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TOTALLY SMOOTH RENORMINGS

EVE OJA, TAURI VIIL, AND DIRK WERNER

Abstract. We study the problem of totally smooth renormings of Banach
spaces and provide such renormings for spaces which are weakly compactly
generated. We also consider renormings for (a, B, c)-ideals.

1. Introduction

Let X be a Banach space. Following Phelps [P], we say that a subspace X of
a Banach space Z has property U in Z if every functional x∗ ∈ X∗ has a unique
norm-preserving extension z∗ ∈ Z∗. Following Liao and Wong [LW], we say that
X is totally smooth in Z if every closed subspace Y of X has property U in Z. If
Z = X∗∗, then we say that X has property U in its bidual or, respectively, that X
is totally smooth in its bidual. Banach spaces with property U in their biduals are
also known as Hahn-Banach smooth spaces [S].

The notion of total smoothness in the bidual was essentially considered already
in 1977 by Sullivan [S]. It was further studied in [OPV], where several geometrical
conditions equivalent to total smoothness were proved.

Let πX : X∗∗∗ → X∗∗∗ denote the natural projection onto the dual space X∗. It
is known (see [O2] or, e.g., [O4, p. 21]) that X has property U in its bidual X∗∗

if and only if X has the strong uniqueness property SU in X∗∗, meaning that the
following condition holds: for x∗∗∗ ∈ X∗∗∗,

‖πXx∗∗∗‖ = ‖x∗∗∗‖ ⇒ πXx∗∗∗ = x∗∗∗.

A Banach space X is called an M -ideal in its bidual if the equality

‖x∗∗∗‖ = ‖πXx∗∗∗‖+ ‖x∗∗∗ − πXx∗∗∗‖
holds for every x∗∗∗ ∈ X∗∗∗. The notion of M -ideals was introduced by Alfsen
and Effros in [AE] and has since then been studied by many authors (see, e.g., the
monograph [HWW] for results and references).

The motivation for this paper comes from the following observation in [OPV,
Remark 2.8], which is based on [HWW, Theorem III.4.6].

Observation. If X is an M -ideal in its bidual X∗∗, then X admits an equivalent
norm under which X is totally smooth and is still an M -ideal in its bidual.

As, clearly, being an M -ideal implies property U , the natural question arises
whether the M -ideal condition in the Observation could be relaxed.

Problem 1.1. If X has property U in its bidual X∗∗, then does X admit an
equivalent norm under which X is totally smooth in its bidual?
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Let us note at once (see Example 3.5 below) that there exist Banach spaces that
admit an equivalent norm under which they are totally smooth, but they do not
admit any equivalent norm under which they are M -ideals in their biduals.

Now, we recall that according to the Taylor–Foguel theorem (see [T] and [Fo]),
every subspace Y of X has property U in X if and only if the dual space X∗ is
strictly convex, i.e., its unit sphere SX∗ contains no non-trivial line segments.

Thus, relying on the Taylor–Foguel theorem, we can characterize totally smooth
spaces by the strict convexity of the dual space as follows.

Theorem 1.2 (see [LW]). A Banach space X is totally smooth in its bidual X∗∗

if and only if X has property U in X∗∗ and the dual space X∗ is strictly convex.

Therefore, Problem 1.1 is equivalent to the following problem.

Problem 1.3. If X has property U in its bidual X∗∗, then does X admit an
equivalent norm under which the dual space X∗ is strictly convex and X still has
property U in its bidual?

Recall that if X is separable and has property U in X∗∗, then X∗ is separable (see
Theorem 2.1 below). It was observed by Sullivan in [S, p. 321] that an application of
the Kadets–Klee renorming theorem solves Problem 1.3 (and thus also Problem 1.1)
fully and positively for separable spaces. This theorem provides a Banach space
having a separable dual with an equivalent norm whose dual norm is strictly convex
and has the property that the weak∗ topology and the norm topology coincide on
the (new) dual sphere. A proof of this renorming theorem can be found in [Di,
pp. 113–117]; it first appeared in Klee’s paper [Kl2] relying on work by Kadets in
[Ka].

