical phenomena. The interested reader can refer to [10,11]
and to the references therein for more information.

Remark 1.3. The identity operator I is often replaced by a multiple m2I, for some real num-
ber m 6= 0. The operator reads then (−∆+m2)s, but for our purposes this generality does not
give any advantage.

A common feature in the current literature is that the existence of solutions to (1.1) is related
to the behavior of the potential function a at infinity. This is a very useful tool for applying
concentration-compactness methods or for working in weighted Lebesgue spaces. In the present
paper, following [1], we investigate (1.1) under much weaker assumptions on a, see Section 2.
The first existence results for semilinear elliptic equations with irregular potentials appeared,
as far as we know, in [9].
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2 The variational setting

We introduce some tools that will be used systematically in the rest of the paper.

Definition 2.1. • For any y ∈ R
N , we define the translation operator τy acting on a (suit-

ably regular) function f as τyf : x 7→ f(x− y).

• In a normed space X, we denote by B(x, r) the ball centered at x ∈ X with radius r > 0,
and by B(x, r) its closure. The boundary of B(0, 1) will be denoted by S(X).

• For any a ∈ L∞(RN ), we define

P = B(0, |a|∞) ⊂ L∞(RN ).

Looking at L∞(RN ) as the dual space of L1(RN ), the set P will be endowed with the weak*
topology. It is well-known that P becomes a compact metrizable space, see [17, Theorem
3.15 and Theorem 3.16].

• For any a ∈ L∞(RN ), we define the subset A =
{

τya | y ∈ R
N
}

of P, endowed with the

relative topology. Finally, we introduce B = A \ A .

• For any a ∈ L∞(RN ), we define

ā = sup {ess supu | u ∈ B} . (2.1)

If B = ∅, we agree that ā = −∞.

The following is the main assumption of the present paper.

(A) The function a ∈ L∞(RN ) is such that a+ = max{a, 0} is not identically zero, and either
(i) ā ≤ 0 or (ii) ā ≤ a.

Weak solutions to (1.1) are critical points of the functional Ia : Ls,2(RN ) → R
N defined by

Ia(u) =
1
2

‖u‖2
Ls,2 −

1
p

∫

RN
a|u|p.

Definition 2.2. A solution u ∈ Ls,2(RN ) is called a ground-state solution to (1.1) if Ia attains
at u the infimum over the set of all solutions to (1.1), namely

Ia(u) = min
{

Ia(v) | v ∈ Ls,2(RN ) solves (1.1)
}

.

We now state the main result of our paper.

Theorem 2.3. Equation (1.1) has (at least) a positive ground state provided that 2 < p < 2⋆
s

and a ∈ L∞(RN ) satisfies (A).
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3 The construction of a Nehari manifold

We introduce the Nehari set of Ia as

Na =
{

u ∈ Ls,2(RN ) | u 6= 0, DIa(u)[u] = 0
}

.

Definition 3.1. ca = infu∈Na
Ia(u). We agree that ca = +∞ if Na = ∅.

To proceed further, we need a “dual” characterization of the essential supremum.

Lemma 3.2. Let a ∈ L∞(RN ). There results

ess sup a = sup
{∫

RN
aϕ | ϕ ∈ L1(RN ), ϕ ≥ 0,

∫

RN
ϕ = 1

}

. (3.1)

Proof. Whenever ϕ ∈ L1(RN ), ϕ ≥ 0,
∫

RN ϕ = 1, we compute
∫

RN
aϕ ≤ ess sup a

∫

RN
ϕ = ess sup a.

Hence

ess sup a ≥ sup
{∫

RN
aϕ | ϕ ∈ L1(RN ), ϕ ≥ 0,

∫

RN
ϕ = 1

}

. (3.2)

On the other hand, if we set

sup
{∫

RN
aϕ | ϕ ∈ L1(RN ), ϕ ≥ 0,

∫

RN
ϕ = 1

}

= b

and we assume that ess sup a > b, then for some δ > 0 we can say that the setΩ =
{

x ∈ R
N | a(x) ≥ b+ δ

}

has positive measure. Let us define ϕ = χΩ/L
N (Ω), so that

∫

RN
aϕ =

1
LN (Ω)

∫

Ω
a ≥ b+ δ,

contrary to (3.2). This completes the proof.

