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GENERATORS OF BIEBERBACH GROUPS WITH 2-GENERATED

HOLONOMY GROUP

HO YIU CHUNG

Abstract. An n-dimensional Bieberbach group is the fundamental group of a closed flat

n-dimensional manifold. K. Dekimpe and P. Penninckx conjectured that an n-dimensional

Bieberbach group can be generated by n elements. In this paper, we show that the

conjecture is true if the holonomy group is 2-generated (e.g. dihedral group, quaternion

group or simple group) or the order of holonomy group is not divisible by 2 or 3. In order

to prove this, we show that an n-dimensional Bieberbach group with cyclic holonomy

group of order larger than two can be generated by (n− 1) elements.

1. Introduction

We first introduce the geometric definition of a crystallographic groups. A group Γ is said to

be an n-dimensional crystallographic group if it is a discrete subgroup of Rn⋊O(n), which

is the group of isomotries of Rn and it acts cocompactly on Rn. By The First Bieberbach

Theorem, [15, Theorem 2.1], Γ∩ (Rn× I) is isomorphic to Zn and Γ/Γ∩ (Rn× I) is a finite

group called the holonomy groups of Γ. We say Γ is an n-dimensional Bieberbach group if

it is an n-dimensional torsion-free crystallographic group. In this paper, we focus on the

below conjecture.

Conjecture 1.1. [8, Dekimpe-Penninckx] Let Γ be an n-dimensional Bieberbach group.

Then the minimum number of generators of Γ is less than or equal to n.

The conjecture was solved for some special cases. For example, the conjecture is true if the

holonomy group is an odd prime p-group (see [1]), or the holonomy group is an elementary

abelian p-group (see [8]). On the other hand, by a computer program namely CARAT, it

has been checked that the conjecture is true if the Bieberbach group has dimension less

than 7 (see [5]).

There is a connection between the number of generators of Bieberbach group and the

number of generators of a finite group that can act freely on an n-torus (see [10]). Let G
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be a finite group. If G acts freely on an n-torus T n, the quotient space T n/G is a manifold

M and we get a short exact sequence as below,

π1(M) G 1π1(T
n)0

where π1(M) is an n-dimensional Bieberbach group. Hence if π1(M) can be generated by

n elements, then the minimal number of generators of G should not be larger than n. For

instance, we know that (Z/2Z)n+1 cannot act freely on T n for n ≥ 1. (see [8],[10]).

Let G be a group and M be a ZG-module. Throughout this paper, we denote d(G) to be

the minimal number of generators of G and denote rkG(M) to be the minimal number of

generators of M as a ZG-module. Our paper is divided into several sections. In Section 2,

we give some basic definitions and some related properties of crystallographic groups. In

Section 3, we discuss the number of generators of ZCm-module, where Cm is a cyclic group

of order m. In Section 4, we present our three main theorems. The below three theorems

are our main results.

Theorem A. Let Γ be an n-dimensional crystallographic group with holonomy group

isomorphic to Cm = 〈g|gm = 1〉 where m ≥ 3.

(i) If m is divisible by prime larger than 3, then d(Γ) ≤ n− 2.

(ii) If m is not divisible by prime larger than 3 and Γ is torsion-free, then d(Γ) ≤ n− 1.

The idea of the proof of Theorem A(i) is to consider Γ ∩ (Rn × I) as a ZCp-module

where p is prime larger than 3. We use the module structure to reduce the number of

generators. For Theorem A(ii), we construct a surjective homomorphism from Γ to Z.

Then by studying how Z acts on the kernel of the homomorphism, we can eliminate some

redundant generators.

By Theorem A, we get two corollaries. One shows that a general n-dimensional Bieberbach

group can be generated by 2n elements. The other corollary shows an n-dimensional

Bieberbach group with a simple group as holonomy group can be generated by n − 1

elements.

Theorem B. Let Γ be an n-dimensional crystallographic group with holonomy group

isomorphic to a finite group G, where the order of G is not divisible by 2 or 3. Then

d(Γ) ≤ n.

The idea of the proof of Theorem B is to apply results from [11] to get a relation between

the number of generators of the finite group G and its Sylow p-subgroups. Then we apply

results from [1] to prove Theorem B.
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Theorem C. Let Γ be an n-dimensional Bieberbach group with 2-generated holonomy

group. Then d(Γ) ≤ n.

