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Abstract

In this paper we present a new fast and deterministic algorithm for the inverse
discrete cosine transform of type II for reconstructing the input vector x ∈ RN , N =

2J , with short support of length m from its discrete cosine transform xÎI = CII
Nx if

an upper boundM ≥ m is known. The resulting algorithm only uses real arithmetic,
has a runtime of O

(
M logM +m log2

N
M

)
and requires O

(
M +m log2

N
M

)
samples

of xÎI. For m,M → N the runtime and sampling requirements approach those of
a regular IDCT-II for vectors with full support. The algorithm presented hereafter
does not employ inverse FFT algorithms to recover x.

Keywords. discrete cosine transform, deterministic sparse fast DCT, sublinear sparse
DCT
AMS Subject Classification. 65T50, 42A38, 65Y20.

1 Introduction

Due to recent efforts deterministic sparse FFT algorithms utilizing a priori knowledge
of the resulting vector are now well established, and there exist several methods which
achieve runtimes that scale sublinearly in the vector length N if x ∈ CN is known to
possess at most m significantly large entries. If, for example, the support of a vector x ∈
R2J
≥0 has a short support of lengthm, there exists a deterministic, adaptive DFT algorithm

with runtime O
(
m logm log N

m

)
, see [13]. Other deterministic, sublinear-time methods

with different requirements on the sought-after vector x and its support structure include
[1–3,6–9,12–15].
The investigation of sparse and fast deterministic algorithms for the related trigono-

metric transforms in their respective cosine and sine bases has not yet been that thorough.
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However, besides the DFT, the discrete cosine transform (DCT) is one of the most impor-
tant algorithms in engineering and data processing. Among numerous other applications
the sparse DCT can be employed to evaluate polynomials in monomial form from sparse
expansions of Chebyshev polynomials, see, e.g., [10], Chapter 6. As far as we are aware,
there exist no fast sparse methods that have been specifically optimized for the cosine or
sine bases. Of course it is always possible to apply sparse FFT algorithms to obtain for
example x ∈ RN from xÎI, using that

xÎIk =
εN (k)√
2N

ωk4N · ŷk, ∀k ∈ {0, . . . , N − 1}, (1)

where εN (k) = 1√
2
for k ≡ 0 mod N and εN (k) = 1 for k 6≡ 0 mod N , ω4N = e

−2πi
N

and y = (x0, x1, . . . , xN−1, xN−1, xN−2, . . . , x0)
T ∈ R2N , see, e.g., [3] and [10], Chapter

6.4.1. However, if x is m-sparse, then y is 2m-sparse, so applying a general sparse FFT
algorithm is not the most efficient solution. Furthermore, y is symmetric and its support
structure is closely related to the support structure of x, which can be used to improve
the runtime. In [3], where the recovery of a vector x ∈ RN with short support of length
m from xÎI based on (1) is studied, the short support of x and the resulting symmetric
reflected block support of y are exploited. The algorithm in [3] achieves a sublinear
runtime of O

(
m logm log 2N

m

)
and requires O

(
m log 2N

m

)
samples of the input vector

xÎI ∈ RN , N = 2J . Thus it performs better than general sparse FFT methods, as it is
specifically tailored to the occurring support structure. Nevertheless, despite being an
adaptive algorithm which does not need any a priori knowledge of the support length, its
assumptions on the sought-after vector x are quite strict and, without supposing extensive
knowledge of x, they can usually only be satisfied if, e.g., x ∈ RN≥0. Furthermore, the
algorithm relies on complex arithmetic, as the problem of reconstructing x from xÎI is
transferred to the problem of reconstructing the vector y ∈ R2N of double length from
its Fourier transform ŷ ∈ C2N , which can be computed efficiently from xÎI.
However, since there also exist fast DCT algorithms for arbitrary vectors that are com-

pletely based on real arithmetic, investigating fully real sparse fast DCT algorithms is the
natural next course of action. In this paper we present the, to the best of our knowledge,
first deterministic sparse fast algorithm for the inverse DCT-II (or, equivalently, for the
DCT-III) that only employs real arithmetic. To be more precise we assume that the
vector x ∈ RN , N = 2J , which we want to reconstruct, has a short support, or one-block
support, of length m < N and that an upper bound M ≥ m on the support length is
known a priori. If the vector additionally satisfies the simple non-cancellation condition
that the first and last entry in the support do not sum up to zero, the algorithm proposed
herein recovers x exactly in O

(
M logM +m log2

N
M

)
time, for which O

(
M +m log2

N
M

)
samples of xÎI are required. Thus, if m,M → N , the algorithm approaches the same
runtime and sampling requirements as a regular IDCT-II for vectors of length N with
full support.

1.1 Notation and Problem Statement

Let N = 2J with J ∈ N. For a, b ∈ N0, a ≤ b, we denote by Ia,b the set

Ia,b := {a, a+ 1, . . . , b} ⊂ N0
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of integers. We say that a vector x = x(J) = (xk)
N−1
k=0 ∈ RN has a short support, or

one-block support, S(J) of length m(J) = m if

xk = 0 ∀ k /∈ S(J) := Iµ(J),ν(J) =
{
µ(J), µ(J) + 1, . . . , ν(J)

}
,

for some µ(J) ∈ {0, . . . , N −m} and ν(J) := µ(J) +m − 1 with xµ(J) 6= 0 and xν(J) 6= 0.
Note that, unlike in [3], we do not allow a periodic support in this paper. The interval
S(J) := Iµ(J),ν(J) is called the support interval, µ(J) the first support index and ν(J) the
last support index of x. The support length and the first and last support index are
uniquely determined.
For n ∈ N the cosine matrix of type II is defined as

CII
n :=

√
2

n

(
εn(k) cos

(
k(2l + 1)π

2n

))n−1
k, l=0

,

where εn(k) := 1√
2
for k ≡ 0 mod n and εn(k) := 1 for k 6≡ 0 mod n. This matrix is

orthogonal, i.e., CII
n

(
CII
n

)T
= In, where In denotes the identity matrix of size n×n. The

discrete cosine transform of type II (DCT-II) of x ∈ Rn is given by

xÎI := CII
nx.

The inverse DCT-II coincides with the discrete cosine transform of type III (DCT-III)
with transformation matrix CIII

n :=
(
CII
n

)T . The cosine matrix of type IV is defined as

CIV
n :=

√
2

n

(
cos

(
(2k + 1)(2l + 1)π

4n

))n−1
k, l=0

.

This matrix is orthogonal as well, with CIV
n =

(
CIV
n

)T , and the discrete cosine transform
of type IV (DCT-IV) of x ∈ Rn is given by

xÎV := CIV
n x.

Furthermore, the closely related sine matrix of type IV is defined as

SIV
n :=

√
2

n

(
sin

(
(2k + 1)(2l + 1)π

4n

))n−1
k, l=0

.

The purpose of this paper is to develop a deterministic sparse fast DCT algorithm for
recovering x ∈ RN with (unknown) short support of length m < N from its DCT-II, xÎI,
in sublinear time O

(
M logM +m log2

N
M

)
if an upper bound M ≥ m on the support

length of x is known. If m orM approach the vector length N , the algorithm introduced
herein still has a runtime complexity of O(N logN) which is also achieved by fast DCT
algorithms for vectors with full support, see, e.g., [11, 17]. For exact data our algorithm
returns the correct vector x if, in addition to xµ(J) 6= 0 and xν(J) 6= 0, x satisfies the
non-cancellation condition

xµ(J) + xν(J) 6= 0 if m is even. (2)

This condition holds for example if all nonzero entries of x are positive or if all nonzero
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entries of x are negative, i.e., x ∈ RN≥0 or x ∈ RN≤0. In practice, i.e., for noisy data, one
has to guarantee that for a threshold ε > 0 depending on the noise level we have∣∣∣xµ(J)∣∣∣ > ε, |xν(J) | > ε and

∣∣∣xµ(J) + xν(J)
∣∣∣ > ε.

1.2 Outline of the Paper

The algorithm presented in this paper generalizes ideas introduced in [3,12–14] for recon-
structing a vector x ∈ RN , N = 2J , with short support of length M , M -sparse support
or reflected two-block support with block length M from its DFT. In these papers the
sought-after vector x is recovered iteratively from its 2j-length periodizations x(j), where
x(J) := x and x(j) is obtained by adding the first and second half of x(j+1). However, for
the DCT, the concept of periodizations has to be adapted using an iterative application
of both reflections and the periodizations from [12], as can be seen in Section 2. We still
set x(J) := x, but x(j) is now defined by adding the first half of x(j+1) and the reflection
of the second half of x(j+1), i.e.,

x(j) :=
(
x
(j+1)
0 + x

(j+1)

2j+1−1, x
(j+1)
1 + x

(j+1)

2j+1−2, . . . , x
(j+1)

2j−1 + x
(j+1)

2j

)T
.