In Section 3, using a simple Klee-type renorming [Kl1], we give a partial positive
answer to Problem 1.3, and thus to Problem 1.1, in the general case (see Theo-
rem 3.2). In particular, our results also provide an alternative proof for the separa-
ble case. In Section 4, we come back to the Observation and we show that, under
natural assumptions, its claim holds for (a,B, c)-ideals, which are a far-reaching
generalization of M -ideals, encompassing in particular u- and h-ideals.

Our notation is standard. We consider Banach spaces over the scalar field K = R

or K = C. For a Banach space X , BX is the closed unit ball and SX is the unit
sphere of X . By span(xi), we denote the closed linear span of the elements xi. For
a subspace X of Z, X⊥ = {z∗ ∈ Z∗ : z∗|X = 0} is the annihilator. The density
character of the space X is denoted by densX . For a bounded linear operator T ,
T ∗ is the adjoint operator, ranT is the range, and kerT is the kernel of T .

2. Useful results

In this section, we note some useful results regarding property U and very smooth
norms.

Recall that a Banach space X is an Asplund space if every separable subspace
Y of X has a separable dual space Y ∗. The following result (implicitly in [SS,
Theorem 15]) is well known.

Theorem 2.1. A Banach space X with property U in its bidual X∗∗ is an Asplund
space.

In addition, we will need the following known result for Asplund spaces.



TOTALLY SMOOTH RENORMINGS 3

Theorem 2.2 (see [Fa, p. 112 and Theorem 8.3.3]). For a Banach space X, the
following conditions are equivalent.

(a) X has a shrinking Markushevich basis, i.e., there are (xi)i∈I in X and
(fi)i∈I in X∗ such that I has the cardinality densX, and

• fi(xj) = δij,
• span(xi) = X,
• span(fi) = X∗.

(b) X is weakly compactly generated (WCG) and Asplund.

Recall that a Banach space X is weakly compactly generated (WCG) if X is the
closed linear span of some weakly compact subset of X . The most important result
on WCG spaces is the following Amir–Lindenstrauss theorem.

Theorem 2.3 (see [AL] or, e.g., [Fa, Theorem 1.2.5]). A Banach space X is weakly
compactly generated if and only if there exist a set Γ 6= ∅ and an injective weak∗-
to-weak continuous linear operator from X∗ to c0(Γ).

We will also make use of the notion of very smooth spaces. First, recall that
a Banach space X is smooth whenever for every x ∈ SX , there exists a unique
functional fx ∈ SX∗ such that fx(x) = 1. If X is smooth, then the support mapping
x 7→ fx from SX to SX∗ is norm-to-weak∗ continuous (see, e.g., [Di, p. 22]).

Definition 2.4 (see [DF] or, e.g., [Di, p. 31]). A smooth Banach space X is called
very smooth if the support mapping x 7→ fx from SX to SX∗ is norm-to-weak
continuous.

It is well known that a Banach space X is smooth whenever its dual space X∗

is strictly convex, but it need not be very smooth in general [S].
To prove that a renorming is very smooth, we will use the following result.

Lemma 2.5 (see [G] or, e.g., [HWW, Lemma III.2.14]). A Banach space X has
property U in its bidual X∗∗ if and only if the relative weak and weak∗ topologies
on BX∗ coincide on SX∗ .

3. Renorming of Banach spaces with property U

In order to try to solve Problem 1.3, we follow the strategy of the proof of the
Observation. This proof has three steps.

(i) The Banach space X has a shrinking Markushevich basis (as proved by
Fabian and Godefroy [FG]).

(ii) Using the shrinking Markushevich basis, one obtains an injective weak∗-to-
weak continuous linear operator from X∗ to c0(Γ). This allows one to equip

X with a rather standard equivalent norm | · | such that for X̃ := (X, | · |),
the dual norm of X̃∗ is strictly convex (as proved already by Amir and
Lindenstrauss [AL]).