The idea of the proof of Theorem C is to consider a Bieberbach subgroup with cyclic

holonomy group. Then we apply Theorem A to get the desired bound for generators of

the Bieberbach group Γ.

1.1. Acknowledgment. I would like to thank my supervisor Dr. Nansen Petrosyan for

his help and guidance.

2. Background

In this section, we recall some properties of crystallographic group from [6] and [15]. Let

Γ be an n-dimensional crystallographic group. By The First Bieberbach Theorem, [15,

Theorem 2.1], Γ ∩ (Rn × I) is isomorphic to Zn and it is the maximal abelian subgroup

with finite index, where I is the identity element in the orthogonal group. Therefore Γ can

be expressed as the short exact sequence

(1) Γ G 1Zn0
pι

where G is a finite group, ι : Zn →֒ Γ is an inclusion map which maps ei to (ei, I) where

e1, ..., en are the standard basis of Zn and p : Γ → G is a projection map which maps (a,A)

to A. Given such a short exact sequence, it will induce a representation ρ : G → GLn(Z)

given by ρ(g)x = ḡι(x)ḡ−1, where x ∈ Zn and ḡ is chosen arbitrarily such that p(ḡ) = g.

In this case, we call the group G to be the holonomy group and the representation ρ to be

the holonomy representation of Γ. It is well known that ρ is a faithful representation (see

[15, Chapter 2]).

Now we are going to introduce the algebraic definition for crystallographic groups, which

is equivalent to the geometric definition of crystallographic groups (see [15, Theorem 2.2]).

We say Γ is an n-dimensional crystallographic group if it can be expressed as the below

short exact sequence

(2) Γ G 1Zn0

where G is finite group and the induce representation ρ : G → GLn(Z) is a faithful

representation. Given an n-dimensional crystallographic group Γ, with holonomy group G.

Every element γ ∈ Γ can be expressed as (a, g) where a ∈ Rn and g ∈ G. The operation

in Γ is given by (a1, g1)(a2, g2) = (a1 + ρ(g1)(a2), g1g2), where (a, g), (b, h) ∈ Γ and ρ

is the holonomy representation. Notice that Γ will induce the holonomy representation

ρ : G → GLn(Z). Therefore we can consider Γ∩(Rn×I) ∼= Zn as a ZG-module. We denote
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rkG(Z
n) to be the minimal number of generators of Zn as a ZG-module. In particular, if

G is a cyclic group with generator g and let ρ : G → GLn(Z) where g 7→ M ∈ GLn(Z) be

its matrix holonomy representation. For convenience, we denote element (a, g) ∈ Γ to be

(a,M) and denote the ZG-module Zn to be Zn
M to specify that the G-action is given by

the matrix M . We will denote In to be the identity matrix of dimension n and Cm to be

a cyclic group of order m.

Remark 2.1. Let Γ be an n-dimensional crystallographic group with holonomy group G,

where G is generated by m elements namely a1, ..., am. Then by sequence (1), we have the

following two observations,

(i) d(Γ) ≤ rkG(Z
n) + d(G).

(ii) {ι(e1), ..., ι(en), α1, ..., αm} can be a generating set of Γ where e1, ..., en are the standard

basis of Zn and αi is chosen arbitrarily such that p(αi) = ai for all i = 1, ...,m.

Definition 2.2. Let G be a group, M be a ZG-module and ρ : G → GLm(Z) be the

representation correspond to the ZG-module M .

(i) N is a submodule of M if N is a subgroup of M which is closed under the action of ring

elements.

(ii) M is decomposable if M is the direct sum of submodules. M is indecomposable if M

is not decomposable.

(iii) M is Z-reducible if there exists a matrix N ∈ GLm(Z) such that Nρ(g)N−1 =

(

∗ ∗

0 ∗

)

for g ∈ G. M is Z-irreducible if M is not Z-reducible.

Now, we are going to give a short introduction to the properties of holonomy representation.

Let M1, ...,Mk be square matrices with entries in Z, we denote tri(M1, ...,Mk) to be matrix

of form as below,

tri(M1, ...,Mk) :=













M1 ∗

M2

. . .

