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On the L-polynomials of curves over finite fields

Francesco Ballini, Davide Lombardo, Matteo Verzobio

Abstract

We discuss, in a non-Archimedean setting, the distribution of the coefficients of L-polynomials of
curves of genus g over Fq. This allows us to prove, among other things, that the Q-vector space spanned
by such characteristic polynomials has dimension g+1. We also state a conjecture about the Archimedean
distribution of the number of rational points of curves over finite fields.

1 Introduction

Let Fq be a finite field of characteristic p and order q = pf . For every g ≥ 1, we let Mg(Fq) be the set
of smooth projective curves of genus g over Fq, up to isomorphism over Fq. Recall that, given a (smooth
projective) curve C/Fq, one may introduce its zeta function

Z(C/Fq , s) = exp





∑

m≥1

#C(Fqm)

m
q−ms



 ,

and that by work of Schmidt [Sch31] and Weil [Wei48] we know that Z(C/Fq , s) is a rational function of
t := q−s. More precisely, we can write

Z(C/Fq , s) =
PC(t)

(1− t)(1− qt)
,

where PC(t) is a polynomial (often called the L-polynomial of C) that satisfies the following:

Lemma 1.1. 1. PC(t) has integral coefficients and PC(0) = 1;

2. degPC(t) = 2g, where g = g(C) is the genus of C;

3. writing PC(t) =
∑2g

i=0 ait
i we have the symmetry relations ag+i = qiag−i for every i = 0, . . . , g.

Our main object of interest in this paper is the set of L-polynomials of all the curves of a given genus
over a finite field Fq:

Definition 1.2. Given a finite field Fq and a positive integer g we define

Pg(Fq) := {PC(t)
∣

∣ C ∈Mg(Fq)}.
We will focus in particular on the non-Archimedean distribution of these L-polynomials. For a fixed

integer N ≥ 2, upon reduction modulo N one obtains from Pg(Fq) a set Pg,N(Fq) of polynomials in
(Z/NZ)[t]. Considering this set of reduced polynomials both for a fixed value of q and in the limit
q →∞, we obtain results in three different but related directions:

1. We adapt results of Katz-Sarnak from the Archimedean to the non-Archimedean setting, obtaining
equidistribution statements for Pg,N (Fq) as q →∞ (Theorem 2.1). While special instances of this
result appear in the literature (especially for the case of elliptic curves, see [CH13, Gek03]), the
general case does not seem to have been explored previously – but see [Ach08] for related results.

2. The previous result allows us to disprove a recent conjecture by Bergström–Howe–Lorenzo-Garćıa–
Ritzenthaler [BHLGR24, Conjecture 5.1] about the Archimedean distribution of the number of
rational points of non-hyperelliptic curves over finite fields (Proposition A.3). Theorem 2.1, com-
bined with the general Lang-Trotter philosophy, leads us to propose a new conjecture (Conjecture
3.4), which seems both more natural (in view of the general principles that seem to regulate stat-
istical phenomena in arithmetic) and in better accord with the numerical evidence (see Section
3.2).
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3. Finally, Theorem 2.1 easily implies that, for a fixed genus g and for q ≫g 1, the set Pg(Fq) spans a
Q-vector space of dimension g+ 1 (Remark 2.9). By considering more carefully the set Pg,2(Fq) for
every fixed value of q, we are able to prove that this statement does, in fact, hold for all pairs (g, q)
(Theorem 1.4), thus confirming a conjecture of Kaczorowski and Perelli [KP18, Remark 8]. Using
Theorem 2.1 we can also obtain an asymptotic result for non-linear relations among the coefficients
of elements of Pg(Fq), see Theorem 6.1.

Recently, much attention has been devoted to questions close to those that we consider here: in
addition to the aforementioned [BHLGR24], we also refer the reader to [AEK+15], as well as [AAGG23],
[Ma23], and [Shm23]. We discuss some relations between our work and these latter papers in Remark
3.13. We believe that different parts of the mathematical community are approaching the same questions
we discuss in this paper from complementary perspectives, and we hope that the present work will also
encourage a fruitful exchange of ideas between these different points of view.

For this introduction, we focus more specifically on our contributions. The non-Archimedean beha-
viour of the L-polynomials is closely related to the (geometric version of the) Chebotarev density theorem,
in the following sense. Let C π−→ S → SpecZ be a versal family of curves of genus g, that is, a family
in which every isomorphism class of curves of genus g appears at least once (we use the tri-canonically
embedded family, see Section 2 for details). Considering the N-torsion sections of Jac C → S gives rise
to a Galois cover S′ → S whose Galois group GN is a subgroup of GL2g(Z/NZ) – essentially, S′ is the
minimal cover of S over which all the N-torsion sections of Jac C are defined. For every closed point
s ∈ S we have a curve Cs, defined over the finite field κ(s), and a Frobenius element Frobs,N ∈ GN . Note
that this Frobenius is an element of the Galois group of the cover, and is determined by the property of
inducing the finite-field Frobenius t 7→ t(#κ(s)) on the residue field at a point s′ ∈ S′ lying over s. As
usual, Frobs,N is only well-defined up to conjugacy, or equivalently, up to the choice of the point s′ ∈ S′

lying over s. The reduction modulo N of the L-polynomial of Cs is determined by the characteristic
polynomial of Frobs,N , so equidistribution results for Frobs,N translate into equidistribution results for
PC mod N . We make this precise in Section 2, using Deligne and Katz’s equidistribution theorem instead
of Chebotarev’s.

Having precise control over the non-Archimedean distribution of L-polynomials is sufficient to show
that the values of Fq(t) = #{C : C ∈ Mg(Fq),#C(Fq) = t} show significant local oscillations – consec-
utive values of t ∈ N can correspond to wildly different values of Fq(t). As already mentioned, we use
this to disprove [BHLGR24, Conjecture 5.1].

We propose a new conjecture that takes these local oscillations into account to compute Fq(t). Here we
give an informal statement: for a precise version, see Conjecture 3.4 and Remark 3.6 for an interpretation
of the quantity νℓ(q, t).

Conjecture 1.3. Let g ≥ 1 and q be a prime power. Let H ′(q, t) be the ‘probability’ that a curve C/Fq

of genus g has q + 1 − t rational points. Given a prime ℓ define νℓ(q, t) as the ‘normalised probability
that a matrix M ∈ GSp2g(Zℓ) with multiplier q has trace t’. Let ν∞(q, t) = STg(t/

√
q), where STg is the

Sato-Tate measure in dimension g. Let ν′(q, ·) be the probability measure equal to c ·ν∞(q, ·)∏ℓ<∞ νℓ(q, ·)
where c is the normalisation constant that ensures that ν′ is a probability measure. Then, the L1-distance
between H ′(q, ·) and ν′(q, ·) tends to 0 as q →∞.

Finally, Theorem 1.4 answers the following natural question: does Lemma 1.1 capture all the (linear)
relations among the coefficients of the polynomials PC(t)? In other words, what is the dimension of the
Q-vector subspace of Q[t] spanned by the polynomials in Pg(Fq)? As a consequence of Lemma 1.1, it
is immediate to see that this space has dimension at most g + 1. Equality holds if and only if all the
linear relations among the coefficients are already listed in Lemma 1.1. We show that equality does in
fact hold for all genera and all finite fields: this extends work of Birch [Bir68] for curves of genus 1 and
of Howe-Nart-Ritzenthaler [HNR09] for curves of genus 2, and confirms the aforementioned conjecture
of Kaczorowski and Perelli [KP18, Remark 8]:

Theorem 1.4. Let p be a prime, let f ≥ 1, and denote by Fq the finite field with q = pf elements. Let
Pg(Fq) be as in Definition 1.2 and let Lg(Fq) be the Q-vector subspace of Q[t] spanned by Pg(Fq). We
have

dimQ Lg(Fq) = g + 1.

The proof is based on the following observation: in order to establish the linear independence of a set
of polynomials with integral coefficients, it is certainly enough to show that they are linearly independent
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modulo 2. In the case of the L-polynomial of a curve C, the reduction modulo 2 can be read off the
action of Galois on the set of 2-torsion points of the Jacobian of C. In turn, when C is hyperelliptic, this
action is easy to write down explicitly in terms of a defining equation of C: it is then a simple matter
to find g + 1 curves whose L-polynomials form a basis of Lg(Fq). Since the properties of the 2-torsion
points are slightly different depending on whether the characteristic is odd or even, we split our proof
into two parts, one for the case p odd and one for the case p = 2. We remark in particular that our proof
is constructive: Corollary 5.4 for the case p odd and the proof in Section 5.2 for the case p = 2 explicitly
give g + 1 curves whose L-polynomials form a basis of Lg(Fq).

We conclude this introduction by briefly describing the structure of the paper. In Section 2, we
prove an equidistribution result for Pg,N (see Theorem 2.1). In Section 3 we state our conjecture on
the probability that a curve has a given number of rational points (see Conjecture 3.4). We also explain
why we believe this conjecture to be true and present some numerical evidence that supports it. Then,
in Section 4, we prove some technical results necessary to state Conjecture 3.4. Finally, in Section
5, we prove Theorem 1.4 and in Section 6 we study non-linear relations among the coefficients of the
polynomials in Pg(Fq). In Appendix A, we disprove [BHLGR24, Conjecture 5.1].

1.1 Notation and classical results

We fix our notation for symplectic groups:

Definition 1.5. Let g ≥ 1 and N ≥ 2 be integers. Fix a non-degenerate antisymmetric bilinear form
on (Z/NZ)2g, represented by the matrix Ω (note that the form is non-degenerate if and only if det Ω ∈
(Z/NZ)×). The group GSp2g(Z/NZ) is by definition

GSp2g(Z/NZ) = {M ∈ GL2g(Z/NZ) : ∃λ ∈ (Z/NZ)× such that tMΩM = λΩ}.

The multiplier of a matrix M ∈ GSp2g(Z/NZ) is the uniquely determined λ ∈ (Z/NZ)× such that
tMΩM = λΩ. We denote it by mult(M). For every integer q prime to N , we let GSpq

2g(Z/NZ) be the
subset of the finite matrix group GSp2g(Z/NZ) consisting of those matrices that have multiplier equal to
q (equality in the finite ring Z/NZ).

Remark 1.6. By definition, the group GSp2g(Z/NZ) depends on the choice of Ω, but different choices
lead to isomorphic groups. We will therefore refer to GSp2g(Z/NZ) without necessarily specifying the
choice of anti-symmetric form.

Before beginning with the proofs, it will be useful to recall the well-known connection between the
L-polynomial of a curve C of genus g and the Galois representations attached to the Jacobian J of C.
Let p be a prime, let q be a power of p, and let C be a curve of genus g defined over Fq. Denote by J the
Jacobian of C. Let ℓ be any prime different from p and let TℓJ be the ℓ-adic Tate module of J , that is,

TℓJ := lim←−
n

J(Fq)[ℓn].

There is a natural action of Gal(Fq/Fq) on TℓJ (induced by the action of Gal(Fq/Fq) on the torsion
points of J), and it can be shown that TℓJ is a free Zℓ-module of rank 2g. Fixing a Zℓ-basis of TℓJ
we thus obtain a representation ρℓ∞ : Gal(Fq/Fq) → GL2g(Zℓ) whose image is contained in GSp2g(Zℓ);

the relevant antisymmetric bilinear form is given by the Weil pairing. Since Gal(Fq/Fq) is procyclic,
generated by the Frobenius automorphism Frob, we are mostly interested in the action of Frob on TℓJ ,
which is captured by its characteristic polynomial

fC,ℓ∞(t) = det(t Id−ρℓ∞(Frob)) ∈ Zℓ[t].

The matrix representing the action of Frobenius is symplectic with multiplier q. Notice that we also have
an action of Gal(Fq/Fq) on the ℓ-torsion points of J(Fq), which form an Fℓ-vector space of dimension 2g;
we can thus obtain a mod-ℓ representation ρℓ : Gal(Fq/Fq)→ GL2g(Fℓ) and a corresponding characteristic
polynomial fC,ℓ(t) = det(t Id−ρℓ(Frob)) ∈ Fℓ[t]. It is clear from the definitions that fC,ℓ(t) is nothing
but the reduction modulo ℓ of fC,ℓ∞(t). We can now recall the connection between PC(t) and fC,ℓ∞(t):

Theorem 1.7 (Grothendieck–Lefschetz formula, [Del77]). The equality PC(t) = t2gfC,ℓ∞(1/t) holds for
every prime ℓ 6= p.

Notice in particular that the polynomial fC,ℓ∞(t) ∈ Zℓ[t] has integer coefficients and does not depend
on ℓ.
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2 The distribution of L-polynomials modulo an integer N

In this section we adapt [KS99, §10] to the problem of the distribution of characteristic polynomials of
Frobenius modulo a fixed integer N (as opposed to the distribution of the coefficients with respect to
the Archimedean metric which is considered in [KS99]).

Fix a genus g ≥ 2 and a finite field Fq of characteristic p > 0. We denote byMg the stack of smooth
projective curves of genus g, so thatMg(Fq) denotes the set of isomorphism classes of smooth projective
curves of genus g over Fq. We seeMg(Fq) as a probability space by endowing it with one of the following
two natural measures:

• the ‘naive’ counting measure Pnaive
g,q , which assigns equal measure to every singleton {C}, and which

we normalise by requiring Pnaive
g,q (Mg(Fq)) = 1.

• the ‘intrinsic’ measure Pintr
g,q such that

Pintr
g,q ({C}) = α

1

# Aut(CFq )
,

where Aut(CFq ) is the group of automorphisms of C defined over Fq and

α =





∑

C∈Mg(Fq)

1

# Aut(CFq )





−1

is the uniquely determined normalisation constant that ensures

∑

C∈Mg(Fq)

Pintr
g,q ({C}) = Pintr

g,q (Mg(Fq)) = 1.

Our objective in this section is to study the random variable

charpol : Mg(Fq) → Z[t]
C 7→ fC,ℓ∞(t),

where ℓ is any auxiliary prime different from p that we use to compute the characteristic polynomial of
the Frobenius acting on Jac(C). More precisely, we will consider the (infinitely many) random variables

charpolN : Mg(Fq) → Z/NZ[t]
C 7→ fC,ℓ∞(t) mod N

obtained from charpol by reducing the characteristic polynomials modulo N , for all N 6≡ 0 (mod p). For
simplicity, since charpol(C) is always a monic polynomial of degree 2g, we restrict the codomain to be the
finite set Z/NZ[t]≤2g , the additive group of polynomials with coefficients in Z/NZ and degree at most
2g. For each integer N not divisible by p we obtain a measure µq

N on Z/NZ[t]≤2g as follows. Consider
the finite set GSpq

2g(Z/NZ) and its natural counting measure µGSp
q
2g(Z/NZ), normalised so that the total

mass is 1. The map
charpol : GSpq

2g(Z/NZ)→ Z/NZ[t]≤2g

that sends each matrix in GSpq
2g(Z/NZ) to its characteristic polynomial allows us to define the measure

µq
N := (charpol)∗µGSp

q
2g(Z/NZ).

We will show:

Theorem 2.1. With the notation above, as q → ∞ along prime powers with (q,N) = 1, the measures
(charpolN )∗P

naive
g,q − µq

N and (charpolN )∗P
intr
g,q − µq

N converge weakly to 0.

