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DEFORMATIONS OF LOG CANONICAL AND F -PURE

SINGULARITIES

JÁNOS KOLLÁR AND SÁNDOR J KOVÁCS

Abstract. We introduce a lifting property for local cohomology, which leads to a unified
treatment of the dualizing complex for flat morphisms with semi-log-canonical, Du Bois or
F -pure fibers. As a consequence we obtain that, in all 3 cases, the cohomology sheaves of the
relative dualizing complex are flat and commute with base change. We also derive several
consequences for deformations of semi-log-canonical, Du Bois and F -pure singularities.
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1. INTRODUCTION

One of the difficulties of higher dimensional birational geometry and moduli theory is that
the occuring singularities are frequently not Cohen-Macaulay.
On a proper Cohen-Macaulay scheme we have a dualizing sheaf ωX and Serre duality. By

contrast, on an arbitrary proper scheme we have a dualizing complex ω
q

X and the isomorphism
of Serre duality is replaced by a spectral sequence of Grothendieck duality.
The “most important” cohomology sheaf of the dualizing complex ω

q

X is

h
− dimX(ω

q

X) ≃ ωX ,

andX is Cohen-Macaulay if and only if the other cohomology sheaves h−i(ω
q

X) are all zero, cf.
[Con00, 3.5.1]. Thus these h−i(ω

q

X) measure “how far” X is from being Cohen-Macaulay; see
Proposition 8.1 for a more precise claim. Our main result implies that in flat families X → B
with log canonical or F -pure fibers, the cohomology sheaves h

−i(ω
q

X/B) are flat over B and
commute with base change. In particular, being Cohen-Macaulay is a deformation invariant
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2 JÁNOS KOLLÁR AND SÁNDOR J KOVÁCS

property for such singularities. Note that for flat families Cohen-Macaulay is always an open
condition but usually not a closed one.
One of the puzzles of higher dimensional singularity theory is that while the singularities

of the Minimal Model Program (log terminal, log canonical, Du Bois, etc.) and of positive
characteristic commutative algebra (F -pure, F -injective, etc.) are very closely related, the
methods to study them are completely different. Here we isolate the following quite powerful
common property for some of these classes.

Definition 1.1. Let A be a noetherian ring, and (T, n) a noetherian local A-algebra. We say
that T has liftable local cohomology over A if for any noetherian local A-algebra (R,m) and
nilpotent ideal I ⊂ R such that R/I ≃ T , the natural morphism on local cohomology

H i
m
(R) // // H i

n
(T )

is surjective for all i.
We say that T has liftable local cohomology if it has liftable local cohomology over Z.

Remark 1.2. Notice that, using the above notation, if φ : A′ → A is a ring homomorphism
from another noetherian ring A′ then if T has liftable local cohomology over A′, then it
also has liftable local cohomology over A. In particular, if T has liftable local cohomology
over Z, then it has liftable local cohomology over any noetherian ring A justifying the above
terminology.
Furthermore, if A = k is a field of characteristic 0 then the notions of having liftable local

cohomology over k and over Z are equivalent. This follows in one direction by the above and
in the other by the Cohen structure theorem [StacksProject, Tag 032A].

Remark 1.3. A closely related notion, a ring being cohomologically full, is defined in [DSM18].
This notion and results of this article are used in [CV18] to settle a conjecture by Herzog on
ideals with square-free initial ideals.

We prove in Theorem 6.1 that DuBois singularities have liftable local cohomology. On the
Frobenius side, the right concept seems to be F -anti-nilpotent singularities, a notion intro-
duced in [EH08], that lies between F -pure and F -injective [Ma14, MQ17]. We are very grate-
ful to L. Ma and K. Schwede for pointing out that, by a result of Ma–Schwede–Shimomoto
[MSS17], F -anti-nilpotent singularities also have liftable local cohomology over their ground
field. We discuss this in Proposition 7.2.
With this definition (cf. Definition 4.2), our main technical theorem is the following.

Theorem 1.4 = Theorem 5.14. Let f : X → B be a flat morphism of schemes that is essentially
of finite type and let b ∈ B such that Xb has liftable local cohomology over B. Then there
exists an open neighborhood Xb ⊂ U ⊂ X such that h−i(ω

q

U/B) is flat over B and commutes
with base change for each i ∈ Z.

For applications the following consequences are especially important.

Corollary 1.5. Let f : X → B be a flat morphism of schemes, essentially of finite type over a
field k. Let b ∈ B be a point. Assume that

(i) either char k = 0 and Xb is DuBois, e.g., semi-log-canonical,

(ii) or char k > 0 and Xb is F -anti-nilpotent, e.g., F -pure.

Then there exists an open neighborhood Xb ⊂ U ⊂ X such that h−i(ω
q

U/B) is flat over B and
commutes with base change for each i ∈ Z.

https://stacks.math.columbia.edu/tag/032A
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Corollary 1.5(i) can be viewed as a generalization of the following Corollary 1.6(i), proved
in [KK10] for projective morphisms and in [MSS17] in general (cf. [KS16b]).

Corollary 1.6. Let (X, x) be a local scheme, essentially of finite type over a field and assume
that

(i) either char k = 0 and X is DuBois, e.g., semi-log-canonical,

(ii) or char k > 0 and X is F -anti-nilpotent, e.g., F -pure.

If (X, x) admits a flat deformation whose generic fiber is Cohen-Macaulay then (X, x) is also
Cohen-Macaulay.

In many cases this is quite sharp, see Example 2.1 and Theorem 8.5 for some stronger
versions. This also gives the following immediate corollary.

Corollary 1.7 (cf. Corollary 8.7). Let X be an abelian variety of dimension at least 2 defined
over a field k. If char k > 0 assume that X is ordinary. Then the cone over an arbitrary
projective embedding of X is not smoothable.

Note that a special case of Corollary 1.7 over C, the non-smoothability of the projective
cone over an abelian variety of dimension at least 2, was proved in [Som79]. See Corollary 8.7

for a stronger version.

1.8. The organization of the paper. In Section 2 we give examples and show some
applications of the main results. In Section 6 we prove that a DuBois local scheme has liftable
local cohomology. In Section 7 we recall a few basic notions about singularities defined by
the behaviour of the Frobenius morphism in positive characteristic and recall that F -anti-
nilpotent singularities have liftable local cohomology over their ground field. In Section 3 and
Section 4 we study infinitesimal deformations of schemes with liftable local cohomology and
prove the main result for families over Artinian bases. In Section 5 we prove a rather general
flatness and base change criterion, see Theorem 5.12, which may be of independent interest
and derive Theorem 1.4 as relatively easy consequences of this and the results of Section 4.
In Section 8 we prove a criterion for Sn singularities in terms of the dualizing complex, see
Proposition 8.1, and use this and Theorem 1.4 to prove Corollary 1.6.

1.9. Dualizing complex and its relatives. The (normalized) dualizing complex of X
is denoted by ω

q

X and if X is of pure dimension n the canonical sheaf of X is defined as
ωX := h

−n(ω
q

X). Note that if X is not normal, then this is not necessarily the push-forward
of the canonical sheaf from the non-singular locus.
We will work with three closely related, but generally different objects :

• the dualizing complex; ω
q

X ,

• the canonical sheaf; ωX = h
−n(ω

q

X), and

• the object defined by ω
q

X := RHomX(Ω
0
X , ω

q

X). (See Section 6 for a description of Ω0
X).

Note that one has a natural morphism ω
q

X → ω
q

X dual to η : OX → Ω0
X .

For a morphism f : X → B, the (normalized) relative dualizing complex of f will be de-
noted by ω

q

X/B and if f has equidimensional fibers of dimension n, then the relative canonical

sheaf of f is ωX/B := h
−n(ω

q

X/B). If B consists of a single (closed) point, then these notions
reduce to the ones discussed above. For more details on relative dualizing complexes see
[StacksProject, Tag 0E2S]

http://stacks.math.columbia.edu/tag/0E2S
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2. EXAMPLES

2.A. Characteristic zero

In this section we review rational, Cohen-Macaulay, and DuBois singularities of cones in
characteristic zero and demonstrate some consequences of the main results.