0 Mk













Let ρ : Cm → GLn(Z) be a faithful representation. Since ρ is defined up to isomorphism,

we are able to conjugate it by a suitable invertible matrix and assume ρ(g) = tri(A1, ..., At)

for some t ∈ N and A1, ..., At are square matrices such that Z
dim(A1)
A1

,..., Z
dim(At)
At

are Z-

irreducible modules and
∑t

j=1 dim(Aj) = n.
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Remark 2.3. Let M = tri(A1, ..., At) where A1, ..., At are square matrices. Denote the

order of Ai to be ai for i = 1, ..., t and m to be the order of M . Then the least common

multiple of a1, ..., at equals to m. In particular, m is divisible by ai for i = 1, ..., t.

3. Generators of ZCm-module

Let Γ be an n-dimensional crystallographic group with holonomy group isomorphic to Cm.

We can consider Γ∩ (Rn × I) ∼= Zn as a ZCm-module. Since we can restrict the Cm-action

to be a Ck-action as long as m is divisible by k, we can also view Zn as a ZCk-module. It

is clear that rkCm(Z
n) ≤ rkCk

(Zn). The below lemma and proposition are on the number

of generators of ZCm-module.

Lemma 3.1. Let ρ : Cp → GLn(Z) be a faithful representation and Zn be the correspon-

dence ZCp-module, where p is prime. Then rkCp(Z
n) ≤ n − p + a, where a = 2 if p ≤ 19,

otherwise a = 3.

Proof. Let g be the generator of Cp. Assume ρ(g) = tri(A1, ..., Ak) where Z
dim(A1)
A1

,· · · ,

Z
dim(Ak)
Ak

are Z-irreducible ZCp-modules. By Remark 2.3, there exists i ∈ {1, ..., k} such

that Ai has order p. By [7, section 74] Ai has dimension p − 1 and the module Z
dim(Ai)
Ai

is isomorphic to an ideal in Z[ζ] where ζ is a primitive p-root of unity. If p ≤ 19, by [13,

Section 29.1.3], the class number of Z[ζ] is 1. Therefore the module Z
dim(Ai)
Ai

is a principle

ideal and it is isomorphic to Z[ζ]. Hence rkCp(Z
dim(Ai)
Ai

) = 1. Now assume p > 19. Since

Z[ζ] is a Dedekind domain. By [13, Section 7.1-2], every ideal in a Dedekind domain can

be generated by two elements. Hence rkCp(Z
dim(Ai)
Ai

) ≤ 2. Therefore we have

rkCp(Z
n) ≤ n− dim(Ai) + rkCp(Z

dim(Ai)
Ai

) = n− p+ 1 + rkCp(Z
dim(Ai)
Ai

) ≤ n− p+ a

where a = 2 if p ≤ 19, otherwise a = 3. �

Proposition 3.2. Let ρ : Cm → GLn(Z) be a faithful representation and Zn be the

correspondence ZCm-module of ρ, where m ≥ 3.

(i) If m is divisible by prime larger than 3, then rkCm(Z
n) ≤ n− 3.

(ii) If m is not divisible by prime larger than 3, then rkCm(Z
n) ≤ n− 1.

Proof. Let m = ps11 · · · pstt be the prime decomposition of m and assume p1 < · · · < pt. Let

g be the generator of Cm.

(i): Consider H = 〈gm/pt〉 ∼= Cpt , a subgroup of Cm. We can view Zn as a ZCpt-module

where the Cpt-action is given by ρ|H . Since ρ|H is a faithful representation, by Lemma
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3.1, we have rkCpt
(Zn) ≤ n− pt + a. Since m is divisible by prime larger than 3, we have

rkCm(Z
n) ≤ n− 3.

(ii): We observe that m is either divisible by 3 or 4. If m is divisible by 3, we consider Zn

as ZC3-module. By Lemma 3.1, we have rkC3
(Zn) ≤ n−1. Hence rkCm(Z

n) ≤ n−1. Now

we assume m is divisible by 4. Consider H ′ = 〈gm/4〉 ∼= C4, a subgroup of Cm. We can

view Zn as a ZC4-module by restricting the Cm-action to a C4-action, where the C4-action

is given by ρ|H′ . We assume ρ|H′(gm/4) = tri(M1, ...,Mk) where Z
dim(M1)
M1

,..., Z
dim(Mk)
Mk

are

Z-irreducible ZC4-modules. By Remark 2.3, there exists i ∈ {1, ..., k} such that Mi is a

matrix of order 4. Let φ : C4 → GLn(Z) be the corresponding representation of Z
dim(Mi)
Mi

.