Employing this concept for j ∈ {L, . . . , J − 1}, where 2L ≥ 2M , our new algorithm is
based on efficiently and iteratively recovering x(j+1) from xÎI using that x(j) is known.
Note that, unlike the DCT reconstruction algorithm for vectors with one-block support
in [3], which uses a closely related DFT reconstruction and hence complex arithmetic,
our algorithm only employs real arithmetic, as it utilizes real factorizations of cosine
matrices. This approach requires some observations about the support of x(j+1) if the
support of x(j) is given, which are summarized in Section 2. For the reconstruction of
x(j+1) from x(j) we have to distinguish whether the support of x(j) is contained in its
last M entries or whether it is not contained in those entries. In Section 3 we present
a numerical procedure for each of the two cases. With the help of these methods we
develop the sparse fast DCT algorithm for bounded support lengths in Section 4.1 and
briefly mention a simplified algorithm for exactly known short support lengths in Section
4.2. We conclude our paper by presenting numerical results detailing the performance of
our algorithms with respect to runtime and stability for noisy input data in Section 5.

2 Support Properties of the Reflected Periodizations

In this paper we want to find a deterministic algorithm for reconstructing x ∈ RN with
short support of length m from its discrete cosine transform of type II, xÎI, if an upper
bound M ≥ m is known and using, unlike in [3], only real arithmetic. In order to do so
we adapt techniques used in [3, 12–14] for the FFT reconstruction of vectors with short
support to the real DCT setting.
There exist several different factorizations of the orthogonal matrix CII

n , but the fol-
lowing one, see Lemma 2.2 in [11], has proven to be particularly useful in our case. It
employs the discrete cosine transform of type IV.
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Lemma 2.1 Let n ∈ N be even and let

Pn :=

(
(δ2k, l)

n
2
−1, n−1

k, l=0

(δ2k+1, l)
n
2
−1, n−1

k, l=0

)
=



1 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
...

...
...

...
0 . . . . . . 1 0
0 1 0 0 0 . . . 0 0
0 0 0 1 0 . . . 0 0
...

...
...

...
0 . . . . . . . . . 0 1


∈ Rn×n

be the even-odd permutation matrix. Further, define

Tn :=
1√
2

(
In

2
Jn

2

In
2
−Jn

2

)
∈ Rn×n,

where In
2
denotes the identity matrix of size n

2 ×
n
2 and

Jn
2
:=
(
δk, n

2
−1−l

)n
2
−1

k, l=0
=


0 . . . 0 1
0 1 0
... . .

. ...
1 . . . 0 0

 ∈ R
n
2
×n

2

denotes the counter identity. Then CII
n satisfies the following factorization,

CII
n = PT

n

(
CII

n
2

0n
2

0n
2

CIV
n
2

)
Tn.

From now on let N := 2J for J ≥ 1. For x ∈ R2j+1 , j ∈ {0, . . . , J − 1}, we denote by

x(0) := (xk)
2j−1
k=0 ∈ R2j and x(1) := (xk)

2j+1−1
k=2j ∈ R2j

the first and second half of x, respectively, i.e., xT =
(
xT(0),x

T
(1)

)
.

Remark 2.2 Note that for x ∈ Rn, n even, we have

Pnx =

(
(x2k)

n
2
−1

k=0

(x2k+1)
n
2
−1

k=0

)
(3)

and

Tnx =
1√
2

(
In

2
Jn

2

In
2
−Jn

2

)(
x(0)

x(1)

)
=

1√
2

(
x(0) + Jn

2
x(1)

x(0) − Jn
2
x(1)

)
. (4)

♦

We assume that x satisfies (2) in order to guarantee that there is no cancellation of
the first and last support entry in the iterative algorithm. Inspired by (4) we define a
DCT-II-specific analog to the notion of periodized vectors introduced in [12,13] for DFT
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algorithms for vectors with short support. Let x ∈ RN with N = 2J and set x(J) := x.
For j ∈ {0, . . . , J − 1} define the reflected periodization x(j) ∈ R2j of x as

x(j) := x
(j+1)
(0) + J2jx

(j+1)
(1) . (5)

We show that the DCT-II of the reflected periodization x(j) is already completely deter-
mined by the DCT-II of x.

Lemma 2.3 Let N = 2J , J ∈ N, x ∈ RN and j ∈ {0, . . . , J}. Then(
x(j)

)ÎI
=
√
2
J−j (

xÎI2J−jk

)2j−1
k=0

.

Proof. We prove the lemma by induction. For j = J the claim holds since x(J) = x. Now
we assume the induction hypothesis for some j ∈ {1, . . . , J} and show that the claim
also holds for j − 1. It follows from Lemma 2.1, (4) and the definition of the reflected
periodization, (5), that

P2jC
II
2jx

(j) =
1√
2

(
CII

2j−1

CIV
2j−1

)(
I2j−1 J2j−1

I2j−1 −J2j−1

)(
x
(j)
(0)

x
(j)
(1)

)

=
1√
2

(
CII

2j−1x
(j−1)

CIV
2j−1

(
x
(j)
(0) − J2j−1x

(j)
(1)

)) ; (6)

thus motivating the definition of the reflected periodization. Together with the induction
hypothesis and (3) the first 2j−1 rows of (6) yield that

(
x(j−1)

)ÎI
= CII

2j−1x
(j−1) =

√
2
(
P2jC

II
2jx

(j)
)
(0)

=
√
2

((
x(j)
)ÎI
2k

)2j−1−1

k=0

=
√
2
(√

2
J−j

xÎI2J−j2k

)2j−1−1

k=0
=
√
2
J−(j−1) (

xÎI
2J−(j−1)k

)2j−1−1

k=0
,

which completes the proof.

Since we always consider vectors x ∈ R2J with short support of length m and their
reflected periodizations in this paper, we have to introduce some notation for the support
of the reflectedly periodized vectors.
For j ∈ {0, . . . , J − 1} we say that x(j) has a short support of length m(j) with first

support index µ(j) ∈
{
0, . . . , 2j −m(j)

}
, last support index ν(j) := µ(j) + m(j) − 1 and

support interval S(j) if x(j)
µ(j)

, x
(j)

ν(j)
6= 0 and

x
(j)
k = 0 ∀k /∈ S(j) := Iµ(j),ν(j) :=

{
µ(j), µ(j) + 1, . . . , ν(j)

}
.

Note that while S(J), i.e., the support interval of x = x(J), and S(j) contain all indices at
which x and x(j), respectively, have nonzero entries, this does not mean that all indices in
S(J) and S(j) correspond to nonzero entries, as we require the support sets to be intervals
in N0 for some of the proofs hereafter. Instead of m(J) we will usually just write m.
We can observe the following property of the reflected periodizations.

6



Lemma 2.4 Let x ∈ RN with N = 2J , J ∈ N, have a short support of length m and
assume that x satisfies (2). Set K := dlog2me + 1. Then x(j) has a short support of
length m(j) ≤ m for all j ∈ {K, . . . , J}.

Proof. We employ an induction argument. By assumption x(J) = x has a short sup-
port of length m. Now suppose that for j ∈ {K, . . . , J − 1} x(j+1) has a short sup-
port of length m(j+1) ≤ m with support interval S(j+1) = Iµ(j+1),ν(j+1) , where µ(j+1) ∈{
0, . . . , 2j+1 −m(j+1)

}
and ν(j+1) := µ(j+1) +m(j+1) − 1. We have to distinguish three

cases.

(i) S(j+1) ⊂ I0,2j−1, i.e., the nonzero entries are contained in the first half of x(j+1).

Since x(j) = x
(j+1)
(0) + J2jx

(j+1)
(1) by (5), we obtain that x(j) has a short support with

x(j) = x
(j+1)
(0) and S(j) = S(j+1).

(ii) S(j+1) ⊂ I2j ,2j+1−1, i.e., the nonzero entries are contained in the second half of x(j+1).

The definition of the reflected periodization implies that x(j) has a short support, as

x(j) = J2jx
(j+1)
(1) and S(j) = I2j+1−1−ν(j+1),2j+1−1−µ(j+1) .

(iii)
{
2j − 1, 2j

}
⊂ S(j+1)

Then at least one possibly nonzero entry from the second half of x(j+1) is added to a
possibly nonzero entry from the first half at the reflected index in the computation of
x(j). Thus x(j) has indeed a short support of length m(j) < m(j+1) with support interval

S(j) =
(
Iµ(j+1),ν(j+1) ∪ I2j+1−1−ν(j+1),2j+1−1−µ(j+1)

)
∩ I0,2j−1

=:I2j−m(j),2j−1 ( I2j−m(j+1),2j−1,

and either µ(j) = µ(j+1) or µ(j) = 2j+1 − 1− ν(j+1).

Note that in (i) and (ii) the support length does not change, i.e., m(j) = m(j+1), and
that the support length m(j) < m(j+1) always decreases in (iii).

Example (i) Let x ∈ R16 with nonzero entries x13, x14, i.e., with short support S(4) =
I13,14 of length m = 2. Assume that m is known, i.e., that M = m = 2. Then K = 2
and the reflected periodizations x(j) for j ∈ {K, . . . , J} of x are

x = x(4) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x13, x14, 0)
T ,

x(3) = (0, x14, x13, 0, 0, 0, 0, 0)
T ,

x(2) = (0, x14, x13, 0)
T .

Here, x(3) and x(2) have the short support S(3) = S(2) = I1,2 of length m(3) = m(2) =
m = 2.