Example 2.1 Deformations of cones. Let X be a projective variety and L an ample line bundle
on X . Assume for simplicity that X has rational singularities. Let

Ca(X,L ) := Speck

∞⊕

r=0

H0(X,L r)

be the affine cone over X with conormal bundle L and vertex v. Then the singularity
v ∈ Ca(X,L ) is

(2.1.1) rational ⇔ H i(X,L r) = 0 for every i > 0, r ≥ 0,

(2.1.2) Cohen-Macaulay ⇔ H i(X,L r) = 0 for every dimX > i > 0, r ≥ 0 and

(2.1.3) DuBois ⇔ H i(X,L r) = 0 for every i > 0, r > 0;

see [Kol13, 3.11, 3.13] and [GK14, 2.5] for proofs.
Let D ⊂ X be an effective divisor with rational singularities such that L ≃ OX(D). Set

LD := L |D. There is a natural morphism Ca(D,LD) → Ca(X,L ) which is an embedding
if and only if H0(X,L r) ։ H0(D,L r

D) is surjective for every r ≥ 0, equivalently, if and
only if H1(X,L r) →֒ H1(X,L r+1) is injective for every r ≥ 0. As in [Kol13, 3.10], using
Serre vanishing we get that

(2.1.4) Ca(D,LD) is a Cartier divisor of Ca(X,L ) ⇔ H1(X,L r) = 0 for every r ≥ 0.

If this holds then Ca(D,LD) has a deformation whose generic fiber is X \D. So Ca(D,LD)
is smoothable if X \D is smooth.
By looking at the cohomology of the sequences

(2.1.5) 0 → L r−1 → L r → L r
D → 0

we see that

(2.1.6) Ca(D,LD) is Du Bois ⇔ H1(X,L r) ։ H1(X,L r+1) is surjective for every r ≥ 0
and H i(X,L r) = 0 for every i > 1, r ≥ 0.

Putting all these together we see that if Ca(D,LD) is Du Bois and has a flat deformation
to X \ D then v ∈ Ca(X,L ) is a rational singularity. In particular, Ca(D,LD) is Cohen-
Macaulay.
This is actually stronger than Corollary 1.6, but here we also assumed that X \ D has

rational singularities. See also [KS16b] for closely related results.

By Corollary 1.6, if a local, DuBois scheme (X, x) is smoothable, then it is Cohen-Macaulay.
The next example shows that this is close to being optimal for some cones.
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Example 2.2. Let (S,H) be a polarized K3 surface and set X := S×P2. Fix a, b ≥ 1 and set
L (a, b) := π∗1OS(aH)⊗π∗2OP2(b) and let D(a, b) ⊂ X be a smooth member of the associated
linear system.
The affine cone Ca

(
D(a, b),L (a, b)|D(a,b)

)
is a hyperplane section of the cone Ca

(
X,L (a, b)

)
,

hence smoothable. It is not Cohen-Macaulay since H2
(
D(a, b),OD(a,b)

)
= 1 and also not

DuBois since H1
(
D(a, b),L (a, b)|D(a,b)

)
= 1.

However, for any a′ > a, b′ > b the cone Ca

(
D(a, b),L (a′, b′)|D(a,b)

)
is DuBois but still

not Cohen-Macaulay. Thus the cones Ca

(
D(a, b),L (a′, b′)|D(a,b)

)
are not smoothable.

More generally, one gets similar examples starting with any smooth variety X for which
H1(X,OX) = 0 but H i(X,OX) 6= 0 for some 2 ≤ i ≤ dimX − 2.

Example 2.3 Singularities of cones I . Let X be a smooth, projective variety such that KX ≡ 0.
Kodaira vanishing and (2.1.2–3) show that Ca(X,L ) is DuBois. It is Cohen-Macaulay iff
H i(X,OX) = 0 for 0 < i < dimX . This and Corollary 1.6 imply that if Ca(X,L ) is
smoothable then H i(X,OX) = 0 for 0 < i < dimX . In particular, if X is an abelian variety
then Ca(X,L ) is not smoothable. In Corollary 8.7 we prove that if X is an abelian variety,
then Ca(X,L ) cannot be deformed even to an S3 scheme.

2.B. All characteristics

Example 2.4 Singularities of cones II . Let us use the notation introduced in Example 2.1 and
first note that (2.1.1) and (2.1.2) remain true in all characteristics:

(2.4.1) Ca(X,L ) is rational ⇔ H i(X,L r) = 0 for every i > 0, r ≥ 0, and

(2.4.2) Ca(X,L ) is Cohen-Macaulay ⇔ H i(X,L r) = 0 for every dimX > i > 0, r ≥ 0.

For future reference we add a more sophisticated version of (2.1.2):

(2.4.3) Ca(X,L ) is Sn for some n ∈ N ⇔ H i(X,L r) = 0 for every n− 1 > i > 0, r ≥ 0.

The reader may find a proof, for instance, in [Pat13, 4.3], cf. [Kol13, 3.11].

2.C. Positive characteristic

For the definition of F -singularities appearing in this section, please refer to Section 7.

Example 2.5. Let k be a field of characteristic p > 0 and let Y be the curve coinsisting of
the three coordinate axes in A3

k, i.e., let Y = Spec k[x, y, z]/(xy, xz, yz). Then Y is F -pure
by [HR76, 5.38] and hence it is also F -anti-nilpotent by [Ma14].

A frequently used way to show that a class of singularities is invariant under small defor-
mation is to show the following two conditions:

(i) The class of singularities in question satisfies an inversion of adjunction type property,
i.e., if a Cartier divisor Y ⊆ X belongs to this class, then so does X .

(ii) The class of singularities in question satisfies a Bertini type property, i.e., if X belongs
to this class and Y ⊆ X is a general member of a very ample linear system, then Y also
belongs to this class.

It is easy to see that these two conditions imply that if in a flat family a fiber belongs to the
given class of singularities, then so do nearby fibers.
This method indeed proves that Q-Gorenstein F -pure singularities defined over an alge-

braically closed field are invariant under small deformation. Property (i), the inversion of
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adjunction type property, for Gorenstein F -pure singularities holds by [Fed83, 3.4(2)] and
property (ii), the Bertini type property, at least over an algebraically closed field holds by
[SZ13]. The Q-Gorenstein case of (i) can be proved using [Sch09a, 7.2].
Similarly, F -injective singularities with liftable local cohomology satisfy (i) [HMS14].
Without the Q-Gorenstein assumption F -pure singularities do not satisfy (i) [Fed83,

Sin99]. In contrast, F -anti-nilpotent singularities satisfy (i) [MQ17], but it is not known
at the moment whether they satisfy (ii).
The fact that F -anti-nilpotent singularities satisfy (i), but F -pure singularities in general

do not, leads to simple examples of F -anti-nilpotent singularities that are not F -pure:

Example 2.6. [Fed83, Sin99, QS17, MQ17] Let X = Spec k[x, y, z, t]/(xy, xz, y(z − t2) and
Y = (t = 0) ⊆ X . Then Y ≃ Spec k[x, y, z]/(xy, xz, yz) and hence it is F -pure by
Example 2.5. Furthermore, then X is also F -anti-nilpotent by [MQ17, 4.2], but it is not
F -pure by [Sin99, 3.2].

Example 2.7 Singularities of cones III . We have seen in Example 2.3 that in characteristic 0 a
cone over an abelian variety has DuBois singularities. We have a similar statement in positive
characteristic: Let X be an ordinary abelian variety over a field of positive characteristic
and L an ample line bundle on X . Then Ca(X,L ) has F -pure singularities by [MS87,
Lemma 1.1] and hence F -anti-nilpotent singularities by [Ma14].

3. FILTRATIONS ON MODULES OVER ARTINIAN LOCAL RINGS

We will use the following notation throughout.

3.1. Maximal filtrations. Let (S,m, k) be an Artinian local ring and N a finite S-

module with a filtration N = N0 ) N1 ) · · · ) Nq ) Nq+1 = 0 such that Nj

/
Nj+1

≃ k

as S-modules for each j = 0, . . . , q. Further let f : (X, x) → (SpecS,m) be a flat local
morphism and denote the fiber of f over m by Xm. It follows that then for each j = 0, . . . , q,

(3.1.1) f ∗
(
Nj

/
Nj+1

)
≃ OXm

.

3.2. Filtering S. In particular, considering S as a module over itself, we choose a filtration

of S by ideals S = I0 ) I1 ) · · · ) Iq ) Iq+1 = 0 such that Ij
/
Ij+1

≃ k as S-modules for

all 0 ≤ j ≤ q. Observe that in this case I1 = m and for every j there exists a tj ∈ Ij such

that the composition S
tj ·

// Ij // Ij
/
Ij+1

induces an isomorphism S
/
m

≃ Ij
/
Ij+1

. In

particular, ann
(
Ij
/
Ij+1

)
= m. Finally, let Sj := S

/
Ij . Note that S1 = S

/
m

and Sq+1 = S.

3.3. Filtering ωS. Applying Grothendieck duality to the closed embedding given by the
surjection S ։ Sj implies that ωSj

≃ HomS(Sj, ωS) and we obtain injective S-module
homomorphisms ςj : ωSj

→֒ ωSj+1
induced by the natural surjection Sj+1 ։ Sj . Using the

fact that ωS is an injective S-module and applying the functor HomS( , ωS) to the short
exact sequence of S-modules

0 // Ij
/
Ij+1

// Sj+1
// Sj

// 0,
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we obtain another short exact sequence of S-modules:

(3.3.1) 0 // ωSj

ςj
// ωSj+1

// HomS (k, ωS) ≃ k // 0.