By [2, Section 5], there is only one faithful integral Z-irreducible C4-representation up to

equivalence. Hence we assume Mi is equivalent to

(

0 1

−1 0

)

. Let y1 = (1, 0) ∈ Z2 and

y2 = (0, 1) ∈ Z2 be the standard basis of Z2
Mi

. We have φ(gm/4)y2 = y1. Hence Z2
Mi

can

be generated by y2 as a ZC4-module. Since rkC4
(Zmi

Mi
) ≤ mi − 1, we have rkCm(Z

n) ≤
∑k

z=1 rkC4
(Zmz

Mz
) ≤ n− 1. �

The following Lemma is on the dimension of the fix point set of a cyclic holonomy repre-

sentation.

Lemma 3.3. Let Γ be an n-dimensional Bieberbach group with holonomy group isomor-

phic to Cm = 〈x|xm = 1〉. Then (Zn)Cm 6= 0.

Proof. Let α ∈ H2(Cm,Zn) be the second cohomology class that corresponds to the exten-

sion (1) of Γ. Assume by contradiction that (Zn)Cm = 0. By [4, Page 58], we have

H2(Cm,Zn) = (Zn)Cm/{(1 + x+ x2 + ...+ xm−1)z|z ∈ Zn}

Given (Zn)Cm = 0, hence we have H2(Cm,Zn) = 0, which forces α = 0. By [15, Theorem

3.1], since α = 0, that means the extension (1) of Γ splits and therefore Γ has torsion.

Hence Γ is not a Bieberbach group, which is a contradiction. �

4. Main Result

Theorem A. Let Γ be an n-dimensional crystallographic group with holonomy group

isomorphic to Cm = 〈g|gm = 1〉 where m ≥ 3.

(i) If m is divisible by prime larger than 3, then d(Γ) ≤ n− 2.

(ii) If m is not divisible by prime larger than 3 and Γ is torsion-free, then d(Γ) ≤ n− 1.
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Proof. (i): By Remark 2.1, we have d(Γ) ≤ rkCm(Z
n) + 1. Since m is divisible by prime

larger than 3, by Proposition 3.2, we have rkCm(Z
n) ≤ n − 3. Therefore we have d(Γ) ≤

n− 2.

(ii): By Remark 2.1, let Γ = 〈ι(e1), ..., ι(en), α〉, where e1, ..., en are the standard basis

of Zn and p(α) = g. By [12, Proposition 1.4] and [15, Lemma 5.2], we have b1(Γ) =

rk((Zn)Cm). By Lemma 3.3, let k = b1(Γ) > 0. Without loss of generality, every el-

ement of Γ can be expressed as (a, tri(M, Ik)) where a ∈ Rn and M is a square ma-

trix of dimension n − k. In particular, let α = (x, tri(A, Ik)) where x = (x1, ..., xn) ∈

Rn and A is a square matrix of dimension n − k which do not fix any non-trivial el-

ements. In other words, Au = u if and only if u = 0 for u ∈ Rn−k. First we as-

sume xn−k+1 = · · · = xn = 0. Let v := (x1, ..., xn−k) ∈ Rn−k. By simple calcula-

tions, we get αm =
(

(
∑m−1

s=0 Asv, 0, ..., 0), In

)

. Since A(
∑m−1

s=0 Asv) =
∑m−1

s=0 Asv, we

have
∑m−1

s=0 Asv = 0. There is a contradiction because αm = (0, In). Therefore there

exists i ∈ {n − k + 1, ..., n} such that xi = q
z 6= 0 ∈ Q. Define f : Γ → Z where it

maps ((y1, ..., yn), tri(M, Ik)) ∈ Γ to zyi ∈ Z. Hence we have f(α) = q, f(ι(ei)) = z

and f(ι(ej)) = 0 for all j 6= i. We claim that f is a surjective homomorphism. Let

γ1 = ((m1, ...,mn), tri(M1, Ik)) ∈ Γ and γ2 = ((m̄1, ..., m̄n), tri(M2, Ik)) ∈ Γ. By simple

calculation, we get γ1γ2 = ((∗, ..., ∗,mn−k+1+m̄n−k+1, ...,mn+m̄n), tri(M1M2, Ik)). Hence

we have f(γ1)+f(γ2) = f(γ1γ2). Therefore f is a homomorphism. Notice that q and z are

coprime, there exists integers σ and τ such that σq+τz = 1. Hence we have f(ασι(ei)
τ ) = 1.