(ii) Let x ∈ R16 with nonzero entries x7, x8, i.e., with short support S(4) = I7,8 of length
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m = 2. Again, we assume that M = m. Then the reflected periodizations of x are

x = x(4) = (0, 0, 0, 0, 0, 0, 0, x7, x8, 0, 0, 0, 0, 0, 0, 0)
T ,

x(3) = (0, 0, 0, 0, 0, 0, 0, x7 + x8)
T ,

x(2) = (x7 + x8, 0, 0, 0)
T .

Here, x(3) has the short support S(3) = I7,7 of length m(3) = 1 < m = 2 and x(2) has the
short support S(2) = I0,0 of length m(2) = m(3) = 1. ♦

The aim of our algorithm is to reconstruct x from xÎI by successively computing its
reflected periodizations if only an upper bound M ≥ m on the support length of x is
known. Hence, we now investigate the structure of the support of x(j+1) if x(j) is given.

Lemma 2.5 Let x ∈ RN with N = 2J , J ∈ N, have a short support of length m ≤ M
and assume that x satisfies (2). Set L := dlog2Me+ 1.

(i) There is at most one index j′ ∈ {L, . . . , J} such that S(j′) ⊂ I2j′−M,2j′−1 and we
have that S(j′+1) ⊂ I2j′−M,2j′+M−1 if j′ ≤ J − 1.

(ii) If j ∈ {L, . . . , J − 1}\{j′}, then m(j) = m(j+1).

(iii) If j ∈ {L, . . . , J − 1}\{j′} and S(j) = Iµ(j),ν(j), then either

x(j+1) =

(
x(j)

02j

)
or x(j+1) =

(
02j

J2jx
(j)

)
with S(j+1) = Iµ(j),ν(j) or S(j+1) = I2j+1−1−ν(j),2j+1−1−µ(j) , where 02j denotes the
2j-length zero vector.

Proof. (i) Recall that K = dlog2me + 1 ≤ L, so x(j) has a short support of length
m(j) ≤ m for all j ∈ {L, . . . , J} by Lemma 2.4. Set

j′ := max
{
j ∈ {L, . . . , J} : S(j) ⊂ I2j−M,2j−1

}
if such an index exists. First we assume that there is a j′ ∈ {L, . . . , J}. Then we obtain

x(j′−1) = x
(j′)
(0)︸︷︷︸

=0
2j
′−1

+J2j′−1x
(j′)
(1) and S(j′−1) ⊂ I0,M−1

if j′ > L. Hence,

x(j) = x
(j+1)
(0) + J2j x

(j+1)
(1)︸ ︷︷ ︸
=0

2j

and S(j) ⊂ I0,M−1

for all j ∈ {L, . . . , j′ − 2}, so j′ is the unique index with the above property. Thus, for
j ∈ {L, . . . , j′ − 1} the support of x(j) is contained in the first M ≤ 2j−1 entries of the
vector. By definition of the reflected periodization, (5), we immediately obtain

S(j′+1) ⊂ I2j′−M,2j′+M−1

8



if j′ ≤ J − 1. For the special case that m(j′) < m(j′+1) the supports of the reflected
periodizations are depicted in Figure 1.

x
(j′+1)

0
2j
′+1 − 12j

′
− 1

x
(j′)

0
2j
′
− 1

x
(j′−1)

0
2j
′−1 − 1

Figure 1: Illustration of the support of x(j′+1), x(j′) and x(j′−1) if m(j′) < m(j′+1).

(ii) It follows from Lemma 2.4 that for decreasing j the support length m(j) cannot
increase. Assume that there exists a j1 ∈ {L, . . . , J − 1}\{j′} such that m(j1) < m(j1+1).
Then case (iii) in the proof of Lemma 2.4 yields that

{
2j1 − 1, 2j1

}
⊂ S(j1+1). As

m(j1+1) ≤ m ≤M , this implies that

S(j1+1) ⊂ I2j1−M,2j1+M−1,

and consequently, by (5),
S(j1) ⊂ I2j1−M,2j1−1. (7)

This is a contradiction, since j1 ∈ {L, . . . , J − 1}\{j′} and j′ is, if it exists, the unique
index for which (7) holds. Hence, we obtainm(j) = m(j+1) for all j ∈ {L, . . . , J−1}\{j′}.

(iii) For j ∈ {L, . . . , J − 1}\{j′} we have that m(j) = m(j+1) by (ii), which also holds if
j′ does not exist. Hence, the proof of Lemma 2.4, cases (i) and (ii), shows that either

x(j+1) =

(
x(j)

02j

)
or x(j+1) =

(
02j

J2jx
(j)

)
,

as these are the only two 2j+1-length vectors arising from repeatedly reflectedly periodiz-
ing x that have the reflected periodization x(j), which can also be seen in Figure 2.

x
(j)

0 2j − 1

m(j)

x
(j)

0 2j − 1

m(j)

µ(j)

x
(j+1)

0 2j+1 − 12j − 1
µ(j+1) = µ(j)

x
(j+1)

0 2j+1 − 12j − 1
µ(j+1) = µ(j)

or x
(j+1)

0 2j+1 − 12j − 1
µ(j+1) = 2j+1 −m(j) − µ(j)

or x
(j+1)

0 2j+1 − 12j − 1
µ(j+1) = 2j+1 −m(j) − µ(j)

Figure 2: Illustration of the two possibilities for the support of x(j+1) for given x(j) ac-
cording to Lemma 2.5 for j ∈ {L, . . . , j′ − 1} (left) and j ∈ {j′ + 1, . . . , J − 1}
(right) with m(j′) < m(j′+1).

9



Lemma 2.5 tells us that even if we only know an upper bound M on the support
length m, there is at most one index j′ such that the support of x(j′) is contained
in the last M entries. This is also the only case for which the support length of the
reflected periodization of double length can increase and for which one might have to
undo collisions of nonzero entries in order to compute x(j′+1) from x(j′). For all other
indices the values of the nonzero entries of x(j) and x(j+1) are the same.

3 Iterative Sparse DCT Procedures

Lemma 2.3 implies that if xÎI is known, the DCTs of all reflected periodizations x(j)

are also known, as they can be obtained by selecting certain entries of xÎI. Analogously
to [3, 12–14], our goal is to develop an algorithm which recovers x ∈ R2J with short
support of length m from xÎI by successively calculating the reflected periodizations x(L),
x(L+1), . . . ,x(J) = x for some starting index L satisfying m ≤ 2L−1. In the following we
present both an algorithm for the case that the support length m of x is known exactly
and an algorithm that only requires an upper bound M ≥ m on the support length.
We begin by developing the algorithm for a known bound M ≥ m on the support

length, which can be easily modified to obtain the algorithm for exactly known support
length. Lemma 2.5 yields that the values of the nonzero entries and the support lengths
of x(j) and x(j+1) are the same for j 6= j′. Hence, if the support of x(j) is not contained in
the last M entries, we only have to find the first support index µ(j+1) of x(j+1), knowing
that either µ(j+1) = µ(j) or µ(j+1) = 2j+1 −m(j) − µ(j). However, for j = j′, we need to
undo the possible collision of nonzero entries from the first and second half of x(j′+1).

3.1 Case 1: No Collision

If j 6= j′, i.e., if S(j) 6⊂ I2j−M,2j−1, then Lemma 2.5 implies that for S(j) = Iµ(j),ν(j) the
values of the nonzero entries of x(j) and x(j+1) are the same with

m(j+1) = m(j) and S(j+1) = Iµ(j),ν(j) or S(j+1) = I2j+1−1−ν(j),2j+1−1−µ(j) .

Hence, we only need to determine whether the first support index is µ(j+1) = µ(j), i.e.,
x(j+1)T =

(
x(j)T ,0T

2j

)
, or µ(j+1) = 2j+1 − 1 − ν(j), i.e., x(j+1)T =

(
0T
2j
,J2jx

(j)T
)
. In

order to find out which is the correct first support index, we employ a nonzero entry of(
x(j+1)

)ÎI. First we show how such a nonzero entry can be found efficiently.
For this we require the notion of the odd Vandermonde matrix, which is defined as

Vodd (x0, . . . , xn) :=
(
xk

2l+1
)n
k, l=0

for (xk)nk=0 ∈ Rn+1. Recall that the Vandermonde matrix

V (x0, . . . , xn) :=
(
xk

l
)n
k, l=0

has determinant
det (V (x0, . . . , xn)) =

∏
0≤k<l≤n

(xl − xk) .
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Lemma 3.1 Let x0, . . . , xn ∈ R\{0} be pairwise distinct such that |xk| 6= |xl| for all
k 6= l, where k, l ∈ {0, . . . , n}. Then the odd Vandermonde matrix Vodd (x0, . . . , xn) =(
xk

2l+1
)n
k, l=0

is invertible with

det
(
Vodd (x0, . . . , xn)

)
=

n∏
j=0

xj · det
(
V
(
x0

2, . . . , xn
2
))

=
n∏
j=0

xj
∏

0≤k<l≤n

(
xl

2 − xk2
)
.

Proof.

det
(
Vodd (x0, . . . , xn)

)
= det


x0 x0

3 x0
5 . . . x0

2n+1

x1 x1
3 x1

5 . . . x1
2n+1

...
...

...
...

xn xn
3 xn

5 . . . xn
2n+1



=

n∏
j=0

xj · det


1 x0

2 x0
4 . . . x0

2n

1 x1
2 x1

4 . . . x1
2n

...
...

