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Abstract

The main purpose of this paper is the construction and analysis of an implicit finite
difference scheme for the numerical solution of a two dimensional time-fractional advection-
dispersion equation with variable coefficients. The dispersion term is in nondivergence
form and the fractional derivative is taken in the sense of Caputo. Equations of this
sort are potentially useful as models of contaminant transport in groundwater. Provided
some mild assumptions are satisfied, proofs of consistency, stability and convergence are
obtained. Furthermore, we offer a general but simple framework for the matrices required
in computations and everything is tested by a well selected set of numerical experiments.

keywords: Caputo fractional derivative, two dimensional time fractional advection-dispersion
problem, finite difference approximation, stability, convergence.

1 Introduction

Fractional derivatives are associated with memory and hereditary properties of materials and
processes. They are known since the seventeenth century but only recently have become an im-
portant subject of applied mathematics. They might be applied on time and/or space variables
and are suitable for a variety of topics, for instance, the behavior of viscoelastic materials ([2])
and the anomalous diffusion of a contaminant in porous media ([4]). For these and other uses
of fractional derivatives the reader is invited to consult [9, 8, 5].

There are a variety of fractional derivatives, i.e. Caputo, Riemann-Liouville, Grünwald-
Letnikov and many others. Moreover, the fractional derivatives can be single-term or multi-term,
according to the number of differentiation orders which can be real or complex numbers. Our
interest is on the modeling of transport phenomena in porous media through a two dimensional
time-fractional advection-dispersion equation with variable coefficients in which the diffusion
term is given in nondivergence form and the differentiation order is a real number between 0
and 1.

Many authors have proposed numerical solutions for time-fractional differential equations.
For instance, [13] introduces a two dimensional single term time-fractional diffusion equation
with variable coefficients and diffusion term in nondivergence form. The present work owes
several ideas to this paper. Some authors solve one dimensional time-fractional differential
equations with diffusion term in nondivergence form. We mention [11], in which the interest is
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in the direct problem and [7] which solves a one dimensional time-fractional diffusion equation
as a tool in the process of solving an inverse problem.

Among the authors who face two dimensional time-fractional differential equations, we men-
tion [1], in which the problem is similar to ours but the coefficients are constant and [3], which
deals with a two dimensional inverse source problem and introduces a particular case of our
numerical scheme for the necessary solution of the direct problem.

In this paper, for the implicit approximation of the Caputo fractional derivative we implement
the known scheme very well described in [6]. This scheme appears elsewhere, for instance, in
[13]. For the advection and dispersion terms we implement standard central finite difference
schemes.

The rest of the paper is divided in three sections. Section 2 defines the equation and the
numerical methods. The next section contains the consistency, stability and convergence state-
ments along with their proofs. The numerical experiments and final remarks are presented in
Section 4 .

2 The problem and the numerical method

The prediction of the environmental consequences of groundwater contamination is an important
goal for researchers. Our interest is to help in this prediction through a numerical approxima-
tion of a mathematical model based on a partial differential equation known as an advection-
dispersion equation. Our equation has variable coefficients and a time fractional derivative
rather than the classical time derivative. Other features of our model are: It considers the
contaminant transport through a two dimensional porous medium with variable advection and
dispersion function coefficients given by two components each. Moreover, the diffusion terms are
in nondivergence form. For this matter we follow references [13, 10, 12]. All of them show that
nondivergence diffusion terms are worth and with Caputo time-fractional derivatives provide
useful models of anomalous diffusion.

2.1 The initial-boundary value problem

We consider the two-dimensional initial-boundary value problem

u
(α)
t (x, y, t) + a(x, y, t)ux(x, y, t) + b(x, y, t)uy(x, y, t)

= c(x, y, t)uxx(x, y, t) + d(x, y, t)uyy(x, y, t) + f(x, y, t) (1)

with initial condition

u(x, y, 0) = ψ(x, y), (x, y) ∈ Ω := (xL, xR)× (yL, yR) ⊂ R
2, (2)

and Dirichlet boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω× (0, T ], (3)

where:

1. u (x, y, t) is the contaminant concentration.

2. c is the longitudinal dispersion variable coefficient.

3. d is the transversal dispersion variable coefficient.

4. a and b are the longitudinal and transversal advection coefficients respectively. They
are basically the seepage or average pore water velocity and if one of the directions is
predominant, only one of the advection function coefficients is nonzero.
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5. f is a known source or sink term.

6. u
(α)
t is the Caputo fractional derivative of order α given by

u
(α)
t (x, y, t) :=





1

Γ(1− α)

∫ t

0

ut(x, y, ξ)

(t− ξ)α
dξ, 0 < α < 1,

ut(x, y, t), α = 1,

(4)

7. The variable coefficient functions a, b, c, d satisfy the following uniform bounds: There are
two positive constants A and D so that

0 ≤ a(x, y, t) ≤ A,

0 ≤ b(x, y, t) ≤ A,
and

0 < D ≤ c(x, y, t),

0 < D ≤ d(x, y, t).
(5)

The next subsection deals with the proposed finite difference approximation.