Therefore f is surjective. Observe that ker(f) = 〈ι(e1), ..., ˆι(ei), ..., ι(en)〉 ∼= Zn−1. We have

the below short exact sequence

(3)
Γ Z 0ker(f) ∼= Zn−10

f

By [4, Chapter IV, Section 1], such short exact sequence will induce a representation

ρ : Z → GLn−1(Z) given by ρ(x)ej = x̄ι(ej)x̄
−1 where f(x̄) = x for all j 6= i. Consider the

restriction ρ̄ := ρ|qZ : qZ → GLn−1(Z). We claim that ker(ρ̄) = mqZ. Let qx ∈ ker(ρ̄) for

any x ∈ Z. We have ej = ρ̄(qx)ej = αxι(ej)α
−x = p(αx)ej for all j 6= i. Hence p(αx) needs

to be an identity matrix. Therefore x is multiple of m or x = 0. Hence ker(ρ̄) ⊆ mqZ.

Since p(αm) is an identity matrix, ρ(mqx)(ej) = αmxι(ej)α
−mx = p(αmx)ej = ej for all

j 6= i and x ∈ Z. Hence mqZ ⊆ ker(ρ̄). Therefore we have ker(ρ̄) = mqZ. Now we can

obtain a faithful representation φ : aZ/maZ → GLn−1(Z) given by φ(x̄) = ρ̄(x) where x

is the representative of x̄ ∈ aZ/maZ. Hence we can view Zn−1 as a ZCm-module with

faithful Cm-representation. By Proposition 3.2, Zn−1 can be generated by n− 2 elements.

By (3), we have d(Γ) ≤ rkCm(Z
n−1) + 1 ≤ n− 1. �
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The corollary below gives the general bound on the number of generators of general Bieber-

bach groups.

Corollary 4.1. Let Γ be an n-dimensional Bieberbach group with holonomy group G.

Then d(Γ) ≤ 2n.

Proof. Let |G| = ps11 · · · pskk be the prime decomposition of order of G. By [11, Theorem

A], we have

d(G) ≤ max
1≤i≤k

d(Pi) + 1

where Pi is the Sylow pi-subgroup of G for i = 1, ..., k. We fix j ∈ {1, ..., k} such that

d(Pj) = max1≤i≤k d(Pi). We first assume pj ≥ 3. We can consider Γ ∩ (Rn × I) ∼= Zn

as a ZPj-module. By [1, Theorem A], we have d(Pj) + rkPj
(Zn) ≤ n. Hence we have

d(Γ) ≤ d(G) + 1 + rkPj
(Zn) ≤ n + 1. Now we assume pj = 2. If G is a 2-group, then

by [1, Theorem A], we have d(Γ) ≤ 2n. If G is not a 2-group, then there exists g ∈ G

such that g has order p ≥ 3. Hence we can consider Zn as a ZCp-module. By Lemma 3.1,

we have rkCp(Z
n) ≤ n − 1. By [1, Proposition 2.2], we have d(Pj) ≤ n. Hence we have

d(Γ) ≤ 2n. �

Corollary 4.2. Let Γ be an n-dimensional Bieberbach group with holonomy group G,

where G is a simple group but not C2. Then d(Γ) ≤ n− 1.

Proof. By Remark 2.1, we have d(Γ) ≤ d(G)+rkG(Z
n). If G is a cyclic group of odd prime

order, then by Theorem A, we have d(Γ) ≤ n−1. If G is not cyclic, by Burnside’s Theorem,

[9, Page 886], there exists a prime p ≥ 5 such that the order of G is divisible by p. So we

can view Zn as a ZCp-module. By Lemma 3.1, we have rkCp(Z
n) ≤ n − p + a ≤ n − 3,

where a = 2 if p ≤ 19, otherwise a = 3. By [3, Theorem B], we have d(G) ≤ 2. Hence we

have d(Γ) ≤ d(G) + rkG(Z
n) ≤ 2 + rkCp(Z

n) ≤ n− 1. �

The rest of the paper will present the proof of Theorem B and Theorem C.

Theorem B. Let Γ be an n-dimensional crystallographic group with holonomy group

isomorphic to a finite group G, where the order of G is not divisible by 2 or 3. Then

d(Γ) ≤ n.