Recall from assumption (A) that a+ 6= 0 as an element of L∞(RN ). Therefore Lemma 3.2
yields a function ϕ ∈ S(L1(RN )) such that ϕ ≥ 0 and

∫

RN aϕ > 0. By a standard mollification
argument, we can assume without loss of generality that ϕ ∈ C∞

c (RN ).

Since Ls,2(RN ) is continuously embedded into Lp(RN ) for every 2 < p < 2⋆
s, we can set

Sp = sup
{

|u|p
‖u‖Ls,2

| u ∈ Ls,2(RN ), u 6= 0
}

∈ (0,+∞).

We write
B

+
a =

{

u ∈ Ls,2(RN ) |
∫

RN
a|u|p > 0

}

and
S

+
a = B

+
a ∩ S(Ls,2(RN )).

Lemma 3.3. The set B+
a is non-empty and open in Ls,2(RN ).
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Proof. We already know that ϕ ∈ B+
a . Furthermore, the map u 7→

∫

RN a|u|p is continuous from
Ls,2(RN ) to R, since a ∈ L∞(RN ) and 2 < p < 2⋆. This immediately implies that B+

a is an
open subset of Ls,2(RN ).

Lemma 3.4. There exists a homeomorphism S +
a → Na whose inverse map is u 7→ u/‖u‖Ls,2 .

Proof. For any u ∈ Ls,2(RN ) \ {0} we consider the fibering map

h(t) = Ia(tu), (t ≥ 0).

It follows easily that h has a positive critical point if, and only if, u ∈ B+
a . It is a Calculus

exercise to check that, in this case, the critical point of h is the unique non-degenerate global
maximum t̄(u) > 0 of h. By direct computation, tu ∈ Na if, and only if, t = t̄(u). Explicitly,

t̄(u) =
‖u‖2

Ls,2
∫

RN a|u|p
.

This shows that the map u 7→ t̄(u) is continuous from B+
a to (0,+∞). The rest of the proof

follows easily.

Lemma 3.5. The set Na is closed in Ls,2(RN ).

Proof. If u ∈ Na, then

‖u‖2
Ls,2 =

∫

RN
a|u|p ≤

∫

RN
a+|u|p ≤ Sp|a+|∞‖u‖p

Ls,2 .

It follows that

inf
u∈Na

‖u‖Ls,2 ≥
1

Sp|a+|
1/(p−2)
∞

. (3.3)

As a consequence, 0 is not a cluster point of Na, which turns out to be closed.

It is now standard to invoke the Implicit Function Theorem to prove that Na is a C2-submanifold
of Ls,2(RN ) and that (3.3) implies

inf
u∈Na

Ia(u) ≥

(

1
2

−
1
p

)

1

S2
p |a+|

2/(p−2)
∞

.

More importantly, Na is a natural constraint for Ia, i.e. every critical point of the restriction Īa

of Ia to Na is a nontrivial critical point of Ia. The following result was proved in [15, Proposition
3.2], and allows us to consider only positive ground states.

Proposition 3.6. Any weak solution to (1.1) is strictly positive.

Proposition 3.7. Let Īa be the restriction of the functional Ia to the manifold Na. Every

Palais-Smale sequence at level c for Īa is also a Palais-Smale sequence at level c for Ia.