2.2 The numerical scheme

Let the mesh points xi = xL + i∆x, 0 ≤ i ≤ Nx, yj = yL + j∆y, 0 ≤ j ≤ Ny and tk = k∆t,
0 ≤ k ≤ Nt, where ∆x = (xR−xL)/Nx and ∆y = (yR−yL)/Ny are the spatial grid sizes in the x-
and y-direction, respectively, and ∆t = T/Nt is the time step size. The values of the functions
u, a, b, c, d and f at the grid points are denoted by uki,j = u(xi, yj , tk), a

k
i,j = a(xi, yj, tk),

bki,j = b(xi, yj , tk), c
k
i,j = c(xi, yj , tk), d

k
i,j = d(xi, yj , tk) and fk

i,j = f(xi, yj , tk), respectively.

The initial condition is set as u0i,j = ψi,j = ψ(xi, yj). The Dirichlet boundary condition at

x = xL is set as uk0,j = 0 and similarly on the other three sides of the boundary.
The Caputo fractional derivative at time tk+1 is approximated by

u
(α)
t (xi, yj , tk+1) = σα,∆t

k∑

s=0

ω(α)
s

(
uk−s+1
i,j − uk−s

i,j

)
+O

(
(∆t)2−α

)
, (6)

for k = 0, . . . , Nt − 1, where σα,∆t =
1

(∆t)αΓ(2 − α)
and ω

(α)
s = (s + 1)1−α − s1−α for s =

0, . . . , Nt, as described in [6].
Derivatives with respect to space coordinates are approximated by central difference formu-

lae. Let vki,j be the numerical approximation to uki,j . The discrete version of (1) is the implicit
finite difference scheme (IFDS) given by

σα,∆t

k∑

s=0

ω(α)
s

(
vk−s+1
i,j − vk−s

i,j

)
+ ak+1

i,j

vk+1
i+1,j − vk+1

i−1,j

2∆x
+ bk+1

i,j

vk+1
i,j+1 − vk+1

i,j−1

2∆y

= ck+1
i,j

vk+1
i+1,j − 2vk+1

i,j + vk+1
i−1,j

(∆x)2
+ dk+1

i,j

vk+1
i,j+1 − 2vk+1

i,j + vk+1
i,j−1

(∆y)2
+ fk+1

i,j , (7)

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1 and k = 0, . . . , Nt − 1.

2.3 Consistency

In order to prove consistency of scheme (IFDS), it is convenient to denote (1) by

S(u) = S (∂t, ∂x, ∂y, ∂xx, ∂yy)u = f(x, y, t),
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where

S (u) = u
(α)
t (x, y, t) + a(x, y, t)ux(x, y, t) + b(x, y, t)uy(x, y, t)

−c(x, y, t)uxx(x, y, t)− d(x, y, t)uyy(x, y, t)

Likewise, we establish the following alternative notation for scheme (IFDS)

S∆(v) = S∆t,∆x,∆y(v
k+1
i,j ),

where

S∆(v) = σα,∆t

k∑

s=0

ω(α)
s

(
vk−s+1
i,j − vk−s

i,j

)
+ ak+1

i,j

vk+1
i+1,j − vk+1

i−1,j

2∆x
+ bk+1

i,j

vk+1
i,j+1 − vk+1

i,j−1

2∆y

− ck+1
i,j

vk+1
i+1,j − 2vk+1

i,j + vk+1
i−1,j

(∆x)2
− dk+1

i,j

vk+1
i,j+1 − 2vk+1

i,j + vk+1
i,j−1

(∆y)2
.

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1 and k = 0, . . . , Nt − 1. It is known that if u is a smooth
function, then at interior points of its domain the following equalities hold:

u
(α)
t (xi, yj, tk)− σα,∆t

k∑

s=0

ω(α)
s

(
uk−s+1
i,j − uk−s

i,j

)
= O

(
(∆t)2−α

)

ux(xi, yj , tk)−
uk+1
i+1,j − uk+1

i−1,j

2∆x
= O

(
(∆x)

2
)

uy(xi, yj , tk)−
uk+1
i,j+1 − uk+1

i,j−1

2∆y
= O

(
(∆y)

2
)

uxx(xi, yj, tk)−
uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

(∆x)2
= O

(
(∆x)

2
)

uyy(xi, yj, tk)−
uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

(∆y)2
= O

(
(∆y)2

)

Let us denote the addition of all right hand sides above by

O (∆) = O
(
(∆t)2−α, (∆x)

2
, (∆y)

2
)
. (8)

Thus,

S (u)− S∆ (u) = O
(
(∆t)2−α, (∆x)

2
, (∆y)

2
)

(9)

and we have proved

Lemma 2.1. The finite difference scheme (IFDS) is consistent with the partial differential
equation (1).