Remark 2.2. For g = 1, very precise results about the distribution of characteristic polynomials modulo
N are proven in [CH13]. In particular, the results of that paper describe a very explicit measure µ̃q

N and
show that for g = 1 the difference (charpolN)∗P

naive
1,g − µ̃q

N converges to zero with an error of size at most

ON (q−1/2). Thus, the case g = 1 is very well understood. For this reason, and since Theorem 2.4 below
does not apply in genus 1, we exclude the case g = 1 from our discussion.
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We begin by recalling a version of Deligne’s equidistribution theorem, as extended by Katz. We
follow in part the presentation in [AH03, §2]. We fix a prime ℓ and a geometrically connected normal
Z[1/ℓ]-scheme U of finite type over Z[1/ℓ] with generic point η and geometric generic point η. Let F be
a local system of symplectic free Z/NZ-modules of rank 2g on U – equivalently, a representation

ρ : π1(U, η)→ Sp2g(Z/NZ) ∼= Sp(Fη) ⊂ Aut(Fη).

Theorem 2.3 (Katz). In the situation above, suppose the sheaf gives rise to a commutative diagram

1 // πgeom
1 (U, η) //

ρ
geom
F

��

π1(U, η) //

ρF

��

Gal(k0/k0) //

ρ
k0
F

��

1

1 // Sp2g(Z/NZ) // GSp2g(Z/NZ) // Gm(Z/NZ) // 1

where ρgeomF is surjective. There is a constant C such that, for any union of conjugacy classes W ⊂
GSp2g(Z/NZ) and any finite field k of characteristic 6= ℓ,

∣

∣

∣

∣

∣

# {u ∈ U(k) : ρF (Frobu,k) ∈W }
#U(k)

− #(W ∩GSp
γ(k)
2g (Z/NZ))

# Sp2g(Z/NZ)

∣

∣

∣

∣

∣

≤ C√
#k

,

where γ(k) is the image of the canonical generator of Gal(k/k) under ρk0
F .

Proof. This is a special case of [KS99, 9.7.13].

Let C π−→ U → SpecZ[1/ℓ] be a smooth, irreducible family of curves of genus g ≥ 1 with geometrically
irreducible fibres. The sheaf F = FC,N := R1π∗Z/NZ is a sheaf of Z/NZ-free symplectic modules of
rank 2g whose fibre at a geometric point x ∈ U is the N-torsion of the Jacobian Jac(Cx)[N ]. Theorem 2.3
applies to this situation provided that ρgeomF is surjective. We will say that the family of curves C → U
has full N-monodromy if the associated representation ρF : πgeom

1 (U, η)→ Sp2g(Z/NZ) is surjective.
For the proof of Theorem 2.1 we will rely on the functor Mg,3K of tri-canonically embedded curves.

Referring the reader to [KS99, §10.6] and [DM69] for more details, we recall that for a field k one has

Mg,3K(k) =







(C/k, α) :

C/k is a smooth projective
curve of genus g

α is a basis of H0
(

C, (Ω1
C/k)⊗3

)







/isomorphism.

The functor Mg,3K was extensively studied by Mumford [Mum65] and Deligne-Mumford [DM69]. We
will need the following results:

Theorem 2.4 (Deligne-Mumford [DM69, §5], see also [KS99, Theorem 10.6.10]). Let g ≥ 2. The
following hold:

1. The functor Mg,3K is represented by a smooth Z-scheme of relative dimension 3g − 3 + (5g − 5)2,
with geometrically connected fibres.

2. Mg,3K is a fine moduli space: there exists a universal curve Cg,3K →Mg,3K .

There is an obvious forgetful functor
Mg,3K →Mg

which on field-valued points is given by

Mg,3K(k) → Mg(k)
(C/k, α) 7→ C/k.

This map is surjective for every field k, and, when k is finite, the fibre over any C/k ∈ Mg(k) has

cardinality
# GL5g−5(k)

# Aut(C/k)
[KS99, Lemma 10.6.8]. As an immediate consequence [KS99, Lemma 10.7.8],

the intrinsic measure Pintr
g,q on Mg(Fq) can be described as

1

#Mg,3K(Fq)

∑

(C,α)∈Mg,3K (Fq)

δC , (1)

5



where δC is the characteristic function of the singleton {C}. By Theorem 2.4 (2), the sum

∑

(C,α)∈Mg,3K (Fq)

δC

can be replaced by
∑

u∈Mg,3K(Fq)

δ(Cg,3K )u , (2)

where (Cg,3K)u is the fibre over u ∈ Mg,3K(Fq) of the universal curve Cg,3K → Mg,3K . We will apply
Theorem 2.3 to U =Mg,3K and F = FCg,3K ,N . For g ≥ 2 and p ∤ N , this family has full N-monodromy
by [DM69, 5.12] (see also the discussion in [LSTX19, §5]). We are almost ready to prove Theorem 2.1,
but before doing so, we need a few estimates on the size of Mg(Fq):

Lemma 2.5. For every g ≥ 3, the following hold:

1. #Mg(Fq) =
∑

C∈Mg(Fq)
1 = q3g−3(1 + Og(q−1/2));

2.
∑

C∈Mg(Fq)
1

#Aut(CFq )
= q3g−3(1 + Og(q−1/2));

3. #
{

C ∈Mg(Fq) : # Aut(CFq
) ≥ 2

}

= Og(q3g−3−1).

For g = 2 one has

1’. #M2(Fq) =
∑

C∈M2(Fq)
1 = q3(1 + O(q−1/2));

2’.
∑

C∈M2(Fq)
1

#Aut(CFq )
= 1

2
q3(1 + O(q−1/2));

3’. #
{

C ∈Mg(Fq) : # Aut(CFq
) > 2

}

= O(q2).

Proof. For g ≥ 3, all the statements follow from [KS99, Lemmas 10.6.23, 10.6.25 and 10.6.26], together

with the obvious asymptotic relation # GL5g−5(Fq) ∼ q(5g−5)2 (1 + Og(q−1)). For g = 2, one can adapt
the proof of the same lemmas in [KS99], simply taking into account that the open subset U≤2 of M2

parametrising curves whose geometric automorphism group has order 2 meets every geometric fibre of
M2,3K/Z [KS99, Lemma 10.6.13, Remark 10.6.20]. In particular, the generic value of # Aut(CFq ) for
(smooth projective) curves of genus 2 is 2. Note that when the group Aut(CFq ) has order 2 it is generated
by the hyperelliptic involution.

Corollary 2.6. For all g ≥ 2 we have

∑

C′∈Mg(Fq)

∣

∣

∣
Pnaive
g,q ({C′}) − Pintr

g,q ({C′})
∣

∣

∣
= Og(q−1/2).

Proof. For g ≥ 3, using the definition of Pnaive
g,q and Pintr

g,q and Lemma 2.5 (1), (2) and (3) we obtain

∑

C′∈Mg(Fq)

∣

∣

∣
Pnaive
g,q ({C′})− Pintr

g,q ({C′})
∣

∣

∣
=

∑

C′∈Mg(Fq)

∣

∣

∣

∣

∣

1

#Mg(Fq)
−

1/# Aut(C′
Fq

)
∑

C∈Mg(Fq)
1/# Aut(CFq )

∣

∣

∣

∣

∣

=
∑

C′∈Mg(Fq)

∣

∣

∣

∣

∣

q3−3g(1 + Og(q−1/2))− q3−3g(1 + Og(q−1/2))

# Aut(C′
Fq

)

∣

∣

∣

∣

∣

=
∑

C′∈Mg(Fq)

#Aut(C′
Fq

)=1

Og(q3−3g−1/2) +
∑

C′∈Mg(Fq)

#Aut(C′
Fq

)≥2

Og(q3−3g)

= Og





#
{

C ∈ Mg(Fq) : # Aut(CFq
) ≥ 2

}

q3g−3





+ Og

(

#Mg(Fq)

q3g−3
q−1/2

)

= Og(q−1) + Og(q−1/2) = Og(q−1/2).
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The same proof applies, with minimal changes, also to g = 2, simply using (1’), (2’), and (3’) of Lemma
2.5 instead of (1), (2) and (3).

Proof of Theorem 2.1. By definition, the weak convergence in the statement means that – for every
continuous bounded function f on Z/NZ[x]≤2g – the integrals of f with respect to (charpolN )∗P

naive
g,q −µq

N

converge to 0 as q →∞, and similarly for the sequence of measures (charpolN )∗P
intr
g,q − µq

N .
We begin by treating the case of the measures (charpolN )∗P

intr
g,q − µq

N . Since any function f :
Z/NZ[x]≤2g → R is a linear combination of characteristic functions of singletons, it suffices to show
the result when f is of the form

f(h(t)) =

{

1, if h(t) ≡ h0(t) (mod N)

0, otherwise

for some polynomial h0(t) ∈ Z/NZ[t]≤2g . Fix h0(t). The condition charpol(M) = h0(t) ∈ Z/NZ[t]
defines a (possibly empty) union of conjugacy classes Wh0

⊆ GSp2g(Z/NZ). For a curve C/Fq, we

denote by ρN the natural representation of Gal
(

Fq/Fq

)

on the N-torsion of Jac(C). Recall that we
introduced the sheaf F = FCg,3K ,N and that the universal family over Mg,3K has full N-monodromy
[DM69, 5.12]. For any fixed q, using Equations (1) and (2) we have

∫

Mg(Fq)

f(charpol(C) mod N) dPintr
g,q (C) =

1

#Mg,3K(Fq)

∑

C∈Mg,3K (Fq)

f(charpolN (C))

=
1

#Mg,3K(Fq)

∑

u∈Mg,3K(Fq)

1ρN (FrobCu )∈Wh0

=
#{u ∈ Mg,3K(Fq) : ρN (Frobu,k) ∈ Wh0

}
#Mg,3K(Fq)

.

(3)

We now apply Theorem 2.3 to rewrite the above as
∫

Mg(Fq)

f(charpolN(C)) dPintr
g,q (C) =

#
(

Wh0
∩GSpq

2g(Z/NZ)
)

# Sp2g(Z/NZ)
+ Og(q−1/2) (4)

On the other hand, by definition we have
∫

Z/NZ[t]≤2g

f(h(t)) dµq
N (h) =

∫

GSp
q
2g(Z/NZ)

f(charpol(M)) dµGSp
q
2g(Z/NZ)(M)

=

∫

GSp
q
2g(Z/NZ)

1charpol(M)=h0
dµGSp

q
2g(Z/NZ)(M)

=
#(Wh0

∩GSpq
2g(Z/NZ))

# GSpq
2g(Z/NZ)

=
#(Wh0

∩GSpq
2g(Z/NZ))

# Sp2g(Z/NZ)
.

(5)

The claim follows upon comparing Equations (4) and (5).
We now show that (charpolN )∗P

naive
g,q − µq

N converges weakly to 0. We have already established that

(charpolN )∗P
intr
g,q − µq

N

weakly converges to 0. Thus, it suffices to show that (charpolN)∗(Pintr
g,q − Pnaive

g,q ) converges weakly to 0,
which in turn is implied by the following statement: for every ε > 0 there exists q0 such that, for all
q > q0 and all subsets A of Mg(Fq), one has

|Pintr
g,q (A)− Pnaive

g,q (A)| < ε.

This follows immediately from Corollary 2.6, because

|Pintr
g,q (A)− Pnaive

g,q (A)| =
∣

∣

∣

∣

∣

∑

C′∈A

(

Pintr
g,q ({C′}) − Pnaive

g,q ({C′})
)

∣

∣

∣

∣

∣

≤
∑

C′∈A

|Pintr
g,q ({C′})− Pnaive

g,q ({C′})| = Og(q−1/2).
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Remark 2.7. Note that the measure µq
N only depends on q mod N . In particular, if we take a sequence

of prime powers qi such that qi mod N is constant (say equal to r mod N), Theorem 2.1 shows that the
measures (charpolN )∗P

intr
qi,g converge weakly to µr

N . As a special case, taking N = 2, this applies to any
choice of qi that are not powers of 2.

Remark 2.8. Continuing from Remark 2.7, we take N = 2, qi to be the sequence of all odd primes, and
apply the weak convergence of measures to the function f = 1Tr≡0 (mod 2), where

Tr(x2g − a2g−1x
2g−1 + · · ·+ a0) = a2g−1.

In this way, if C is a curve over Fq,

f(charpolN (C)) =

{

1, if Tr(C) := q + 1−#C(Fq) ≡ 0 (mod 2)

0, otherwise.

Applying Theorem 2.1 to the case of the naive measure Pnaive
g,q we obtain the convergence

1

#Mg(Fq)

∑

C∈Mg(Fq)

f(charpol2(C))→ µ1
2

(

{M ∈ GSp2g(Z/2Z) : Tr(M) ≡ 0 (mod 2)}
)

,

where

µ1
2

(

{M ∈ GSp2g(Z/2Z) : Tr(M) ≡ 0 (mod 2)}
)

=
#{M ∈ GSp2g(Z/2Z) : Tr(M) ≡ 0 (mod 2)}

# GSp2g(Z/2Z)

and
1

#Mg(Fq)

∑

C∈Mg(Fq)

f(charpol2(C)) =
#{C ∈Mg(Fq) : Tr(C) ≡ 0 (mod 2)}

#Mg(Fq)
.

Thus, we have proven

lim
q→∞

#{C ∈Mg(Fq) : Tr(C) ≡ 0 (mod 2)}
#Mg(Fq)

=
#{M ∈ GSp2g(Z/2Z) : Tr(M) ≡ 0 (mod 2)}

# GSp2g(Z/2Z)
,

where the limit is taken along the sequence of odd primes (or of their powers).

Remark 2.9. Theorem 2.1 implies Theorem 1.4, at least when the order q of the finite field is sufficiently
large compared to g. For simplicity, we only discuss the case of odd q. Using [Kir69], or equivalently
[Riv08, Theorem A.1] (see also Proposition 6.3 and Remark 6.4 below), one checks that the set of
characteristic polynomials of matrices in GSp2g(F2) is the F2-vector space of reciprocal polynomials
(which has dimension g + 1). Theorem 2.1 with N = 2 implies that, if q ≫g 1, all characteristic
polynomials of elements in GSp2g(F2) are also the reduction modulo 2 of the characteristic polynomial of
Frobenius corresponding to some curve C/Fq. This immediately implies that the Q-vector space Lg(Fq)
of Theorem 1.4 has dimension at least g + 1.

3 A conjecture on the distribution of #C(Fq)

In this section we describe a heuristic (motivated by the Lang-Trotter philosophy and by results of
Gekeler [Gek03] in genus 1) that gives precise predictions for the number of (smooth projective) curves
over a finite field with a given number of rational points. We define the trace of a curve C/Fq by the
formula

Tr(C/Fq) = Tr(C) = q + 1−#C(Fq);

by the Hasse-Weil bound, Tr(C) is an integer in the interval [−2g
√
q, 2g
√
q].

We begin by recalling the definition of the Sato-Tate measure on the real interval [−2g, 2g]. Consider
the complex Lie group GSp2g(C) and let USp2g be the maximal compact subgroup of GSp2g(C) given
by unitary symplectic matrices. The group USp2g, being compact, is canonically equipped with a unique
Haar measure µUSp2g

normalised so that µUSp2g
(USp2g) = 1.

8



The trace map tr : USp2g → C has image contained in the real interval [−2g, 2g]. We denote by
dSTg := tr∗ µUSp2g

the push-forward of the Haar measure of USp2g along the trace map, and we call it
the Sato-Tate measure in dimension g. It can be shown (for example using [Ser12, Lemma 8.5]) that dSTg

is absolutely continuous with respect to the Lebesgue measure, so we also denote by STg : [−2g, 2g]→ R
the density function of d STg.

Remark 3.1. Explicit expressions for the function ST2(x) can be found in [Lac16], see in particular
Theorem 5.2 of op. cit., and we discuss the computation of STg(x) for general g in Remark 3.14.