Proof. Assume that {un}n ⊂ Na is a Palais-Smale sequence at level c for Īa, namely

lim
n→+∞

Īa(un) = c

6



and

lim
n→+∞

DĪa(un) = 0

in the norm topology. It suffices to show that the sequence {∇Ia(un)}n converges to zero in
Ls,2(RN ). Let us abbreviate ψ(u) = DIa(u)[u], so that Na = ψ−1({0}) \ {0}. From the fact
that un ∈ Na, we deduce that Ia(un) = (1/2 − 1/p)‖un‖2

Ls,2 , and hence the sequence {un}n is
bounded. This implies that

sup
n

‖∇ψ(un)‖Ls,2

‖un‖Ls,2

< +∞. (3.4)

Explicitly, we have that, for every n ∈ N,

〈∇ψ(un) | un〉 = (2 − p)‖un‖2
Ls,2 < 0 (3.5)

and

∇Īa(un) = ∇Ia(un) −
〈∇Ia(un) | ∇ψ(un)〉

‖∇ψ(un)‖2
Ls,2

∇ψ(un). (3.6)

Observe that ∇Ia(un) ⊥ un because un ∈ Na. If we consider the quantity

‖∇ψ(un)‖2
Ls,2 −

(

〈∇Ia(un) | ∇ψ(un)〉
‖∇Ia(un)‖2

Ls,2

)2

,

we immediately see that it equals the square of the norm of the projection of the vector ∇ψ(un)
onto the subspace of Ls,2(RN ) orthogonal to the unit vector ∇Ia(un)/‖∇Ia(un)‖. Since this
subspace contains in particular the vector un/‖un‖Ls,2 , it follows from the Pythagorean Theorem
that

‖∇ψ(un)‖2
Ls,2 −

(

〈∇Ia(un) | ∇ψ(un)〉
‖∇Ia(un)‖2

Ls,2

)2

≥

(

〈∇ψ(un) | un〉

‖un‖Ls,2

)2

. (3.7)

This yields, recalling (3.6), (3.5) and (3.4),
∥

∥

∥∇Īa(un)
∥

∥

∥

Ls,2
‖∇Ia(un)‖Ls,2 ≥ 〈∇Īa(un) | ∇Ia(un)〉

=
‖∇Ia(un)‖2

Ls,2

‖∇ψ(un)‖2
Ls,2



‖∇ψ(un)‖2
Ls,2 −

(

〈∇Ia(un) | ∇ψ(un)〉
‖∇Ia(un)‖2

Ls,2

)2




2

≥
‖∇Ia(un)‖2

Ls,2

‖∇ψ(un)‖2
Ls,2

(

〈∇ψ(un) | un〉

‖un‖Ls,2

)2

=
‖∇Ia(un)‖2

Ls,2

‖∇ψ(un)‖2
Ls,2

(2 − p)2‖un‖2
Ls,2

≥ C‖∇Ia(un)‖2
Ls,2 .

This argument proves that limn→+∞ ‖∇Ia(un)‖Ls,2 = 0, and we conclude.
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4 Splitting and vanishing sequences

The analysis of Palais-Smale sequences can be harder than in the more familiar case of a
potential function a that has a precise asymptotic behavior at infinity. For this reason, we
recall a language taken from [1].

Definition 4.1. A map F : X → Y between two Banach spaces splits in the BL sense1 if for
any sequence {un}n ⊂ X such that un ⇀ u in X there results

F (un − u) = F (un) − F (u) + o(1)

in the norm topology of Y .

Lemma 4.2. Suppose that {un}n ⊂ Ls,2(RN ) and {yn}n ⊂ R
N are such that τ−ynun ⇀ u0 in

Ls,2(RN ). Then

Iτ−yna(τ−ynun) − Iτ−yna(τ−ynun − u0) − Iτ−yn a(u0) = o(1)

and

DIτ−yn a(τ−ynun) −DIτ−yna(τ−ynun − u0) −DIτ−yna(u0) = o(1).

Proof. Since the maps F (u) = p−1|u|p and F ′(u) = |u|p−2u both split from Ls,2(RN ) into
L1(RN ), see [19, Lemma 4.4], we can write

∫

RN
|(τ−yna) (F (τ−ynun) − F (τ−ynun − u0) − F (u0))|

≤ |a|∞

∫

RN
|F (τ−ynun) − F (τ−ynun − u0) − F (u0)| = o(1)

and
∫

RN

∣

∣(τ−yna)
(

F ′(τ−ynun) − F ′(τ−ynun − u0) − F ′(u0)
)∣

∣

p/(p−1)

≤ |a|p/(p−1)
∞

∫

RN

∣

∣F ′(τ−ynun) − F ′(τ−ynun − u0) − F ′(u0)
∣

∣

p/(p−1)
.