Other way to write (9) is

fk+1
i,j − S∆ (u) = O

(
(∆t)2−α, (∆x)

2
, (∆y)

2
)
. (10)

By setting

µ1 =
(∆t)α

2∆x
, µ2 =

(∆t)α

2∆y
, µ3 =

(∆t)α

(∆x)2
, µ4 =

(∆t)α

(∆y)2
, τ =

1

σα,∆t

= (∆t)αΓ(2−α), (11)
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and

pki,j = Γ(2− α)
[
µ3c

k
i,j − µ1a

k
i,j

]
, qki,j = Γ(2− α)

[
µ3c

k
i,j + µ1a

k
i,j

]
,

rki,j = Γ(2− α)
[
µ4d

k
i,j − µ2b

k
i,j

]
, hki,j = Γ(2− α)

[
µ4d

k
i,j + µ2b

k
i,j

]
,

eki,j = 1+ pki,j + qki,j + rki,j + hki,j = 1 + 2Γ(2− α)
[
µ3c

k
i,j + µ4d

k
i,j

]
,

(12)

we split scheme (IFDS) in two stages:

1. For k = 0, it is

−
(
p1i,jv

1
i+1,j + q1i,jv

1
i−1,j

)
+ e1i,jv

1
i,j −

(
r1i,jv

1
i,j+1 + h1i,jv

1
i,j−1

)

= v0i,j + τf1
i,j

(13)

for i = 1, . . . , Nx − 1 and j = 1, . . . , Ny − 1

2. For k = 1, . . . , Nt − 1, the scheme is

−
(
pk+1
i,j vk+1

i+1,j + qk+1
i,j vk+1

i−1,j

)
+ ek+1

i,j vk+1
i,j −

(
rk+1
i,j vk+1

i,j+1 + hk+1
i,j vk+1

i,j−1

)

= vki,j −
k∑

s=1

ω(α)
s

(
vk−s+1
i,j − vk−s

i,j

)
+ τfk+1

i,j

(14)

where i = 1, . . . , Nx − 1 and j = 1, . . . , Ny − 1.

The next lemma provides the main features of the quadrature weights ω
(α)
s .

Lemma 2.2. The quadrature weights ω
(α)
s are positive and ω

(α)
s > ω

(α)
s+1 for all s = 0, 1, . . .

The nonnegativity of all variable coefficients of scheme (13)-(14) is a desirable feature. Defini-
tions of q and h in (12) establish that they are nonnegative functions. For the other coefficients,
nonnegativity is achieved provided a mild assumption on the grid sizes is imposed. The details
are in the following lemma.

Lemma 2.3. If the variable coefficients a, b, c and d satisfy the bounds (5) and max{∆x,∆y} ≤
2D/A, then pki,j ≥ 0 and rki,j ≥ 0 for each i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1 and k =
1, . . . , Nt − 1.

Proof. The proof consists on the following straightforward computations:

pki,j = Γ (2− α)
(∆t)

α

(∆x)2

[
cki,j −

∆x

2
aki,j

]
≥

τ

(∆x)2

[
D −

∆x

2
A

]
≥ 0

and

rki,j =
τ

(∆y)2

[
dki,j −

∆y

2
bki,j

]
≥

τ

(∆y)2

[
D −

∆y

2
A

]
≥ 0.

2.4 The linear system

Let

vk =
[
vk
∗,1 vk

∗,2 · · · vk
∗,Ny−1

]T
(15)

where vk
∗,j =

[
vk1,j vk2,j · · · vkNx−1,j

]T
, j = 1, . . . , Ny − 1.

In the particular case Nx = Ny = N , the (N − 1)2 equations (13)-(14) may be written in
matrix form

A(k+1)vk+1 = yk (16)
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for each 0 ≤ k < Nt, where A
(k) is the (N − 1)2 × (N − 1)2 matrix of coefficients resulting from

the system of difference equations at the gridpoints at level t = tk, v
k =

[
vk
∗,1 vk

∗,2 · · · vk
∗,N−1

]T

with vk
∗,j =

[
vk1,j vk2,j · · · vkN−1,j

]T
, and yk =

[
yk
∗,1 yk

∗,2 · · · yk
∗,N−1

]T
with

yk
∗,j =





ψ∗,j + τf1
∗,j , k = 0,

γv1
∗,j + γψ∗,j + τf2

∗,j , k = 1,

γvk
∗,j +

k−1∑

s=1

(
ω(α)
s − ω

(α)
s+1

)
vk−s
∗,j + ω

(α)
k ψ∗,j + τfk+1

∗,j , 1 < k < Nt,

where ψ∗,j = [ψ1,j ψ2,j · · · ψN−1,j ]
T , fk

∗,j =
[
fk
1,j fk

2,j · · · fk
N−1,j

]T
and γ =

(
2− 21−α

)
.