(iii) It can be shown that the renorming in (ii) is such that X̃ is still an M -ideal

in X̃∗∗ (as proved by Harmand and Rao in [HR]).

The step (iii) can be extended from the M -ideal case (see [HR] or [HWW, Propo-
sition III.2.11]) to the property U case by the following theorem.
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Theorem 3.1. Let X be a Banach space with property U in its bidual X∗∗. If Y
is a Banach space and T : Y → X a weakly compact operator, then

|x∗| := ‖x∗‖+ ‖T ∗x∗‖ , x∗ ∈ X∗,

is an equivalent dual norm on X∗ for which X̃ := (X, | · |) has property U in X̃∗∗.
Moreover, if T ∗ is injective and there is a strictly convex Banach space Z such

that ranT ∗ ⊂ Z ⊂ Y ∗, then X̃∗ is strictly convex.

Proof. Since T ∗ is an adjoint operator, it is weak∗-to-weak∗ continuous, and thus
the mapping x∗ 7→ ‖T ∗x∗‖, x∗ ∈ X∗, is weak∗ lower semicontinuous. Therefore,
| · | is an equivalent dual norm by a well-known result of Klee [Kl1]; see, e.g., [Di,
p. 106].

To calculate | · | on the third dual X∗∗∗, we use the following argument due to
Harmand and Rao in [HR]. By definition, the operator

S : (X∗, | · |) → X∗ ⊕1 Y
∗, x∗ 7→ (x∗, T ∗x∗),

is isometric; hence

S∗∗ : (X∗∗∗, | · |) → X∗∗∗ ⊕1 Y
∗∗∗

is isometric too. One can easily see that S∗∗x∗∗∗ = (x∗∗∗, T ∗∗∗x∗∗∗), so

|x∗∗∗| = ‖x∗∗∗‖+ ‖T ∗∗∗x∗∗∗‖ , x∗∗∗ ∈ X∗∗∗.

By the weak compactness of T ∗, we get that ranT ∗∗∗ ⊂ Y ∗, hence πY T
∗∗∗ = T ∗∗∗.

Since πY T
∗∗∗ = T ∗∗∗πX , we conclude that T ∗∗∗ = T ∗∗∗πX .

We need to show that the natural projection πX ∈ L(X∗∗∗) satisfies the condition

|πXx∗∗∗| = |x∗∗∗| ⇒ πXx∗∗∗ = x∗∗∗.

Let x∗∗∗ ∈ X∗∗∗ be such that |πXx∗∗∗| = |x∗∗∗|. Then

0 = |πXx∗∗∗| − |x∗∗∗|
= ‖πXx∗∗∗‖+ ‖T ∗∗∗πXx∗∗∗‖ − ‖x∗∗∗‖ − ‖T ∗∗∗x∗∗∗‖
= ‖πXx∗∗∗‖ − ‖x∗∗∗‖ .

Therefore, ‖πXx∗∗∗‖ = ‖x∗∗∗‖, and thus πXx∗∗∗ = x∗∗∗ by property U of X in
X∗∗.

Moreover, if T ∗ is injective and there is a strictly convex Banach space Z such
that ranT ∗ ⊂ Z ⊂ Y ∗, then, thanks to Klee’s renorming theorem in [Kl1] (see, e.g.,

[Di, Theorem 1, p. 100]), X̃∗ is strictly convex. �

Using Theorem 3.1, we can now give a partial answer to Problem 1.1.

Theorem 3.2. If a WCG Banach space X has property U in its bidual X∗∗, then
X has a shrinking Markushevich basis and X admits an equivalent very smooth
norm under which X is totally smooth in its bidual.