Recalling that the squared norm splits in the BL sense, the proof is complete.

Definition 4.3. A sequence {un}n ⊂ Ls,2(RN ) vanishes if τxnun ⇀ 0 in Ls,2(RN ) for any
sequence {xn}n of points in R

N .

Remark 4.4. Any vanishing sequence is necessarily bounded in Ls,2(RN ), and by the Rellich-
Kondratchev theorem (see [6, Corollary 7.2]) τxnun → 0 strongly in L2

loc(R
N ) for every sequence

{xn}n ⊂ R
N . This yields that, for every R > 0,

lim
n→+∞

sup

{

∫

B(x,R)
|un|2 | x ∈ R

N

}

= 0.

By the fractional version of Lions’ vanishing lemma [18, Proposition II.4], we deduce that un → 0
strongly in Lq(RN ) for every 2 < q < 2⋆

s.

1
BL stands for Brezis and Lieb.
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Definition 4.5. If {un}n is a sequence from Ls,2(RN ), we say that {DIa(un)}n *-vanishes if
DIτxna(un) ⇀⋆ 0 in the weak* topology for every sequence {xn}n ⊂ R

N .

Remark 4.6. It follows from the definition of the gradient and from the definition of the weak*
topology that {DIa(un)}n *-vanishes if, and only if, {∇Ia(un)}n vanishes in Ls,2(RN ) in the
sense of Definition 4.3.

Lemma 4.7. Suppose that {un}n ⊂ Ls,2(RN ), {yn}n ⊂ R
N and a∗ ∈ L∞(RN ) are such that

{DIa(un)}n *-vanishes, τ−ynun ⇀ u0 weakly in Ls,2(RN ) and τ−yna ⇀
∗ a∗ weakly*. If vn =

un − τynu0, then

lim
n→+∞

(Ia(un) − Ia(vn)) = Ia∗(u0) (4.1)

lim
n→+∞

(

‖un‖2
Ls,2 − ‖vn‖2

Ls,2

)

= ‖u0‖2
Ls,2 (4.2)

DIa∗(u0) = 0. (4.3)

Furthermore, also {DIa(vn)}n *-vanishes.

Proof. From the assumption that τ−yna ⇀∗ a∗ we deduce that Ia∗(u0) = Iτ−yn
(u0) + o(1).

Combining with Lemma 4.2 we get (4.1). Equation (4.2) follows from the splitting properties
of the squared norm. We prove now (4.3).
Fix any v ∈ Ls,2(RN ). We have that limn→+∞ F ′(τ−ynun)v = F ′(u0)v in L1(RN ) due to the
fact that τ−ynun → u0 strongly in Lp

loc(R
N ) (see again [6]). Therefore

DIa∗(u0)[v] = 〈u0 | v〉 −
∫

RN
τ−ynaF

′(u0)v + o(1)

= 〈τ−ynun | v〉 −
∫

RN
τ−ynaF

′(τ−ynun)v + o(1)

= DIτ−yna(τ−ynun)[v] + o(1) = o(1),

where we have used the assumption that {DIa(un)}n *-vanishes. This completes the proof of
(4.3).
To conclude the proof, we suppose that {xn}n is a sequence of points from R

N and that v ∈

Ls,2(RN ). We distinguish two cases.