Eq. (16) requires, at each time step, to solve a linear system where the right-hand side yk

utilizes all the history of the computed solution up to that time, and A(k) is a band matrix with
a block structure. Each block is a (N − 1) × (N − 1) matrix and together they give A(k) the
following form

A(k) =




T k
1 Dk

1 0 · · · 0

D̃k
1 T k

2 Dk
2

. . .
...

0
. . .

. . .
. . . 0

...
. . . D̃k

N−3 T k
N−2 Dk

N−2

0 · · · 0 D̃k
N−2 T k

N−1




. (17)

In this expression each T k
ℓ is a tridiagonal matrix given by

T
(k)
ℓ =




ek1,ℓ −pk1,ℓ 0 · · · 0

−qk2,ℓ ek2,ℓ −pk2,ℓ
. . .

...

0
. . .

. . .
. . . 0

...
. . . −qkN−2,ℓ ekN−2,ℓ −pkN−2,ℓ

0 · · · 0 −qkN−1,ℓ ekN−1,ℓ




,

while Dk
ℓ = [dki,j ] and D̃

k
ℓ = [d̃ki.j ] are diagonal matrices defined by dki,i = −rki,ℓ and d̃ki,i = −hki,ℓ,

for i = 1, . . . , N − 1.

Remark 1. Note that for each 1 ≤ i ≤ (N − 1)2, there exists exactly one 1 ≤ ℓi ≤ N − 1 such

that the resulting diagonal entry A
(k)
i,i of (17) is determined by

A
(k)
i,i := eki,ℓi = 1 + pki,ℓi + qki,ℓi + rki,ℓi + hki,ℓi .

The off-diagonal entries A
(k)
i,j with i 6= j, can be determined in the same way.
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3 The approximation

In this section we prove the unconditional stability and the convergence of scheme (13)-(14).
Both results are inspired by [13]. Let vk be given by (15) for k = 0, . . . , Nt.

3.1 Stability

Theorem 3.1. If the hypotheses of lemma 2.3 hold, scheme (13)-(14) for the homogeneous
(f ≡ 0) initial-boundary value problem (1)-(2)-(3) is unconditionally stable.

Proof.

1. Scheme (13): Let ‖v1‖∞ =
∣∣∣v1l,m

∣∣∣ = maxi,j
∣∣v1i,j

∣∣ . We show that ‖v1‖∞ ≤ ‖v0‖∞

∣∣v1l,m
∣∣ =

(
1 + p1l,m + q1l,m + r1l,m + h1l,m

) ∣∣v1l,m
∣∣

−
(
p1l,m

∣∣v1l,m
∣∣+ q1l,m

∣∣v1l,m
∣∣)−

(
r1l,m

∣∣v1l,m
∣∣+ h1l,m

∣∣v1l,m
∣∣)

≤
(
1 + p1l,m + q1l,m + r1l,m + h1l,m

) ∣∣v1l,m
∣∣

−
(
p1l,m

∣∣v1l+1,m

∣∣+ q1l,m
∣∣v1l−1,m

∣∣)−
(
r1l,m

∣∣v1l,m+1

∣∣ + h1l,m
∣∣v1l,m−1

∣∣)

≤
∣∣(1 + p1l,m + q1l,m + r1l,m + h1l,m

)
v1l,m

−
(
p1l,mv

1
l+1,m + q1l,mv

1
l−1,m

)
−
(
r1l,mv

1
l,m+1 + h1l,mv

1
l,m−1

)∣∣

=
∣∣v0l,m

∣∣ ≤ ‖v0‖∞.

2. Scheme (14): The proof is by induction over k. Suppose ‖vn‖∞ ≤ ‖v0‖∞ for n = 2, . . . , k.
We prove the inequality ‖vk+1‖∞ ≤ ‖v0‖∞. From now on, we will write ωs rather than

ω
(α)
s . Notice that the right hand side in scheme (14) is

vki,j −

k∑

s=1

ωs

(
vk−s+1
i,j − vk−s

i,j

)
= ω0v

k
i,j − ω1v

k
i,j + ω1v

k−1
i,j − ω2v

k−1
i,j + ω2v

k−2
i,j

− . . .− ωkv
1
i,j + ωkv

0
i,j

= (ω0 − ω1) v
k
i,j + (ω1 − ω2) v

k−1
i,j + (ω2 − ω3) v

k−2
i,j

+ · · ·+ (ωk−1 − ωk) v
1
i,j + ωkv

0
i,j .