...
...

1 xn
2 xn

4 . . . xn
2n

 =

n∏
j=0

xj · det
(
V
(
x0

2, . . . , xn
2
))

=
n∏
j=0

xj
∏

0≤k<l≤n

(
xl

2 − xk2
)
.

As xk 6= 0 and |xk| 6= |xl| for k 6= l, k, l ∈ {0, . . . , n}, Vodd (x0, . . . , xn) is invertible.

With the help of odd Vandermonde matrices we can prove the existence of an oddly

indexed nonzero entry of
(
x(j+1)

)ÎI.
Lemma 3.2 Let x ∈ RN with N = 2J , J ∈ N, have a short support of length m ≤ M
and assume that x satisfies (2). Set L := dlog2Me+ 1. For j ∈ {L, . . . , J − 1}\{j′} let
x(j) be the 2j-length reflected periodization of x with support length m(j). Assume that

we have access to all entries of xÎI. Then the odd partial vector
((
x(j+1)

)ÎI
2k+1

)m(j)−1

k=0

of(
x(j+1)

)ÎI has at least one nonzero entry.

Proof. We obtain from (3) and (6) that
((
x(j+1)

)ÎI
2k

)2j−1

k=0((
x(j+1)

)ÎI
2k+1

)2j−1

k=0

 =
1√
2

(
CII

2j

CIV
2j

)(
I2j J2j

I2j −J2j

)(
x
(j+1)
(0)

x
(j+1)
(1)

)

=
1√
2

(
CII

2j

CIV
2j

)(
x(j)

x
(j+1)
(0) − J2jx

(j+1)
(1)

)

=
1√
2

 (
x(j)

)ÎI(
2x

(j+1)
(0) − x(j)

)ÎV
 , (8)

where we used that J2jx
(j+1)
(1) = x(j) − x

(j+1)
(0) by (5). If we denote the support interval

11



of x(j+1)
(0) by S(j+1)

(0) , Lemma 2.5 yields that S(j+1)
(0) = S(j) or S(j+1)

(0) = ∅, since j 6= j′.

Consequently, S(j+1)
(0) ⊂ S(j) and S

(
2x

(j+1)
(0) − x(j)

)
⊂ S(j), where S(y) is the support

interval of y ∈ Rn. As
∣∣S(j)

∣∣ = m(j) ≤ m ≤ M , we can restrict (8) to the rows

corresponding to the first m(j) oddly indexed entries of
(
x(j+1)

)ÎI and find

((
x(j+1)

)ÎI
2k+1

)m(j)−1

k=0

=
1√
2

((
CIV

2j

)
k, l

)m(j)−1, 2j−1

k, l=0

(
2x

(j+1)
(0) − x(j)

)

=
1√
2j

 ∑
l∈S(j)

cos

(
(2k + 1)(2l + 1)π

4 · 2j

)(
2x

(j+1)
(0) − x(j)

)
l

m(j)−1

k=0

=:
1√
2j
·T(j) ·

((
2x

(j+1)
(0) − x(j)

)
l

)
l∈S(j)

. (9)

Note that T(j) is the restriction of the cosine matrix of type IV without the normalization
factor to the first m(j) rows and the m(j) columns indexed by S(j). We show that T(j)

is invertible, using Chebyshev polynomials. For x ∈ R with |x| ≤ 1 and n ∈ N0 the
Chebyshev polynomial of the first kind of degree n is defined as

Tn(x) := cos(n arccosx) =:
n∑
l=0

an,lx
l.

Note that the leading coefficient of Tn satisfies

an,n =

{
1 if n = 0,

2n−1 if n ≥ 1,
(10)

and that Tn is odd if n is odd, and Tn is even if n is even.
Further, for n ∈ N, we define the Chebyshev zero nodes

tl,n := cos

(
(2l + 1)π

2n

)
, l ∈ {0, . . . , n− 1},

which are exactly the n zeros of the nth Chebyshev polynomial of the first kind. Then

Tk (tl,n) = cos

(
k(2l + 1)π

2n

)
(11)

for all l ∈ {0, . . . , n − 1}, n ∈ N and k ∈ N0, since |tl,n| ≤ 1. Using (11), the coefficient
representation of the Chebyshev polynomials and the fact that a2k+1,2l = 0 for all l ∈

12



{0, . . . , k} and k ∈ N0, we find for T(j) that

T(j) =

(
cos

(
(2k + 1)(2l + 1)π

2 · 2j+1

))m(j)−1

k=0, l∈S(j)

=
(
T2k+1

(
tl,2j+1

))m(j)−1
k=0, l∈S(j)

=

 2k+1∑
r′=0

r′≡1 mod 2

a2k+1,r′ · tr
′

l,2j+1


m(j)−1

k=0, l∈S(j)

= (a2k+1,2r+1)
m(j)−1
k, r=0 ·

(
t2r+1
l,2j+1

)m(j)−1

r=0, l∈S(j)
(12)

=


a11 0 0 . . . 0
a31 a33 0 . . . 0
...

...
... 0

a2m(j)−1,1 a2m(j)−1,3 a2m(j)−1,5 . . . a2m(j)−1,2m(j)−1




(
tl,2j+1

)T
l∈S(j)(

tl,2j+1
3
)T
l∈S(j)

...(
tl,2j+1

2m(j)−1
)T
l∈S(j)


=:A(j) ·Vodd

((
tl,2j+1

)
l∈S(j)

)T
, (13)

where we set a2k+1,2r+1 := 0 for r ∈
{
k + 1, . . . ,m(j) − 1

}
in (12). By (10) the triangular

matrix A(j) is invertible. Furthermore, since S(j) ⊂ I0,2j−1,

(2l + 1)π

2 · 2j+1
∈
(
0,
π

2

)
for all l ∈ S(j). Consequently, we have that

tl,2j+1 = cos

(
(2l + 1)π

2 · 2j+1

)
∈ (0, 1),

and
∣∣tk,2j+1

∣∣ 6= ∣∣tl,2j+1

∣∣ for all k 6= l, k, l ∈ S(j), as the cosine is bijective on
(
0, π2

)
. Hence

Vodd
((
tl,2j+1

)
l∈S(j)

)T
is invertible by Lemma 3.1, so T(j) is invertible as well. Assume

now that
(
x(j+1)

)ÎI
2k+1

= 0 for all k ∈
{
0, . . . ,m(j) − 1

}
. Then (9) and (13) yield

0m(j) =

((
x(j+1)

)ÎI
2k+1

)m(j)−1

k=0

=
1√
2j

T(j)
((

2x
(j+1)
(0) − x(j)

)
l

)
l∈S(j)

⇔ 0m(j) =
((

2x
(j+1)
(0) − x(j)

)
l

)
l∈S(j)

. (14)

However, since j 6= j′, we have that x(j+1)
(0) = x(j) and x

(j+1)
(1) = 02j , or x

(j+1)
(0) = 02j and

x
(j+1)
(1) = J2jx

(j). In either case (14) is only possible if x(j) = 02j , which is a contradiction
to (2) and the fact that x 6= 0N has a short support of length m. Hence, there exists an

index k0 ∈
{
0, . . . ,m(j) − 1

}
such that

(
x(j+1)

)ÎI
2k0+1

6= 0.
For the implementation of this procedure, using Lemma 2.3, set

k0 := argmax
k∈{0,...,m(j)−1}

{∣∣∣√2J−j−1xÎI2J−j−1(2k+1)

∣∣∣} .
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Then
(
x(j+1)

)ÎI
2k0+1

6= 0 and it is likely that this entry is not too close to zero, which is
supported empirically by the numerical experiments in Section 5.

Now we show how x(j+1) can be computed from x(j) and one oddly indexed nonzero

entry of
(
x(j+1)

)ÎI using the following theorem.

Theorem 3.3 Let x ∈ RN with N = 2J , J ∈ N, have a short support of length m ≤M
and assume that x satisfies (2). Set L := dlog2Me+ 1. For j ∈ {L, . . . , J − 1}\{j′} let
x(j) be the 2j-length reflected periodization of x with support length m(j). Assume that
we have access to all entries of xÎI. Then x(j+1) can be uniquely recovered from x(j) and

one nonzero entry of
(√

2
J−j−1

xÎI
2J−j−1(2k+1)

)m(j)−1

k=0
, using O

(
m(j)

)
operations.

Proof. By Lemma 2.5 (iii) there are precisely two vectors in R2j+1 that arise from re-
flectedly periodizing x and have the given reflected periodization x(j), namely

u0 :=

(
x(j)

02j

)
and u1 :=

(
02j

J2jx
(j)

)
.