(i) Up to a subsequence, limn→+∞ |xn + yn| = +∞. This implies that τ−xn−ynv ⇀ 0 weakly
in Ls,2(RN ), and thus F ′(u0)τ−xn−ynv → 0 strongly in L1(RN ). This yields

DIτ−yn a(u0)[τ−xn−ynv] = o(1). (4.4)

Equation (4.4), Lemma 4.2 and the fact that {DIa(vn)}n *-vanishes, we obtain

DIτxna(τxnvn)[v] = DIτ−yna(τ−ynvn)[τ−xn−ynv]

= DIτ−yna(τ−ynun)[τ−xn−ynv] −DIτ−yn a(u0)[τ−xn−ynv] + o(1)

= DIτ−yna(τ−ynun)[τ−xn−ynv] + o(1)

= DIτxn a(τxnun)[v] + o(1)

= o(1).

Since the limit is independent of the subsequence, this shows that {DIa(vn)}n *-vanishes
in this case.

9



(ii) Up to a subsequence, limn→+∞ (xn + yn) = −ξ ∈ R
N . In this case,

DIτxna(τxnvn)[v] = DIτ−yn a(τ−ynvn)[τξv] + o(1)

= DIτ−yn a(τ−ynun)[τξ] −DIτ−yna(u0)[τξv] + o(1)

= −DIτ−yna(u0)[τξv] + o(1)

= −DIa∗(u0)[τξv] + o(1)

= o(1),

and we conclude as before.

Proposition 4.8. Let {un}n be a Palais-Smale sequence for Ia at level c ∈ R. One of the

following alternatives must hold:

(a) limn→+∞ un = 0 strongly in Ls,2(RN );

(b) after passing to a subsequence, there exist a positive integer k, k sequences {yi
n}n ⊂ R

N ,

k functions ai ∈ L∞(RN ), and k functions ui ∈ Ls,2(RN ) \ {0} for i = 1, . . . , k such that

DIai(ui) = 0 for every i = 1, . . . , k and such that the following hold true:

lim
n→+∞

∥

∥

∥

∥

∥

un −
k
∑

i=1

τyi
n
ui

∥

∥

∥

∥

∥

Lp

= 0, (4.5)

c ≥
k
∑

i=1

Iai(ui), (4.6)

lim
n→+∞

τ−yi
n
a = ai in the weak* topology, (4.7)

and

lim
n→+∞

∣

∣

∣yi
n − yj

n

∣

∣

∣ = +∞ if i 6= j. (4.8)

Proof. It follows from the assumptions that the sequence {un}n is bounded in Ls,2(RN ) and
{DIa(un)}n *-vanishes. We distinguish two cases.
If {un}n vanishes, then by Remark 4.4 {un}n converges strongly to zero in Lp(RN ). Recalling
that DIa(un)[un] = o(1), we conclude that {un}n converges to zero strongly in Ls,2(RN ).
If, on the contrary, {un}n does not vanish, then there exist a function u1 ∈ Ls,2(RN ) and a
sequence {y1

n}n ⊂ R
N such that, after passing to a subsequence, and writing u1

n = un, we have
τ−y1

n
u1

n ⇀ u1 weakly. Recalling that P is compact, we may also assume that {τ−y1
n
a}n weakly*

converges to a1 ∈ L∞(RN ). We then define u2
n = u1

n − τy1
n
u1, so that τ−y1

n
u2

n ⇀ 0 weakly.
Lemma 4.7 ensures that

lim
n→+∞

Ia(u1
n) − Ia(u2

n) = Ia1(u1),

lim
n→+∞

∥

∥

∥u1
n

∥

∥

∥

2

Ls,2
−
∥

∥

∥u2
n

∥

∥

∥

2

Ls,2
= 0,

DIa1(u1) = 0
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and {DIa(u2
n)}n *-vanishes. If {u2

n}n vanishes, then it converges to zero in Lp(RN ) and thus
also {u1

n − τy1
n
u1}n converges to zero in Lp(RN ). Otherwise there exist a2 ∈ L∞(RN ), u2 ∈

Ls,2(RN ) \ {0} and a sequence {y2
n}n ⊂ R

N such that, up to a subsequence, limn→+∞ τ−y2
n
a =

a2 weakly* and limn→+∞ τ−y2
n
u2

n = u2 weakly. Necessarily, limn→+∞ |y1
n − y2

n| = 0, since
limn→+∞ τ−y1

n
u2

n = 0 weakly.