Now we look at the left hand side. Let ‖vk+1‖∞ =
∣∣∣vk+1

l,m

∣∣∣ = maxi,j
∣∣vk+1

i,j

∣∣ .
∣∣∣vk+1

l,m

∣∣∣ =
(
1 + pk+1

l,m + qk+1
l,m + rk+1

l,m + hk+1
l,m

) ∣∣∣vk+1
l,m

∣∣∣

−
(
pk+1
l,m

∣∣∣vk+1
l,m

∣∣∣+ qk+1
l,m

∣∣∣vk+1
l,m

∣∣∣
)
−
(
rk+1
l,m

∣∣∣vk+1
l,m

∣∣∣ + hk+1
l,m

∣∣∣vk+1
l,m

∣∣∣
)

≤
(
1 + pk+1

l,m + qk+1
l,m + rk+1

l,m + hk+1
l,m

) ∣∣∣vk+1
l,m

∣∣∣

−
(
pk+1
l,m

∣∣∣vk+1
l+1,m

∣∣∣+ qk+1
l,m

∣∣∣vk+1
l−1,m

∣∣∣
)
−
(
rk+1
l,m

∣∣∣vk+1
l,m+1

∣∣∣+ hk+1
l,m

∣∣∣vk+1
l,m−1

∣∣∣
)

≤
∣∣∣
(
1 + pk+1

l,m + qk+1
l,m + rk+1

l,m + hk+1
l,m

)
vk+1
l,m

−
(
pk+1
l,m vk+1

l+1,m + qk+1
l,m vk+1

l−1,m

)
−
(
rk+1
l,m vk+1

l,m+1 + hk+1
l,m vk+1

l,m−1

)∣∣∣

=
∣∣(ω0 − ω1) v

k
l,m + · · ·+ (ωk−1 − ωk) v

1
l,m + ωkv

0
l,m

∣∣

≤ (ω0 − ω1)
∥∥vk
∥∥
∞

+ · · ·+ (ωk−1 − ωk)
∥∥v1
∥∥
∞

+ ωk

∥∥v0
∥∥
∞

≤ (ω0 − ω1)
∥∥v0
∥∥
∞

+ · · ·+ (ωk−1 − ωk)
∥∥v0
∥∥
∞

+ ωk

∥∥v0
∥∥
∞

=
∥∥v0
∥∥
∞
.

7



This theorem allows us to prove an additional stability bound. Let v0ij and ṽ0ij be the initial

discrete values corresponding to two initial conditions ψij and ψ̃ij .We may think of two different
measurements of the initial concentration. Furthermore, let vkij and ṽkij be the corresponding

discrete approximations obtained by the numerical schemes (13) and (14). Let εkij = vkij − ṽkij
and

Ek =
[
εk
∗,1 εk

∗,2 · · · εk
∗,Ny−1

]T
(18)

where εk
∗,j =

[
εk1,j εk2,j · · · εkNx−1,j

]T
, j = 1, . . . , Ny − 1.

Corollary 3.2. If the hypotheses of lemma 2.3 are satisfied, the numerical errors induced by
initial-value conditions in scheme (13)-(14) for the inhomogeneous initial-boundary value prob-
lem (1)-(2)-(3) do not propagate. More precisely, they satisfy the bound

∥∥Ek
∥∥
∞

≤
∥∥E0

∥∥
∞
, k = 1, 2, . . . .

3.2 Convergence

Stability and convergence proofs follow similar patterns. Let εkij = ukij − vkij and

Ek =
[
εk
∗,1 εk

∗,2 · · · εk
∗,Ny−1

]T
(19)

where εk
∗,j =

[
εk1,j εk2,j · · · εkNx−1,j

]T
, j = 1, . . . , Ny − 1. The convergence of the scheme is

given by the following theorem.

Theorem 3.3. If the hypotheses of lemma 2.3 hold, then
∥∥Ek

∥∥
∞

≤ ‖E0‖∞ + (∆t)
α
O (∆) , k = 1, 2, . . . (20)

where O (∆) is defined by (8).

Proof. The proof is by induction on k.

Case k = 1. We show that
‖E1‖∞ ≤ ‖E0‖∞ + (∆t)

α
O (∆) .

Let ‖E1‖∞ =
∣∣ε1lm

∣∣ = maxi,j
∣∣ε1i,j

∣∣. In this case the scheme under consideration is (13).
∣∣ε1l,m

∣∣ =
(
1 + p1l,m + q1l,m + r1l,m + h1l,m

) ∣∣ε1l,m
∣∣−
(
p1l,m

∣∣ε1l,m
∣∣ + q1l,m

∣∣ε1l,m
∣∣)−

(
r1l,m

∣∣ε1l,m
∣∣+ h1l,m

∣∣ε1l,m
∣∣)

≤
(
1 + p1l,m + q1l,m + r1l,m + h1l,m

) ∣∣ε1l,m
∣∣−
(
p1l,m

∣∣ε1l+1,m

∣∣+ q1l,m
∣∣ε1l−1,m

∣∣)