Therefore we obtain a filtration of N = ωS by the submodules Nj := ωSq+1−j
as in (3.1)

where q + 1 = lengthS(S) = lengthS(ωS). The composition of the embeddings in (3.3.1) will
be denoted by ς := ςq ◦ · · · ◦ ς1 : ωS1

→֒ ωSq+1
= ωS.

Recall that the socle of a module M over a local ring (S,m, k) is

(3.3.2) SocM := (0 : m)M = {x ∈M | m · x = 0} ≃ HomS(k,M).

SocM is naturally a k-vector space and dimk SocωS = 1 by the definition of the canonical
module. In particular, SocωS ≃ k and this is the only S-submodule of ωS isomorphic to k.

Lemma 3.4. Using the notation from (3.2) and (3.3), we have that

(3.4.1) im ς = SocωS = IqωS.

Remark 3.4.2. Note that we are not simply stating that these modules in (3.4.1) are isomor-
phic, but that they are equal as submodules of ωS.

Proof. Since S1 ≃ S
/
m

≃ k, and hence ωS1
≃ k, it follows that the image of the embedding

ς : ωS1
→֒ ωS maps ωS1

isomorphically onto SocωS:

(3.4.3) im ς = SocωS.

As ωS is a dualizing sheaf, IqωS 6= 0, and since Iq ≃ S
/
m

it follows that

0 6= IqωS ⊆ (0 : m)ωS
= SocωS ≃ k.

Since k is a simple S-module, this implies that IqωS = SocωS which proves (3.4.1). �

4. FAMILIES OVER ARTINIAN LOCAL RINGS

We will frequently use the following notation.

Notation 4.1. Let A be a noetherian ring, (R,m) a noetherian local A-algebra, I ⊂ R a
nilpotent ideal and (T, n) := (R/I,m/I) with natural morphism α : R ։ T .

Definition 4.2. Recall from Definition 1.1 that we say that (T, n) has liftable local cohomology
over A if for any (R,m) as in Notation 4.1, the induced homomorphism on local cohomology
H i

m
(R) ։ H i

n
(T ) is surjective for all i.

We extend this definition to schemes: Let (X, x) be a local scheme over a noetherian ring
A. Then we say that (X, x) has liftable local cohomology over A if OX,x has liftable local
cohomology over A. If f : X → B is a morphism of schemes then we say that X has liftable
local cohomology over B if (X, x) has liftable local cohomology over A for each x ∈ X and
for each SpecA ⊆ B open affine neighbourhood of f(x) ∈ B.

Remark 4.3. A simple consequence of the definition is that if X has liftable local cohomology
over a scheme Z, then for any morphism g : X → B of Z-schemes X has liftable local
cohomology over B as well. In particular, if X has liftable local cohomology over a field k,
then it has liftable local cohomology over any other k-scheme to which it admits a map. In
addition if char k = 0, then X has liftable local cohomology by Remark 1.2.

Next we need a simple lemma regarding liftable local cohomology:
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Lemma 4.4. Using Notation 4.1 let M be an R-module such that there exists a surjective
morphism M ։ T . Assume that the induced natural homomorphism H i

m
(R) ։ H i

n
(T ) is

surjective for some i ∈ N. Then the induced homomorphism on local cohomology

(4.4.1) H i
m
(M) // // H i

m
(T ) ≃ H i

n
(T )

is surjective for the same i. In particular, if (T, n) has liftable local cohomology over A, then
the homomorphism in (4.4.1) is surjective for every i ∈ N.

Proof. Let t ∈ M be such that α(t) = 1 ∈ T and let β : R → M be defined by 1 7→ t.
Then α ◦ β = α : R → T is the natural quotient morphism, hence the surjective morphism
H i

m
(R) ։ H i

m
(T ) factors through H i

m
(M) which proves the statement. �

Proposition 4.5. Let (S,m, k) be an Artinian local ring and f : (X, x) → (SpecS,m) a flat
local morphism. Let N be a finite S-module with a filtration as in (3.1) and assume that
(Xm, x) has liftable local cohomology over S. Then for each i, j, the natural sequence of
morphisms induced by the embeddings Nj+1 →֒ Nj forms a short exact sequence,

0 // H i
x(f
∗Nj+1) // H i

x(f
∗Nj) // H i

x

(
f ∗

(
Nj

/
Nj+1

))
≃ H i

x (OXm
) // 0.

Proof. Since ann
(
Nj

/
Nj+1

)
= m, there is a natural surjective morphism

f ∗Nj ⊗ OXm
։ f ∗

(
Nj

/
Nj+1

)
.

By Lemma 4.4 and (3.1.1), the natural homomorphism

(4.5.1) H i
x(f
∗Nj) // // H i

x

(
f ∗

(
Nj

/
Nj+1

))
≃ H i

x (OXm
)

is surjective for all i. Since f is flat, we have a short exact sequence for every j > 0:

0 // f ∗Nj+1
// f ∗Nj

// f ∗
(
Nj

/
Nj+1

)
// 0,

and hence the statement follows from (4.5.1). �

4.6. The exceptional inverse image of the structure sheaves. Let (S,m, k) be an
Artinian local ring with a filtration by ideals as in (3.2). Further let f : X → SpecS be a flat
morphism that is essentially of finite type and fj = f |Xj

: Xj := X×SpecS SpecSj → SpecSj

where Sj = S/Ij as defined in (3.2), e.g., Xq+1 = X and X1 = Xm, the fiber of f over the
closed point of S. By a slight abuse of notation we will denote ωSpecS with ωS as well, but
it will be clear from the context which one is meant at any given time.
Using the description of the exceptional inverse image functor via the residual/dualizing

complexes [Con00, (3.3.6)] (cf.[R&D, 3.4(a)], [StacksProject, Tag 0E9L]):

(4.6.1) f ! = RHomX(Lf
∗RHomS( , ω

q

S), ω
q

X)

and the facts that S is Artinian and f is flat, we have that

ω
q

Xj/Sj
≃ f !

jOSpecSj
≃ RHomXj

(f ∗j ωSj
, ω

q

Xj
).

http://stacks.math.columbia.edu/tag/0E9L
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By Grothendieck duality

RHomXj
(f ∗j ωSj

, ω
q

Xj
) ≃ RHomX(f

∗
j ωSj

, ω
q

X),

and as f ∗j ωSj
= f ∗ωSj

and ωSj
≃ HomS(Sj, ωS) ≃ RHomS(OSpecSj

, ω
q

S) we obtain that

(4.6.2) ω
q

Xj/Sj
≃ RHomX(f

∗ωSj
, ω

q

X) ≃ f !OSpecSj
,

in particular, that

(4.6.3) ω
q

Xm

≃ f !k ≃ RHomX(f
∗HomS(k, ωS), ω

q

X) ≃ RHomX(OXm
, ω

q

X).

4.7. Natural morphisms of dualizing complexes. We will continue using the no-
tation from (4.6). Applying f ! to the natural surjective morphism Sj+1

// // Sj gives a

natural morphism

(4.7.1) ̺j : ω
q

Xj+1/Sj+1

// ω
q

Xj/Sj
.

Notice that ̺j is Grothendieck dual to f ∗ςj defined in (3.2). Indeed, ςj is obtained by applying

HomS( , ωS) to the morphism Sj+1
// // Sj , and then ̺j is obtained by applying f ∗ and

then RHomX( , ω
q

X). Notice further that h−i(̺j) factors through the natural base change
morphism of Proposition 5.3 for each i ∈ Z.
The composition of the surjective morphisms Sj+1

// // Sj for all j is the natural surjec-

tive morphism S // // S
/
m

≃ k , and hence the composition of the ̺j ’s gives the natural

morphism

(4.7.2) ̺ := ̺1 ◦ · · · ◦ ̺q : ω
q

X/S
// ω

q

X1/S1
= ω

q

Xm

,

which is then Grothendieck dual to f ∗ς := f ∗(ςq ◦ · · · ◦ ς1) and h
−i(̺j) factors through the

natural base change morphism of Proposition 5.3 for each i ∈ Z.

In the rest of this section we will use the following notation and assumptions.

Assumptions 4.8. Let (S,m, k) be an Artinian local ring and f : (X, x) → (SpecS,m) a flat
local morphism that is essentially of finite type. Assume that (Xm, x), where Xm is the fiber
of f over the closed point of SpecS, has liftable local cohomology over S. Note that by
definition x ∈ Xm and that we will keep using the notation introduced in (4.7.1) and (4.7.2).