Iterating this construction, we obtain sequences {y1
n}n ⊂ R

N , functions ai ∈ L∞(RN ) and
functions ui ∈ Ls,2(RN ) \ {0} for i = 1, 2, 3, . . . Since each ui is a non-trivial critical point of Iai ,
we have that (ai)+ 6= 0. On the other hand, |(ai)+|∞ ≤ |a|∞. Hence ui ∈ Nai for every i and
by (3.3) there exists a constant C > 0, independent of i, such that ‖ui‖Ls,2 ≥ C. For every j

we also have

0 ≤ ‖uj+1
n ‖2

Ls,2 = ‖un‖2
Ls,2 −

j
∑

i=1

‖ui‖2
Ls,2 + o(1),

which implies that the iteration must stop after finitely many steps. Therefore there exists a
positive integer k such that {uk+1

n }n vanishes, {uk+1
n }n converges to zero strongly in Lp(RN )

and (4.5) holds true. Similarly,

−
∫

RN
a
∣

∣

∣uk+1
n

∣

∣

∣

p
≤ Ia(uk+1

n ) = Ia(un) −
k
∑

i=1

Iai(ui) + o(1),

and also (4.6) follows from c = limn→+∞ Ia(un). The proof is complete.

5 Existence of a ground state

The proof of the following comparison lemma is probably known, but we reproduce here for the
reader’s convenience.

Lemma 5.1. Suppose that a1, a2 ∈ L∞(RN ). If a1 ≥ a2, then ca1
≤ ca2

. If, in addition,

a1 6= a2 and Ia2
possesses a ground state, then ca1

< ca2
.

Proof. Without loss of generality, we assume that a+
2 = max{a2, 0} is not identically equal to

zero, otherwise there is nothing to prove. If u ∈ Na2
, then

∫

RN
a1|u|p ≥

∫

RN
a2|u|p > 0.

We can therefore define

t =

(

∫

RN a2|u|p
∫

RN a1|u|p

)1/(p−2)

≤ 1. (5.1)

Then we have

DIa1
(tu)[tu] = t2

(

‖u‖2
Ls,2 − tp−2

∫

RN
a1|u|p

)

= t2DIa2
(u)[u] = 0,

and hence tu ∈ Na1
. Since

Ia2
(u) =

1
2

‖u‖2
Ls,2 −

1
p

∫

RN
a2|u|p =

(

1
2

−
1
p

)

‖u‖2
Ls,2 ≥

(

1
2

−
1
p

)

‖tu‖2
Ls,2 = Ja1

(u) ≥ ca1
,

we conclude that ca2
= infu∈Na2

Ia2
(u) ≥ ca1

. Furthermore, if a1 6= a2 (as elements of L∞(RN ))
and u is a ground state of Ia2

, then |u| > 0. In (5.1) we then have t < 1, and it follows that
ca2

= Ia2
(u) > Ia1

(tu) ≥ ca1
.
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Recall the definition (2.1) of ā. We have

Proposition 5.2. There results

ca < cā.

Proof. We first consider (i) of assumption (A). Since ā ≤ 0, we have cā = ∞. But ca ∈ R

because a+ 6= 0, and there is nothing more to prove. We can assume that ā > 0 in the rest
of the proof. If (ii) of assumption (A) holds, recalling that ā > −∞ entails B 6= ∅ we can
conclude that a 6= ā. Now Lemma 5.1 implies that ca < cā, since Iā has a ground state by the
arguments of [3, Theorem 1.1].

We are now ready to prove our main existence result.

Proof of Theorem 2.3. We have Na 6= ∅ and ca < ∞ because a+ 6= 0. From (3.3) we get
ca > 0. An application of Ekeland’s Principle yields in a standard way a mimnimizing sequence
{un}n ⊂ Na for the functional Īa defined as the restriction of Ia to Na. This sequence is also
a (PS)-sequence for Īa at the level ca. By Proposition 3.7 {un}n is a (PS)-sequence for Ia at
the level ca. The strong convergence of {un}n to zero is easily ruled out, since Ia(un) → ca > 0.
Proposition 4.8 yields then a number k ∈ N, functions ai ∈ A and non-trivial critical points ui

of Iai such that

ca ≥
k
∑

i=1

Iai(ui).