−
(
r1l,m

∣∣ε1l,m+1

∣∣+ h1l,m
∣∣ε1l,m−1

∣∣)

≤
∣∣(1 + p1l,m + q1l,m + r1l,m + h1l,m

)
ε1l,m −

(
p1l,mε

1
l+1,m + q1l,mε

1
l−1,m

)

−
(
r1l,mε

1
l,m+1 + h1l,mε

1
l,m−1

)∣∣

=
∣∣(1 + p1l,m + q1l,m + r1l,m + h1l,m

)
u1l,m −

(
p1l,mu

1
l+1,m + q1l,mu

1
l−1,m

)

−
(
r1l,mu

1
l,m+1 + h1l,mu

1
l,m−1

)
−
(
1 + p1l,m + q1l,m + r1l,m + h1l,m

)
v1l,m

+
(
p1l,mv

1
l+1,m + q1l,mv

1
l−1,m

)
+
(
r1l,mv

1
l,m+1 + h1l,mv

1
l,m−1

)∣∣

=
∣∣u1l,m + τ

(
S∆

(
u1l,m

)
− σα,∆t

(
u1l,m − u0l,m

))
−
(
1 + p1l,m + q1l,m + r1l,m + h1l,m

)
v1l,m

+
(
p1l,mv

1
l+1,m + q1l,mv

1
l−1,m

)
+
(
r1l,mv

1
l,m+1 + h1l,mv

1
l,m−1

)∣∣

=
∣∣u0l,m + τ

(
S
(
u1l,m

)
+O (∆)

)
−
(
1 + p1l,m + q1l,m + r1lm + h1l,m

)
v1l,m

+
(
p1l,mv

1
l+1,m + q1l,mv

1
l−1,m

)
+
(
r1l,mv

1
l,m+1 + h1l,mv

1
l,m−1

)
|

=
∣∣u0l,m + τf1

l,m + τ O (∆)− v0l,m − τf1
lm

∣∣

=
∣∣ε0l,m + τ O (∆)

∣∣

≤
∥∥E0

∥∥
∞

+ (∆t)αO (∆) .
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Now suppose
‖Es‖

∞
≤
∥∥E0

∥∥
∞

+ (∆t)αO (∆)

holds for s = 1, 2, . . . , k. We prove the result for s = k + 1. Let ‖Ek+1‖∞ =
∣∣εk+1

lm

∣∣ =

maxi,j
∣∣εk+1

ij

∣∣. By the same argument as before,

∣∣εk+1
lm

∣∣ ≤
∣∣∣
(
1 + pk+1

l,m + qk+1
l,m + rk+1

l,m + hk+1
l,m

)
uk+1
l,m −

(
pk+1
l,m uk+1

l+1,m + qk+1
l,m uk+1

l−1,m

)

−
(
rk+1
l,m uk+1

l,m+1 + hk+1
l,m uk+1

l,m−1

)

−
(
1 + pk+1

l,m + qk+1
l,m + rk+1

l,m + hk+1
l,m

)
vk+1
l,m +

(
pk+1
l,m vk+1

l+1,m + qk+1
l,m vk+1

l−1,m

)

+
(
rk+1
l,m vk+1

l,m+1 + hk+1
l,m vk+1

l,m−1

)∣∣∣ .

In this case the scheme is (14) and as before, we write ωs instead of ω
(α)
s . The last expression

becomes
∣∣∣∣∣u

k+1
l,m + τ

(
S∆

(
uk+1
l,m

)
− σα,∆t

k∑

s=0

ωs

(
uk−s+1
l,m − uk−s

l,m

))

−vkl,m +

k∑

s=1

ωs

(
vk−s+1
l,m − vk−s

l,m

)
− τfk+1

l,m

∣∣∣∣∣

=

∣∣∣∣∣u
k+1
l,m + τS

(
uk+1
l,m

)
+ τO (∆)−

k∑

s=0

ωs

(
uk−s+1
l,m − uk−s

l,m

)

−vkl,m +

k∑

s=1

ωs

(
vk−s+1
l,m − vk−s

l,m

)
− τfk+1

l,m

∣∣∣∣∣

=

∣∣∣∣∣u
k+1
l,m + τ fk+1

l,m + τO (∆)−

k∑

s=0

ωs

(
uk−s+1
l,m − uk−s

l,m

)

−vkl,m +

k∑

s=1

ωs

(
vk−s+1
l,m − vk−s

l,m

)
− τfk+1

l,m

∣∣∣∣∣

=

∣∣∣∣∣

k∑

s=1

(ωs−1 − ωs)u
k−s+1
l,m + ωku

0
l,m + τ O (∆) −vkl,m +

k∑

s=1

ωs

(
vk−s+1
l,m − vk−s

l,m

)∣∣∣∣∣

=

∣∣∣∣∣

k−1∑

s=0

(ωs − ωs+1) ε
k−s
l,m + ωkε

0
l,m + τ O (∆)