Assuming that S(j) = Iµ(j),ν(j) , u0 has the first support index µ(j), u1 has the first
support index 2j+1 −m(j) − µ(j) and both have a support of length m(j+1) = m(j). Let
us now compare the DCTs of u0 and u1. Lemma 2.1 yields

((
u0
)ÎI
2k

)2j−1

k=0((
u0
)ÎI
2k+1

)2j−1

k=0

 =P2j+1

(
u0
)ÎI

=
1√
2

(
CII

2j

CIV
2j

)(
I2j J2j

I2j −J2j

)(
x(j)

02j

)

=
1√
2

(
CII

2j

CIV
2j

)(
x(j)

x(j)

)
=

1√
2

(x(j)
)ÎI(

x(j)
)ÎV


and
((
u1
)ÎI
2k

)2j−1

k=0((
u1
)ÎI
2k+1

)2j−1

k=0

 =
1√
2

(
CII

2j

CIV
2j

)(
I2j J2j

I2j −J2j

)(
02j

J2jx
(j)

)

=
1√
2

(
CII

2j

CIV
2j

)(
J2j
(
J2jx

(j)
)

−J2j
(
J2jx

(j)
)) =

1√
2

 (
x(j)

)ÎI
−
(
x(j)

)ÎV
 .

Consequently, we have that(
u1
)ÎI
2k+1

= −
(
u0
)ÎI
2k+1

, k ∈
{
0, . . . , 2j − 1

}
, (15)

for all oddly indexed entries of
(
u0
)ÎI and (u1

)ÎI. In order to decide whether x(j+1) = u0

or x(j+1) = u1 we compare a nonzero entry
(
x(j+1)

)ÎI
2k0+1

=
√
2
J−j−1

xÎI
2J−j−1(2k0+1)

6= 0 to
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the corresponding entry of u0. By Lemma 3.2
(
x(j+1)

)ÎI
2k0+1

can be found by examining

m(j) entries of xÎI. If
(
u0
)ÎI
2k0+1

=
(
x(j+1)

)ÎI
2k0+1

, then x(j+1) = u0 by (15), and if(
u0
)ÎI
2k0+1

= −
(
x(j+1)

)ÎI
2k0+1

, then x(j+1) = u1. Numerically, we set x(j+1) = u0 if∣∣∣∣(u0)ÎI2k0+1
−
√
2
J−j−1

xÎI2J−j−1(2k0+1)

∣∣∣∣ < ∣∣∣∣(u0)ÎI2k0+1
+
√
2
J−j−1

xÎI2J−j−1(2k0+1)

∣∣∣∣
and x(j+1) = u1 otherwise. The required entry of u0 can be computed from x(j) using
O
(
m(j)

)
= O(m) operations,

(
u0
)ÎI
2k0+1

=
2j+1−1∑
l=0

(
CII

2j+1

)
2k0+1, l

u0l =
m(j)−1∑
l=0

(
CII

2j+1

)
2k0+1, µ(j)+l

x
(j)

µ(j)+l
.

Thus we can find the first support index µ(j+1) via

µ(j+1) :=

{
µ(j) if x(j+1) = u0,

2j+1 −m(j) − µ(j) if x(j+1) = u1.

3.2 Case 2: Possible Collision

If j = j′, i.e., if S(j) ⊂ I2j−M,2j−1, Lemma 2.5 yields that S(j+1) ⊂ I2j−M,2j+M−1 and
that nonzero entries of x(j+1) might have been added to obtain x(j), so the values of the
nonzero entries of x(j) and x(j+1) are not necessarily the same. The support of x(j) has
length m(j) ≤ m ≤ M , so, by definition of the reflected periodization and Lemma 2.5,
the support of x(j+1)

(0) has at most length m̃(j) := 2j − µ(j) ≤ M . Note that m̃(j) ≥ m(j)

and that m̃(j) > m(j) is possible if there is no collision, i.e., if 2j − 1 /∈ S(j), see Figure
3. Hence, it suffices to consider restrictions of x(j) and x

(j+1)
(0) to vectors of length 2K̃−1,

where 2K̃−2 < m̃(j) ≤ 2K̃−1, taking into account all of their relevant entries.

x
(j)

0

m(j)

2j −M µ(j) 2j − 1

x
(j)

0

m(j)

2j −M µ(j) 2j − 1

x
(j+1)

0 2j+1 − 12j − 1

m̃(j)

µ(j)2j −M

x
(j+1)

0 2j+1 − 12j − 1

m̃(j)

µ(j)2j −M

Figure 3: Illustration of the support of x(j) and one possibility for the support of x(j+1)

for m(j) < m(j+1) (left) and for m(j) = m(j+1) (right), with j = j′.

We then show that x(j+1) can be calculated using essentially one DCT of length 2K̃−1

and further operations of complexity O
(
2K̃
)
. In order to do this we have to employ the

vector x(j) known from the previous iteration step and 2K̃ suitably chosen oddly indexed

entries of
(
x(j+1)

)ÎI, which can be found from xÎI by Lemma 2.3.
The efficient computation of x(j+1) is based on the following theorem.
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Theorem 3.4 Let x ∈ RN with N = 2J , J ∈ N, have a short support of length m ≤M
and assume that x satisfies (2). Let j = j′ and x(j) be the 2j-length reflected periodization
of x according to (5) and Lemma 2.5 with first support index µ(j) and support length m(j).
Assume that we have access to all entries of xÎI. Set m̃(j) := 2j−µ(j), K̃ :=

⌈
log2 m̃

(j)
⌉
+1

and define the restrictions of x(j), x(j+1)
(0) and x

(j+1)
(1) to 2K̃−1-length vectors

z(j) :=
(
x
(j)
k

)2j−1
k=2j−2K̃−1

z
(j+1)
(0)

:=
(
x
(j+1)
k

)2j−1
k=2j−2K̃−1

and z
(j+1)
(1)

:=
(
x
(j+1)
k

)2j+2K̃−1−1

k=2j
.

Then, using the vectors of samples b0 :=
√
2
J−j−1 (

xÎI
2J−j−1(2·2j−K̃(2p+1)+1)

)2K̃−1−1

p=0
and

b1 :=
√
2
J−j−1 (

xÎI
2J−j−1(2(2j−K̃(2p+1)−1)+1)

)2K̃−1−1

p=0
, it holds that

z
(j+1)
(0) =

1

2

(√
2j−K̃(−1)2j−K̃J

2K̃−1 diag(c̃)D2K̃−1C
IV
2K̃−1J2K̃−1

(
b0 − b1

)
+ z(j)

)
and

z
(j+1)
(1) = J

2K̃−1

(
z(j) − z

(j+1)
(0)

)
,

where D
2K̃−1 := diag

(
(−1)k

)2K̃−1−1
k=0

and c̃ :=

(
cos
(
(2k+1)π

4·2j

)−1)2K̃−1−1

k=0

. The reflected

periodization x(j+1) is given as

x
(j+1)
k =


(
z
(j+1)
(0)

)
k−2j+2K̃−1

if k ∈ {2j − 2K̃−1, . . . , 2j − 1},(
z
(j+1)
(1)

)
k−2j

if k ∈ {2j , . . . , 2j + 2K̃−1 − 1},

0 else.

Proof. If j = j′, it follows from Lemmas 2.4 and 2.5 for the support set S(j) of x(j) that

S(j) ⊂ Iµ(j),2j−1 ⊂ I2j−M,2j−1.

With m̃(j) = 2j − µ(j) ≤M and K̃ =
⌈
log2 m̃

(j)
⌉
+ 1, we obtain

S(j) ⊂ I2j−m̃(j),2j−1 ⊂ I2j−2K̃−1,2j−1,

and, by definition of the reflected periodization, the support set S(j+1) of x(j+1) satisfies

S(j+1) ⊂ I2j−m̃(j),2j+m̃(j)−1 ⊂ I2j−2K̃−1,2j+2K̃−1−1.

This allows us to reduce the number computations necessary to find x(j+1). Note that
since we only suppose that xµ(J) 6= 0, xν(J) 6= 0 and xµ(J)+xν(J) 6= 0 in (2), some of the last
m̃(j) entries of x(j) might be zero, despite being obtained by adding two nonzero entries
of x(j+1). However, we know that either µ(j) = µ(j+1) or µ(j) = 2j+1−1−ν(j) by case (iii)
in the proof of Lemma 2.4. Hence, if we restrict x(j) to its last 2K̃−1 ≥ m̃(j) = 2j − µ(j)
entries, i.e., to z(j), we take all of the at most m̃(j) entries into account which correspond
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to possibly nonzero entries of x(j+1) by reflectedly periodizing, as the support of x(j+1) has
to be contained in I2j−m̃(j),2j+m̃(j)−1. Analogously, z(j+1)

(0) and z
(j+1)
(1) take into account

the at most m̃(j) nonzero entries of x(j+1)
(0) and x

(j+1)
(1) . Note that the restrictions still

satisfy
z(j) = z

(j+1)
(0) + J

2K̃−1z
(j+1)
(1) . (16)

Therefore, it is enough to derive a fast algorithm for computing z
(j+1)
(0) , using z(j) and 2K̃

entries of
(
x(j+1)

)ÎI. Recall that it follows from (8) that

((
x(j+1)

)ÎI
2k+1

)2j−1

k=0

=
1√
2
CIV

2j

(
2x

(j+1)
(0) − x(j)

)
. (17)

We can restrict (17) to the vectors z(j) and z
(j+1)
(0) , which yields

((
x(j+1)

)ÎI
2k+1

)2j−1

k=0

=
1√
2j

(
cos

(
(2k + 1)(2l′ + 1)π

4 · 2j

))2j−1

k=0, l′=2j−2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=

1√
2j

(
cos

(
(2k + 1)(2j+1 − (2l + 1))π

4 · 2j

))2j−1, 2K̃−1−1

k, l=0

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=

1√
2j

(
cos

(
(2k + 1)2j+1π

4 · 2j

)
cos

(
(2k + 1)(2l + 1)π

4 · 2j

)