Theorem 4.9. For each i, j ∈ N,

(i) the natural morphism h
−i(̺j) : h

−i(ω
q

Xj+1/Sj+1
) // // h

−i(ω
q

Xj/Sj
) is surjective,

(ii) the natural morphism h
−i(̺) : h−i(ω

q

X/S)
// // h
−i(ω

q

Xm

) is surjective,

(iii) the natural morphisms induced by ̺j form a short exact sequence,

0 // h
−i(ω

q

Xm

) // h
−i(ω

q

Xj+1/Sj+1
)

h
−i(̺j)

// h
−i(ω

q

Xj/Sj
) // 0,

(iv) ker h−i(̺j) = Ijh
−i(ω

q

Xj+1/Sj+1
) ≃ Ijh

−i(ω
q

X/S)
/
Ij+1h

−i(ω
q

X/S)
,

(v) h
−i(ω

q

Xj/Sj
) ≃ h

−i(ω
q

X/S)
/
Ijh
−i(ω

q

X/S)
≃ h

−i(ω
q

X/S)⊗OX
OXj

, and
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(vi) ker h−i(̺) = mh
−i(ω

q

X/S).

Proof. Let N = ωS and consider the filtration on N given by ωSj
= Nq+1−j, cf. (3.3), (3.3.1).

Further let ( )̂ denote the completion at x (the closed point of X). Then by Proposition 4.5,
for all i, j ∈ N, there exists a short exact sequence

(4.9.1) 0 // H i
x(f
∗ωSj

) // H i
x(f
∗ωSj+1

) // H i
x

(
f ∗

(
ωSj+1

/
ωSj

))
// 0.

Applying local duality [R&D, Corollary V.6.5] to (4.9.1) gives the short exact sequence

0 // Ext−iX

(
f ∗

(
ωSj+1

/
ωSj

)
, ω

q

X

)̂
// Ext−iX (f ∗ωSj+1

, ω
q

X)̂ // Ext−iX (f ∗ωSj
, ω

q

X)̂ // 0.

for all i, j ∈ N. Since completion is faithfully flat [StacksProject, Tag 00MC], this implies that
there are short exact sequences

0 // Ext−iX

(
f ∗

(
ωSj+1

/
ωSj

)
, ω

q

X

)
//

// Ext−iX

(
f ∗ωSj+1

, ω
q

X

)
// Ext−iX

(
f ∗ωSj

, ω
q

X

)
// 0.

(4.9.2)

Recall that Ext−iX

(
f ∗ωSj

, ω
q

X

)
≃ h

−i(ω
q

Xj/Sj
) for each i, j, by (4.6.2). Further observe that the

surjective morphism in (4.9.2) is the −ith cohomology sheaf of the Grothendieck dual of f ∗ςj
and hence via the above isomorphisms, it corresponds to h

−i(̺j). Therefore (4.9.2) implies

(i). By (3.3.1) f ∗
(
ωSj+1

/
ωSj

)
≃ OXm

, and hence Ext−iX

(
f ∗

(
ωSj+1

/
ωSj

)
, ω

q

X

)
≃ h

−i(ω
q

Xm

),

so (4.9.2) also implies (iii). Composing the surjective morphisms in (4.9.2) for all j implies
that the natural morphism

h
−i(ω

q

X/S) ≃ Ext−iX (f ∗ωS, ω
q

X)
h
−i(̺)

// // Ext−iX

(
f ∗ωSq , ω

q

X

)
≃ h

−i(ω
q

Xm

)

is surjective and hence (ii) follows as well.
Similarly, composing the injective maps in (4.9.1) for all j shows that the embedding

ς : ωS1
→֒ ωS induces an embedding on local cohomology:

(4.9.3) H i
x(f
∗ωS1

) ⊆ H i
x(f
∗ωS).

Next we prove (iv) for j = q first. Since h
−i(ω

q

Xq/Sq
) is supported on Xq it follows that

Iqh
−i(ω

q

X/S) ⊆ K := ker h−i(̺q)

Recall from (3.2) that there exists a tq ∈ Iq such that Iq = Stq ≃ S
/
m

and from Lemma 3.4

that IqωS = SocωS. It follows that for j = q the short exact sequence of (3.3.1) takes the
form

(4.9.4) 0 // ωSq
// ωS

τ
// SocωS

// 0,

where τ : ωS ։ SocωS ⊂ ωS may be identified with multiplication by tq on ωS. Applying f
∗

and taking local cohomology we obtain the short exact sequence

(4.9.5) 0 // H i
x(f
∗ωSq) // H i

x(f
∗ωS)

Hi
x(τ)

// H i
x (f

∗ SocωS) // 0,

http://stacks.math.columbia.edu/tag/00MC
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which is of course just (4.9.1) for j = q. Clearly, the morphism H i
x(τ) may also be identified

with multiplication by tq on H i
x(f
∗ωS). By Lemma 3.4 and (4.9.3), the natural morphism

H i
x(ς) : H i

x (f
∗ SocωS) = H i

x(Iqf
∗ωS) = H i

x(f
∗ωS1

) → H i
x(f
∗ωS) is injective. Since H i

x(τ),
i.e., multiplication by tq on H i

x(f
∗ωS), is surjective onto H i

x (f
∗ SocωS), it follows that

(4.9.6) H i
x (f

∗ SocωS)
Hi

x(ς)

≃
// imH i

x(ς) = IqH
i
x(f
∗ωS)

�

�

// H i
x(f
∗ωS),

i.e., H i
x (f

∗ SocωS) coincides with IqH
i
x(f
∗ωS) as submodules of H i

x(f
∗ωS). Next let E be

an injective hull of κ(x) = OX,x

/
mX,x

and consider a morphism φ : H i
x(f
∗ SocωS) → E.

As E is injective, φ extends to a morphism φ̃ : H i
x(f
∗ωS) → E. If a ∈ H i

x(f
∗ωS), then

tqa ∈ IqH
i
x(f
∗ωS) = H i

x (f
∗ SocωS), so

tqφ̃(a) = φ̃(tqa) = φ(tqa) =
(
φ ◦H i

x(τ)
)
(a)

Therefore, φ ◦H i
x(τ) = tqφ̃. Similarly, if ψ : H i

x(f
∗ωS) → E is an arbitrary morphism, then

setting φ = ψ|Hi
x(f

∗ SocωS)
: H i

x(f
∗ SocωS) → E and applying the same computation as above,

with φ̃ replaced by ψ, shows that φ ◦H i
x(τ) = tqψ. It follows that the embedding induced

by H i
x(τ),

(4.9.7) α : HomOX,x
(H i

x(f
∗ SocωS), E) →֒ HomOX,x

(H i
x(f
∗ωS), E)

identifies HomX(H
i
x(f
∗ SocωS), E) with Iq HomX(H

i
x(f
∗ωS), E). By local duality this implies

that (
ker

[
h
−i(̺q) : h

−i(ω
q

X/S) ։ h
−i(ω

q

Xq/Sq
)
]/
Iqh
−i(ω

q

X/S)

)
⊗ ÔX,x = 0

and hence, since completion is faithfully flat, this implies (iv) in the case j = q. Running
through the same argument with S replaced by Sj+1 gives the equality in (iv) for all j. In
addition, (iv) for j = q also implies (v) for j ≥ q. Assuming that (v) holds for j = r + 1
implies the isomorphism in (iv) for j = r. In turn, the entire (iv) for j = r, combined with
(v) for j = r+1, implies (v) for j = r. Therefore, (iv) and (v) follow by descending induction
on j and then (vi) follows from (iv) and the definition of ̺. �

Next we need a simple lemma.

Lemma 4.10. Let R be a ring. M an R-module, t ∈ R and J = (t) ⊆ R. Assume that

(0 : J)M = (0 : J)R ·M . Then the natural morphism J ⊗R M
≃

// JM is an isomorphism.

Proof. This natural morphism is always surjective. Suppose m ∈M is such that t⊗m 7→ 0
via this morphism. In other words such that tm = 0. This means, by definition, that
m ∈ (0 : J)M and hence by assumption there exist y ∈ (0 : J)R ⊆ R and m′ ∈ M such that
m = ym′. Then t⊗m = t⊗ ym′ = yt⊗m′ = 0, since yt = 0. This proves the claim. �

Proposition 4.11. Using the same notation as above,

(i) Ij ⊗ h
−i(ω

q

X/S) ≃ Ijh
−i(ω

q

X/S),

(ii) for any l ∈ N, Ij
/
Ij+l

⊗ h
−i(ω

q

X/S) ≃ Ijh
−i(ω

q

X/S)
/
Ij+lh

−i(ω
q

X/S)
, and

(iii) for any l ∈ N, m
l
/
m

l+1 ⊗ h
−i(ω

q

X/S) ≃ m
l
h
−i(ω

q

X/S)
/
m

l+1
h
−i(ω

q

X/S)
.
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Proof. Notice that since H i
x(f
∗ SocωS) is both a quotient and a submodule of H i

x(f
∗ωS),

there are two natural maps between HomOX,x
(H i

x(f
∗ SocωS), E) and HomOX,x

(H i
x(f
∗ωS), E).