Let g ≥ 2 and let q = pn be an odd prime power. Given an integer t, define

ν∞(q, t) = STg(t/
√
q)

and, for each prime ℓ 6= p,

νℓ(q, t) = lim
k→∞

#

{

M ∈ GSp2g(Z/ℓkZ) : ∃M̃ ∈ GSp2g(Zℓ) : M̃ ≡M (mod ℓk) with
tr(M̃) = t,

mult(M̃) = q

}

# GSp2g(Z/ℓkZ)/(ℓkϕ(ℓk))
,

(6)
while for ℓ = p we set

νp(q, t) = lim
k→∞

#

(

Im

{

M̃ ∈ GSp2g(Qp) ∩Mat2g(Zp) with
tr(M̃) = t,

mult(M̃) = q

}

→ Mat2g(Z/pkZ)

)

#
(

Im
{

M̃ ∈ GSp2g(Qp) ∩Mat2g(Zp) with mult(M̃) = q
}

→ Mat2g(Z/pkZ)
)

/pk
. (7)

Remark 3.2. The limit in the definition of νℓ(q, t), including for ℓ = p, exists thanks to [Oes82,
Théorème 2] (see also [Ser81, Equation (62), Page 348, Section 3]). Indeed, the Qℓ-variety defined by
{M̃ ∈ GSp2g(Qℓ) : Tr(M̃) = t,mult M̃ = q} has dimension d := dim GSp2g,Qℓ

−2, so by Oesterlé’s

theorem the numerators of (6) and (7) are asymptotic to cℓdk for some constant c. For a similar reason,
the denominators also admit an asymptotic of the form c′ℓdk for some constant c′ (this is also easy to
prove directly, at least for the case ℓ 6= p). Therefore, the ratio converges when k → ∞. We justify the
definition given in Equation (7) in Remark 3.6.

We will work under the assumption that q > 4g2−1; see Remark 3.7 for a discussion of what happens
when q is small with respect to g. Let

ν(q, t) = ν∞(q, t)
∏

ℓ<∞
νℓ(q, t). (8)

Notice that ν∞(q, t) = 0 for t /∈ [−2g
√
q, 2g
√
q] and in particular ν(q, t) is non-zero for finitely many t

(for a fixed q). The fact that the product (8) converges for all t is far from obvious. We will show this
in Section 4. Define

ν′(q, t) =
ν(q, t)

∑

t∈Z
ν(q, t)

. (9)

The denominator is non-zero, as we will show in Lemma 4.9. By definition, we have

∑

t∈Z

ν′(q, t) = 1.

Definition 3.3. Let g ≥ 2, let q be an odd prime power, and let t be an integer. Denote by H(q, t) the
number of isomorphism classes of (smooth projective) curves of genus g defined over Fq with trace t, that
is, for which q + 1−#C(Fq) = t. Define

H ′(q, t) =
H(q, t)

∑

t∈Z
H(q, t)

=
H(q, t)

#Mg(Fq)
= Pnaive

g,q ({C ∈Mg(Fq) : Tr(C) = t}) . (10)

Thus, H ′(q, t) is the ‘naive probability’ that a curve of genus g, defined over Fq, has trace t.

9



Notice that H ′(q, t) = 0 for t /∈ [−2g
√
q, 2g
√
q]. We conjecture that, for fixed g, as q → ∞ the

measures ν′(q, t) and H ′(q, t) converge to one another. To make this precise, we use the L1-norm on the
space of probability measures on Z: we define the distance d(µ1, µ2) between two probability measures
as

d(µ1, µ2) :=
∑

t∈Z

|µ1(t)− µ2(t)| .

Note that, since our probability spaces are countable, the L1-norm is equal up to a factor of 2 to another
natural distance on the space of probability measures, namely the total variation distance

dtot.var.(µ1, µ2) = sup
A⊆Z

|µ1(A)− µ2(A)| .

We can now formulate our conjecture: we phrase it in terms of d, but clearly we obtain an equivalent
statement by replacing d with dtot.var.

Conjecture 3.4. Fix an integer g ≥ 2. As q →∞ along prime powers, we have

d(H ′(q, ·), ν′(q, ·))→ 0, (11)

where H ′(q, ·) and ν′(q, ·) are considered as probability measures on Z.

We now give our reasons for believing in Conjecture 3.4. First of all, notice that by Corollary 2.6 one
may as well state Conjecture 3.4 using the intrinsic measure Pintr

g,q .

• For the case of elliptic curves and the intrinsic measure Pintr
g,q , the analogue of our conjecture has

been proved in [Gek03, Theorem 5.5], at least when q is a prime number. In the proof, the author
computes the value of ν′(q, t) (see [Gek03, Corollary 4.8]) and shows that it is equal to H ′(q, t),
which is computed in [Deu41].

• Let C be a curve of genus g defined over Fq. The trace t of C modulo ℓk is equal to the trace of
the matrix M ∈ GSp2g(Z/ℓkZ) that represents the action of the Frobenius Frobq on the ℓk-torsion

points of the Jacobian of C. Notice that there exists M̃ ∈ GSp2g(Zℓ) such that M̃ ≡ M (mod ℓk)

with tr(M̃) = t and mult(M̃) = q: indeed, it suffices to take as M̃ the matrix representing the
action of Frobenius on the full Tate module Tℓ Jac(C) ∼= Z2g

ℓ . Hence, by Theorem 2.1, as q → ∞
the probability that a curve C has trace t modulo ℓk converges to

#
{

M ∈ GSp2g(Z/ℓkZ) : tr(M) = t,mult(M) = q
}

# GSp2g(Z/ℓkZ)/(ℓkϕ(ℓk))
.

Taking the limit k → ∞, νℓ(q, t) should represent the probability that, given a random curve C,
the Frobenius endomorphism acts on the ℓ∞-torsion points of the Jacobian of the curve with trace
t. (For the case ℓ = p see Remark 3.6 below; see also Remark 3.12 for the condition that there
exists a lift M̃ of M to GSp2g(Zℓ)).

Our conjecture can then be seen as a minimalist one: we are essentially claiming that the distri-
butions of the trace of Frobenius in Zℓ for different primes ℓ are independent of each other (which
we know is the case by Theorem 2.1, at least for ℓ 6= q), and that (as q → ∞) they also become
independent of the distribution of the absolute value of Tr(Frob) ∈ R. To put it in another way,
Conjecture 3.4 is the simplest joint distribution that reproduces the correct (known) ‘marginal’

distributions for Tr(C) mod N and for |Tr(C)|
|√q| ∈ [−2g, 2g].

• The ‘minimalist’ philosophy just outlined is, of course, the same that underlies the widely believed
Lang-Trotter conjecture [LT76, Part I, Section 3].

• Finally, numerical evidence points in the direction of the conjecture being true, see Section 3.2.

Our conjecture should be contrasted with [BHLGR24, Conjecture 5.1], which makes a different prediction
for H ′(q, t). The authors of [BHLGR24] define (the analogue of our) ν(q, t) purely in terms of the Sato-
Tate density ν∞ (for more details, see (24)). We believe that – as happens for g = 1 – one should
also take into account the measures νℓ for all finite ℓ. In fact, even though we cannot prove Conjecture
3.4, the results of Section 2 are enough to show that [BHLGR24, Conjecture 5.1] is not correct. We
show this in Appendix A. The proof in the appendix is a bit technical: [BHLGR24, Conjecture 5.1]
refers only to non-hyperelliptic curves and replaces t/

√
q with the nearest integer, both facts which
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introduce formal difficulties. However, the key idea is comparatively simple, so we isolate it in the
next proposition, which shows that the measures ν∞ and H ′ are substantially different infinitely often.
Intuitively, this contradicts [BHLGR24, Conjecture 5.1]; as already mentioned, a complete argument
showing that [BHLGR24, Conjecture 5.1] does not hold is given in Appendix A. The following proposition
is stated for g = 3, but we suspect it should hold for all g ≥ 3.

Proposition 3.5. Let g = 3. There exists ε > 0 such that for all odd prime powers q bigger than a
constant q0 > 0 there exists t ∈ [−2g

√
q, 2g
√
q] ∩ Z such that

∣

∣

∣

√
qPnaive

g,q (TrC/Fq = t)− STg(t/
√
q)
∣

∣

∣
≥ ε.

Proof. We denote simply by P the naive probability measure Pnaive
g,q on Mg(Fq). We claim that

∀ε > 0∀q0 > 0∃q > q0 odd prime power such that ∀t ∈ [−2g
√
q, 2g
√
q] ∩ Z

one has
∣

∣

∣

∣

P(TrC/Fq = t)− STg(t/
√
q)

√
q

∣

∣

∣

∣

<
ε√
q
. (12)

We assume that this holds and aim for a contradiction. Fix ε > 0 and let p be an odd prime. Let q = pn.
We have

P(Tr(C/Fq) ≡ 0 (mod 2)) =
∑

t∈[−2g
√
q,2g

√
q]∩Z

t≡0 (mod 2)

(

P(Tr(C/Fq) = t)− STg(t/
√
q)

√
q

+
STg(t/

√
q)

√
q

)

=
∑

t∈[−2g
√
q,2g

√
q]∩Z

t≡0 (mod 2)

STg(t/
√
q)

√
q

+
∑

t∈[−2g
√
q,2g

√
q]∩Z

t≡0 (mod 2)

(

P(TrC/Fq = t)− STg(t/
√
q)

√
q

)

=
1√
q

∑

t∈[−2g
√
q,2g

√
q]∩Z

t≡0 (mod 2)

STg(t/
√
q) + E,

with
|E| ≤ (4g + 1)

√
q · ε√

q
≤ (4g + 1)ε (13)

by (12). On the other hand, some basic analysis shows that (since STg is Riemann-integrable)

1√
q

∑

t∈[−2g
√
q,2g

√
q]∩Z

t≡0 (mod 2)

STg(t/
√
q)

converges, as q = pn goes to infinity, to

1

2
√
q

∫ 2g
√

q

−2g
√

q

STg(t/
√
q)dt =

1

2

∫ 2g

−2g

STg(t)dt =
1

2
.

Therefore,
∣

∣

∣

∣

P(Tr(C/Fq) ≡ 0 (mod 2))− 1

2

∣

∣

∣

∣

≤ |E|+ ε (14)

for q = pn large enough.
Let

L1(g) :=
#{M ∈ GSp2g(F2) : TrM ≡ 0 (mod 2),multM = q ≡ 1 (mod 2)}

# GSp2g(F2)
.

By Remark 2.8, as q →∞ we have

|L1(g)− P(Tr(C/Fq) ≡ 0 (mod 2))| = o(1),

and in particular, for q large enough, we have

|L1(g)− P(Tr(C/Fq) ≡ 0 (mod 2))| < ε. (15)
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We now prove that the initial claim does not hold for g = 3. It seems likely that a similar strategy
can be applied for every g > 3. By direct computation, L1(3) = 1436

2835
≈ 0.5065 . . . is strictly greater than

1/2. Fix 0 < ε < |L1(g)−1/2|
8g

for g = 3. Passing to the limit n→∞, by Equations (13), (14) and (15) we
get

∣

∣

∣

∣

L1(3)− 1

2

∣

∣

∣

∣

≤ |L1(3)− P(Tr(C/Fq) ≡ 0 (mod 2))|+
∣

∣

∣

∣

P(Tr(C/Fq) ≡ 0 (mod 2))− 1

2

∣

∣

∣

∣

≤ |E|+ 2ε ≤ (4g + 3)ε <

∣

∣

∣

∣

L1(3)− 1

2

∣

∣

∣

∣

,

contradiction.

3.1 Further remarks on Conjecture 3.4

In this section, we collect several other remarks on Conjecture 3.4 and the possible limits of its validity.
As all the material in this section is speculative, we do not go into much detail, but we hope that this
discussion will encourage others to investigate the issues raised here.

Our point of departure is the following. Since the statistics of the distribution of the trace of principally
polarised abelian varieties (PPAV) of a fixed dimension g over finite fields are the same as those of
Jacobians (equivalently, of curves of genus g), it seems reasonable to extend Conjecture 3.4 to the family
of all PPAVs of a fixed dimension. In particular, Gekeler’s results [Gek03] should perhaps be interpreted
in this light, especially since they apply to the case of elliptic curves, not to general curves of genus
1. From this perspective, one should perhaps ask if Conjecture 3.4 could not be upgraded to an actual
equality for fixed q (as opposed to an asymptotic statement for q → ∞) when one considers the better-
behaved family of all PPAVs. We will see that, while the measures H ′(q, t) and ν′(q, t) cannot be equal
in general, even for abelian varieties (Remark 3.7), this point of view can still be helpful.

Remark 3.6 (Local factor at p). We justify the choice of the local factor (7). Observe first that the
more general formula

νℓ(q, t) = lim
k→∞

#

(

Im

{

M̃ ∈ GSp2g(Qℓ) ∩Mat2g(Zℓ) with
tr(M̃) = t,

mult(M̃) = q

}

→ Mat2g(Z/ℓkZ)

)

#
(

Im
{

M̃ ∈ GSp2g(Qℓ) ∩Mat2g(Zℓ) with mult(M̃) = q
}

→ Mat2g(Z/ℓkZ)
)

/ℓk

reduces to (6) and (7) respectively when ℓ 6= p and ℓ = p. It is an easy exercise to check that the
denominator of this formula is simply the average over t of the numerator, so the ratio does measure the
deviation from the average of the number of symplectic matrices with a given trace. For g = 1, Gekeler
shows [Gek03] that this formula does give the correct local factor at p. In general, for p equal to the
characteristic of the relevant finite field, one can consider the action of Frobenius on a suitable p-adic
cohomology theory (for example, rigid cohomology): in this way, Frobenius acts on a 2g-dimensional
Qp-vector space preserving a Zp-lattice, so it defines a matrix with entries in Zp and multiplier q. It
seems likely that an equidistribution result similar to Theorem 2.3 should also hold in rigid cohomology
(see [Ked22, HP20]), which would lead to the local factor (7), just like Theorem 2.3 leads to (6).

Remark 3.7 (q small with respect to g). Notice that ν′(q, t) can be positive also for values of t such
that q + 1− t < 0. Of course, this does not make sense, because q + 1− t should represent the number of
Fq-rational points of a curve. The point is that the support of ν′(q, t) is the full interval [−2g

√
q, 2g
√
q],

and when q is small with respect to g it may well happen that q + 1− 2g
√
q < 0.

There are also subtler issues. The Sato-Tate distribution arises as the pushforward via the trace
map of the Haar measure on USp2g . Suppose that M ∈ USp2g corresponds to the unitarised Frobenius
FrobC/Fq√

q
, where C/Fq is a smooth projective curve of genus g. Then, for every m ≥ 1 one has

#C(Fqm) = qm + 1− qm/2 tr(Mm),

and in particular, for all integers m1 | m2 we must have

#C(Fqm1 ) = qm1 + 1− qm1/2 tr(Mm1) ≤ qm2 + 1− qm2/2 tr(Mm2) = #C(Fqm2 ).
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When q is small with respect to g, there are matrices in USp2g and integers m1 | m2 for which this
inequality does not hold. In this regime, one should perhaps replace the usual Sato-Tate measure with
the following. Let X be the subset of USp2g consisting of those matrices that satisfy all the inequalities

0 ≤ qm1 + 1− qm1/2 tr(Mm1) ≤ qm2 + 1− qm2/2 tr(Mm2) = #C(Fqm2 )

for all m1 | m2. A candidate to replace STg is the pushforward via the trace of the restriction of the
Haar measure to the set X (renormalised so as to have mass 1).

Recall that we are fixing g and sending q to infinity, so this issue does not affect our Conjecture 3.4.