+ sin

(
(2k + 1)2j+1π

4 · 2j

)
sin

(
(2k + 1)(2l + 1)π

4 · 2j

))2j−1, 2K̃−1−1

k, l=0

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=

1√
2j

(
(−1)k sin

(
(2k + 1)(2l + 1)π

4 · 2j

))2j−1, 2K̃−1−1

k, l=0

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
, (18)

where l := 2j − 1 − l′. As z(j) and z
(j+1)
(0) have length 2K̃−1, it suffices to consider

the 2K̃−1 equations corresponding to the indices 2kp + 1, where kp := 2j−K̃(2p + 1),
p ∈

{
0, . . . , 2K̃−1 − 1

}
. We obtain

√
2j(−1)2j−K̃

((
x(j+1)

)ÎI
2kp+1

)2K̃−1−1

p=0

=

sin


(
2j−K̃+1(2p+ 1) + 1

)
(2l + 1)π

4 · 2j

2K̃−1−1

p, l=0

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=

(
sin

(
(2p+ 1)(2l + 1)π

4 · 2K̃−1

)
cos

(
(2l + 1)π

4 · 2j

)
+ cos

(
(2p+ 1)(2l + 1)π

4 · 2K̃−1

)
sin

(
(2l + 1)π

4 · 2j

))2K̃−1−1

p, l=0

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
. (19)
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Defining the vectors

c :=

(
cos

(
(2l + 1)π

4 · 2j

))2K̃−1−1

l=0

and s :=

(
sin

(
(2l + 1)π

4 · 2j

))2K̃−1−1

l=0

,

(19) can be written as

√
2j−K̃+2(−1)2j−K̃

((
x(j+1)

)ÎI
2kp+1

)2K̃−1−1

p=0

=
(
SIV
2K̃−1 · diag(c) +CIV

2K̃−1 · diag(s)
)
J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=
(
CIV

2K̃−1 diag(s) + J
2K̃−1C

IV
2K̃−1D2K̃−1 diag(c)

)
J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=
(

CIV
2K̃−1

J
2K̃−1C

IV
2K̃−1

)(diag(s)
D

2K̃−1 diag(c)

)J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
J
2K̃−1

(
2z

(j+1)
(0) − z(j)

) (20)

where we used a connection between the sine and cosine matrices of type IV (see [17]),

SIV
n = JnC

IV
n Dn with Dn = diag

(
(−1)k

)n−1
k=0

∀n ∈ N.

As the first matrix in (20) is not a square matrix, we consider 2K̃−1 additional equations
from (18). Now we choose the equations corresponding to the indices 2k′p + 1, where

k′p := 2j−K̃(2p+ 1)− 1, p ∈
{
0, . . . , 2K̃−1 − 1

}
. Then we find that

√
2j−K̃+2

((
x(j+1)

)ÎI
2k′p+1

)2K̃−1−1

p=0

=
(−1)k′p√
2K̃−2

sin


(
2j−K̃+1(2p+ 1)− 1

)
(2l + 1)π

4 · 2j

2K̃−1−1

p, l=0

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)

=
(−1)2j−K̃−1√

2K̃−2

(
sin

(
(2p+ 1)(2l + 1)π

4 · 2K̃−1

)
cos

(
(2l + 1)π

4 · 2j

)

− cos

(
(2p+ 1)(2l + 1)π

4 · 2K̃−1

)
sin

(
(2l + 1)π

4 · 2j

))2K̃−1−1

p, l=0

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=
(−1)2j−K̃−1√

2K̃−2

√
2K̃−2

(
SIV
2K̃−1 · diag(c)−CIV

2K̃−1 · diag(s)
)
J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=(−1)2j−K̃

(
CIV

2K̃−1
−J

2K̃−1C
IV
2K̃−1

)(diag(s)
D

2K̃−1 diag(c)

)

·

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
J
2K̃−1

(
2z

(j+1)
(0) − z(j)

) (21)
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Using Lemma 2.3 we denote by

b0 :=

((
x(j+1)

)ÎI
2kp+1

)2K̃−1−1

p=0

=
√
2
J−j−1 (

xÎI2J−j−1(2kp+1)

)2K̃−1−1

p=0
∈ R2K̃−1

and

b1 :=

((
x(j+1)

)ÎI
2k′p+1

)2K̃−1−1

p=0

=
√
2
J−j−1 (

xÎI2J−j−1(2k′p+1)

)2K̃−1−1

p=0
∈ R2K̃−1

the vectors of required entries of xÎI. Combining (20) and (21) yields√
2j−K̃+2(−1)2j−K̃

(
b0

b1

)

=

(
CIV

2K̃−1
J
2K̃−1C

IV
2K̃−1

CIV
2K̃−1

−J
2K̃−1C

IV
2K̃−1

)(
diag(s)

D
2K̃−1 diag(c)

)J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=

(
I
2K̃−1 J

2K̃−1

I
2K̃−1 −J

2K̃−1

)(
CIV

2K̃−1

CIV
2K̃−1

)(
diag(s)

D
2K̃−1 diag(c)

)

·

J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
J
2K̃−1

(
2z

(j+1)
(0) − z(j)

) . (22)

Note that the first matrix in (22) is invertible, as(
I
2K̃−1 J

2K̃−1

I
2K̃−1 −J

2K̃−1

)
· 1
2

(
I
2K̃−1 I

2K̃−1

J
2K̃−1 −J

2K̃−1

)
=

(
I
2K̃−1

I
2K̃−1

)
.

Furthermore, since m̃(j) ≤M and thus K̃ ≤ L ≤ j,

(2l + 1)π

4 · 2j
∈
(
0,
π

4

)
for all l ∈

{
0, . . . , 2K̃−1 − 1

}
. Consequently, we have that

cos

(
(2l + 1)π

4 · 2j

)
∈
(

1√
2
, 1

)
and sin

(
(2l + 1)π

4 · 2j

)
∈
(
0,

1√
2

)
,

which means that the third matrix in (22) is invertible as well, since the multiplication of
the second half of the odd diagonal entries with −1, caused byD

2K̃−1 , does not change the
absolute value of the determinant of the matrix. Thus all matrices in (22) are invertible
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and it follows thatJ
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
J
2K̃−1

(
2z

(j+1)
(0) − z(j)

)
=
√
2j−K̃(−1)2j−K̃

(
diag(s̃)

diag(c̃)D
2K̃−1

)(
CIV

2K̃−1

CIV
2K̃−1

)

·
(
I
2K̃−1 I

2K̃−1

J
2K̃−1 −J

2K̃−1

)(
b0

b1

)
=
√

2j−K̃(−1)2j−K̃
(
diag(s̃)CIV

2K̃−1

diag(c̃)D
2K̃−1C

IV
2K̃−1

)(
b0 + b1

J
2K̃−1

(
b0 − b1

)) (23)

where

c̃ :=

(
cos

(
(2l + 1)π

4 · 2j

)−1)2K̃−1−1

l=0

and s̃ :=

(
sin

(
(2l + 1)π

4 · 2j

)−1)2K̃−1−1

l=0

.

Using only the second 2K̃−1 equations in (23) we obtain

z
(j+1)
(0) =

1

2

(√
2j−K̃(−1)2j−K̃J

2K̃−1 diag(c̃)D2K̃−1C
IV
2K̃−1J2K̃−1

(
b0 − b1

)
+ z(j)

)
,

which implies that z
(j+1)
(0) can be computed in O

(
2K̃−1 log 2K̃−1

)
operations using 2K̃

entries of xÎI, as D
2K̃−1 is a diagonal matrix and J

2K̃−1 is a permutation. Then z
(j+1)
(1)

can be found in O
(
2K̃−1

)
time by (16) and x(j+1) is given as

x
(j+1)
k =


(
z
(j+1)
(0)

)
k−2j+2K̃−1

if k ∈
{
2j − 2K̃−1, . . . , 2j − 1

}
,(

z
(j+1)
(1)

)
k−2j

if k ∈
{
2j , . . . , 2j + 2K̃−1 − 1

}
,

0 else,

since all possibly nonzero entries of x(j+1) are determined by z
(j+1)
(0) and z

(j+1)
(1) .

Note that by choosing the second 2K̃−1 equations in (23) we avoid inverting diag(s),
which would be numerically less stable, since for large K̃ its nonzero entries are rather
close to zero, whereas all nonzero entries of diag(c) are greater than 1√

2
.

4 The Sparse DCT Algorithms

In Section 3 we introduced all procedures necessary for the new sparse DCT for vectors
x ∈ R2J with short support of length m ≤M that satisfy (2).

4.1 The Sparse DCT for Bounded Short Support Length

We suppose that N = 2J and x ∈ RN has a short support of unknown length m, but
that a bound M ≥ m is known. Further, we assume that (2) holds for x and that we
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can access all entries of xÎI ∈ RN . The algorithm begins by computing the initial vector

x(L) = CIII
2L

(√
2
J−L (

xÎI2J−Lk

)2L−1
k=0

)
,

where L := dlog2Me + 1, using a fast DCT-III algorithm for vectors with full support,
see, e.g., [11,17], since DCT-III is the same as IDCT-II. For j ∈ {L, . . . , J−1} we perform
the following iteration steps.