Proof. Since X is also Asplund (see Theorem 2.1), it has a shrinking Marku-
shevich basis (see Theorem 2.2). All we need to finish the proof is an injective
weak∗-to-weak continuous linear operator S : X∗ → c0(Γ) (for some set Γ). Such an
operator S exists according to the Amir–Lindenstrauss theorem (see Theorem 2.3).
However, S can be very easily constructed using our shrinking Markushevich basis.
From now, we follow the proof of [HWW, Theorem III.4.6(e)].
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Let (xi, fi)i∈I with xi ∈ X , fi ∈ X∗ be a shrinking Markushevich basis. Assum-
ing ‖xi‖ = 1, we define an operator S : X∗ → c0(I) by

x∗ 7→ (x∗(xi)) , x∗ ∈ X∗.

It is easy to check that the operator S is well-defined, injective, and weak∗-to-weak
continuous. In particular, S is weakly compact and weak∗-to-weak∗ continuous
when considered as an operator into c0(I)

∗∗, for which we use the notation S̃.

Hence, S̃ is the adjoint of a weakly compact operator T : c0(I)
∗ → X .

We now equip c0(I) with Day’s equivalent strictly convex norm [Da] (see, e.g.,
[Di, p. 94]). Since T satisfies the requirements in Theorem 3.1, we get an equivalent
smooth norm | · | on X whose dual norm is strictly convex and for which X still has
property U in its bidual. The norm | · | on X is, in fact, very smooth. Indeed, as was
mentioned above, the support mapping on a smooth space is always norm-to-weak∗

continuous, hence for (X, | · |), by Lemma 2.5, the support mapping is norm-to-weak
continuous, i.e., (X, | · |) is very smooth. �

Since separable Banach spaces are WCG, Theorem 3.2 gives an alternative proof
to the separable case considered by Sullivan in [S] that was mentioned in the Intro-
duction.

Corollary 3.3. If a separable Banach space X has property U in its bidual X∗∗,
then X admits an equivalent very smooth norm under which X is totally smooth in
its bidual.

Readers particularly interested in the separable case as expounded in the previ-
ous corollary should notice that the rather easy argument of [LT1, Proposition 1.f.3]
shows that a Banach space with a separable dual admits a shrinking Markushevich
basis.

In order to obtain examples of spaces having a shrinking Markushevich basis, we
can use the notion of U∗-spaces, which is dual to property U .

Definition 3.4 (see [CN1]). A Banach space X is said to be a U∗-space in its
bidual X∗∗ if for every x∗∗∗ ∈ X∗∗∗ with πXx∗∗∗ 6= 0,

‖x∗∗∗ − πXx∗∗∗‖ < ‖x∗∗∗‖ .
In [CN1, proof of Theorem 4.4], it was observed that the proofs of [FG, Theo-

rems 1 and 3] essentially yield that every Asplund U∗-space has a shrinking Marku-
shevich basis and is WCG. Therefore, Theorem 3.2 applies to any U∗-space with
property U in its bidual. This, together with some help from the literature, will be
used in the next example.

Example 3.5. Let Γ be an infinite set and let 1 < p < ∞. The lp-sum lp(c0(Γ))
admits an equivalent very smooth norm under which X is totally smooth in its
bidual, but it cannot be equivalently renormed to be an M -ideal in its bidual.

Proof. It is well known (see, e.g., [HWW, Example III.1.4(a)]) that c0(Γ) is an
M -ideal in its bidual. Hence, clearly, it is a U∗-space. This property extends to the
lp-sum, which also has property U in its bidual (see [CN1, Proposition 2.2]). We
have the desired renorming of lp(c0(Γ)) thanks to Theorem 3.2.

Assume, for the sake of contradiction, that X := (lp(c0(Γ)), | · |) is an M -ideal
in X∗∗ for some equivalent norm | · | on lp(c0(Γ)). Since M -ideals in their biduals
are stable by taking closed subspaces (see [HL] or, e.g., [HWW, Theorem III.1.6]),
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Y := (lp(c0), | · |) is an M -ideal in Y ∗∗. This contradicts [GKS, Proposition 4.4]
stating that if a separable M -ideal Y in Y ∗∗ has a boundedly complete Schauder
decomposition (Yn)

∞
n=1

, then all but finitely many subspaces Yn are reflexive. In
our case, all Yn, n = 1, 2, . . . , are isomorphic to c0 and thus non-reflexive. �

4. Renorming of (a,B, c)-ideals

According to [GKS], a closed subspace X of a Banach space Z is said to be an
ideal in Z if there is a contractive projection P on Z∗ such that kerP = X⊥. In
this case, the projection P is called an ideal projection. If ranP is norming, then
the ideal is called strict. If Z = X∗∗ and P = πX , then the ideal is called canonical.
Canonical ideals are strict, but not vice versa.