RegardingH i
x(f
∗ SocωS) a quotient module via H i

x(τ) we get the embedding α = ( )◦H i
x(τ)

in (4.9.7), and considering it a submodule the restriction map

β : HomOX,x
(H i

x(f
∗ωS), E) // HomOX,x

(H i
x(f
∗ SocωS), E).

φ ✤
// φ|Hi

x(f
∗ SocωS)

These maps are of course not inverses to each other. In fact, we have already established
(cf. (4.9.7)) that φ|Hi

x(f
∗ SocωS)

◦H i
x(τ) = tqφ and hence the composition α ◦ β is just multi-

plication by tq:

(4.11.1)

φ ∈ HomOX,x
(H i

x(f
∗ωS), E)

α◦β

++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲

β
// HomOX,x

(H i
x(f
∗ SocωS), E)

α≃
��

tqφ ∈ Iq HomOX,x
(H i

x(f
∗ωS), E).

✌

//

This implies, (cf. (4.9.3) and (4.9.6)), that h−i(̺) may be identified with multiplication by tq
on h

−i(ω
q

X/S). Together with Theorem 4.9(vi) this implies that

(0 : Iq)h−i(ω
q

X/S
) = ker h−i(̺) = mh

−i(ω
q

X/S) = (0 : Iq)S · h−i(ω
q

X/S),

and hence the natural morphism

(4.11.2) Iq ⊗S h
−i(ω

q

X/S)
≃

// Iqh
−i(ω

q

X/S)

is an isomorphism by Lemma 4.10. Now assume, by induction, that (i) holds for Sq in place

of S. In particular, keeping in mind that Sq = S
/
Iq, the natural map

(4.11.3) Ij
/
Iq ⊗Sq h

−i(ω
q

Xq/Sq
)
≃

//

(
Ij
/
Iq

)
h
−i(ω

q

Xq/Sq
)

is an isomorphism for all j. Consider the short exact sequence (cf. Theorem 4.9(v)),

0 // Iqh
−i(ω

q

X/S)
// h
−i(ω

q

X/S)
// h
−i(ω

q

Xq/Sq
) // 0

and apply Ij
/
Iq ⊗S ( ). The image of Ij

/
Iq ⊗S Iqh

−i(ω
q

X/S) in Ij
/
Iq ⊗S h

−i(ω
q

X/S) is 0 and

hence by (4.11.3) the natural map

Ij
/
Iq ⊗S h

−i(ω
q

X/S) ≃ Ij
/
Iq ⊗Sq h

−i(ω
q

Xq/Sq
)
≃

//

(
Ij
/
Iq

)
h
−i(ω

q

Xq/Sq
) ≃

≃
(
Ij
/
Iq

)
h
−i(ω

q

X/S)
/
Iqh
−i(ω

q

X/S)
≃ Ijh

−i(ω
q

X/S)
/
Iqh
−i(ω

q

X/S)
.

is an isomorphism. This, combined with (4.11.2) and the 5-lemma, implies (i). Then (ii) is a
direct consequence of (i) and the fact that tensor product is right exact.
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Finally, recall, that the choice of filtration in (3.2) was fairly unrestricted. In particular,
we may assume that the filtration I q of S is chosen so that for all l ∈ N, there exists a j(l)
such that Ij(l) = m

l. Applying (ii) for this filtration implies (iii). �

The following theorem is an easy combination of the results of this section.

Theorem 4.12. Let (S,m, k) be an Artinian local ring and f : (X, x) → SpecS a flat local
morphism that is essentially of finite type. If (Xm, x) has liftable local cohomology over S,
then h

−i(ω
q

X/S) is flat over SpecS for each i.

Proof. This follows directly from Proposition 4.11(iii) and [StacksProject, Tag 0AS8]. �

5. FLATNESS AND BASE CHANGE

In this section we prove a rather general flatness and base change theorem for the cohomology
sheaves of the relative dualizing complex. The main essential assumption is that the relative
dualizing complex exists.

Definitions and notation 5.1. For morphisms f : X → B and ϑ : Z → B, the symbol XZ will
denote X ×B Z and fZ : XZ → Z the induced morphism. In particular, for b ∈ B we write
Xb = f−1(b).
Let f : X → B be a morphism of locally noetherian schemes. Then f is embeddable into

a smooth morphism of dimension N if there exists a smooth morphism π : P → B of pure
relative dimension N over B and a closed embedding  : X →֒ P such that f = π◦. Further-
more, f is locally embeddable into a smooth morphism if each x ∈ X has a neighbourhood
x ∈ Ux ⊆ X such that f |Ux

is embeddable into a smooth morphism of dimension N for some

N ∈ N.
Note that if f : X → B is a flat morphism that is essentially of finite type then it is locally

embeddable into a smooth morphism and that if f is flat and locally embeddable into a
smooth morphism then it admits a relative dualizing complex by [StacksProject, Tag 0E2X].

Lemma 5.2. Let (B, b) be a local scheme and f : X → B a flat morphism embeddable into a
smooth morphism P → B of relative dimension N . Then

h
−i(ω

q

X/B) ≃ ExtN−iP (OX , ωP/B) and h
−i(ω

q

Xb
) ≃ ExtN−iPb

(OXb
, ωPb

).

Proof. Since P/B is an N -dimensional smooth morphism, ω
q

P/B = ωP/B[N ] is a relative

dualizing complex. By Grothendieck duality [R&D, VII.3.4],

h
−i(ω

q

X/B) ≃ h
−i(RHomP (OX , ωP/B[N ])) ≃ ExtN−iP (OX, ωP/B).

The same argument implies the equivalent statement for h−i(ω
q

Xb
). �

The following statement is standard. We include it for ease of reference.

Proposition 5.3. Let f : X → B be a flat morphism of schemes that admits a relative dualizing
complex and let Z → B be a morphism. Then for each i ∈ Z there exists a natural base
change morphism,

̺−iZ : h−i(ω
q

X/B)⊗B OZ −→ h
−i(ω

q

XZ/Z).

Proof. For any complex A
q

, tensoring with an object induces a natural morphism,

h
i(A

q

)⊗M −→ h
i(A

q L
⊗M).

http://stacks.math.columbia.edu/tag/0AS8
http://stacks.math.columbia.edu/tag/0E2X
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Applying this to the dualizing complex gives a natural map

̺−iZ : h−i(ω
q

X/B)⊗B OZ −→ h
−i
(
ω

q

X/B

L
⊗B OZ

)
.

But ω
q

X/B

L
⊗B OZ ≃ ω

q

XZ/Z by the base change property of dualizing complexes [StacksProject,

Tag 0E2Y], so the statement follows. �

Terminology 5.4. Let f : X → B be a flat morphism of schemes and ϑ : Z → B a morphism.
Then for an i ∈ Z, we will say that h−i(ω

q

X/B) commutes with base change to Z if the natural

base change morphism ̺−iZ of Proposition 5.3 is an isomorphism.

Remark 5.5. Since the base change morphism is defined naturally, it can be checked locally
whether it is an isomorphism. In other words, if h−i(ω

q

X/B) commutes with base change to
Z locally on X , then it commutes with base change to Z.

Remark 5.6. A simple case when the condition in (5.4) holds is if f : X → B has Cohen-
Macaulay fibers. In that case the only non-zero cohomology sheaf of the relative dualizing
complex is h−m(ω

q

X/B) ≃ ωX/B where m = dimX−dimB by [Con00, 3.5.1] and it commutes

with base change by [Con00, 3.6.1]. In moduli theory typically one has to deal with non-
Cohen-Macaulay fibers. The next example shows that for these not even ωX/B commutes
with base change. However, we see in Lemma 5.9 that the h

−i(ω
q

X/B) commute with inverse
limits.

Example 5.7. Let Y be a normal quasi-projective threefold with isolated singularities and
a trivial canonical divisor. Assume that Y is S2, but not S3. For instance, a non-Cohen-
Macaulay normal threefold such as a cone over an abelian surface in characteristic 0 satisfies
these conditions cf. Example 2.3. Consider a general projection of Y to a line and resolve
the indeterminacies of the projection map. Let X denote the blow-up of Y on which this
rational map becomes a morphism and let π : X → A1 denote the resulting morphism. Note
that since the projection was general we may assume that the birational morphism X → Y
is locally isomorphic near their singular points. In particular, we may assume that X is a
normal affine threefold with isolated singularities and a trivial canonical divisor, which is S2,
but not S3. Observe that then h

−2(ω
q

X/A1) ≃ ωX/A1 ≃ OX by construction. Next let z ∈ A1

be the image of a non-S3 point of X . Then Xz and hence OXz is not S2, since otherwise X
would be S3 along Xz. At the same time h−2(ω

q

Xz/{z}
) ≃ ωXz is an S2 sheaf (cf.[KM98, 5.69],

[Kov17, 3.7.5]) and hence cannot be isomorphic to OXz . This implies that h−2(ω
q

X/A1) does

not commute with base change for the morphism π : X → A1.