∣∣∣∣∣

≤

k−1∑

s=0

(ωs − ωs+1)
∣∣∣εk−s

l,m

∣∣∣+ ωk

∣∣ε0l,m
∣∣+ τ O (∆)

≤
k−1∑

s=0

(ωs − ωs+1)
∥∥Ek−s

∥∥
∞

+ ωk

∥∥E0
∥∥
∞

+ τ O (∆)

≤
k−1∑

s=0

(ωs − ωs+1)
∥∥E0

∥∥
∞

+ ωk

∥∥E0
∥∥
∞

+ τ O (∆)

=
∥∥E0

∥∥
∞

+ (∆t)αO (∆) .
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∆t ∆x = ∆y Max. error Order

α = 0.1

1/16 1/4 1.440e-01 - - - -

1/32 1/8 4.070e-02 1.823

1/64 1/16 1.043e-02 1.964

1/128 1/32 2.607e-03 2.001

1/256 1/64 6.530e-04 1.997

α = 0.5

1/16 1/4 1.415e-01 - - - -

1/32 1/8 4.055e-02 1.803

1/64 1/16 1.045e-02 1.957

1/128 1/32 2.625e-03 1.993

1/256 1/64 6.627e-04 1.986

α = 0.9

1/16 1/4 1.588e-01 - - - -

1/32 1/8 4.434e-02 1.841

1/64 1/16 1.189e-02 1.899

1/128 1/32 3.365e-03 1.821

1/256 1/64 1.053e-03 1.676

Table 1: Absolute errors and order of convergence at t = 1 for Example 4.1.

4 Numerical experiments and final remarks

In order to demonstrate the reliability of our numerical method, three examples are presented.
The absolute errors in the approximation v of u at time t = tk are measured by the maximum
norm ∥∥vk − u(tk)

∥∥
∞

:= max
i,j

∣∣vki,j − uki,j
∣∣ .

Example 4.1. We consider the time fractional advection-dispersion equation

u
(α)
t (x, y, t) + a(x, y, t)ux(x, y, t) + b(x, y, t)uy(x, y, t)

= c(x, y, t)uxx(x, y, t) + d(x, y, t)uyy(x, y, t) + f(x, y, t)

on a finite square domain Ω = (0, 1)× (0, 1) for 0 ≤ t ≤ 1, with the initial condition

u(x, y, 0) = sinπx sinπy, (x, y) ∈ Ω,

and the boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω× (0, 1].

The advection and dispersion coefficients are given by

a(x, y, t) =
1

sinπy
, b(x, y, t) =

1

sinπx
,
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∆t ∆x = ∆y Absolute error Order of convergence

α = 0.1 ε =1e-1 ε =1e-3 ε =1e-5 ε =1e-1 ε =1e-3 ε =1e-5

1/16 1/4 1.103e-01 1.431e-01 1.451e-01 - - - - - - - - -

1/32 1/8 2.982e-02 5.154e-02 5.622e-02 1.887 1.473 1.368

1/64 1/16 7.703e-03 1.448e-02 1.711e-02 1.953 1.831 1.716

1/128 1/32 1.927e-03 3.386e-03 4.484e-03 1.999 2.097 1.932

α = 0.5 ε =1e-1 ε =1e-3 ε =1e-5 ε =1e-1 ε =1e-3 ε =1e-5

1/16 1/4 1.108e-01 1.445e-01 1.468e-01 - - - - - - - - -

1/32 1/8 3.001e-02 5.079e-02 5.451e-02 1.884 1.508 1.430

1/64 1/16 7.817e-03 1.406e-02 1.617e-02 1.941 1.853 1.753

1/128 1/32 1.974e-03 3.169e-03 4.090e-03 1.986 2.150 1.983

α = 0.9 ε =1e-1 ε =1e-3 ε =1e-5 ε =1e-1 ε =1e-3 ε =1e-5

1/16 1/4 1.228e-01 1.451e-01 1.470e-01 - - - - - -

1/32 1/8 3.377e-02 4.401e-02 4.523e-02 1.862 1.721 1.701

1/64 1/16 9.633e-03 1.219e-02 1.321e-02 1.810 1.852 1.776

1/128 1/32 2.899e-03 3.743e-03 3.981e-03 1.733 1.703 1.730

Table 2: Absolute errors and order of convergence at t = 1 for Example 4.2.

and
c(x, y, t) =

x

π2Γ(3− α)(t2 + 1)
, d(x, y, t) =

y

π2Γ(3− α)(t2 + 1)
,

respectively, the source or sink function is

f(x, y, t) =
1

Γ(3− α)

(
2t2−α + x+ y

)
sinπx sin πy + π(t2 + 1)(cosπx + cosπy)

and the exact concentration is

u(x, y, t) = (t2 + 1) sinπx sinπy.