Let a, c ≥ 0 and let B ⊂ K be a compact set. If X is an ideal in Z with an ideal
projection P such that

‖az∗ + bPz∗‖+ c ‖Pz∗‖ ≤ ‖z∗‖ ∀b ∈ B

for all z∗ in Z∗, then X is said to be an (a,B, c)-ideal in Z. The (a,B, c)-ideals
were introduced in [O6] (see also [O5]), but got their name later in [OP]. This
approach unifies all previously studied special cases of ideals. For instance, it is
easy to see that M -ideals coincide with (1, {−1}, 1)-ideals, u-ideals coincide with
(1, {−2}, 0)-ideals, and h-ideals are the same as (1, {−(1 + λ) : λ ∈ SC}, 0)-ideals.
The notions u- and h-ideals have been deeply studied in [GKS].

In the context of (a,B, c)-ideals, the Observation (from the Introduction) triggers
the following natural question (cf. Problem 1.1).

Problem 4.1. If X is an (a,B, c)-ideal with property U in its bidual X∗∗, then
does X admit an equivalent norm under which X is totally smooth and is still an
(a,B, c)-ideal in its bidual?

Similarly to the property U case, we prove that the renorming from step (iii)
from the proof of the Observation can be extended to canonical (a,B, c)-ideals.
Concerning the special case of M -ideals, recall that an M -ideal in its bidual is
always canonical.

Theorem 4.2. Let X be a Banach space which is a canonical (a,B, c)-ideal in its
bidual X∗∗. If Y is a Banach space and T : Y → X is a weakly compact operator,
then

|x∗| := ‖x∗‖+ ‖T ∗x∗‖ , x∗ ∈ X∗,

is an equivalent dual norm under which X̃ = (X, | · |) is still a canonical (a,B, c)-

ideal in X̃∗∗.
Moreover, if T ∗ is injective and there is a strictly convex Banach space Z such

that ranT ∗ ⊂ Z ⊂ Y ∗, then X̃∗ is strictly convex.

Proof. The proof is essentially the same as the proof of Theorem 3.1, except that

here we need to show that X̃ is a canonical (a,B, c)-ideal. This means that

|ax∗∗∗ + bπXx∗∗∗|+ c|πXx∗∗∗| ≤ |x∗∗∗| ∀b ∈ B

holds for all x∗∗∗ in X∗∗∗.
Let x∗∗∗ ∈ X∗∗∗. Then ‖ax∗∗∗ + bπXx∗∗∗‖+ c ‖πXx∗∗∗‖ ≤ ‖x∗∗∗‖ for all b ∈ B.

Therefore, recalling that on X∗∗∗, the norm | · | is of the form x∗∗∗ 7→ |x∗∗∗| =
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‖x∗∗∗‖+ ‖T ∗∗∗x∗∗∗‖ and T ∗∗∗πX = T ∗∗∗, we have

|ax∗∗∗ + bπXx∗∗∗|+ c|πXx∗∗∗|
= ‖ax∗∗∗ + bπXx∗∗∗‖+ ‖aT ∗∗∗x∗∗∗ + bT ∗∗∗πXx∗∗∗‖

+ c ‖πXx∗∗∗‖+ c ‖T ∗∗∗πXx∗∗∗‖
= ‖ax∗∗∗ + bπXx∗∗∗‖+ c ‖πXx∗∗∗‖

+ ‖aT ∗∗∗x∗∗∗ + bT ∗∗∗x∗∗∗‖+ c ‖T ∗∗∗x∗∗∗‖
≤ ‖x∗∗∗‖+ |a+ b| ‖T ∗∗∗x∗∗∗‖+ c ‖T ∗∗∗x∗∗∗‖
≤ ‖x∗∗∗‖+ ‖T ∗∗∗x∗∗∗‖ = |x∗∗∗|,

because |a + b| + c ≤ 1 for every b ∈ B (this can easily be verified by considering
an arbitrary x∗ ∈ SX∗). �

Our next result extends [FG, renorming result on p. 142 after Theorem 3] and
[HWW, Theorem III.4.6(e)] from M -ideals to strict (a,B, c)-ideals. Note that The-
orem 4.3 applies in particular to u- and h-ideals.

Theorem 4.3. Let a, c ≥ 0, and let B be a compact set of scalars. Assume that a
Banach space X is a strict (a,B, c)-ideal in X∗∗. If X has a shrinking Markushevich
basis, then X admits an equivalent smooth norm whose dual norm is strictly convex
and under which X becomes a canonical (a,B, c)-ideal in its bidual.

The proof of Theorem 4.3 uses the following result that relies on [GK] and extends
[GKS, Proposition 5.2, (1) and (2)], where u- and h-ideals were considered.

Proposition 4.4. Let a Banach space X be a strict (a,B, c)-ideal in X∗∗. If X
does not contain l1 isomorphically, then X is a canonical (a,B, c)-ideal in X∗∗.

Proof. The proof follows the scheme of the proof of [GKS, Proposition 5.2, (1)
and (2)].

By assumption, there is an (a,B, c)-ideal projection P on X∗∗∗ such that kerP =
X⊥ and ranP is a norming subspace of X∗∗∗. It suffices to show that ranP = X∗,
because then P = πX (recall that kerπX = X⊥ and ranπX = X∗), meaning that
X is a canonical (a,B, c)-ideal in X∗∗.

Since X does not contain l1 isomorphically, we get from [GK, Corollary 5.5] that
X∗∗∗ contains a minimal norming subspace, which is, by definition, the intersection
of all norming subspaces of X∗∗∗. We know that X∗ is norming in X∗∗∗. On
the other hand, a proper subspace U of X∗ cannot be norming in X∗∗∗. Indeed,
assume, for the sake of contradiction, that such a U is norming in X∗∗∗. By the
Hahn–Banach theorem, there is x∗∗ ∈ X∗∗ such that x∗∗(u) = 0 for every u ∈ U ,
but x∗∗ 6= 0. Since U is norming in X∗∗∗, we get

‖x∗∗‖ = sup
u∈BU

|x∗∗(u)| = 0,

which is a contradiction.
Therefore, X∗ is the minimal norming subspace, and thus X∗ ⊂ ranP . Since

now also ranP ⊂ X∗ (indeed, if x∗∗∗ = x∗ + x⊥ ∈ X∗∗∗ with x∗ ∈ X∗, x⊥ ∈ X⊥,
then Px∗∗∗ = Px∗ = x∗, because X∗ ⊂ ranP ), we have ranP = X∗, as desired. �

Proof of Theorem 4.3. Since X has a shrinking Markushevich basis, by Theorem 2.2,
X is Asplund. An Asplund space cannot contain l1 isomorphically, and thus, by
Proposition 4.4, X is a canonical (a,B, c)-ideal.
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Now, using Theorem 4.2 (instead of Theorem 3.1) in the proof of Theorem 3.2,
this immediately yields an equivalent smooth norm | · | on X whose dual norm is
strictly convex and for which X is still a canonical (a,B, c)-ideal in its bidual. �

If the latter proof is carried out under the supplementary assumption of property
U , then one obtains the following partial positive answer to Problem 4.1, which is
quite similar to Theorem 3.2.

Theorem 4.5. Let a, c ≥ 0, and let B be a compact set of scalars. Assume that a
Banach space X is a strict (a,B, c)-ideal with property U in X∗∗. If X is WCG,
then X has a shrinking Markushevich basis and X admits an equivalent very smooth
norm under which X becomes a totally smooth canonical (a,B, c)-ideal in its bidual.