1) If the support of x(j) is not contained in I2j−M,2j−1, recover x(j+1) using the DCT
procedure given in Theorem 3.3.

2) If the support of x(j) is contained in I2j−M,2j−1, recover x(j+1) using the DCT
procedure given in Theorem 3.4.

It follows from Lemma 2.5 that there is at most one index j′ s.t. S(j′) ⊂ I2j′−M,2j′−1.
Hence, we have to apply step 2 at most once. The complete procedure is summarized in
Algorithm 1.

Remark 4.1 For finding the first support index µ(L) and the support length m(L) in
line 2, as well as µ(j+1) and m(j+1) in line 24 efficiently, we choose a threshold ε > 0
depending on the noise level of the data. If we want to determine the support of x(L),
we define the set

T (L) :=
{
k ∈ I0,2L−1 : x

(L)
k > ε

}
=: {u1, . . . , uP }

of indices corresponding to significantly large entries of x(L). This set can be found in
O
(
2L
)
= O (M) time, and we set

µ(L) := u1 and m(L) := uP − u1 + 1.

For j ∈ {L, . . . , J − 1}\{j′}, i.e., if x(j+1) is computed with the DCT proedure given in
Theorem 3.3, µ(j+1) and m(j+1) are computed in line 9 or 12. In order to find the support
of x(j+1) for j = j′ ∈ {L, . . . , J − 1}, i.e., if x(j+1) is obtained by the DCT procedure
given in Theorem 3.4, it suffices to consider the set

T (j+1) :=
{
k ∈

{
2j − 2K̃−1, . . . , 2j + 2K̃−1 − 1

}
: x

(j+1)
k > ε

}
=: {v1, . . . , vQ} ,

where Q ≤ m̃(j) ≤ M . Then T (j+1) can be found in O
(
2K̃
)
= O

(
m̃(j)

)
= O(M) time

as well, and we define

µ(j+1) := v1 and m(j+1) := vQ − v1 + 1.

♦

Having presented our new algorithm we now prove that its runtime and sampling
complexity are sublinear in the vector length N .

Theorem 4.2 Let x ∈ RN , N = 2J , J ∈ N, have a short support of length m and
assume that x satisfies (2). Further suppose that only an upper bound M ≥ m is known.
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Algorithm 1 Sparse Fast DCT for Vectors with Bounded Short Support Length

Input: xÎI, where x ∈ RN , N = 2J , J ∈ N, has an unknown short support of length at most M
and satisfies (2), M and noise threshold ε > 0.

1: L← dlog2Me+ 1 and x(L) ← DCT-III
[√

2
J−L (

xÎI2J−Lk

)2L−1
k=0

]
2: Find µ(L) and m(L).
3: for j from L to J − 1 do
4: if µ(j) < 2j −M then
5: Find α =

√
2
J−j−1

xÎI2J−j−1(2k0+1) 6= 0.

6:
(
u0
)ÎI
2k0+1

← 1√
2j

m(j)−1∑
l=0

cos

(
(2k0+1)(2(µ(j)+l)+1)π

2·2j+1

)
x
(j)

µ(j)+l

7: νt ←

0 if
∣∣∣∣(u0)ÎI2k0+1

− α
∣∣∣∣ < ∣∣∣∣(u0)ÎI2k0+1

+ α

∣∣∣∣ ,
1 else

8: if νt = 0 then
9: µ(j+1) ← µ(j) and m(j+1) ← m(j)

10: x
(j+1)
k ←

{
x
(j)
k if k ∈

{
µ(j+1), . . . , µ(j+1) +m(j+1) − 1

}
0 else

11: else
12: µ(j+1) ← 2j+1 −m(j) − µ(j) and m(j+1) ← m(j)

13: x
(j+1)
k ←

{
x
(j)
2j+1−1−k if k ∈

{
µ(j+1), . . . , µ(j+1) +m(j+1) − 1

}
0 else

14: end if
15: else
16: K̃ ←

⌈
log2

(
2j − µ(j)

)⌉
+ 1

17: z(j) ←
(
x
(j)

2j−2K̃−1+k

)2K̃−1−1

k=0

18: b0 ←
√
2
J−j−1 (

xÎI
2J−K̃(2p+1)+2J−j−1

)2K̃−1−1

p=0

19: b1 ←
√
2
J−j−1 (

xÎI
2J−K̃(2p+1)−2J−j−1

)2K̃−1−1

p=0

20: z
(j+1)
(0) ← 1

2

√
2j−K̃(−1)2j−K̃

J2K̃−1 diag(c̃)D2K̃−1DCT-IV
[
J2K̃−1

(
b0 − b1

)]
+ 1

2z
(j)

21:
(
z
(j+1)
(0)

)
k
←

{(
z
(j+1)
(0)

)
k

if
(
z
(j+1)
(0)

)
k
> ε,

0 else,
k ∈

{
0, . . . , 2K̃−1 − 1

}
22: z

(j+1)
(1) ← J2K̃−1

(
z(j) − z

(j+1)
(0)

)

23: x
(j+1)
k ←


(
z
(j+1)
(0)

)
k−2j+2K̃−1

if k ∈
{
2j − 2K̃−1, . . . , 2j − 1

}
(
z
(j+1)
(1)

)
k−2j

if k ∈
{
2j , . . . , 2j + 2K̃−1 − 1

}
0 else

24: Find µ(j+1) and m(j+1).
25: end if
26: end for
Output: x = x(J)
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Then Algorithm 1 has a runtime of O
(
M logM +m log2

N
M

)
and uses O

(
M +m log2

N
M

)
samples of xÎI.

Proof. Computing the initial vector x(L) in line 1 via a 2L-length DCT-III has a runtime
of O

(
2L log 2L

)
, see, e.g., [11, 17], and finding µ(L) and m(L) needs O

(
2L
)
operations.

For j ∈ {L, . . . , J − 1}\{j′} the support of x(j) is not contained in I2j−M,2j−1; hence,
we have to apply the procedure from Theorem 3.3. Finding a nonzero entry in line 5
requires O

(
m(j)

)
= O(m) operations by Lemma 3.2 and executing lines 6 to 13 has a

runtime of O
(
m(j)

)
as well.

If j = j′, we use the method from Theorem 3.4. The computation of z(j+1)
(0) in lines 20

and 21 requires a DCT-IV of length 2K̃−1 and further operations of complexityO
(
2K̃−1

)
,

since D
2K̃−1 and diag(c̃) are diagonal and J

2K̃−1 is a permutation. Computing z
(j+1)
(1) and

x(j+1) in lines 22 and 23 and finding µ(j+1) and m(j+1) in line 24 needs O
(
2K̃−1

)
opera-

tions. Note that we can only estimate that m̃(j) = O(M) and thus 2K̃−1 = O(M), since
m is not known apriori and the support of x(j) can be located anywhere in I2j−M,2j−1.

Thus, lines 17 to 24 have a runtime of O
(
2K̃−1 log 2K̃−1

)
= O(M logM).

Consequently, Algorithm 1 has an overall runtime of

O

J−1∑
j=L
j 6=j′

m(j) + 2K̃ log 2K̃

 = O ((J − L)m+M logM) = O
(
M logM +m log2

N

M

)
.

The initial vector x(L) can be computed from 2L samples of xÎI in line 1. Finding an

oddly indexed nonzero entry of
(
x(j+1)

)ÎI in line 5 requires at most m(j) samples of xÎI

by Lemma 3.2. Further, we need to take 2K̃ ≤ 2L samples in lines 18 and 19, which
yields a total sampling complexity of

O

J−1∑
j=L
j 6=j′

m(j) + 2L

 = O ((J − L)m+M) = O
(
M +m log2

N

M

)
.

4.2 The Sparse DCT for Exactly Known Short Support Length

Having introduced our new sparse DCT for vectors with bounded short support length
we can now modify Algorithm 1 to better fit the case where the support length m of
x is known exactly, i.e., if M = m. Since there is at most one index j′ for which the
support of x(j′) is contained in the last m entries, the procedure from Theorem 3.4 only
has to be applied if m(j′) < m(j′+1), i.e., if there was a collision of nonzero entries, or if
ν(j
′) = 2j

′ − 1, unlike in Algorithm 1.
We can simply replaceM bym and L = dlog2Me+1 by L := dlog2me+1 in Algorithm

1 to obtain the sparse DCT for vectors with exactly known short support length. Then
m̃(j′) = 2j

′ − µ(j′) = m(j′) = O(m) and K̃ = L. Note that m(j+1) = m for j ≥ j′. We
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find the following runtime and sampling complexities.

Theorem 4.3 Let x ∈ RN , N = 2J , J ∈ N, have a short support of length m and
assume that x satisfies (2). Further suppose that m is known exactly. Then Algorithm 1

has a runtime of O
(
m logm+m log2

N
m

)
and uses O

(
m+m log2

N
m

)
samples of xÎI.