Remark 3.8 (Asymmetry of the distribution H ′(q, t)). An advantage of working with PPAVs rather
than curves is that the former always admit quadratic twists, which implies that the distribution of
their traces is always symmetric around 0. This is further indication that perhaps Conjecture 3.4 is
more natural for the family of PPAVs. In fact, we remark that while ν′(q, t) is symmetric (that is,
ν′(q,−t) = ν′(q, t)), this is not necessarily the case for H ′(q, t) as soon as g ≥ 3, as one can see for
example in [BHLGR24, Figure 4], or below in our own Figure 3. See also [BHLGR24, §5] for a more
extensive discussion of the asymmetry of H ′(q, t). In particular, we note again that one cannot have an
exact equality H ′(q, t) = ν′(q, t) for general g, because the right-hand side is easily seen to be symmetric.
All the same, we expect the two measures to be arbitrarily close in the limit q →∞.

Remark 3.9 (Speed of convergence). The limit in Conjecture 3.4 cannot converge too quickly. We
briefly show why.

Given a measure µ on Z, let (−1)∗µ(·) be the measure defined as (−1)∗µ(t) = µ(−t) for all t ∈ Z.
By definition, (−1)∗ν′(q, ·) − ν′(q, ·) = 0 since ν′(q, ·) is symmetric. In particular, the moments of
(−1)∗(

√
qν′(q, ·))−(

√
qν′(q, ·)) are 0 for all q. Assume that d(H ′(q, ·), ν′(q, ·)) converges to zero sufficiently

quickly (for example, assume that the difference is O(q−k−1) for some k ≥ 0): the first 2k moments of
(−1)∗(

√
qH ′(q, ·))−(

√
qH ′(q, ·)) then also converge to zero as q goes to infinity. By [BHLGR24, Corollary

5.3], the n-th moment of (−1)∗(
√
qH ′(q, ·))− (

√
qH ′(q, ·)) converges, for n odd, to a real number bn and

bn is non-zero for n large enough (see [BHLGR24, Proposition 2.3]). Hence, for n large enough, the n-th
moment of (−1)∗(

√
qH ′(q, ·)) − (

√
qH ′(q, ·)) does not tend to zero as q goes to infinity. If bn 6= 0 and

2k ≥ n, this is a contradiction.
We thank Christophe Ritzenthaler and Elisa Lorenzo Garćıa for their comments that led to this

remark.

Remark 3.10 (Jacobians among PPAVs). We again take the view that Conjecture 3.4 should be a
shadow of a (possibly sharper) statement for the family of PPAVs of a given dimension. From this
point of view, it is important to note that – asymptotically – 100% of PPAvs of dimension 2 or 3 are
Jacobians (those that are not are either products of PPAVs of lower dimension or Weil restrictions of
elliptic curves). Thus, for g ≤ 3, the two conjectures that one can formulate (for curves of genus g and
for g-dimensional PPAVs) should be essentially equivalent. As the dimension grows, Conjecture 3.4 can
then be interpreted as saying that Jacobians are ‘typical’ among PPAVs – the distribution of the trace
on the subfamily of Jacobians is the same as the distribution among all PPAVs. While we believe that
Conjecture 3.4 holds for all genera g, we should point out that it is very hard to get numerical evidence
when the genus/dimension is 4 or more. This is precisely the threshold above which the difference
between Jacobians and PPAVs becomes (asymptotically) relevant, so it would be interesting to study
this regime more closely. See Figure 5 for an example in which we show the difference between taking
into account only Jacobians or all PPAVs.

Remark 3.11 (Principally polarised abelian surfaces with trace zero). In dimension two, PPAVs that
are not Jacobians are either products of elliptic curves (with the product polarisation) or Weil restrictions
of elliptic curves defined over a quadratic extension. In particular, over the finite field with q elements,
there are ≫ q2 abelian surfaces that are Weil restrictions of elliptic curves defined over Fq2 , but not

over Fq. The Galois representation attached to A := ResF
q2

/Fq (E) is the induction from Gal(Fq/Fq2) to

Gal
(

Fq/Fq

)

of the representation attached to E/Fq2 , which implies that the Frobenius trace of A is zero
for any such Weil restriction. Since the total number of genus-2 curves over Fq is of order q3 (see Lemma
2.5), we expect that the proportion of PP abelian surfaces with trace 0 should be significantly higher
than the proportion of genus-2 curves with trace 0 (the difference should be of order q2/q3 = 1/q). If we
interpret Conjecture 3.4 as a prediction for the distribution of the number of points of PPAVs, this helps
in explaining the peak at 0 in Figure 5 (this peak is particularly noticeable since for q = 37 the quantity
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1/q is not at all negligible). Similar comments apply in higher dimensions, but the proportion of PPAVs
having trace zero for geometric reasons becomes less significant as the dimension increases.

Remark 3.12 (Lift to Zℓ). Equation (6) requires that the matrix M ∈ GSp2g(Z/ℓkZ) should lift to

a matrix M̃ ∈ GSp2g(Zℓ). While this condition is natural in our setting (since Frobenius is in fact
represented by an ℓ-adic matrix with the given trace and multiplier), we believe that omitting this
condition should lead to the same result, that is, we conjecture that

ν̃ℓ(q, t) := lim
k→∞

#
{

M ∈ GSp2g(Z/ℓkZ) : tr(M) = t,mult(M) = q
}

# GSp2g(Z/ℓkZ)/(ℓkϕ(ℓk))

coincides with νℓ(q, t). It is not hard to check that this holds for g = 1, but we have been unable to prove
the result in general. The difficulties that arise lie in understanding the singularities of the variety Xq

t ,
that is the Zℓ-scheme defined as the subscheme of GSpmult=m

2g (Zℓ) defined by the equation Tr(M) = t.
When Xq

t is smooth over Zℓ, an application of Hensel’s lemma show that νℓ(q, t) and ν̃ℓ(q, t) both coincide
with

#
{

M ∈ GSp2g(Fℓ) : tr(M) = t,mult(M) = q
}

# GSp2g(Fℓ)/(ℓϕ(ℓ))
.

Remark 3.13 (Comparison to other recent work). The recent preprint [Shm23] relates the moments

Mn(g, q) = EPintrg,q
[#A(Fq)n]

of the random variable ‘number of rational points of A’ (here A is drawn at random from Ag(Fq) using
a suitable intrinsic measure) to the higher cohomology of certain moduli spaces, see [Shm23, p. 2]. This
yields explicit formulas for these moments for small g and n [Shm23, Corollaries 4.3 and 5.4] and it
would be interesting to compare these results with the predictions of Conjecture 3.4. It may be possible
to carry out this comparison by using the techniques of [AG17, AAGG23].

In particular, [AAGG23, Theorem A] comes near to proving Conjecture 3.4 in the context of princip-
ally polarised abelian varieties. However, we point out that to establish Conjecture 3.4 one would still
need to overcome several obstacles: the formula of [AAGG23, Theorem A] only applies to certain isogeny
classes of abelian varieties and involves Tamagawa numbers that would have to be averaged; even more
substantially, it is not clear how one would isolate Jacobians among all abelian varieties. Finally, even
though this is perhaps only a technical problem, the existence of the limits (6) and (7) seems substantially
easier to prove in the context of [AAGG23, Theorem A] than it is in the general case we consider here
(essentially because in the setting of [AAGG23, Theorem A] the expression appearing under the limit
sign in (6) is constant for k ≫ 0, which is not necessarily true in our generality).

3.2 Numerical evidence

In this section we report on numerical experiments that seem to support Conjecture 3.4. The data are
computed using MAGMA [BCP97]. All the MAGMA scripts to verify our data are available online
[BLV23].

In the graphs below we plot the distribution t 7→ H ′(q, t) for various values of g and q. These
distributions are obtained by directly counting all isomorphism classes of curves of the given genus over
the given finite field (the data for q = 53, g = 3 is taken from [LRRS14]). In addition, on the same
graphs, we also plot an approximation of the Sato-Tate density and of ν′(q, t). We briefly explain how
we obtain these approximations, starting with a general technique to compute the Sato-Tate density in
arbitrary dimension.

Remark 3.14 (Computation of STg(x) for arbitrary g). For general g, the density STg(x) can be
calculated up to arbitrary precision by using a technique due to Kedlaya-Sutherland [KS09] and Lachaud
[Lac16]. One can first use [KS09, Section 4.1] to compute the moments of STg, that is,

mn =

∫ 2g

−2g

xn d STg(x).

Once the moments (or at least, sufficiently many moments) are known, we can recover STg(x) as follows.
Let Ln(x) be the Legendre polynomials, which form a complete orthogonal basis of L2([−1, 1]). By
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rescaling, the polynomials

L̃n(x) :=

(∫ 2g

−2g

Ln(x/2g)2
)−1/2

Ln(x/2g)

form an orthonormal basis of L2([−2g, 2g]). From the explicit expression of L̃n(x) =
∑n

i=0 an,ix
i as a

polynomial, one can easily compute

cn =

∫ 2g

−2g

L̃n(x) dSTg(x) =
n
∑

i=0

an,imi.

Finally, we have the convergent expansion in L2([−2g, 2g])

STg(x) =
∑

n≥0

cnL̃n(x), (16)

which allows the computation of STg(x) to arbitrary precision. In our numerical experiments, we use
this technique to approximate ST3(x).

In our numerical experiments, we approximate the Sato-Tate density with the value of the series in
Equation (16) truncated at n ≤ 100. For ν′(q, t), we approximate the value of ν(q, t) (see Equation 8) by
considering the product of νℓ(q, t) for ℓ ≤ 100 and ℓ = ∞. To compute an approximation of νℓ(q, t) for
ℓ prime, we compute the value of the expression appearing under the limit sign in Equation 6 for k = 1
or 2. To compute an approximation of ν∞(q, t), we use our approximation of the Sato-Tate density.

Let
H ′

intr(q, t) = Pintr
g,q ({C ∈ Mg(Fq) : Tr(C) = t}) .

We compute the value of H ′
intr(q, t) by direct enumeration of all the curves of genus g defined over Fq.

Finally, below each graph we also give the distance d between the measures H ′ := H ′
intr(q, ·) and

ν′ := ν′(q, ·), as well as the distance between H ′ and the Sato-Tate measure. Our conjecture predicts
that d(H ′, ν′) should go to 0 as q goes to infinity. As a consequence of [BHLGR24, Conjecture 5.1] (see
(24)), d(H ′, ν∞) should go to 0. We proved in Proposition A.3 that the conjecture does not hold.
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Figure 2: Case g = 2 and q = 101. The red dots are the values of H ′. The black stars are the values of
the approximation of ν′(q, t). The blue graph is the approximation of the Sato-Tate density. In this case,
d(H ′, ν′) ≈ 0.01117 and d(H ′, ν∞) ≈ 0.15166.
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Figure 1: Case g = 2 and q = 1009. The red dots are the values of H ′. The black stars are the values of
the approximation of ν′(q, t). The blue graph is the approximation of the Sato-Tate density. In this case,
d(H ′, ν′) ≈ 0.00439 and d(H ′, ν∞) ≈ 0.15528.
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Figure 3: Case g = 3 and q = 53. The red dots are the values of H ′. The black stars are the values of
the approximation of ν′(q, t). The blue graph is the approximation of the Sato-Tate density. In this case,
d(H ′, ν′) ≈ 0.03842 and d(H ′, ν∞) ≈ 0.03940.
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Figure 4: Case g = 2 and q = 5. As pointed out in Remark 3.7, there is an issue when q + 1 − t < 0 (for
example when t = 7). Indeed, H ′(q, 7) = 0 because q + 1− t represents the number of Fq-rational points of
a curve. Instead, both ν′(q, 7) ≈ 0.0009 and ν∞(q, 7) ≈ 0.0011 are strictly positive.
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Figure 5: This graph shows the difference between considering all PPAVs or only Jacobians of curves (see
Remark 3.10). We take g = 2 and q = 37. We plot in red the distribution H ′ and in black (an approximation
of) the distribution ν′(q, t). The green dots represent the probabilities of the various traces when we take into
account all principally polarised abelian surfaces over Fq. Call this distribution H ′′. The distance between
the distributions H ′ and ν′(q, t) is ≈ 0.02673. The distance between H ′′ and ν′(q, t) is ≈ 0.02775. Notice
that the approximations are very close to each other, except at t = 0, where taking into account all PPAVs
gives a much better agreement with our prediction. An explanation for this phenomenon is given in Remark
3.11.
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4 Well-posedness of Equation (8)

In this section we prove that the quantity ν(q, t) is well-defined. We have already observed (Remark 3.2)
that νℓ(q, t) is well-defined for all ℓ ≤ ∞, so it suffices to show that, as ℓ→∞ among the prime numbers,
we have νℓ(q, t) = 1 + O(ℓ−2). This suffices to ensure that the product (8) converges.

As a preparation for the proof, we introduce the following notation and make some remarks.

Notation 4.1. Let R be a (commutative unitary) ring and let m ∈ R× be a fixed element. We define
GSpmult=m

2g,R as the subscheme of GSp2g,R cut by the equation mult(M) = m.

Remark 4.2. Let us fix the antisymmetric form

(

0 Idg

− Idg 0

)

. The matrix

Mm :=





















m
.. .

m
1

. . .

1





















is in GSp2g(R) and has multiplier m. Multiplication by Mm gives an algebraic isomorphism between the

R-schemes Sp2g,R and GSpmult=m
2g,R . The same applies for any matrix Mm ∈ GSp2g(R) with multiplier

m. In particular, GSpmult=m
2g,R is smooth for any value of m. If R is a field, the dimension of GSpmult=m

2g,R

is equal to dim Sp2g,R.

In what follows we will be interested in the subschemes of GSpmult=m
2g,R defined by the equation Tr(M) =

t for a fixed value of t ∈ R. We will mostly work with R = Zℓ and R = Fℓ.

Definition 4.3. For m ∈ R×, t ∈ R, we define the R-scheme Xm
t as the subscheme of GSpmult=m

2g,R

defined by the equation Tr(M) = t.

Notice that, if we fix m ∈ Z \ {0}, then m is invertible in Z[1/m], and hence Xm
t makes sense as a

scheme over SpecZ[1/m]. We will be able to reduce this scheme modulo any prime that does not divide
m.

4.1 Number of points of Xm

t
over finite fields

In this section we study the number of Fℓ-points of Xt
m (Theorem 4.4 and Lemma 4.5) and show that

a large proportion of them correspond to smooth points of Xt
m (Lemma 4.6). For the first objective,

our approach is inspired by [Lee01]. More precisely, the main result of [Lee01] gives a formula counting
the number of elements in GSp2g(Fℓ) with given trace and determinant. The same strategy allows us to
prove the following version, where we count matrices with given trace and multiplier. Before stating the

result, we remind the reader that the q-binomial coefficient

[

n
r

]

q

is defined as
∏r−1

j=0
qn−j−1
qr−j−1

. For ease of

comparison with [Lee01], we adopt the same notation as in op. cit.

Theorem 4.4. Let q be a prime power, ζ ∈ F×
q , and η ∈ Fq. Let

Tm = q
∑

α1,...,αm∈F
×
q

t
(

α1 + ζα−1
1 + · · ·+ αm + ζα−1

m

)

− (q − 1)m,

where

t(x) =

{

1, if x = η

0, otherwise,

and the sum is regarded as t(0) for m = 0. Let

C(ζ, η) :=
∣

∣{g ∈ GSp2n(Fq)
∣

∣ mult g = ζ, tr g = η}
∣

∣ =
∣

∣

∣
Xζ

η (Fq)
∣

∣

∣
.

We have the following exact formula for C(ζ, η):
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C(ζ, η) = qn
2−1

n
∏

j=1

(

q2j − 1
)

+ E, (17)

where

E = qn
2−1

⌊n/2⌋
∑

b=0



qb
2+b

[

n
2b

]

q

b
∏

j=1

(q2j−1 − 1)

⌊n/2−b⌋
∑

l=0

qlR(n− 2b + 1, l)Tn−2b−2l



 , (18)

R(m, l) denotes

R(m, l) =
∑

0<j1<···<jl<m−l

l
∏

ν=1

(qm−ν−jν − 1),

and we set by convention R(m, 0) = 1.