Notation 5.8. Let f : (X, x) → (B, b) = (SpecS,m) be a local morphism. Let q ∈ N,
Sq := S/mq, mq = m/mq its (unique) maximal ideal, Bq = SpecSq, Xq := X ×B Bq, and

fq : (Xq, x) → (Bq, b) the induced local morphism. Further let B̂ := Spec(lim
←−

Sq), the

completion of B at b and X̂ := X ×B B̂.

Lemma 5.9. Let f : (X, x) → (B, b) be a flat local morphism that admits a relative dualizing

complex. Fix an i ∈ Z and assume that the inverse system
(
h
−i−1(ω

q

Xq/Bq
)
)

satisfies the

Mittag-Leffler condition [StacksProject, Tag 0595]. Then the natural base change morphism

http://stacks.math.columbia.edu/tag/0E2Y
http://stacks.math.columbia.edu/tag/0595
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(cf. Proposition 5.3) induces an isomorphism:

lim
←−

(
h
−i(ω

q

X/B)⊗X OXq

) ≃
−→ lim

←−
h
−i(ω

q

Xq/Bq
),

Remark 5.10. If the local scheme (Xb, x) has liftable local cohomology over B, then the

inverse system
(
h
−i−1(ω

q

Xq/Bq
)
)
satisfies the Mittag-Leffler condition by Theorem 4.9(i).

Proof. By the base change property of dualizing complexes [StacksProject, Tag 0E2Y] there
exist natural restricting morphisms,

ω
q

Xq+1/Bq+1
−→ ω

q

Xq+1/Bq+1

L
⊗Xq+1

OXq ≃ ω
q

Xq/Bq
,

so (ω
q

Xq/Bq
) forms an inverse system in Db(X) and hence R limω

q

Xq/Bq
, the derived limit

of the inverse system (ω
q

Xq/Bq
), exists [StacksProject, Tag 0CQD]. Since the inverse sys-

tem
(
h
−i−1(ω

q

Xq/Bq
)
)

satisfies the Mittag-Leffler condition, R1 lim h
−i−1(ω

q

Xq/Bq
) = 0 by

[StacksProject, Tag 091D(3)]. Combined with [StacksProject, Tag 0CQE] this implies that
the natural base change morphism of Proposition 5.3 induces an isomorphism

h
−i(R limω

q

Xq/Bq
)
≃

−→ lim
←−

h
−i(ω

q

Xq/Bq
).

The base change property of dualizing complexes also applies to ω
q

X/B and hence the natural
restricting morphisms induce isomorphisms,

ω
q

X/B

L
⊗X OXq ≃ ω

q

Xq/Bq
.

Then the derived completion of ω
q

X/B with respect to the ideal J := f ∗mB,b = IXb⊆X ⊆ OX,x

[StacksProject, Tag 0BKH] is isomorphic to R limω
q

Xq/Bq
constructed above. Then the state-

ment follows by [StacksProject, Tag 0A06]. �

Remark 5.11. In the proof above it is important to consider the derived limit R limω
q

Xq/Bq

as a derived completion over X and not over B, because for the cited results the h
−i(ω

q

X/B)
need to be finite modules. They are finite over OX,x but not necessarily over OB,b.

Next we prove our main flatness and base change statement.

Theorem 5.12. Let X → B be a flat morphism locally embeddable into a smooth morphism.
Fix an i ∈ Z and assume that for any Artinian scheme Z and morphism Z → B, the sheaf
h
−i(ω

q

XZ/Z) is flat over Z and commutes with any base change to a closed subscheme of Z.

Then h
−i(ω

q

X/B) is flat over B and commutes with arbitrary base change.

Proof. Since the base change morphism ̺−iZ is natural, the statement is local on B, so we
may replace B with a local scheme (B, b). Furthermore, since both flatness and whether or
not ̺−iZ is an isomorphism can be tested locally on X , we may also replace X with a local
scheme (X, x), use the notation established in Notation 5.8, assume that f : (X, x) → (B, b)
is embeddable into a smooth morphism and apply Lemma 5.2.
Let Mq := h

−i
(
ω

q

Xq/Bq

)
. Then by assumption Mq is flat over Bq for every q ∈ N and the

natural base change morphism is an isomorphism:

Mq+1 ⊗Bq+1
OBq

≃
−→Mq.

http://stacks.math.columbia.edu/tag/0E2Y
http://stacks.math.columbia.edu/tag/0CQD
http://stacks.math.columbia.edu/tag/091D
http://stacks.math.columbia.edu/tag/0CQE
http://stacks.math.columbia.edu/tag/0BKH
http://stacks.math.columbia.edu/tag/0A06
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In particular, the induced natural morphism Mq+1 ։ Mq is surjective and hence (Mq)
satisfies the Mittag-Leffler condition and lim

←−
Mq is flat over B by the first statement of

[StacksProject, Tag 0912]. Furthermore, let Q = OXj
for a fixed j ∈ N. Then Mq⊗X Q ≃Mj

for any q ≥ j by assumption and hence lim
←−

(Mq ⊗X Q) ≃Mj . Then by the second statement

of [StacksProject, Tag 0912],

(5.12.1) (lim
←−

Mq)⊗X OXj
= (lim

←−
Mq)⊗X Q ≃ lim

←−
(Mq ⊗X Q) ≃Mj .

On the other hand, lim
←−

Mq ≃ lim
←−

(
h
−i(ω

q

X/B)⊗XOXq

)
by Lemma 5.9 and so by [StacksProject,

Tag 031C],

(5.12.2) (lim
←−

Mq)⊗X OXj
≃ h

−i(ω
q

X/B)⊗X OXj
.

Comparing (5.12.1) and (5.12.2) shows that h−i(ω
q

X/B) commutes with base change to Bq for

every q ∈ N and then h
−i(ω

q

X/B) commutes with arbitrary base change by Lemma 5.2 and

[AK80, 1.9]. Using that Mq = h
−i(ω

q

Xq/Bq
) is flat over Bq for every q ∈ N, it follows that

h
−i(ω

q

X/B) is flat over B by [StacksProject, Tag 0523]. �

Corollary 5.13. Let f : (X, x) → (B, b) be a flat local morphism that is essentially of finite
type. If (Xb, x) has liftable local cohomology over B then h

−i(ω
q

X/B) is flat over B and
commutes with arbitrary base change for each i ∈ Z.

Proof. By Theorem 4.12, Theorem 4.9(i) and Theorem 4.9(v) f satisfies the assumptions of
Theorem 5.12 and hence the statement follows from Theorem 5.12. �

Now we are ready to prove Theorem 1.4.

Theorem 5.14 = Theorem 1.4. Let f : X → B be a flat morphism of schemes that is essentially
of finite type and let b ∈ B such that Xb has liftable local cohomology over B. Then there
exists an open neighborhood Xb ⊂ U ⊂ X such that h−i(ω

q

U/B) is flat over B and commutes
with base change for each i ∈ Z.

Proof. Let x ∈ Xb and temporarily replace f : X → B with the induced local morphism
(X, x) → (B, b). Then h

−i(ω
q

X/B) is flat over B and commutes with arbitrary base change
by Corollary 5.13.
Since localization is an exact functor, we obtain that for the original f : X → B and any

x ∈ Xb the localized cohomology sheaves h−i(ω
q

X/B)x are flat over B and commute with base
change for each i ∈ Z. Both of these properties are open on X and hence there is an open
neighbourhood of x where they hold. The union of these neighbourhoods for all x ∈ Xb

provide an open neighbourhood of Xb where these properties hold. �

Now Theorem 5.14 and Theorem 6.1 implies Corollary 1.5(i) and Theorem 5.14 and Proposition 7.2

implies Corollary 1.5(ii).