5 Numerics

In the following section we evaluate the performance of the variant of Algorithm 1 for
exactly known support lengths and the variant for bounded short support lengths with
respect to runtime and robustness to noise. To the best of our knowledge most ex-
isting sparse DCT algorithm use a the approach of computing x by recovering y =
(xT , (JNx)

T )T from ŷ by an unstructured and thus inefficient 2m-sparse IFFT. Only Al-
gorithm 2 in [3] uses an IFFT especially tailored to the structure of y, so we only compare
the variants of our algorithm to this method and to Matlab 2018a’s idct routine, which
is part of the Signal Processing Toolbox, see [16]. idct is a fast and highly optimized im-
plementation of the fast inverse cosine transform of type II. Note that, compared to the
implementation of idct in Matlab 2016b, which we used for the numerical experiments
in [3], the runtime of idct in Matlab 2018a has reduced by almost half for arbitrary
nonnegative vectors of length N = 220 on the machine used for the experiments, which
is why the results of the numerical experiments with respect to runtime in this section
are different from the ones in [3], Section 6.2. All algorithms have been implemented in
Matlab 2018a, and the code is freely available in [4, 5]. Note that Algorithm 2 in [3]
does not require any a priori knowledge of the support length, but needs that for x ∈ R2J

the vector y = (x0, x1, . . . , xN−1, xN−1, xN−2, . . . , x0)
T ∈ R2J+1 satisfies∣∣∣∣∣∣

2J+1−j−1∑
l=0

yk+2j l

∣∣∣∣∣∣ > ε ∀ j ∈ {0, . . . , J + 1} (24)

for all |yk| > ε for a noise threshold ε > 0. Algorithm 1, on the other hand, requires an
upper bound M ≥ m on the support length and that x ∈ R2J satisfies (2).
Figure 4 shows the average runtimes of Algorithm 1 for exactly known support lengths,

i.e., forM = m, and for bounded short support lengths withM = 3m, Algorithm 2 in [3]
and idct applied to xÎI for 1,000 randomly generated 220-length vectors x with short
support of lengths varying between 10 and 500,000. For Algorithm 1 and Algorithm 2
in [3] we use the threshold ε = 10−4. The nonzero entries of the vectors are chosen
randomly with uniform distribution between 0 and 10, with xµ(J) and xν(J) chosen from
(ε, 10]. For each vector at most b(m− 2)/2c entries in the support block, excluding the
first and last one, are randomly set to 0. Hence, both (2) and (24) hold. Since for
m = 500,000 we have that M = 3m > N , we only execute Algorithm 1 in the variant for
bounded support lengths up to m = 100,000.
Of course the comparison of the sparse DCT algorithms to the highly optimized, sup-

port length independent idct routine must be flawed; however, one can see that all
three sparse DCT procedures are much faster than idct for sufficiently small support
lengths. For exactly known support lengths Algorithm 1 achieves smaller runtimes for
block lengths up to m = 100,000, for bounded support lengths this is the case for block
lengths up to m = 50,000, where the known bound on the block length is M = 150,000,
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Figure 4: Average runtimes of Algorithm 1 for exactly known short support and for
bounded short support and Algorithm 2 in [3] with ε = 10−4, and Matlab’s
idct for 1,000 random input vectors with short support of length m, bound
M = 3m and vector length N = 220.

and for Algorithm 2 in [3] for block lengths up to m = 1,000. Note that by setting
b(m− 2)/2c entries inside the support to zero, the actual sparsity of x can be almost as
low asm/2; however, this does not affect the runtime of any of the considered algorithms.
It follows from Table 1, presenting the average reconstruction errors for exact data for
all four considered methods, that, while the sparse DCT algorithms do not achieve re-
construction errors comparable to those of idct, their outputs are still very accurate.

m
Algorithm 1, Algorithm 1, Algorithm 2 in [3] idct
M = m M = 3m

10 1.8 · 10−20 1.7 · 10−20 1.3 · 10−19 7.8 · 10−21
100 5.3 · 10−20 3.9 · 10−20 4.9 · 10−18 2.4 · 10−20

1,000 7.5 · 10−14 4.1 · 10−14 4.9 · 10−13 7.6 · 10−20
10,000 1.0 · 10−12 1.4 · 10−12 3.9 · 10−12 2.4 · 10−19
50,000 3.6 · 10−12 2.9 · 10−12 1.5 · 10−11 5.4 · 10−19

100,000 7.5 · 10−12 7.6 · 10−19 2.9 · 10−11 7.6 · 10−19
500,000 1.7 · 10−18 1.7 · 10−18 9.6 · 10−11 1.7 · 10−18

Table 1: Reconstruction errors for the four DCT algorithms for exact data.

Further, we also investigate the robustness of Algorithm 1 for noisy data. We create
disturbed cosine data zÎI ∈ RN by adding uniform noise η ∈ RN to the given data xÎI,

zÎI := xÎI + η.
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(b) Reconstruction error for m = 1,000.

Figure 5: Average reconstruction errors ‖x − x′‖2/N of Algorithm 1 for M = m and
M = 3m, Algorithm 2 in [3] and idct for 1,000 random input vectors with
support length m and vector length N = 220.

We measure the noise with the signal-to-noise ratio (SNR), given by

SNR := 20 · log10

∥∥∥xÎI
∥∥∥
2

‖η‖2
.

Figures 5a and 5b depict the average reconstruction errors ‖x− x′‖2 /N , where x denotes
the original vector and x′ the reconstruction by the corresponding algorithm applied to
zÎI for support lengths m = 100 and m = 1,000. The threshold parameters ε for both
variants of Algorithm 1 and Algorithm 2 in [3] are chosen according to Table 2, where we
use the ε-values from [3], Section 6.2 for Algorithm 2 in said paper. All parameters were
obtained in an attempt to minimize the reconstruction error and maximize the rate of
correct recovery. For Algorithm 1 withM = 3m the reconstruction yields a smaller error

SNR Alg. 1, Alg. 1, Alg. 2 in [3]
m = 100 m = 1,000

0 2.50 2.50 2.50
10 2.00 2.10 1.80
20 1.00 1.50 1.00
30 0.40 0.85 0.50
40 0.15 0.20 0.15
50 0.05 0.10 0.05

Table 2: Threshold ε for Algorithm 1 and Algorithm 2 in [3].

than the one for idct and, for SNR values greater than 10, even a slightly smaller error
than the one for Algorithm 2 in [3] for m = 100 and an error comparable to the one for
Algorithm 2 in [3] for m = 1,000. For exactly known support lengths, the reconstruction
yields a slightly smaller error than the one by idct for both support lengths.
In certain applications it might be important to know the support of x; hence, we
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also examine whether the sparse DCT algorithms can correctly identify the support for
noisy input data. Tables 3 and 4 show the rates of correct recovery of the support for
m = 100 and m = 1,000. As Algorithm 1 and Algorithm 2 in [3] tend to overestimate

Rate of Correct Recovery in % for m = 100

SNR
Alg. 1, Alg. 1, Alg. 1, Alg. 2 in [3] Alg. 2 in [3],
M = m M = 3m M = 3m,

m′ ≤ 3m m′ ≤ 3m

0 61.6 89.9 0.0 83.1 77.1
10 64.0 98.7 85.4 97.6 97.4
20 95.1 100.0 96.2 100.0 100.0
30 99.3 100.0 98.6 100.0 100.0
40 99.9 100.0 99.4 100.0 100.0
50 100.0 100.0 99.9 100.0 100.0

Table 3: Rate of correct recovery of the support of x in % for Algorithm 1 for M = m
and M = 3m and Algorithm 2 in [3], without bounding m′ and with m′ ≤ 3m,
for 1,000 random input vectors with support length m = 100 from Figure 5a.

Rate of Correct Recovery in % for m = 1,000

SNR
Alg. 1, Alg. 1, Alg. 1, Alg. 2 in [3] Alg. 2 in [3],
M = m M = 3m M = 3m,

m′ ≤ 3m m′ ≤ 3m

0 51.6 88.0 0.0 83.1 68.0
10 51.6 93.4 53.7 96.4 95.0
20 99.4 100.0 84.5 100.0 99.7
30 100.0 100.0 89.3 100.0 99.6
40 100.0 100.0 94.8 100.0 99.8
50 100.0 100.0 98.1 100.0 99.8

Table 4: Rate of correct recovery of the support of x in % for Algorithm 1 for M = m
and M = 3m and Algorithm 2 in [3], without bounding m′ and with m′ ≤ 3m,
for 1,000 random input vectors with support length m = 1,000 from Figure 5b.

the support for noisy data, we consider x to be correctly recovered by x′ in the second,
third and fifth column if the support of x is contained in the support found by the sparse
DCT algorithms. In the fourth and sixth column we additionally require that the support
length m′ obtained by the procedures satisfies m′ ≤ 3m. Note that if m is known exactly,
Algorithm 1 will not overestimate the support length m.
For SNR values of 20 and greater all sparse DCT algorithms have very high rates

of correct recovery. Algorithm 1 for bounded short support overestimates the support
length by more than a factor three in less than 4% of the cases for SNR values of 20 or
more for m = 100 and in less than 6 % of the cases for SNR values of 40 or more for
m = 1,000. Algorithm 2 in [3] never overestimates the support length for m = 100 and
in less than 1% of the cases for m = 1,000, both for SNR values of 20 or more.
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