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MOMENTS OF AN EXPONENTIAL SUM RELATED TO

THE DIVISOR FUNCTION

MAYANK PANDEY

Abstract. We use the circle method to obtain tight bounds on the Lp

norm of an exponential sum involving the divisor function for p > 2.

1. Introduction

Let X ≥ 1 be sufficiently large. For a function f : N → C, let

Mf (α) :=
∑

n≤X

f(n)e(nα)

where as usual, e(α) := e2πiα. Information on the structure of f(n) can be
obtained by studying the size of Lp-integrals of Mf (α), and bounds on them
are often useful in applications of the circle method. In particular, often,
when bounding the contribution from “minor arcs” in an application of the
circle method, one is led to bounding the L∞ norm of an exponential sum

in the minor arcs times
∫ 1
0 |G(α)|pdα for some G(α), which is often of the

form Mf (α) for various choices of f .
For example, a proof of the minor arc bounds in Vinogradov’s theorem

(that all sufficiently large odd integers are the sum of 3 primes) involves
bounding MΛ(α) by OA(X log−AX) for a particular choice of minor arcs,
which along with the fact that by Parseval’s identity and the prime number

theorem
∫ 1
0 |MΛ(α)|2dα ≪ X logX implies that |MΛ(α)|3 is bounded above

by X2 log−A+1X on average on the minor arcs. Here, Λ is the von Mangoldt
function

Write

(1.1) If (p) :=

∫ 1

0
|Mf (α)|pdα.

In the case p = 1, f = τ , it was shown in [GP] that

(1.2)
√
X ≪ Iτ (1) ≪

√
X logX,

where
τ(n) :=

∑

d|n

1

and the methods used to prove the lower bound in that paper should extend
to allow one to show that

Iτ (p) ≫ Xp/2
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for p < 1. For sequences other than τ(n), similar results have been estab-
lished in the case p = 1. For example, with µ the Möbius function, we have
that X1/6 ≪ Iµ(1) ≪ X1/2 where the upper bound follows from Parseval’s
identity, and the lower bound follows from Theorem 3 in [BR]. Estimates
for If (1) in the case f is an indicator function for the primes have been
obtained by Vaughan [Va1] and Goldston [Go], and in the case f is the in-
dicator function for integers not divisible by the rth power of any prime by
Balog and Ruzsa [BR]. Later, a result of Keil [Ke] finds with f the indicator
function for the r-free numbers the exact order of magnitude of all moments
but 1+ 1

r in which case the exact order of magnitude is found within a factor
of logX.

In this paper, we shall focus on the case f = τ , the divisor function. Note
that we have that by Parseval’s identity

(1.3) Iτ (2) =
∑

n≤X

τ(n)2 ∼ 1

π2
X(logX)3.

We shall obtain tight estimates on Iτ (p) for p > 2. In particular, we prove
the following result.

Theorem 1.1. We have that for p > 2

(1.4) Xp−1(logX)p ≪
∫ 1

0
|Mτ (α)|pdα ≪ Xp−1(logX)p.

where the implied constants depend only on p.

1.1. Notation. Throughout this paper, all implied constants will be as-
sumed to depend only on p unless otherwise specified. In addition, we write
‖α‖ to denote infn∈Z |α − n|. We write f ≍ g to denote that g ≪ f ≪ g
where the two implied constants need not be the same. In addition, any
statement with ε holds for all ε > 0 and implied constants depend on ε too
if it appears.

2. Preliminaries and setup

Note that we have that since τ(n) =
∑

d|n 1 =
∑

uv=n 1

Mτ (α) =
∑

n≤X

τ(n)e(nα) =
∑

uv≤X

e(αuv)

= 2
∑

uv≤X
u<v

e(αuv) +
∑

uv≤X
u=v

e(αuv) = 2T (α) + E(α).
(2.1)

Also, let

v(β) :=
∑

n≤X

e(nβ).

We record the following well-known bound on v(β) which we will use later.

Lemma 2.1. We have that for β 6∈ Z, |v(β)| ≪ min(X, ‖β‖−1).
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Proof. Note that we have that if β ∈ Z, we are done since then v(β) = ⌊X⌋.
Otherwise, we have that by summing the geometric series,
(2.2)

|v(β)| =
∣

∣

∣

∣

e((⌊X⌋ + 1)β) − e(β)

e(β)− 1

∣

∣

∣

∣

=
|1− e(⌊X⌋β)|
|1− e(β)| =

sin(π⌊X⌋α)
πα

≪ 1

| sin 2πα| ≪
1

‖α‖
�

In addition, we shall also use the following result on moments of v(β).

Lemma 2.2. For p > 2, we have that
∫ 1

0
|v(β)|p ≍ Xp−1.

Proof. Note that by the third equality in (2.2), we have that
(2.3)
∫ 1

0
|v(β)|pdβ ≥

∫

[(2X)−1,(4X)−1]
sin(π⌊X⌋β)(sin πβ)−pdβ ≫

∫

[(2X)−1,(4X)−1]
X−pdβ ≫ Xp−1.