6. DU BOIS SINGULARITIES

In characteristic 0, the optimal setting for deformation invariance of cohomology seems to
be the class of DuBois singularities, introduced by Steenbrink [Ste83]. For a proper complex

http://stacks.math.columbia.edu/tag/0912
http://stacks.math.columbia.edu/tag/0912
http://stacks.math.columbia.edu/tag/031C
http://stacks.math.columbia.edu/tag/0523
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variety with DuBois singularities the natural morphism

(⋆) H i(X,CX) // // H i(X,OX)

is surjective, and one should think of DuBois singularities as the largest class for which this
holds, cf. [Kov12]. This surjectivity enables one to use topological arguments to control the
sheaf cohomology groups H i(X,OX) in flat families as in [DJ74].
The proof of Corollary 1.6 for projective morphisms in [KK10] very much relied on global

duality, hence properness. Our first hope was that one can localize the proofs by replacing
(⋆) with the analogous map between local cohomology groups

H i
x(X,CX) // // H i

x(X,OX).

However, this turned out to be too simplistic, one needs to consider instead the map

H i
x(X,CX) // // Hi

x(X,Ω
0
X),

where Ω0
X denotes the 0th associated graded Du Bois complex of X . For the construction

of the Du Bois complex see [DB81, GNPP88] and for its relevance to higher dimensional
geometry see [Kol13, §6]. The surjectivity in (⋆) seems simple, but it is a key element of
Kodaira type vanishing theorems [Kol87], [Kol95, §12],[Kov00],[KSS10] and leads to various
results on deformations of DuBois schemes [DJ74, KK10, KS16b]. Eventually we understood
that for our purposes the key property is liftable local cohomology.

Theorem 6.1. Let X be a scheme, essentially of finite type over a field of characteristic 0.
Assume that X is DuBois. Then X has liftable local cohomology.

For the definition of DuBois singularities the reader is referred to [Kol13, §6]. A scheme
defined over a field of characteristic 0 is said to have DuBois singularities if its base extension
to C does. In addition to the properties mentioned above recall that DuBois singularities
are invariant under small deformation by [KS16a, 4.1].
Let us start the proof of Theorem 6.1 by recalling the following statement.

Theorem 6.2 [KS16a, KS16b, MSS17]. Let X be a scheme, essentially of finite type over a
field of characteristic 0. Then the natural morphism

h
i(ω

q

X) →֒ h
i(ω

q

X)

is injective for every i ∈ Z.

Remark 6.3. Theorem 6.2 was first proved in [KS16a, Theorem 3.3]. A version for pairs,
essentially with the same proof, was given in [KS16b, Theorem B]. Both of these were stated
for reduced schemes even though the proof does not need that assumption. This was noticed
and carefully confirmed in [MSS17, Lemma 3.2] where the proof is carried out in detail for
the not-necessarily-reduced case.

Corollary 6.4. Let X be a scheme, essentially of finite type over a field of characteristic 0 and
x ∈ X a closed point. Then the natural morphism

H i
x(OX) // // Hi

x(Ω
0
X)

is surjective for each i ∈ Z.
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Proof. Let E be an injective hull of the residue field κ(x) as an OX,x-module. Then by local
duality [R&D, Theorem V.6.2] there exists a commutative diagram where the vertical maps
are isomorphisms:

(6.4.1)

RΓx(OX) //

≃

��

RΓx(Ω
0
X)

≃

��

RHomOX,x
(ω

q

X , E)
// RHomOX,x

(ω
q

X , E).

Since E is injective, the functor HomOX,x
( , E) is exact and hence it commutes with taking

cohomology. Thus one has that

h
i(RHomOX,x

(ω
q

X , E)) ≃ HomOX,x
(hi(ω

q

X), E)

and

h
i(RHomOX,x

(ω
q

X , E)) ≃ HomOX,x
(hi(ω

q

X), E).

It follows that by taking cohomology of the diagram in (6.4.1) one obtains for each i the
commutative diagram

(6.4.2)

H i
x(OX) //

≃

��

Hi
x(Ω

0
X)

≃

��

HomOX,x
(hi(ω

q

X), E)
// HomOX,x

(hi(ω
q

X), E).

Again, since HomOX,x
( , E) is exact, it follows from Theorem 6.2 that the bottom homo-

morphism is surjective which implies the desired statement. �

Remark 6.5. An important aspect of Corollary 6.4 is that the local cohomology of OX depends
on the non-reduced structure, while that of Ω0

X does not. Essentially, the left hand side
reflects the algebraic structure, while the right hand side behaves as if it only depended on
the topology (this is not entirely true!).
This behavior allows us to prove Theorem 6.1. The proof is based on the interplay between

the non-reduced and reduced data. It is similar in spirit to the proofs of [DJ74, Lemme 1],
[KS16b, Theorem 5.1], and [MSS17, Lemma 3.3].

Proof of Theorem 6.1. Using Notation 4.1 assume that A = k is a field of characteristic 0 and
that X = Spec T has Du Bois singularities. We need to prove that the induced morphism on
local cohomology H i

m
(R) ։ H i

m
(T ) is surjective for each i. Consider the following diagram:

H i
m
(R)

ξ

��
��

χ
// H i

m
(T )

≃ ϑ

��

H i
m
(Ω0

R)
≃

ζ
// H i

m
(Ω0

T )

Using the notation of the diagram, one has that ξ is surjective by Corollary 6.4, ζ is an
isomorphism because Ω0

R ≃ Ω0
T , and ϑ is an isomorphism, because SpecT has DuBois

singularities. It follows then that χ is surjective. �
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7. F -PURE SINGULARITIES

There is an intriguing correspondence between singularities of the minimal model program in
characteristic 0 and singularities defined by the action of the Frobenius morphism in positive
characteristic. For more on this correspondence the reader may consult [ST12, App. C] or
[Kol13, §8.4]. Our goal here is to show that F -pure, or more generally F -anti-nilpotent
singularities have liftable local cohomology over their ground field.

Definition 7.1. Let (R,m) be a noetherian local ring of characteristic p > 0 with the Frobenius
endomorphism F : R → R; x 7→ xp.
Recall that a homomorphism of R-modules M →M ′ is called pure if for every R-module

N the induced homomorphism M ⊗R N → M ′ ⊗R N is injective. R is called F -pure if the
Frobenius endomorphism is pure. R is called F -finite if R is a finitely generated R-module
via the Frobenius endomorphism F . For instance, if R is essentially of finite type over a
field, then it is F -finite. Further note that if R is F -finite or complete then it is F -pure if
and only if the Frobenius endomorphism F : R → R has a left inverse [HR76, 5.3].
R is called F -injective if the induced Frobenius action on H i

m
(R) is injective for all i ∈ N.

This holds for example if R is F -pure by [HR76, 2.2] and if R is Gorenstein then it is F -pure
if and only if it is F -injective [Fed83, 3.3].
A strengthening of the notion of F -injective was recently introduced in [EH08]: Consider

the induced Frobenius action F : H i
m
(R) → H i

m
(R). A submodule M ⊆ H i

m
(R) is called

F -stable if F (M) ⊆ M and R is called F -anti-nilpotent if for any F -stable submodule
M ⊆ H i

m
(R), the induced Frobenius action on the quotient H i

m
(R)/M is injective. If R

is F -anti-nilpotent, then it is F -injective, since {0} ⊆ H i
m
(R) is an F -stable submodule.

Furthermore, if R is F -pure, then it is F -anti-nilpotent by [Ma14, 3.8]. So we have the
following implications:

(7.1.1) F -pure +3 F -anti-nilpotent +3 F -injective.

Let (X, x) be a local scheme. Then we say thatX has F -pure, resp. F -anti-nilpotent, resp. F -
injective singularities if the local ring OX,x has the corresponding property. An arbitrary
scheme X of equicharacteristic p > 0 has F -pure, resp. F -anti-nilpotent, resp. F -injective
singularities if the local scheme (X, x) has the corresponding property for each x ∈ X .

These singularities are related to the singularities of the minimal model program. Normal
Q-Gorenstein F -pure singularities are log canonical by [HW02] and it is conjectured that in
some form the converse also holds. Similarly, F -injective singularities correspond to DuBois
singularities: If X is essentially of finite type over a field of characteristic 0 and its reduction
mod p is F -injective for infinitely many p’s, then X has DuBois singularities by [Sch09b]
and the converse of this is also conjectured to hold. So the (outside) implication in (7.1.1) is
analogous to that log canonical singularities are DuBois [KK10].
Curiously, we have this additional notion, F -anti-nilpotent, in between the more familiar

F -pure and F -injective notions. It turns out that F -anti-nilpotent, and hence F -pure, rings
have liftable local cohomology, but F -injective in general do not. This suggests that possibly
F -anti-nilpotent is a better analog of DuBois singularities in positive characteristic than F -
injective. Of course, this is far from conclusive evidence, and this issue will not be settled
here.
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These singularities, defined by the action of Frobenius, have been studied extensively
through their local cohomology. So it is no surprise that the fact that F -anti-nilpotent
singularities have liftable local cohomology is a relatively simple consequence of known re-
sults. The following statement is essentially proved in [MSS17, Remark 3.4], although their
statement is slightly different, so we include a proof for completeness.