For separable spaces, we can again omit the WCG-assumption.

Corollary 4.6. Let a, c ≥ 0, and let B be a compact set of scalars. Assume that a
separable Banach space X is a strict (a,B, c)-ideal with property U in X∗∗. Then X
admits an equivalent very smooth norm under which X is a totally smooth canonical
(a,B, c)-ideal in its bidual.

As it was recalled in Section 3, every Asplund U∗-space has a shrinking Marku-
shevich basis. Since this property is preserved under isomorphisms, Theorem 4.5
immediately implies the following.

Corollary 4.7. Let a, c ≥ 0 and let B be a compact set of scalars. Assume that a
Banach space X is a strict (a,B, c)-ideal with property U in X∗∗. If X is isomorphic
to a U∗-space, then X admits an equivalent very smooth norm under which X is a
totally smooth canonical (a,B, c)-ideal in its bidual.

Similarly to Theorem 4.5, we can apply Theorem 4.3 to obtain the following
result. However, here we need to use a couple of auxiliary results from the literature.

Theorem 4.8. Let a Banach space X be a strict (a,B, c)-ideal in X∗∗ with
max{|b| : b ∈ B} + c > 1. If X is isomorphic to a U∗-space, then X admits an
equivalent smooth norm whose dual norm is strictly convex and under which X
becomes a canonical (a,B, c)-ideal in its bidual.

Proof. A U∗-space does not contain l1 isomorphically. This fact was observed in
[CN1, Proposition 4.1] as a direct consequence of [GKS, Proposition 2.6]. Hence, X
does not contain l1 isomorphically, and therefore, by Proposition 4.4, our (a,B, c)-
ideal X is canonical. But canonical (a,B, c)-ideals with B and c as above are
Asplund spaces (see [O6, proof of Theorem 4.1] or [OZ, Lemma 4.2]). Hence, X
has a shrinking Markushevich basis, and Theorem 4.3 applies. �

Note that the above (a,B, c)-ideal assumption is satisfied in all important cases,
including M -, u-, and h-ideals.

Clearly, M -ideals in their biduals and, more generally, the canonical (1, {−1}, c)-
ideals with c ∈ (0, 1] are U∗-spaces. Hence, from Theorem 4.8, we have the following
example.

Example 4.9. Let X be a canonical (1, {−1}, c)-ideal in X∗∗ with c ∈ (0, 1]. Then
X admits an equivalent smooth norm whose dual norm is strictly convex and under
which X is a canonical (1, {−1}, c)-ideal in its bidual.
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Remark 4.10. A particular example of a (1, {−1}, c)-ideal is provided by certain
renormings of the James space J , as shown in [CN1, Example 3.5]. Namely, for

δ >
√
2 the renorming Jδ of the James space in [CN1, Example 3.5] is a canonical

(1, {−1}, c)-ideal in J∗∗
δ if

max
{ (1 + δc)2

δ2
,
(1 + δc)2 + (1 + c)2 + 2(δc)2

2δ2

}
<

1

2
.

(We take this opportunity to point out a disturbing typo in [CN1] where the de-
nominator in the first item of the maximum is 2 instead of δ2.) It is easy to see

that for each c < 1/
√
3, there is some δ >

√
2 satisfying the above inequality.

The point of this remark is that the James space J cannot be renormed to be
an M -ideal in its bidual, since it is non-reflexive and its bidual is separable, being
isomorphic to J . However, a non-reflexive space that is an M -ideal in its bidual
contains a copy of c0 (see [HL] or, e.g, [HWW, Corollary III.3.7(a)]; hence the
renormed James space Jδ is a nontrivial instance of Example 4.9.

Let us conclude the paper with a couple of examples where Corollary 4.7 applies.
It is known (see [CN1, Proposition 2.2]) that the space in Example 3.5 is a

canonical u-ideal in its bidual. Using Corollary 4.7 (instead of Theorem 3.2) in
the proof of Example 3.5 allows us to strengthen this – using the same norm as in
Example 3.5 – as follows. Note that canonical u-ideals in their biduals could be
considered as the closest important weakenings of M -ideals in their biduals.