Proof. The proof is virtually identical to that of [Lee01, Theorem 1]: if one simply replaces every oc-
currence of det with mult in the proof of [Lee01, Theorem 1] everything goes through without difficulty.
More precisely, let

e(x) =

{

1 if x = ζ,

0 otherwise.

Throughout the proof, several instances of det(dα) = αn are replaced by mult(dα) = α, where dα =
(

Idn 0
0 α Idn

)

. In particular, the sums
∑

α∈F
×
q
e(αn) are replaced by

∑

α∈F
×
q
e(α). In the proof of

[Lee01, Theorem 1], the sum
∑

α∈F
×
q
e(αn) evaluates to the number S of n-th roots of ζ in F×

q ; in our

case, the sum
∑

α∈F
×
q
e(α) simply evaluates to 1 for all ζ ∈ F×

q .

We will think of the expression E appearing in Equation (18) as an error term. We now proceed
to bound this error. We work with a fixed value of n: this implies in particular that the number of
summands (resp. factors) in the sum (resp. products) appearing in (18) is O(1). We then have the
following estimates (where the implicit constants may depend on n, but not on q):

1.

[

n
r

]

q

=
∏r−1

j=0
qn−j−1
qr−j−1

≪∏r−1
j=0

qn−j

qr−j =
∏r−1

j=0 q
n−r = qnr−r2 , and hence in particular

[

n
2b

]

q

≪ q2bn−4b2 .

2.
∏b

j=1(q2j−1 − 1) ≤∏b
j=1 q

2j−1 = q
∑b

j=1(2j−1) = qb
2

.

3. We claim that R(m, l) ≪ qml−l(l+1) for m ≤ n. To see this, notice that the length of the sum
defining R(m, l) is O(1), so it suffices to estimate the largest summand. (The length of the sum
is O(1) because it is bounded by a function of m, and m is bounded in terms of n.) Clearly the
condition jk > jk−1 for k = 2, . . . , l yields jν ≥ ν, so qm−ν−jν ≤ qm−2ν . We can then estimate

R(m, l)≪
l
∏

ν=1

qm−2ν = qml−l(l+1),

as claimed.

4. We also claim that |Tm| ≪ qm. To show this, we first remark that, for fixed values of α1, . . . , αm−1 ∈
F×
q , the equation

α1 + ζα−1
1 + · · ·+ αm + ζα−1

m = η

has at most 2 solutions αm ∈ F×
q . We can then rewrite and estimate |Tm| as follows:

∣

∣q
∑

α1,...,αm−1∈F
×
q

∑

αm∈F×q
α1+ζα−1

1
+···+αm+ζα−1

m =η

1− (q − 1)m
∣

∣ ≤ q · (q − 1)m−1 · 2 + (q − 1)m ≪ qm,

as desired.
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We now give an upper bound for the quantity |E|, with E as in Equation (18). According to our previous
estimates,

∣

∣

∣

∣

∣

∣

⌊n/2−b⌋
∑

l=0

qlR(n− 2b + 1, l)Tn−2b−2l

∣

∣

∣

∣

∣

∣

≪
⌊n/2−b⌋
∑

l=0

qlq(n−2b+1)l−l(l+1)qn−2b−2l

≪ qn−2b

⌊n/2−b⌋
∑

l=0

q(n−2b−1)l−l2 .

Notice again that the length of this sum is O(1), so it suffices to give an upper bound for its largest
summand. For a fixed value of b, the exponent (n− 2b− 1)l− l2 is maximal for l = n−2b−1

2
(which might

not be an integer, but still provides an upper bound for the value of the exponent). We thus get

∣

∣

∣

∣

∣

∣

⌊n/2−b⌋
∑

l=0

qlR(n− 2b + 1, l)Tn−2b−2l

∣

∣

∣

∣

∣

∣

≪ qn−2bq(n−2b−1
2 )

2

.

We now consider the expression

∣

∣

∣

∣

∣

∣

qb
2+b

[

n
2b

]

q

b
∏

j=1

(q2j−1 − 1)

⌊n/2−b⌋
∑

l=0

qlR(n− 2b + 1, l)Tn−2b−2l

∣

∣

∣

∣

∣

∣

≪ qb
2+bq2bn−4b2qb

2

qn−2bq(n−2b−1
2 )2 ,

corresponding to a fixed value of b in the sum (18). The exponent of q on the right-hand side is again
a quadratic function of b (to be precise, it is given by −b2 + bn + 1

4
n2 + 1

2
n + 1/4), which is easily

seen to achieve its maximum for b = n/2. This maximum value is given by 1
2
n2 + 1

2
n + 1

4
. Thus,

q(1/2)n
2+(1/2)n+1/4 is an upper bound for each summand. Keeping once again in mind that the length of

the sum is O(1), we have proved that

|E| ≪ qn
2−1q

1
2
n2+ 1

2
n+ 1

4 = q
3
2
n2+ 1

2
n− 3

4 .

We can finally prove:

Lemma 4.5. For all g ≥ 2, all primes ℓ, and all m with (m, ℓ) = 1 we have

#Xm
t (Fℓ)

# GSp2g(Fℓ)/(ℓϕ(ℓ))
=

#{M ∈ GSp2g(Fℓ) : Tr(M) = t,multM = m}
# GSp2g(Fℓ)/(ℓϕ(ℓ))

= 1 + O(ℓ−2), (19)

where the constant implicit in the big-O sign depends only on g.

Proof. The numerator of (19) is given by (17) (with n = g, q = ℓ, ζ = m and η = t). Note that

ℓg
2−1∏g

j=1

(

ℓ2j − 1
)

is exactly
#GSp2g(Fℓ)

ℓϕ(ℓ)
. Thus, the ratio in (19) is given by

1 +
E

1
ℓ(ℓ−1)

# GSp2g(Fℓ)
.

Since

1

ℓ(ℓ− 1)
# GSp2g(Fℓ) =

1

ℓ(ℓ− 1)
(ℓ− 1)# Sp2g(Fℓ) = ℓg

2−1
g
∏

j=1

(ℓ2j − 1)≫ ℓ2g
2+g−1,

we obtain that (19) is

1 + O
(

ℓ
3
2
g2+ 1

2
g− 3

4
−(2g2+g−1)

)

= 1 + O
(

ℓ−
1
2
g2− 1

2
g+ 1

4

)

,

which is 1 + O(ℓ−2) for all g ≥ 2.
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Lemma 4.6. Fix t,m ∈ Z and let ℓ ≥ 3 be a prime number not dividing m. Let

X := (Xm
t )Fℓ = GSp2g,Fℓ

∩{Tr = t} ∩ {mult = m},

considered as a variety over Fℓ. Write Xsmooth for the smooth locus of X. The singular locus Xsing has

codimension at least 3 in X. We have #Xsing(Fℓ) = O(ℓ2g
2+g−4) and

#Xsmooth(Fℓ) =
# GSp2g,Fℓ

(Fℓ)

ℓϕ(ℓ)
(1 + O(ℓ−2)).

The implied constants depend on t and m, but not on ℓ.

Proof. We view X as a subvariety of the affine space A
(2g)2

Fℓ
, considered as the space of matrices of size

2g× 2g. The variety X is the intersection of GSpmult=m
2g,Fℓ

∼= Sp2g,Fℓ
with the hyperplane H defined by the

condition Tr(M) = t. The hyperplane section GSpmult=m
2g,Fℓ

∩H is smooth at a point x ∈ X(Fℓ) unless the

(tangent space to the) hyperplane H contains the tangent space of GSpmult=m
2g,Fℓ

at the point x. Take any

point x ∈ X(Fℓ). Since x has multiplier m, left multiplication by x ∈ GSp2g(Fℓ) gives an isomorphism Lx

between Sp2g,Fℓ
and GSpmult=m

2g,Fℓ
. The differential of Lx gives an isomorphism between the tangent space

at Id and the tangent space at x. If we identify both tangent spaces to subspaces of the tangent space

to A
(2g)2

Fℓ
(that is, to matrices of size 2g × 2g), the differential in question is simply multiplication by x

itself. Thus, we may view the tangent space at x as the image via x of the tangent space at Id, which is
the Lie algebra of Sp2g,Fℓ

. This can be written down explicitly: choose the anti-symmetric bilinear form
represented by the matrix

Ω :=

(

0 Idg

− Idg 0

)

.

Differentiating the condition tMΩM = Ω, we find that the Lie algebra of Sp2g,Fℓ
is given by those

matrices M that satisfy tMΩ + ΩM = 0. Writing M in block form, we obtain that Lie Sp2g,Fℓ
is the

vector space of Fℓ-matrices
(

A B
C D

)

with tB = B, tC = C, tD = −A (see [FH91, §16.1] for the identical calculation over the complex
numbers). From the previous arguments, it follows that x can only be a singular point if

xLie(Sp2g,Fℓ
) ⊆ {Tr = 0},

which is to say
Tr(xL) = 0 ∀L ∈ Lie(Sp2g,Fℓ

).

Write x =

(

α β
γ δ

)

and L =

(

A B
C D

)

with B,C symmetric and D = −tA. This easily gives Tr(βC) =

Tr(γB) = 0 for all symmetric B,C (which implies that β, γ are anti-symmetric) and

Tr(αA− δ · tA) = Tr(αA− A · tδ) = Tr(αA− tδ · A) = 0

for all A (which implies α = tδ).
Thus, the locus of non-smooth points is contained in the linear space defined by the equations

tβ = −β, tγ = −γ, tδ = α.

This linear space has dimension g2 + 2 g(g−1)
2

= 2g2 − g, and hence codimension at least 2g − 1 ≥ 3 in

X, each of whose irreducible components has dimension at least dim GSpmult=m
2g,Fℓ

−1 = dim Sp2g,Fℓ
−1 =

2g2 + g − 1 (at least one irreducible component has exactly this dimension). We now observe that by

the Lang-Weil estimates [LW54, Theorem 1] we have #Xsing(Fℓ) = O(ℓdimXsing

) = O(ℓdimX−3), with
an implicit constant that depends only on X and not ℓ. Taking into account the obvious decomposition
Xsmooth(Fℓ)

⊔

Xsing(Fℓ) = X(Fℓ) and the fact that

#X(Fℓ) =
# GSp2g,Fℓ

(Fℓ)

ℓϕ(ℓ)
(1 + O(ℓ−2))
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by Lemma 4.5, we obtain the desired estimate

#Xsmooth(Fℓ) =
# GSp2g,Fℓ

(Fℓ)

ℓϕ(ℓ)
(1 + O(ℓ−2)).

4.2 Convergence of the infinite product (8)

Lemma 4.7. Let g ≥ 2, q be a prime power, and t ∈ Z. Let ℓ ≥ 3 be a prime that does not divide q.
We have νℓ(q, t) = 1 + O(ℓ−2), where the implied constant depends on g, q, and t.

Proof. Let X := Xq
t . We denote by Xsing(Z/ℓnZ) the subset of X(Z/ℓnZ) consisting of points that

map to singular points of Xsing(Fℓ) (this does agree with the set of Z/ℓnZ-valued points of the singular
subscheme Xsing of X). We apply [Oes82, Property (U), page 326] to

X(Zℓ) = {M ∈ GSp2g(Zℓ) : TrM = t,multM = mq}

m = 1, N = (2g)2, n = n, B = x0 + ℓZ
(2g)2

ℓ

where x0 mod ℓ is a matrix lying in Xsing(Fℓ). We first assume that XZℓ
is irreducible. Considering X

as a scheme over the spectrum of the DVR Zℓ, [Sta22, Lemma 0B2J] shows that XFℓ is equidimensional
of some dimension d, and Oesterlé’s result gives

#{closed balls A of radius ℓ−n : A ∩X 6= ∅ and A ⊆ B} ≤ CℓdimX(n−1)

for a constant C that depends only on the degree in dimension d [Oes82, §0.6] of XFℓ , which is clearly
bounded independently of ℓ. On the other hand, we have

#{closed balls A of radius ℓ−n : A ∩X 6= ∅ and A ⊆ B}

= #







M ∈ GSp2g(Z/ℓnZ) :
∃M̃ ∈ X(Zℓ)

M̃ ≡M (mod ℓn)
M ≡ x0 (mod ℓ)







.

Hence, summing over the points x0 ∈ Xsing(Fℓ) we obtain

#







M ∈ GSp2g(Z/ℓnZ) :
∃M̃ ∈ X(Zℓ)

M̃ ≡M (mod ℓn)
M mod ℓ ∈ Xsing(Fℓ)







≤ C#Xsing(Fℓ)ℓ
(n−1) dimX . (20)

If XZℓ
is not irreducible, we can repeat the above argument with each irreducible component Xi. If

Ci is the constant that corresponds to the component Xi, we easily obtain

#







M ∈ GSp2g(Z/ℓnZ) :
∃M̃ ∈ X(Zℓ)

M̃ ≡M (mod ℓn)
M mod ℓ ∈ Xsing(Fℓ)







≤
∑

i

Ci#Xsing
i (Fℓ)ℓ

(n−1) dimXi

≤
(

∑

i

Ci

)

#Xsing(Fℓ)ℓ
(n−1) dimX .

Note that the number of irreducible components is bounded independently of ℓ, and so is the constant
(
∑

i Ci

)

(because the degrees are bounded in terms of the equations of X, which are independent of ℓ).
The conclusion is that there exists a constant C such that (20) holds for all n and all but finitely many
ℓ.

Recall now the definition of νℓ(q, t) from Equation (6): it is the limit over k of the ratio

#

{

M ∈ GSp2g(Z/ℓkZ) : ∃M̃ ∈ GSp2g(Zℓ) : M̃ ≡M (mod ℓk) with
tr(M̃) = t,

mult(M̃) = q

}

# GSp2g(Z/ℓkZ)/(ℓkϕ(ℓk))
. (21)
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Clearly, a matrix M counted in the numerator of this expression in particular reduces modulo ℓ to a
point in X(Fℓ). For a fixed x0 ∈ X(Fℓ), denote by N(x0, k) the quantity

N(x0, k) =







M ∈ GSp2g(Z/ℓkZ) : M ≡ x0 (mod ℓ),∃M̃ ∈ GSp2g(Zℓ) with

M̃ ≡M (mod ℓk)

tr(M̃) = t

mult(M̃) = q







=
{

M ∈ GSp2g(Z/ℓkZ) : M ≡ x0 (mod ℓ),∃M̃ ∈ X(Zℓ) with M̃ ≡M (mod ℓk)
}

.

When x0 is a smooth point of X(Fℓ), Hensel’s lemma shows that x0 has precisely ℓ(k−1) dimXFℓ lifts to
X(Z/ℓkZ), and each of these further lifts to a point in X(Zℓ) (note that a smooth point necessarily lies on a
component of dimension equal to dimXFℓ : indeed, X is a hyperplane section of a smooth variety, so every

smooth point lies on a component of maximal dimension). Therefore, we have N(x0, k) = ℓ(k−1) dimXFℓ

for such x0. On the other hand, Equation (20) and Lemma 4.6 show that
∑

x0∈Xsing(Fℓ)
N(x0, k) =

O(ℓk dimXFℓ
−3).

Thus, the numerator of (21) is given by

∑

x0∈X(Fℓ)

N(x0, k) =
∑

x0∈Xsmooth(Fℓ)

N(x0, k) +
∑

x0∈Xsing(Fℓ)

N(x0, k)

= #Xsmooth(Fℓ)ℓ
(k−1) dimXFℓ + O(ℓk dimXFℓ

−3)

=
# GSp2g(Fℓ)

ℓϕ(ℓ)
(1 + O(ℓ−2)) · ℓ(k−1) dimXFℓ + O(ℓk dimXFℓ

−3),

where in the last equality we have applied Lemma 4.6. Using dimXFℓ = dim GSp2g,Fℓ
−2 and dividing

by
# GSp2g(Z/ℓkZ)

ℓkϕ(ℓk)
=

# GSp2g(Fℓ)

ℓϕ(ℓ)
ℓ(k−1) dimXFℓ ,

we obtain that (21) is 1 + O(ℓ−2). The claim follows upon passing to the limit in k.