Proposition 7.2 (Ma-Schwede-Shimomoto). F -anti-nilpotent singularities have liftable local co-
homology over their ground field.

Proof. (Following the argument in [MSS17, Remark 3.4]). Using Notation 4.1 assume that
A = k is a field of characteristic p > 0 and that (R,m) has F -anti-nilpotent singularities.
We need to prove that the induced morphism on local cohomology H i

m
(R) ։ H i

m
(T ) is

surjective for each i (cf. Definition 1.1).
Since the statement is about local cohomology we may assume that R is complete and

hence R ≃ R′/J where R′ is a complete regular local ring and J ⊆ R′ is an ideal. Note that
denoting the pre-image of I ⊂ R in R′ by I ′, we have that T ≃ R′/I ′ is also a quotient of R′.
Let M : = im [H i

m
(R) → H i

m
(T )], which is an F -stable submodule of H i

m
(T ). Then M

contains F e(H i
m
(T )) for some e > 0 by [Lyu06, Lemma 2.2] and hence the Frobenius action

on H i
m
(T )/M is nilpotent. In particular it is injective only if this quotient is 0. Therefore, if

R is F -anti-nilpotent, then H i
m
(R) ։ H i

m
(T ) is surjective as desired. �

Corollary 7.3 (Ma). F -pure singularities have liftable local cohomology over their ground field.

Proof. F -pure singularities are F -anti-nilpotent by [Ma14, 3.8], so this is a direct consequence
of Proposition 7.2. �

8. DEGENERATIONS OF COHEN-MACAULAY SINGULARITIES WITH LIFTABLE LOCAL

COHOMOLOGY

Proposition 8.1. Let Z be a scheme that admits a dualizing complex ω
q

Z , z ∈ Z a (not-
necessarily-closed) point, and n ∈ N. Then Z is Sn at z if and only if for all i ∈ Z,

(8.1.1) h
−i(ω

q

Z)z = 0 for i < min(n, dimz Z) + dim z.

In particular, if Z is equidimensional, then Z is Sn if and only if for all i ∈ Z, i < dimZ,

(8.1.2) dim supp h−i(ω
q

Z) ≤ i− n.

(In this statement we take dim ∅ = −∞).

Proof. Since h
−i(ω

q

Z) = Ext−iZ (OZ , ω
q

Z), (8.1.1) follows directly from [Kov11, Prop 3.2].
Next, let i ∈ Z, i < dimZ be such that h−i(ω

q

Z) 6= 0 and let z ∈ supp h−i(ω
q

Z) be a general
point such that dim z = dim supp h−i(ω

q

Z). If Z is Sn, then i ≥ min(n, dimz Z) + dim z by
(8.1.1) and hence, since i < dimZ, we must have min(n, dimz Z) = n (this is where Z being
equidimensional is used), so indeed dim supp h−i(ω

q

Z) ≤ i− n.
In order to prove the other implication let i ∈ Z, i < dimZ be again such that h−i(ω

q

Z) 6= 0,
but now choose an arbitrary point z ∈ supp h−i(ω

q

Z). In this case we only have that
dim z ≤ dim supp h−i(ω

q

Z), but this will be enough. If dim supp h−i(ω
q

Z) ≤ i−n < dimZ−n,
then n < dimZ − dim supp h−i(ω

q

Z) ≤ dimZ − dim z = dimz Z, i.e., min(n, dimz Z) = n. It
also follows that i ≥ n + dim supp h−i(ω

q

Z) ≥ min(n, dimz Z) + dim z, and hence Z is Sn at
z by (8.1.1). We obtain that for all i < dimZ, supp h−i(ω

q

Z) is contained in the Sn-locus of
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Z. However, Z is Cohen-Macaulay and hence Sn at every point in Z \
⋃

i<dimZ supp h−i(ω
q

Z),
which proves (8.1.2). �

Corollary 8.2. Let Z be an equidimensional scheme that admits a dualizing complex ω
q

Z. If Z
is Sn for some n ∈ N, then h

−i(ω
q

Z) = 0 for i < n.

Theorem 8.3. Let f : X → B be a flat morphism with equidimensional fibers that is locally
embeddable into a smooth morphism. Assume that there exists a b0 ∈ B such that Xb0 has
liftable local cohomology over B. If Xb0 is not Sn then there exists an open subset b0 ∈ V ⊆ B
such that Xb is not Sn for each b ∈ V .

Proof. By Theorem 5.14 there exists an open neighborhoodXb ⊂ U ⊂ X such that h−i(ω
q

U/B)

is flat over B and commutes with base change for each i ∈ Z. Then dim supp h−i(ω
q

Ub
) is

a locally constant function on the set {b ∈ B | h−i(ω
q

Xb
) 6= 0}, so the claim follows from

(8.1.2). �

8.A. Deformations of local schemes

Definition 8.4. Let (A,m1, . . . ,mr) be a semi-local ring. Then (X, x1, . . . , xr) is called a semi-
local scheme where X = SpecA and x1 = m1, . . . , xr = mr ∈ X . If r = 1 and A is a local
ring then (X, x1) is a local scheme.
A family of semi-local schemes consists of a pair (X , x ) where x ⊆ X is a closed subscheme

and a flat morphism f : X → B that is essentially of finite type such that f |x : x → B is a

dominant finite morphism and for any b ∈ B, (Xb, red(xb)) is an equidimensional semi-local
scheme. By a slight abuse of notation this family of semi-local schemes will be denoted by
f : (X , x ) → B.
Let P be a local property of a scheme such as being DuBois, F -pure, F -anti-nilpotent,

Sn, or Cohen-Macaulay. We will say that a semi-local scheme (X, x1, . . . , xr) has property P

if X is P at x1, . . . , xr. In particular, we will say that (X, x1, . . . , xr) is a DuBois semi-local
scheme, etc. Similarly for “local scheme” in place of “semi-local scheme”.

Theorem 8.5. Let f : (X , x ) → B be a family of semi-local schemes. Assume that

(i) B is irreducible,

(ii) the fibers of f are equidimensional,

(iii) there exists a b0 ∈ B such that Xb0 has liftable local cohomology over B, and

(iv) there exists a b1 ∈ B and an n ∈ N such that Xb1 is Sn (resp. Cohen-Macaulay).

Then there exists an open set b0 ∈ U ⊆ B such that Xb is Sn (resp. Cohen-Macaulay) for
each b ∈ U . In particular, Xb0 is Sn (resp. Cohen-Macaulay).

Proof. It is enough to prove the statement for the Sn property. Since f |x is proper, the set

U := {b ∈ B | Xb is Sn} is open in B by [EGA-IV/3, 12.1.6]. By (iv) it is non-empty and hence
it is dense in B. Then it must contain b0 by Theorem 8.3, which proves the statement. �

Remark 8.6. If Xb0 has DuBois singularities then we may even choose U such that Xb is Sn

and has DuBois singularities for all b ∈ U by [KS16a, 4.1]. As we mentioned earlier, it is not
known whether small deformations of F -anti-nilpotent singularities remain F -anti-nilpotent.
It is also an interesting question whether the condition of having liftable local cohomology
is invariant under small deformations.
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It follows that Theorem 8.5 applies to families of semi-local schemes with DuBois or F -
anti-nilpotent singularities by Theorem 6.1 and Proposition 7.2 (cf. Remark 4.3).
As a simple consequence we obtain a generalization of Example 2.3.

Corollary 8.7. Let Z be a normal projective variety over a field k such that KZ is Q-Cartier
and numerically equivalent to 0. Let L be an ample line bundle on Z and X = Ca(Z,L )
the affine cone over Z with conormal bundle L . If X has liftable local cohomology over k
and admits an Sn deformation for some n ∈ N, then H i(Z,OZ) = 0 for 0 < i < n − 1. In
particular, a cone over an abelian variety (ordinary, if char k > 0) of dimension at least 2
does not admit an S3 deformation.

Proof. If X admits an Sn deformation for some n ∈ N, then X itself is Sn by Theorem 8.5 and
the first statement follows from (2.4.3). Then the second statement follows from Example 2.3

and Theorem 6.1 in characteristic 0 and from Example 2.7 and Corollary 7.3 in positive char-
acteristic. �

Remark 8.8. As noted in the introduction, it is proved in [Som79] that the projective cone
over an abelian variety of dimension at least 2 over C is not smoothable inside the ambient
projective space. This is a strict special case of Corollary 8.7. In general, it is possible that
a non-smoothable projective variety is locally smoothable. An example of that is given in
[CS16, 2.18]. Furthermore, Corollary 8.7 is also valid in positive characteristic.
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[KS16b] S. J. Kovács and K. Schwede: Inversion of adjunction for rational and Du Bois pairs, Algebra
Number Theory 10 (2016), no. 5, 969–1000.
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