From the knowledge that each ui is a non-trivial critical point of Iai we deduce (ai)+ 6= 0 for
every i = 1, . . . , k. Again by (3.3) we get Iai(ui) > 0 for every i = 1, . . . , k.
Suppose that for some index i there results ai ∈ B. Then ai ≤ ā, and Lemma 5.1 together
with Proposition 5.2 yield Iai(ui) ≥ cai ≥ cā > ca. This is a contrdiction. Therefore each ai is
a translation of a, and Iai(ui) ≥ ca for every i = 1, . . . , k. This forces k = 1, and a translation
of u1 is a ground state of Ia.

6 An example

Assumption (A) can be rephrased in a more familiar way for continuous bounded potentials.

Proposition 6.1. For any a ∈ L∞(RN ), define

â = lim
R→+∞

ess sup
x∈RN \B(0,R)

a(x).

If (A) holds true with ā replaced by â, then (A) holds true with ā.

Proof. If B = ∅, then ā = −∞ and (A) holds true. We may assume that B 6= ∅, so that a
cannot be constant. Let us prove that

ā ≤ â. (6.1)

Pick b ∈ B. There is a sequence {xn}n ⊂ R
N such that τxna ⇀

⋆ b. Translations are continuous
in the weak⋆ topology of L∞(RN ), since they are continuous in L1(RN ). For the sake of con-
tradiction, suppose that {xn}n contains a bounded subsequence. Up to a further subsequence,

12



there must exist a point ξ ∈ R
N such that xn → ξ and τxna ⇀

⋆ τξa. Since P is metrizable,
τξa = b /∈ A , a contradiction. Therefore limn→+∞ |xn| = +∞.
Let ε > 0 be given, and apply Lemma 3.2: there exists ϕ ∈ L1(RN ) with ϕ ≥ 0 and ‖ϕ‖L1 = 1
such that

∫

RN
bϕ ≥ ess sup b−

ε

2
.

Choose ψ̃ ∈ C∞
c (RN ) such that ψ̃ ≥ 0 and

∥

∥

∥ϕ− ψ̃
∥

∥

∥

L1
≤

ε

4‖b‖L∞

.

Now ψ = ψ̃/‖ψ̃‖L1 ∈ C∞
c (RN ) satisfies

‖ϕ− ψ‖L1 ≤
ε

2‖b‖L∞

,

ψ ≥ 0 and ‖ψ‖L1 = 1. This implies
∫

RN
bψ =

∫

RN
bϕ−

∫

RN
b(ϕ− ψ) ≥

∫

RN
bϕ− ‖b‖L∞ ‖ψ − ϕ‖L1 ≥ ess sup b− ε.

Suppose that suppψ ⊂ B(0, R): then

ess sup b− ε ≤
∫

RN
bψ = lim

n→+∞

∫

RN
(τxna)ψ

≤ lim
n→+∞

ess sup
x∈B(−xn,R)

a(x)
∫

RN
ψ ≤ lim

n→+∞
ess sup

x∈RN \B(0,|xn|−R)

a(x) = â.

Since ε > 0 is arbitrary, we conclude that ess sup b ≤ â. If (i) of assumption (A) holds, then
(6.1) yields ā ≤ â ≤ 0. If (ii) holds, then (6.1) yields ā ≤ â ≤ a, and the proof is complete.

An immediate consequence of Theorem 2.3 is then the following.

Corollary 6.2. If a is a bounded continuous function such that either lim sup|x|→+∞ a(x) ≤ 0
or lim sup|x|→+∞ a(x) ≤ a, then equation (1.1) has (at least) a positive ground state as soon as

2 < p < 2⋆
s.
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