Theorem 4.8. Let q be a prime power and t ∈ Z. The infinite product

ν(q, t) = ν∞(q, t)
∏

ℓ<∞
νℓ(q, t)

converges.

Proof. By Lemma 4.7 we have νℓ(q, t) = 1 + O(ℓ−2) as ℓ ranges over primes ℓ ≥ 3 that do not divide q.
The factors ν∞(q, t), ν2(q, t) and νp(q, t) are well-defined, as already argued. It follows that the infinite
product

∏

ℓ<∞ νℓ(q, t) converges.

We conclude this section by proving that ν(q, t) is strictly positive for t ∈ Z lying in the interval
(−2g

√
q, 2g
√
q). This also proves that the denominator in Equation (9) is non-zero and that ν′(q, t) is

strictly positive for t ∈ Z lying in the interval (−2g
√
q, 2g
√
q).

Lemma 4.9. Let t be an integer in the open interval (−2g
√
q, 2g
√
q). The quantity ν(q, t) is non-zero

(hence strictly positive).

Proof. Since the infinite product defining ν(q, t) converges, it suffices to show that each factor in this
product is non-zero. This is well-known to be true for the infinite factor ν∞(q, t), whose support is the
interval [−2g

√
q, 2g
√
q]. To show that νℓ(q, t) is non-zero (including for ℓ = p) we proceed as follows. We

rewrite the definition of νℓ(q, t) in the form of Remark 3.6,

νℓ(q, t) = lim
k→∞

#

(

Im

{

M̃ ∈ GSp2g(Qℓ) ∩Mat2g(Zℓ) with
tr(M̃) = t,

mult(M̃) = q

}

→ Mat2g(Z/ℓkZ)

)

#
(

Im
{

M̃ ∈ GSp2g(Qℓ) ∩Mat2g(Zℓ) with mult(M̃) = q
}

→ Mat2g(Z/ℓkZ)
)

/ℓk
.

Set d := dim GSp2g,Qℓ
−2 = 2g2 + g− 1 and multiply both numerator and denominator by ℓ−kd. Let Xq

t

be as in Definition 4.3 (for the ring R = Qℓ) and let for simplicity Xq := GSpmult=q
2g,Qℓ

. We see both Xq and
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Xq
t as subschemes of A

(2g)2

Qℓ
, so that their Qℓ-points are subsets of Q

(2g)2

ℓ . Let Y q
t := Xq

t (Qℓ)∩Z(2g)2

ℓ and

Y q := Xq(Qℓ)∩Z(2g)2

ℓ . The sets Y q
t and Y q are closed analytic subsets of Z

(2g)2

ℓ . Note that Xq is smooth
and irreducible of dimension d+1, hence Xq

t – which is a subscheme of Xq defined by a single non-trivial
equation – has dimension d: slicing with a hyperplane makes the dimension drop at most by 1; on the
other hand, the dimension must drop (if Xq

t had a component of dimension d + 1, by the irreducibility
of Xq we would have Xq

t ⊇ Xq , which is not the case). More precisely, by the same argument, every
irreducible component of Xq

t has dimension d. We can thus write

νℓ(q, t) = lim
k→∞

ℓ−dk# im(Y q
t → (Z/ℓkZ)(2g)

2

)

ℓ−(d+1)k# im(Y q → (Z/ℓkZ)(2g)2)
. (22)

Recall from [Oes82, §2] the notion of measure in dimension d of a closed analytic subset Y of Z
(2g)2

ℓ

of dimension ≤ d (denoted by µd(Y )). By [Oes82, Théorème 2], the numerator and denominator of (22)
admit limit as k →∞, and these limits are given by µd(Y q

t ) and µd+1(Y q), respectively. Hence,

νℓ(q, t) =
µd(Y q

t )

µd+1(Y q)
.

To conclude, it suffices to show that µd+1(Y q) and µd(Y q
t ) are both strictly positive; by definition,

this is equivalent to the fact that Y q intersects the open locus (Xq)d+1
smooth of smooth points x of Xq(Qℓ)

such that dimx(Xq) = d + 1 (resp. Y q
t intersects (Xq

t )dsmooth). Note that Y q is open in Xq(Qℓ) for the

ℓ-adic topology, since it is the intersection of Xq(Qℓ) with the ℓ-adically open set (Zℓ)
(2g)2 ; a similar

comment applies to Xq
t . Since Xq , Xq

t are of pure dimensions d + 1, d respectively, we are reduced to
checking that Y q, Y q

t contain smooth points of Xq, Xq
t respectively.

For Xq, which is smooth, this amounts to constructing a symplectic matrix with coefficients in Zℓ and
given multiplier; this follows immediately from either Proposition 6.3 and Remark 6.5 or from Remark
4.2 after observing that the identity matrix lies in Sp2g(Zℓ). For Xq

t we construct the relevant point
explicitly.

We observe that Xq
t arises as a fibre of the trace map:

trace : Xq → A1

i.e., Xq
t = trace−1(t). A sufficient condition for a point P ∈ Xq

t to be smooth is the existence of a curve
C ⊆ Xq containing P such that the restriction of the trace map

trace : C → A1

has non-vanishing differential at P . To see this, notice that the dimension of the tangent space at P in
Xq

t is the dimension of the tangent space at P in Xq minus the dimension of the image of the differential
of the trace map (restricted to Xq) at P . Let us fix the symplectic form

Ω =

(

0 Idg

− Idg 0

)

.

We consider the curve Ma, parametrised by a ∈ A1, given by

Ma =









a z a− q z
tz q Idg−1

tz 0g−1

1 z 1 z
tz 0g−1

tz Idg−1









where z is the 1 × (g − 1) vector (0, . . . , 0). One checks that Ma ∈ Xq(Qℓ): up to a suitable change

of basis, the symplectic form is represented by diag

((

0 1
−1 0

)

, . . . ,

(

0 1
−1 0

))

, and in the same basis

Ma becomes the matrix diag

((

a a− q
1 1

)

,

(

1 0
0 q

)

, . . . ,

(

1 0
0 q

))

, which is manifestly symplectic since

every 2× 2 block has determinant q. Moreover, trace(Ma) = a + qg − q + g; the composition

a→ Ma → trace(Ma) = a + qg − q + g
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is just a translation of A1, which implies that the differential of the trace map at Ma is surjective.
Therefore, the point Mt−qg+q−g ∈ Xq

t is smooth and its entries are elements of Zℓ. This concludes the
proof.

5 Proof of Theorem 1.4

The goal of this section is to show that the set Pg(Fq) of Definition 1.2 spans a Q-vector space of
dimension g + 1 for all pairs (g, q). For a fixed genus g and q ≫g 1, this follows from Theorem 2.1 (see
Remark 2.9). Studying more precisely the set Pg,2(Fq) for every fixed value of q, we prove the statement
for all q and g. Recall that Pg(Fq) is defined in Definition 1.2 and Pg,2(Fq) is its reduction modulo 2.
As we pointed out in the introduction, we split our proof of Theorem 1.4 into two parts, one for the case
p odd and one for the case p = 2, since the properties of the 2-torsion points are slightly different when
the characteristic is odd or even.

5.1 Proof of Theorem 1.4: p odd

Throughout this section, the prime p = char(Fq) is assumed to be odd. Thanks to Theorem 1.7, it makes
sense to define fC(t) ∈ Z[t] as fC,ℓ∞(t), where ℓ is any prime different from p; from now on, we shall
choose ℓ = 2. This choice has the additional advantage that working modulo 2 makes the connection
between the L-polynomial and the characteristic polynomial of Frobenius particularly simple:

Corollary 5.1. We have PC(t) ≡ fC(t) (mod 2).

Proof. Write PC(t) =
∑2g

i=0 ait
i ∈ Z[t] and fC(t) =

∑2g
i=0 bit

i. By Theorem 1.7 we have the equality
bi = a2g−i, and since q is odd we also have

bi = a2g−i = qg−iai ≡ ai (mod 2).

We now recall a concrete description for the vector space of 2-torsion points of a hyperelliptic Jacobian,
at least in the case when the hyperelliptic model is given by a polynomial of odd degree. Let f(x) ∈ Fq[x]
be a separable polynomial of degree 2g+1 and let C/Fq be the unique smooth projective curve birational
to the affine curve y2 = f(x). Furthermore, let J/Fq be the Jacobian of C and {α1, . . . , α2g+1} be the
set of roots of f(x) in Fq. Then for i = 1, . . . , 2g + 1 we have a point (αi, 0) ∈ C(Fq); also notice that C,
being given by an odd-degree model, has a unique point at infinity, which we denote by ∞. We denote
by Ri = [(αi, 0) −∞] the classes of the divisors Qi = (αi, 0) −∞ in J(Fq). We then have the following
well-known description for the 2-torsion of J (see for example [Gro12, Section 4]):

Lemma 5.2. The following hold:

1. Each of the divisor classes Ri ∈ J(Fq) represents a point of order 2.

2. The classes Ri span J [2].

3. The only linear relation satisfied by the Ri is R1 + · · ·+ R2g+1 = 0.

We can now compute the action of Frobenius on the 2-torsion points of C:

Lemma 5.3. With notation as above, write f(x) =
∏r

i=1 fi(x) for the factorisation of f(x) as a product
of irreducible polynomials in Fq[x], and let di = deg(fi). Let ρ2 : Gal(Fq/Fq)→ AutF2(J [2]) be the Galois
representation attached to the 2-torsion points of J. Then

fC,2(t) = det(t Id−ρ2(Frob)) = (t− 1)−1
r
∏

i=1

(tdi − 1) ∈ F2[t].

Proof. As above, let∞ be the unique point at infinity of C, and for i = 1, . . . , 2g+1 let Qi = (αi, 0)−∞ ∈
DivC(Fq). Write Pi for the image of Qi in the F2-vector space DivC(Fq)⊗F2, and let V be the (2g + 1)-
dimensional F2-vector subspace of DivC(Fq) ⊗ F2 spanned by the Pi. There is a natural action of
Gal(Fq/Fq) on V , which we consider as a representation ρ : Gal(Fq/Fq) → GL(V ). By Galois theory,
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it is clear that Frob acts on the set {αi}2g+1
i=1 with r orbits, one corresponding to each irreducible factor

of f(x). The lengths of the orbits are given by the degrees di of the factors fi(x). This means that,
in the natural basis of V given by the Pi, the action of Frobenius is given by a permutation matrix
corresponding to a permutation of cycle type

(d1, d2, . . . , dr).

It follows immediately that the characteristic polynomial of ρ(Frob) is

det(t Id−ρ(Frob)) = (td1 − 1) · · · (tdr − 1) ∈ F2[t].

On the other hand, by Lemma 5.2 there is a Galois-equivariant exact sequence

0→ F2 → V → J [2]→ 0,

where the first map is given by 1→ P1 +P2 + . . . P2g+1 and the action of Frob on the sum P1 + · · ·+P2g+1

is trivial. This implies that

det(t Id−ρ(Frob)) = det(t Id−ρ2(Frob))(t− 1),

which, combined with our previous determination of the characteristic polynomial of ρ(Frob), concludes
the proof.

Thanks to the previous lemma, it is easy to obtain the reduction modulo 2 of the L-polynomial of
any given hyperelliptic curve with an odd degree model. In the next corollary, we use this to produce
curves whose L-polynomials have particularly simple reductions modulo 2.

Corollary 5.4. Let f0(x) = 1 and, for d = 1, . . . , 2g + 1, let fd(x) ∈ Fq[x] be an irreducible polynomial
of degree d. Further set f0(x) = 1. For d = 0, . . . , g consider the unique smooth projective curve Cd

birational to the affine curve
y2 = fd(x)f2g+1−d(x).

For d = 1, . . . , g we have the congruence

(t− 1)PCd(t) ≡ (td − 1)(t2g+1−d − 1) ≡ t2g+1 + t2g+1−d + td + 1 (mod 2),

while for d = 0 we have

(t− 1)PC0(t) ≡ t2g+1 − 1 ≡ t2g+1 + 1 (mod 2).

Proof. This is a direct application of Lemma 5.3, combined with the fact that by Corollary 5.1 we have
PC(t) ≡ fC(t) (mod 2).

Proof of Theorem 1.4 for p odd. The inequality dimQ Lg(Fq) ≤ g + 1 follows immediately from the sym-
metry relation ag+i = qiag−i satisfied by the coefficients of the L-polynomials; it thus suffices to establish
the lower bound dimQ Lg(Fq) ≥ g + 1.

Consider the g+ 1 curves C0, . . . , Cg of Corollary 5.4 (any choice of the irreducible polynomials fd(x)
will work) and the corresponding L-polynomials PC0(t), . . . , PCg (t). Let M ⊆ Z[t] be the Z-module
generated by these polynomials; it is clear that in order to prove the theorem it suffices to show that
rankZ M ≥ g + 1. Notice that M ⊗ F2 is in a natural way a vector subspace of F2[t], and that

rankZ M ≥ dimF2(M ⊗ F2).

Let N ⊂ F2[t] be the image of the linear map

M ⊗ F2 → F2[t]
q(t) 7→ (t− 1)q(t).

The F2-vector space N is generated by the g + 1 polynomials (t − 1)PCi(t) for i = 0, . . . , g, hence, by
Corollary 5.4, by the g + 1 polynomials

t2g+1 + 1 and t2g+1 + t2g+1−i + ti + 1 for i = 1, . . . , g.

It is immediate to check that these g + 1 polynomials are F2-linearly independent, which implies

rankZ M ≥ dimF2(M ⊗ F2) = dimF2 N = g + 1.
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5.2 Proof of Theorem 1.4: p = 2

We now give the proof of Theorem 1.4 in the case p = 2. As in the case of odd characteristic, we will
exhibit g + 1 curves whose L-polynomials form a basis of Lg(Fq). Recall from Definition 1.2 the set
Pg(Fq).

Proof of Theorem 1.4 for p = 2. Fix 0 ≤ r ≤ g. Let h(x) ∈ Fq[x] be a separable polynomial of degree
r such that h(0) 6= 0. Such a polynomial exists: for r = 0, 1 we may take h(x) = 1 or h(x) = x + 1,
respectively, and for r ≥ 2 it suffices to take as h(x) the minimal polynomial of any element that generates
Fqr over Fq.

Consider the affine curve defined by the equation y2 +yh(x) = x2g+1−rh(x). We claim that this curve
is smooth. Indeed, an Fq-point (x0, y0) on the curve is singular if and only if











y2
0 + y0h(x0) = x2g+1−r

0 h(x0)

h(x0) = 0

y0h
′(x0) = (2g + 1− r)x2g−r

0 h(x0) + x2g+1−r
0 h′(x0)

Here the second and third equations are given by the vanishing of the partial derivatives in y and x of
the defining equation, respectively. By the second equation, x0 is a root of h. So, by the first one, y0 = 0.
Hence, the third equation becomes x2g+1−r

0 h′(x0) = 0: but x0 6= 0 since h(0) 6= 0, and h′(x0) 6= 0 since
h is separable, so the above system has no solutions. Let C/Fq be the smooth projective curve given by
the completion of the curve above. The curve C has genus g, because the degree of x2g+1−rh(x) is 2g+ 1
and the degree of h(x) is at most g. In particular, PC(t) is an element of Pg(Fq). We will show that the
reduction of PC(t) modulo 2 has degree r.