Numerical experiments for fractional derivatives of orders α = 0.1, α = 0.5 and α = 0.9
are listed in Table 1. The columns for absolute errors and order of convergence are the main
features of this table. This is a somewhat extreme example due to the fact that the advection
coefficients a and b do not safisfy the bounds (5)

Example 4.2. As a second example we consider the time fractional advection-dispersion equa-
tion

u
(α)
t (x, y, t) +

1

1 + x
uy(x, y, t) +

1

1 + y
uy(x, y, t) = ε∆u(x, y, t) + f(x, y, t), ε > 0,

on Ω = (0, 1)× (0, 1) for 0 ≤ t ≤ 1, with initial condition

u(x, y, 0) = sinπx sinπy, (x, y) ∈ Ω,

boundary condition
u(x, y, t) = 0, (x, y) ∈ ∂Ω× (0, 1],

11



0
1

0.01

0.02

1

u
(x
,
y
,
1) 0.03

0.8

y

0.04

0.5 0.6

x

0.05

0.4
0.2

0 0

(a) α = 0.3

0
1

0.01

0.02

1

u
(x
,
y
,
1) 0.03

0.8

y

0.04

0.5 0.6

x

0.05

0.4
0.2

0 0

(b) α = 0.5

0
1

0.01

0.02

1

u
(x
,
y
,
1) 0.03

0.8

y

0.04

0.5 0.6

x

0.05

0.4
0.2

0 0

(c) α = 0.7

0
1

0.01

0.02

1

u
(x
,
y
,
1) 0.03

0.8

y

0.04

0.5 0.6

x

0.05

0.4
0.2

0 0

(d) α = 0.9

Figure 1: Numerical solutions of Example 4.3 for t = 1

and source or sink term

f(x, y, t) =

(
2t2−α

Γ(3− α)
+ 2επ2(t2 + 1)

)
sinπx sin πy+ π(t2 + 1)

(
cosπx sinπy

x+ 1
+

cosπ sinπy

y + 1

)
.

The exact solution is
u(x, y, t) = (t2 + 1) sinπx sinπy.

This is a test for the behavior of the method in the presence of very small diffusion coefficients,
an almost degenerate parabolic equation. Numerical results are provided in Table 2. As before,
three different fractional derivative orders are taken into account and there are results for three
different diffusion coefficients: ε = 10−1, ε = 10−3 and ε = 10−5.

Example 4.3. Finally we solve the time fractional diffusion equation

u
(α)
t (x, y, t) + ux(x, y, t) + uy(x, y, t) = ∆u(x, y, t),

on the finite square domain Ω = (0, 1)× (0, 1) for 0 ≤ t ≤ 1, with the initial condition

u(x, y, 0) = sinπx sin πy, for (x, y) ∈ Ω,

and the boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω× (0, 1].
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Figure 1 illustrates the computed solutions for t = 1 for several values of α. No exact
solutions are known for this problem but the pictures illustrate the continuous dependence of
the solutions on the fractional differentiation order.

In summary, this paper introduces an implicit finite difference approximation for the solution
of an initial boundary value problem for a two dimensional time fractional advection-dispersion
equation with variable coefficients in which the fractional derivative is given in the sense of
Caputo and the dispersion terms are in nondivergence form. Proofs of consistency, stability
and convergence are included and so are illustrative numerical experiments. A useful feature
of the paper is the computational framework based on matrices. Our scheme was successfully
implemented for the solution of an inverse source problem in [3]. We certainly expect to develop
other applications of this scheme in the near future.

Acknowledgments

The authors would like to acknowledge financial support by Universidad Nacional de Colombia
through the research project with Hermes code 33154.

References

[1] A.T. Balasim and N.H.M. Ali. New group iterative schemes in the numerical solution
of the two-dimensional time fractional advection-diffusion equation. Cogent Mathematics,
4:1412241, 2017.

[2] K. Diethelm. The analysis of fractional differential equations. Springer, 2010.

[3] M. D. Echeverry and C. E. Mej́ıa. A two dimensional discrete mollification operator and
the numerical solution of an inverse source problem. AXIOMS, 7(4):89, 2018.

[4] S. Fomin, V. Chugunov, and T. Hashida. Application of fractional differential equations
for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix
with bordering alteration zone. Transp Porous Med, 81:187–205, 2010.

[5] A A Kilbas, H M Srivastava, and J J Trujillo. Theory and applications of fractional differ-
ential equations. Elsevier North-Holland, 2006.

[6] Y. Lin and C. Xu. Finite difference/spectral approximation for the time-fractional diffusion
equation. Journal of Computational Physics, 225:1533–1552, 2007.

[7] C. E. Mej́ıa and A. Piedrahita. Solution of a time fractional inverse advection-dispersion
problem by discrete mollification. Revista Colombiana de Matemáticas, 51(1):83–102, 2017.
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