In addition, note that for positive integers s, by considering the underlying
Diophantine system, we have that
∫ 1

0
|v(β)|2sdβ = |{1 ≤ x1, . . . , xs, y1, . . . , ys ≤ X : x1 + · · ·+ xs = y1 + · · ·+ ys}|

=
∑

n≤X

(

n− 1

s− 1

)2

∼ CsX
2s−1

for some Cs > 0, so the upper bound, and therefore the desired result,
follows from Hölder’s inequality. �

We will use the circle method to prove the main result. In particular, we
shall show that the main contribution to the integral Iτ (p) comes from α
close to rationals with small denominator by estimating Iτ around rationals
with small denominator and bounding it everywhere else. To that end, let

M(q, a) = {α ∈ [0, 1] : |qα− a| ≤ PX−1}
with P = Xν for ν > 0 sufficiently small, and let

M =
⋃

q≤P

q
⋃

a=1
(a,q)=1

M(q, a),m = [0, 1] \M.

For any measurable B ⊆ [0, 1), let

If (p;B) :=

∫

B

|Mf (α)|dα.

We shall prove Theorem 1.1 by using the fact that Iτ (p) = Iτ (p;M) +
Iτ (p;m), showing that Iτ (p;m) = o(Xp−1(logX)p) and showing that Iτ (p;M) ≍
Xp−1(logX)p.
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3. The minor arcs

Our bound on the minor arcs will depend on the following result, which
is nontrivial for Xε ≪ q ≪ X1−ε.

Proposition 3.1. If |qα− a| ≤ q−1 for some (a, q) = 1, q ≥ 1, then

(3.1) Mτ (α) ≪ X log(2Xq)(q−1 +X−1/2 + qX−1).

Proof. We have that by (2.1) and the trivial bound |E(α)| ≤ X1/2

Mτ (α) = 2T (α) +O(X1/2)

so it suffices to show that T (α) ≪ X log(2Xq)(q−1 +X−1/2 + qX−1), since

we can absorb the O(X1/2) into the bound since

X log(2Xq)(q−1 +X−1/2 + qX−1) ≫ X1/2 logX.

To this end, note that by the triangle inequality and Lemma 2.1

|T (α)| ≤
∑

u≤X−1

∣

∣

∣

∣

∑

u<v≤X/u

e(αuv)

∣

∣

∣

∣

≪
∑

u≤X1/2

min(X/u, ‖αu‖−1).

The desired result then follows from Lemma 2.2 in [Va]. �

From this, we obtain the following result.

Lemma 3.2. We have that

(3.2) Iτ (p;m) ≪ Xp−1−ν/2(logX)4.

Proof. Note that we have that
∫

m

|Mτ (α)|pdα ≤
(

sup
α∈m

|Mτ (α)|
)p−2 ∫

m

|Mτ (α)|2dα ≪ X(logX)3
(

sup
α∈m

|Mτ (α)|
)p−2

.

Suppose that α ∈ m. Then, by Dirichlet’s theorem, we have that there exist
a, q such that (a, q) = 1, q ≤ P−1X, |qα − a| ≤ PX−1, so it follows that
q > P , since otherwise, α would be in M(q, a). Then, by Proposition 3.1,

we have that |Mτ (α)| ≪ X1−ν/2 logX, and the desired result follows. �

Now, we proceed to estimate the major arcs. To that end, we first record
the following estimate.

Proposition 3.3. For (a, q) = 1, q ≥ 1, we have

∑

n≤X

τ(n)e

(

an

q

)

=
X

q

(

log
X

q2
+ 2γ − 1

)

+O((X1/2 + q) log 2q).
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Proof. This is shown in the proof of Lemma 2.5 in [PV]. We shall reproduce
its proof below. Note that we have that by (2.1)

∑

n≤X

τ(n)e

(

an

q

)

=
∑

u≤X1/2





∑

v≤X/u

2−
∑

v≤X1/2

1



 e(auv/q).

For q ∤ u, we have that the inner sums are ≪ ‖au/q‖−1. The contribution
from the remaining terms is then

X

q

(

log
X

q2
+ 2γ − 1

)

+O(X1/2)

from which the desired result follows. �

Now, it follows then from this and partial summation that for α ∈ M(q, a),
we have

(3.3) Mτ (α) =
1

q

(

log
X

q2
+ 2γ − 1

)

v(α − a/q) +O(X1/2+ν logX).

Therefore, we have that (by using the binomial theorem for p ∈ Z+, and
then using Hölder’s inequality to bound the remaining error terms)

|Mτ (α)|p = q−p(logX−2 log q+2γ−1)p|v(α−a/q)|p+O(Xp−1/2+ν(logX)p)

so it follows that

(3.4)

∫

M

|Mτ (α)|pdα =

∑

q≤P

q
∑

a=1
(a,q)=1

∫ PX−1

−PX−1

q−p(logX−2 log q+2γ−1)p|v(α−a/q)|pdβ+O(Xp−3/2+4ν(logX)p)

= S(X,P )

∫ PX−1

−PX−1

|v(β)|pdβ +O(Xp−3/2+4ν(logX)p)

where

S(X,P ) :=
∑

q≤P

ϕ(q)q−p(logX − 2 log q + 2γ − 1)p.

It is easy to show that by partial summation, we have

(3.5) S(X,P ) ≍ (logX)p.

Also, note that by Lemmas 2.1 and 2.2, we have that

∫ PX−1

−PX−1

|v(β)|pdβ ≫ Xp−1 −
∫

[PX−1,1−PX−1]
X−pdβ ≫ Xp−1.

Theorem 1.1 then folows since this implies that Iτ (p;M) ≍ Xp−1(logX)p.
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