Example 4.11. Let Γ be an infinite set and let 1 < p < ∞. The lp-sum lp(c0(Γ))
admits an equivalent very smooth norm under which it is a totally smooth canonical
u-ideal in its bidual. But lp(c0(Γ)) cannot be equivalently renormed to be an M -
ideal in its bidual.

Our last Example 4.12 will concern a large class of spaces. We need some more
notation. For Banach spaces X and Y , we denote by L(X,Y ) the Banach space of
bounded linear operators from X to Y , and by K(X,Y ) its subspace of compact
operators. We write L(X) and K(X), respectively, if X = Y . Recall that a net
(Kα) in K(X) is a compact approximation of the identity (CAI) provided Kαx → x
for all x ∈ X . If, moreover, K∗

αx
∗ → x∗ for all x∗ ∈ X∗, then (Kα) is called a

shrinking CAI. If X has a CAI such that the convergence is uniform on compact
subsets of X , then X is said to have the compact approximation property (CAP).

Let 1 < p < ∞. A Banach space X is said to have the upper p-property (cf.
[OW, Proposition 1.1] or [HWW, pp. 306 and 327]) if X admits a shrinking CAI
(Kα) such that

lim sup
α

sup
x,y∈BX

‖Kαx+ (y −Kαy)‖ ≤ (‖x‖p + ‖y‖p)1/p.

If X and Y are both reflexive Banach spaces, and X or Y has the CAP, then
K(X,Y )∗∗ = L(X,Y ) (see [GS, Corollary 1.3]; in the AP-case, this is a well-known
result due to Grothendieck). There is a vast literature studying the position of
K(X,Y ) in L(X,Y ) in terms of ideals (see, e.g., [HJO] for recent results and a
large set of references). We are going to use [CN2, Theorem 4.4 and Corollary 4.5],
from which one can see that K(X,Y ) is a U∗-space with property U and also a strict
(a, {−a}, c)-ideal for all a, c > 0 such that ap + cp ≤ 1 in L(X,Y ), whenever X is
an arbitrary Banach space and Y is a Banach space having the upper p-property.
Thanks to Corollary 4.7, we have the following rather general example.
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Example 4.12. Let X and Y be reflexive Banach spaces and let 1 < p < ∞. If
Y has the upper p-property, then K(X,Y ) admits an equivalent very smooth norm
under which K(X,Y ) is a totally smooth canonical (a, {−a}, c)-ideal in its bidual
for all a, c > 0 such that ap + cp ≤ 1.

Besides the lp(Γ) spaces and the Lorentz sequence spaces d(w, p), there are
many reflexive spaces enjoying the upper p-property, as one can see from [HWW,
pp. 306, 327]. In the context of Example 4.12, we are interested in cases when
K(X,Y ) is not an M -ideal in its bidual L(X,Y ). Here the classical example, due
to Hennefeld (see [H] or, e.g., [HWW, p. 305]), is that K(d(w, p)) is not an M -ideal
in its bidual L(d(w, p)). If 1 < p ≤ q < ∞, then K(lp(Γ), d(w, q)) is an M -ideal in
L(lp(Γ), d(w, q)) by [O1] (see, e.g., [O4, p. 53 or p. 66]). However, in [O3] (see, e.g.,
[O4, p. 73 and p. 77]), it is proved that for 1 < q < p < ∞ and an infinite set Γ,
K(lp(Γ), d(w, q)) is not an M -ideal in L(lp(Γ), d(w, q)) whenever w ∈ l p

p−q
, neither

is K(d(v, p)∗, d(w, q)) in L(d(v, p)∗, d(w, q)), 1 < p, q < ∞, whenever p > (p − 1)q
and d(v, p)∗ (which is a sequence space) is contained as a linear subspace in d(w, q).
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