Let ℓ be an odd prime and let TℓJ be the ℓ-adic Tate module of the Jacobian J of C. Let fC,ℓ∞(t) :=
det(t Id−ρℓ∞(Frob) | TℓJ). If α ∈ Fq is a root of fC,ℓ∞(t) with multiplicity d, then q/α is a root of
fC,ℓ∞(t) with multiplicity d. Hence, we can write fC,ℓ∞(t) = tgQC(t + q/t) with QC(t) ∈ Z[t] of degree
g. Let r2 be the 2-rank of J , as defined in [Gon98, Section 1]. By [Gon98, Proposition 3.1], r2 is equal
to the sum of the multiplicities of the non-zero roots of QC(t) modulo 2. Hence,

QC(t) ≡ tg−r2Q̃C(t) (mod 2)

with Q̃C(t) ∈ F2[t] a polynomial of degree r2 such that Q̃C(0) 6= 0 (in F2). In [CST14, Proof of Theorem
23], the authors show that the 2-rank of J is equal to one less than the number of distinct projective
points where H1(X,Z) := h(X/Z)Zg+1 vanishes (see also [EP13]). In our case, since h(x) is separable,
this implies r2 = deg h(x) = r. Hence, we have

QC(t) ≡ tg−rQ̃C(t) (mod 2)

with Q̃C(t) of degree r. As q is a power of 2, we obtain

fC,ℓ∞(t) ≡ tgQC

(

t +
q

t

)

≡ tgQC (t) ≡ t2g−rQ̃C(t) (mod 2).

By Theorem 1.7,

PC(t) ≡ t2gfC,ℓ∞
(

t−1
)

≡ t2gt−2g+rQ̃C

(

t−1
)

≡ trQ̃C

(

t−1
)

(mod 2). (23)

Since Q̃C(0) 6≡ 0 (mod 2) we see that the reduction of PC(t) modulo 2 has degree r.
So, for each 0 ≤ r ≤ g, we can find a smooth hyperelliptic curve Cr of genus g such that PCr (t)

modulo 2 has degree r. Therefore, the polynomials {PCr (t) | 0 ≤ r ≤ g} are linearly independent modulo
2. The result follows as in the proof of Theorem 1.4.

Remark 5.5. The polynomial fC,ℓ∞(t) is monic by definition, which implies that also QC(t) and Q̃C(t)
are monic. By (23), the constant term of PC(t) modulo 2 is 1. Hence,

PCr (t) ≡ tr + 1 +

r−1
∑

i=1

ai,rt
i (mod 2).
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In fact, one can show that PCr (t) ≡ tr + 1 (mod 2). To see this, recall from [DK69, Theorem 3.1]
that, for a smooth projective curve C/Fq, with q = 2f , one has

PC(t) ≡ det
(

1− tϕ−1
q

∣

∣ H1
ét

(

CFq
,Z/2Z

))

(mod 2),

where ϕq : Fq → Fq is the Frobenius automorphism x 7→ xq. Next, recall that H1
ét

(

CFq
,Z/2Z

)

is

canonically dual to J(Fq)[2], so that we may compute PC(t) as the inverse characteristic polynomial of
Frobenius acting on J [2]. For the curve Cr, the explicit description of J [2] given in [CST14, Proof of
Theorem 23] shows that the action of ϕq on J [2] is the natural Galois action on the roots of h(x), that
is, an r-cycle. It follows that the characteristic polynomial in question is PC(t) ≡ tr − 1 (mod 2), as
claimed.

6 Algebraic independence

Theorem 1.4 asserts that Lemma 1.1 captures all the linear relations among the coefficients of the
polynomials PC(t). In this section, we prove an analogous result that deals with higher-order polynomial
relations on the coefficients. Lemma 1.1 already gives a number of constraints: for PC(t) =

∑2g
i=0 ait

i

we have a0 = 1 and ag+i = qiag−i for every i = 0, . . . , g; it is therefore natural to restrict our analysis to
a1, . . . , ag. The following is the main result of this section:

Theorem 6.1. Let g, d be positive integers. There is a constant eg,d such that for any prime power
q > eg,d and for any non-zero polynomial f(x1, . . . , xg) ∈ Z[x1, . . . , xg] of degree ≤ d in each variable
there is a curve C ∈Mg(Fq) with L-polynomial PC(t) =

∑2g
i=0 ait

i such that f(a1, . . . , ag) 6= 0.

Notice that, unlike Theorem 1.4, eg,d cannot be equal to 0 for all g and d, since for fixed q and g
we can always find a polynomial f(x1, . . . , xg) (that may depend on q) which vanishes on all the finitely
many values of (a1, . . . , ag).

As is the case for Theorem 1.4, the proof of Theorem 6.1 exploits the reduction of f(x1, . . . , xg) modulo
a positive integer N . In this case, instead of a direct computation of the action of the Frobenius on the
N-torsion points, we use Theorem 2.1, which guarantees that, for q large enough, all the characteristic
polynomials of the matrices in GSpq

2g(Z/NZ) come from some element of Pg,N(Fq).

To be more precise, for a C ∈ Mg(Fq) and PC(t) ∈ Z[t] its L-polynomial, let fC(t) = t2gPC(1/t) be
its reciprocal polynomial. By Theorem 1.7 fC(t) is equal to the characteristic polynomial of the action
of the Frobenius of C (modulo every ℓ). Theorem 2.1 implies that, for q large enough (in terms of N)
and for any M ∈ GSpq

2g(Z/NZ), the characteristic polynomial of M is equal to the reduction of fC(t)
modulo N for some C ∈ Mg(Fq).

We then prove that there are too many characteristic polynomials of elements of GSpq
2g(Z/NZ) for

their coefficients to lie in the zero locus of some f(x1, . . . , xg) of fixed degree. We are free to choose N ,
and we will always take it to be an odd prime number. We set N = r and use the letter r to avoid
confusion.

The following lemma is a version of the well-known Schwartz-Zippel bound. Notice that a polynomial
in g variables having degree at most d in each of them has total degree at most dg.

Lemma 6.2. Let g, d be natural numbers with g ≥ 1, let r be a prime number and let f(x1, . . . , xg) ∈
Fr[x1, . . . , xg] be a non-zero polynomial of degree ≤ d in each variable. We have

#{(u1, . . . , ug) ∈ Fg
r | f(u1, . . . , ug) = 0} ≤ dg · rg−1.

Next, we identify the set of characteristic polynomials of matrices in GSpq
2g(Fr). We show the following

more general result:

Proposition 6.3. Let n be a positive integer, let R be a commutative ring with 1, and let q ∈ R×. Let
p(x) = a0 +a1x+ · · ·+a2nx

2n ∈ R[x] be a monic polynomial satisfying an−i = qian+i for all i = 0, . . . , n.
There exists M ∈ GSp2n(R) with multiplier q and characteristic polynomial p(x).

Remark 6.4. The statement is a simple variant of [Riv08, Theorem A.1]. We give a detailed argument
since, unfortunately, the proof of [Riv08, Theorem A.1] seems to contain some typos. For example,
in op. cit. the matrix B is declared to have determinant 1, but the construction does not ensure this
property; more importantly, in some examples we tried, the given construction does not seem to yield
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matrices with the claimed characteristic polynomials. Our construction is therefore slightly different
from that of [Riv08, Theorem A.1], which we could not fully understand.

Proof. We work with the symplectic form given by the matrix J =

(

0 Idn

− Idn 0

)

. We construct the

desired M as a block-matrix M =

(

0 B
C D

)

, where B,C,D satisfy the following:

1. B,C,D are square n× n matrices with B invertible;

2. B is the symmetric matrix

B =



















0 0 0 · · · 0 1
0 0 0 · · · 1 b2
0 0 0 · · · b2 b3

. .
.

0 1 b2 · · · bn−2 bn−1

1 b2 b3 · · · bn−1 bn



















,

or, in symbols,

Bij = bi+j−nδi+j≥n+1 =











0, if i + j ≤ n

1, if i + j = n + 1

bi+j−n, if i + j > n + 1,

where we have set b1 = 1 and δi+j≥n+1 =

{

1, if i + j ≥ n + 1

0, otherwise.
. Note that any matrix B of this

form is invertible for any choice of the bi;

3. C = −q(tB)−1 = −qB−1;

4. D is the companion matrix given by D =



















0 0 0 · · · 0 0 d1
1 0 0 · · · 0 0 d2

. . .

0 0 0 · · · 0 0 dn−2

0 0 0 · · · 1 0 dn−1

0 0 0 · · · 0 1 dn



















. In symbols,

Dij =











1, if i = j + 1

di, if j = n

0, otherwise.

Here b2, . . . , bn ∈ R and d1, . . . , dn ∈ R are coefficients to be chosen later. We check the conditions for
the matrix M to be symplectic with multiplier q. We compute

tMJM =

(

0 −tCB
tBC tBD − tDB

)

,

which is equal to qJ if and only if










−tCB = q Id
tBC = −q Id
tBD − tDB = 0.

The first two equations are equivalent to one another and automatically satisfied by our choice of C. The
third equation is equivalent to the matrix tBD = BD being symmetric. We claim that this is achieved by
taking (b1 = 1 and) bk+1 =

∑k
i=1 bidn+i−k for k = 1, . . . , n− 1 (notice that d1 does not occur). Indeed,

the first n−1 columns of the product BD are given by the second, third, . . ., n-th column of B, while the
last one is the linear combination d1B

1 + d2B
2 + · · ·+ dnB

n, where we denote by Bi the i-th column of
B. From this, it is immediate to check that the top-left block of BD of size (n−1)× (n−1) is symmetric
(independently of the values of b2, . . . , bn, d1, . . . , dn), and we only need to impose that the last line of
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BD is equal to (the transpose of) its last column. We can also ignore the coefficient in position (n, n),
so we compare the first n− 1 coefficients of the last line of BD with the first n− 1 coefficients of its last
column. The k-th coefficient on the last line is the coefficient on the last line of the (k + 1)-th column of
B, that is, bk+1. The k-th coefficient on the last column is given by

d1Bk1 + d2Bk2 + · · ·+ dnBkn =
n
∑

i=1

diBki =
n
∑

i=1

diδk+i≥n+1bk+i−n =
k
∑

i′=1

bi′di′+n−k.

Thus, the symmetry condition is satisfied if and only if for k = 1, . . . , n−1 we have bk+1 =
∑k

i=1 bidn+i−k,
as claimed. Also note that a symplectic matrix with invertible multiplier is itself invertible (because the
determinant of a symplectic matrix is a power of its multiplier), so M is invertible and therefore an
element of GSp2n(R). In particular, for any choice of d1, . . . , dn, we have constructed a corresponding
matrix M that is symplectic of multiplier q and has D as its bottom-right block of size n× n. We now
compute the characteristic polynomial of this matrix M . Consider the identity

(

x Idn −B
−C x Idn−D

)(

B 0
x Idn B−1

)

=

(

0 − Idn

x2 Idn−xD − CB xB−1 −DB−1

)

=

(

0 − Idn

(x2 + q) Idn−xD xB−1 −DB−1

)

,

where we have used that – by definition – CB = −q Id. Taking determinants on both sides and using

that the determinant of the block-matrix

(

B 0
x Id B−1

)

is 1, we obtain

det(x Id2n−M) = det

(

0 − Idn

(x2 + q) Idn−xD xB−1 −DB−1

)

= det((x2 + q) Idn−xD),

where the last equality uses basic properties of the determinant of block matrices. Finally, we can rewrite
this in the form

det(x Id2n−M) = xn det
((

x +
q

x

)

Idn−D
)

,

so the characteristic polynomial of M is equal to xnpD
(

x + q
x

)

, where pD(x) is the characteristic poly-
nomial of D.

To conclude the proof, it suffices to show that we can choose D in such a way that xnpD
(

x + q
x

)

=
p(x), where p(x) is the polynomial given in the statement. This is easy: D is a companion matrix, so any
monic polynomial with coefficients in R can be realised as pD(x) for suitable values of d1, . . . , dn. Finally,
it is an easy exercise to show that a monic polynomial p(x) =

∑2n
i=0 aix

i that satisfies an−i = qian+i for
all i = 0, . . . , n can be written as xnp1

(

x + q
x

)

for some monic polynomial p1 ∈ R[x] of degree n.

Remark 6.5. Inspection of the proof shows that the following slightly stronger statement is true for the
case of R being the fraction field of a domain A: if the characteristic polynomial p(x) has coefficients in
A and q ∈ A, then we may choose M to have coefficients in A, even if the multiplier q is not invertible
in A. This applies in particular when A = Zℓ and R = Qℓ.

Corollary 6.6. Let r be a prime and let q be an integer prime to r. The set {charpolM : M ∈
GSpq

2g(Fr)} has cardinality rg.

Proof. By Proposition 6.3, the set in question is the set of all monic polynomials in Fr[x] of degree
2g whose coefficients ai satisfy ag−i = qiag+i for all i = 0, . . . , g. Since any choice of the coefficients
a1, . . . , ag corresponds to precisely one such polynomial, the total number of polynomials is rg.

Finally, we connect characteristic polynomials of matrices in GSpq
2g(Fr) with characteristic polyno-

mials of Frobenius:

Lemma 6.7. Let g, r be positive integers. There is a constant hg,r such that for any prime power
q > hg,r with (q, r) = 1 and for any element M of GSpq

2g(Z/rZ), there is a curve C ∈Mg(Fq) such that
the reduction of fC(t) modulo r is the characteristic polynomial of M .
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Proof. For g = 1, this follows from the well-known fact that a polynomial of the form t2 + at + q is
the characteristic polynomial of Frobenius of an elliptic curve over Fq if and only if a lies in the Hasse-
Weil interval [−2

√
q, 2
√
q] (in turn, this can be proved in many ways, including for example Honda-Tate

theory). All residue classes modulo r are therefore realised as soon as the number of integers in the
Hasse-Weil interval, that is 1 + 2⌊2√q⌋, is at least r.

For g ≥ 2, the result follows from Theorem 2.1, as we now show. Let p(t) be the characteristic
polynomial of M . Notice that µq

r gives positive mass to the singleton {p(t)}, since GSpq
2g(Z/rZ) is a

finite set. In fact, since the cardinality of GSpq
2g(Z/rZ) is independent of q (it is equal to # Sp2g(Z/rZ),

provided only that (q, r) = 1), we have µq
r{p(t)} ≥ cg,r > 0 for some absolute constant cg,r. By Theorem

2.1, this implies that (charpolr)∗P
naive
g,q is positive at {p(t)} for q large enough. Repeating the argument

for the finitely many possible polynomials p(t) concludes the proof.

We can now combine our bounds to conclude the proof of Theorem 6.1.

Proof of Theorem 6.1. Let r be an odd prime number, which will later be required to be large enough.
We prove the result for every q which is not a power of r; repeating the argument with a different r will
prove the statement for every q.

First, we can assume that our polynomial f(x1, . . . , xg) ∈ Z[x1, . . . , xg] has a coefficient which is
non-zero modulo r (otherwise, divide by an appropriate power of r). Hence, its reduction modulo r is
non-zero.

By Lemma 6.7, the set of characteristic polynomials of curves inMg(Fq) modulo r is the same as the
set of characteristic polynomials of matrices of GSpq

2g(Fr) for q large enough and relatively prime with

r. Suppose that for every M ∈ GSpq
2g(Fr), writing charpol(M) =

∑2g
i=0 ait

i, we have f(a1, . . . , ag) = 0.
By combining Lemma 6.2 and Corollary 6.6 we obtain

rg ≤ dg · rg−1,

which implies r ≤ dg. If r is chosen larger than this quantity, we obtain a contradiction.
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A Appendix

The goal of this appendix is to prove that [BHLGR24, Conjecture 5.1] does not hold. Let q be a prime
and g ≥ 3 be a fixed integer. We will use the following notation: for every τ ∈ [−2g, 2g], we let t = t(q, τ )
be the unique integer in the interval (

√
qτ − 1/2,

√
qτ + 1/2]. Recall from [BHLGR24, §5] the function

N nhyp
q,g (τ ) :=

1

#Mnhyp
g (Fq)

∑

C∈Mnhyp
g

′
(Fq)

τ(C)=τ

1

# Aut(C)
.

Here by Mnhyp
g (Fq) we mean the set of Fq-isomorphism classes of non-hyperelliptic curves of genus

g over Fq, and by Mnhyp
g

′
(Fq) we mean the set of Fq-isomorphism classes of such curves. Moreover,

τ (C) = Tr(C)/
√
q is the normalised trace of C.
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Conjecture 5.1 in [BHLGR24] states that, for fixed g, τ ∈ [−2g, 2g] and ε > 0 we have

∣

∣

∣

√
qN nhyp

q,g (t/
√
q)− STg(t/

√
q)
∣

∣

∣ < ε (24)

for all q greater than some q0 = q0(g, τ, ε), where as before t is the unique integer in the interval
(
√
qτ − 1/2,

√
qτ + 1/2].

Remark A.1. Note that [BHLGR24, Conjecture 5.1] requires the existence of an integer t with |τ −
t√
q
| < 1

2
√

q
. For fixed q, the strict inequality cannot be achieved in general: if τ = n+1/2√

q
, then both

t = n and t = n + 1 give |τ − t√
q
| = 1

2
√

q
. On the other hand, for fixed τ , when q is a large enough

prime there is a single integer t that satisfies this inequality, namely, the unique integer in the interval
(
√
qτ − 1/2,

√
qτ + 1/2].

The next lemma is simply a technical verification, and the reader is encouraged to skip its proof at
first reading.

Lemma A.2. [BHLGR24, Conjecture 5.1 ] implies the following statement: fix g ≥ 3, τ ∈ [−2g, 2g] and
ε > 0. There exists q0 = q0(g, τ, ε) such that the inequality

∣

∣STg(t/
√
q)−√qH ′(q, t)

∣

∣ < ε

holds for all primes q > q0, where t is the unique integer in the interval (
√
qτ − 1/2,

√
qτ + 1/2].

Proof. Given that (24) holds for all large enough q by assumption, it suffices to show that

∣

∣

∣

√
qN nhyp

q,g (t/
√
q)−√qH ′(q, t)

∣

∣

∣

tends to 0 as q →∞. We estimate the difference between N nhyp
q,g (t/

√
q) and H ′(q, t). Corollary 2.6 gives

∑

C∈Mnhyp
g

′
(Fq)

τ(C)=t/
√

q

∣

∣

∣

∣

1

# Aut(C)
− 1

∣

∣

∣

∣

= Og(q−1/2),

hence, dividing by #Mnhyp
g (Fq)≫ q3g−3 (see Lemma 2.5) we get

N nhyp
q,g (t/

√
q) =

1

#Mnhyp
g (Fq)

∑

C∈Mnhyp
g

′
(Fq)

τ(C)=t/
√
q

1 + Og(q−1/2q−3g+3).

By Lemma 2.5 again we have

∑

C∈Mg(Fq)\Mnhyp
g

′
(Fq)

τ(C)=t/
√
q

1 = Og(q3g−3−1),

so dividing by #Mnhyp
g (Fq)≫ q3g−3 and using the above estimates we obtain

N nhyp
q,g (τ ) =

1

#Mnhyp
g (Fq)

∑

C∈Mnhyp
g

′
(Fq)

τ(C)=τ

1 + Og(q−1/2q−3g+3)

=
1

#Mnhyp
g (Fq)

∑

C∈Mg(Fq)
τ(C)=t/

√
q

1 + Og(q−1).

(25)

We now want to replace the denominator #Mnhyp
g (Fq) with #Mg(Fq). To do this, we need to compare

isomorphism classes over Fq and over Fq. Let C,C′ be two (smooth projective) curves of genus g over
Fq. If Aut(CFq

) is trivial, then C,C′ are isomorphic over Fq if and only if they are isomorphic over Fq
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(one implication is trivial. For the other, if C,C′ are isomorphic over Fq, then C′ is an Fq-twist of C;
but twists of C are parametrised by H1(Fq,Aut(CFq

)) = {1}). It follows from this that we have

#
{

C ∈Mg(Fq)
∣

∣ AutFq (C) = {1}
}

≤Mnhyp
g (Fq) ≤ #Mg(Fq).

Dividing by #Mg(Fq) and using Lemma 2.5 we obtain

1 + Og(q−1) =
#
{

C ∈Mg(Fq)
∣

∣ AutFq (C) = {1}
}

#Mg(Fq)
≤ M

nhyp
g (Fq)

#Mg(Fq)
≤ 1.

Combined with (25), this immediately gives

N nhyp
q,g (t/

√
q) =

1

#Mg(Fq)

∑

C∈Mg(Fq)
τ(C)=t/

√
q

1 + Og(q−1) = H ′(q, t) + Og(q−1),

which in turn implies that
∣

∣

∣

√
qN nhyp

q,g (t/
√
q)−√qH ′(q, t)

∣

∣

∣

is Og(q−1/2) as q →∞, as desired.

Define the function fq : [−2g − 1, 2g + 1] → R by the formula fq(τ ) =
√
qH ′(q, t), where as before t

is the unique integer in the interval (
√
qτ − 1/2,

√
qτ + 1/2]. Putting τ1 =

√
qτ we obtain

∫ 2g+1

−2g−1

fq(τ )dτ =

∫ (2g+1)
√

q

−(2g+1)
√

q

fq(τ1/
√
q)

√
q

dτ1 =









∑

t∈Z
t∈[−(2g+1)

√
q,(2g+1)

√
q]

H ′(q, t)
√
q

√
q









= 1, (26)

because the function fq(τ1/
√
q) is locally constant and equal to H ′(q, t)

√
q for τ1 ∈

[

t− 1
2
, t + 1

2

)

, and
it vanishes around the endpoints of the integration interval: indeed, for τ sufficiently close to 2g + 1 we
have

√
qτ − 1

2
> 2g

√
q, hence H ′(q, t) = 0 since there is no genus-g curve over Fq with trace greater than

2g
√
q (one can argue similarly for τ near −(2g + 1)).

In particular,
∫ 2g+1

−2g−1

fq(τ )dτ = 1 =

∫ 2g+1

−2g−1

STg(τ )dτ. (27)

Proposition A.3. [BHLGR24, Conjecture 5.1] does not hold.

Proof. Fix τ ∈ [−(2g + 1), (2g + 1)] and ε > 0. Assuming [BHLGR24, Conjecture 5.1], we will show that
the difference |STg(τ )− fq(τ )| is smaller than 2ε for q large enough.

This is easy for |τ | > 2g. Indeed, let q be such that |τ | − 2g > 1/2
√
q (this happens for all q

large enough). Then, |t(q, τ )| > 2
√
qg (for example, if τ is positive, then t >

√
qτ − 1/2 > 2g

√
q) and

#{C : Tr(C) = t} = 0. In particular, N nhyp
q,g (t/

√
q) = 0, and on the other hand STg(t/

√
q) = 0 since

STg(x) is concentrated on the interval [−2g, 2g]. We can then assume |τ | ≤ 2g. The triangular inequality
gives

|STg(τ )− fq(τ )| ≤ |STg(τ )− STg(t/
√
q)|+ |STg(t/

√
q)− fq(τ )| . (28)

By definition we have fq(τ ) = fq(t) =
√
qH ′(q, t). If [BHLGR24, Conjecture 5.1] holds, by Lemma A.2

we have
|STg(t/

√
q)− fq(τ )| =

∣

∣STg(t/
√
q)−√qH ′(q, t)

∣

∣ < ε (29)

for q large enough (depending on τ and ε). Since STg is uniformly continuous on [−2g, 2g] and τ − t√
q

goes to 0 as q →∞, we have
|STg(τ )− STg(t/

√
q)| < Cq (30)

with Cq that goes to 0 as q goes to infinity. Combining Equations (28), (29), and (30), we obtain
|STg(τ )− fq(τ )| ≤ 2ε for q large enough. Therefore, for all τ ∈ [−(2g + 1), 2g + 1] we have

lim
q→∞

|STg(τ )− fq(τ )| = 0.
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By Scheffé’s Lemma (see [BHLGR24, End of page 20]) this, together with (27), yields

lim
q→∞

∫ 2g+1

−2g−1

|STg(τ )− fq(τ )|dτ = 0.

Let now

L1(g) :=
#{M ∈ GSp2g(F2) : TrM ≡ 0 (mod 2),mult(M) = q ≡ 1 (mod 2)}

# GSp2g(F2)
.

By a direct computation, we have L1(3) = 1436
2835
≈ 0.5065 6= 1/2 (we suspect that L1(g) 6= 1

2
holds for all

g ≥ 3). Fix 0 < ε < |L1(g)−1/2|
2

and take q large enough so that the inequality

∫ 2g+1

−2g−1

|STg(τ )− fq(τ )|dτ < ε (31)

holds. Let

O =









⋃

t∈Z∩[−(2g+1)
√
q,(2g+1)

√
q]

t≡0 (mod 2)

(

t√
q
− 1

2
√
q
,

t√
q

+
1

2
√
q

]









∩ [−2g − 1, 2g + 1]

and

E =









⋃

t∈Z∩[−(2g+1)
√
q,(2g+1)

√
q]

t≡1 (mod 2)

(

t√
q
− 1

2
√
q
,

t√
q

+
1

2
√
q

]









∩ [−2g − 1, 2g + 1].

Note that E and O are disjoint and that their union covers [−2g − 1, 2g + 1] up to a set of (Lebesgue)
measure O(1/

√
q). Note moreover that both O and E are disjoint unions of intervals over which fq(τ ) is

constant, and that
∫ t√

q
+ 1

2
√

q

t√
q
− 1

2
√

q

fq(τ ) dτ =

∫ t+1/2

t−1/2

√
qH ′(q, t)√

q
dτ1 = H ′(q, t).

In particular, since H ′(q, t) vanishes for |t| > 2g
√
q, the integral of fq(τ ) over O, resp. E, gives

∑

t odd H
′(q, t) = Pnaive

g,q (Tr(C/Fq) ≡ 1 (mod 2)), resp. Pnaive
g,q (Tr(C/Fq) ≡ 0 (mod 2)).

The triangular inequality and (31) give

∣

∣

∣

∣

∫

E

fq(τ ) dτ −
∫

O

fq(τ ) dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

E

(fq(τ )− STg(τ )) dτ +

∫

E

STg(τ )dτ −
∫

O

(fq(τ )− STg(τ )) dτ −
∫

O

STg(τ ) dτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

E

STg(τ ) dτ −
∫

O

STg(τ ) dτ

∣

∣

∣

∣

+

∫ 2g+1

−2g−1

|STg(τ )− fq(τ )| dτ

< ε +

∣

∣

∣

∣

∫

E

STg(τ )dτ −
∫

O

STg(τ )dτ

∣

∣

∣

∣

.

Since STg is Riemann-integrable, both
∫

E
STg(τ ) dτ and

∫

O
STg(τ ) dτ converge to 1

2

∫ 2g+1

−2g−1
STg(τ ) dτ =

1
2

as q →∞, hence for q large enough we have

∣

∣

∣

∣

∫

E

STg(τ ) dτ −
∫

O

STg(τ ) dτ

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

∫

E

fq(τ ) dτ −
∫

O

fq(τ ) dτ

∣

∣

∣

∣

< 2ε < |L1(g)− 1/2| .
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On the other hand, as remarked above we have
∣

∣

∣

∣

∫

E

fq(τ ) dτ −
∫

O

fq(τ ) dτ

∣

∣

∣

∣

= |P(Tr(C/Fq) ≡ 0 (mod 2))− P(Tr(C/Fq) ≡ 1 (mod 2))|

= |1− 2P(Tr(C/Fq) ≡ 0 (mod 2))| .

It follows that
∣

∣

∣

∣

L1(g)− 1

2

∣

∣

∣

∣

≤
∣

∣

∣
L1(g)− Pnaive

g,q (Tr(C/Fq) ≡ 0 (mod 2))
∣

∣

∣
+

∣

∣

∣

∣

Pnaive
g,q (Tr(C/Fq) ≡ 0 (mod 2))− 1

2

∣

∣

∣

∣

=
∣

∣

∣L1(g)− Pnaive
g,q (Tr(C/Fq) ≡ 0 (mod 2))

∣

∣

∣+

∣

∣

∫

E
fq(τ ) dτ −

∫

O
fq(τ ) dτ

∣

∣

2

<
∣

∣

∣
L1(g)− Pnaive

g,q (Tr(C/Fq) ≡ 0 (mod 2))
∣

∣

∣
+

∣

∣L1(g)− 1
2

∣

∣

2

and therefore
∣

∣

∣

∣

L1(g)− 1

2

∣

∣

∣

∣

< 2
∣

∣

∣
L1(g)− Pnaive

g,q (Tr(C/Fq) ≡ 0 (mod 2))
∣

∣

∣
.

On the other hand, for q large enough by Remark 2.7 we have

2
∣

∣

∣L1(g)− Pnaive
g,q (Tr(C/Fq) ≡ 0 (mod 2))

∣

∣

∣ < ε :

this is a contradiction, because it yields
∣

∣L1(g)− 1
2

∣

∣ < ε, while ε was assumed to be less than |L1(g)−1/2|
2

.
Hence, [BHLGR24, Conjecture 5.1] cannot hold.
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[Ked22] Kiran S. Kedlaya. Notes on isocrystals. J. Number Theory, 237:353–394, 2022.

[Kir69] David Kirby. Integer matrices of finite order. Rend. Mat. (6), 2:403–408, 1969.

[KP18] Jerzy Kaczorowski and Alberto Perelli. Zeta functions of finite fields and the Selberg class.
Acta Arith., 184(3):247–265, 2018.

[KS99] Nicholas M. Katz and Peter Sarnak. Random matrices, Frobenius eigenvalues, and mono-
dromy, volume 45 of American Mathematical Society Colloquium Publications. American
Mathematical Society, Providence, RI, 1999.

[KS09] Kiran S. Kedlaya and Andrew V. Sutherland. Hyperelliptic curves, L-polynomials, and
random matrices. In Arithmetic, geometry, cryptography and coding theory, volume 487 of
Contemp. Math., pages 119–162. Amer. Math. Soc., Providence, RI, 2009.

[Lac16] Gilles Lachaud. On the distribution of the trace in the unitary symplectic group and the
distribution of Frobenius. In Frobenius distributions: Lang-Trotter and Sato-Tate conjec-
tures, volume 663 of Contemp. Math., pages 185–221. Amer. Math. Soc., Providence, RI,
2016.

[Lee01] Kwankyu Lee. A counting formula about the symplectic similitude group. Bull. Austral.
Math. Soc., 63(1):15–20, 2001.

[LRRS14] Reynald Lercier, Christophe Ritzenthaler, Florent Rovetta, and Jeroen Sijsling. Paramet-
rizing the moduli space of curves and applications to smooth plane quartics over finite fields.
LMS J. Comput. Math., 17:128–147, 2014.

[LSTX19] Aaron Landesman, Ashvin Swaminathan, James Tao, and Yujie Xu. Surjectivity of Galois
representations in rational families of abelian varieties. Algebra Number Theory, 13(5):995–
1038, 2019. With an appendix by Davide Lombardo.

[LT76] Serge Lang and Hale Trotter. Frobenius distributions in GL2-extensions, volume Vol. 504
of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1976. Distribution of
Frobenius automorphisms in GL2-extensions of the rational numbers.

37
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