Proof. Let |G| = ps11 · · · pskk be the prime decomposition of the order of G. First, we want

to calculate the number of generators of the holonomy group G. By [11, Theorem A], we

have

d(G) ≤ max
1≤i≤k

d(Pi) + 1
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where Pi is the Sylow pi-subgroup of G for i = 1, ..., k. We fix j ∈ {1, ..., k} such that

d(Pj) = max1≤i≤k d(Pi). Let ρ : G → GLn(Z) be the holonomy representation for Γ.

By definition, ρ is a faithful representation. Therefore Pi acts faithfully on Zn. By [1,

Proposition 2.2], we have

d(G) ≤
n− rk

(

(Zn)Pj
)

pj − 1
+ 1

Now, we consider the lattice part. We can view Γ ∩ (Rn × I) ∼= Zn as a ZPj-module. By

[1, Proposition 2.5], we have

rkPj
(Zn) ≤

(a− 1)
(

n− rk(Zn)Pj
)

pj − 1
+ rk(Zn)Pj

where a = 2 if pj ≥ 19, otherwise a = 3. Therefore we have

d(Γ) ≤ d(G) + rkPj
(Zn) ≤

n− rk
(

(Zn)Pj
)

pj − 1
+ 1 +

(a− 1)
(

n− rk(Zn)Pj
)

pj − 1
+ rk(Zn)Pj

=
a
(

n− rk(Zn)Pj
)

pj − 1
+ rk(Zn)Pj + 1

We need to show
a
(

n− rk(Zn)Pj
)

pj − 1
+ rk(Zn)Pj + 1 ≤ n

We have

a
(

n− rk(Zn)Pj
)

pj − 1
+ rk(Zn)Pj + 1 ≤ n

⇐⇒ an− a · rk(Zn)Pj + (pj − 1)rk(Zn)Pj + pj − 1 ≤ n(pj − 1)

⇐⇒ (pj − 1− a)rk(Zn)Pj ≤ (pj − 1− a)n− (pj − 1)

⇐⇒ rk(Zn)Pj ≤ n−
pj − 1

pj − 1− a
= n− 1−

a

pj − 1− a

If 5 ≤ pj ≤ 19, we have a
pj−1−a = 2

pj−3 ≤ 1. If pj > 19, we have a
pj−1−a = 3

pj−4 < 1.

Therefore we can conclude that if rk(Zn)Pj ≤ n− 2, then d(Γ) ≤ n. By Cauchy’s Theorem

[9, Page 93], Pj has an element x ∈ Pj with order pj. Let Cpj be a cyclic subgroup of

Pj generated by x. Consider (Zn)
CPj , where CPj

acts faithfully on Zn via ρ|CPj
: CPj

→

GLn(Z). By [7, Section 73], the degree of a faithful indecomposable Cpj -representation is

either pj − 1 or pj. If the degree is pj − 1, then it has trivial fix point set. If the degree

is pj, then the fix point set is 1-dimensional. Observe that rk(Zn)Cpj has maximum value

when ρ|CPj
is a direct sum of one faithful indecomposable sub-representation and all others

are trivial sub-representations. Therefore rk(Zn)Cpj ≤ n− pj + 1 ≤ n− 4. Hence we have

rk(Zn)Pj ≤ n− 4. Therefore we can conclude d(Γ) ≤ n. �
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Theorem C. Let Γ be an n-dimensional Bieberbach group with 2-generated holonomy

group. Then d(Γ) ≤ n.

Proof. Let G be the holonomy group of Γ. Let x and y be the generators of G. They

have order a and b respectively. If either a = 1 or b = 1, then G is a cyclic group.

By [8, Theorem 5.7] and Theorem A, d(Γ) ≤ n. Next, consider cases where a ≥ 3 or

b ≥ 3. It is sufficient to consider only the case where a ≥ 3. By Remark 2.1, let Γ =

〈ι(e1), ..., ι(en), α, β〉, where e1, ..., en are the standard basis for Zn, p(α) = x and p(β) = y.

Define Γ′ = 〈ι(e1), ..., ι(en), α〉. Notice that Γ′ is an n-dimensional Bieberbach subgroup

of Γ with holonomy group Ca. Since a ≥ 3, by Theorem A, d(Γ′) ≤ n − 1. Hence we

have d(Γ) ≤ n. Finally, we assume a = b = 2. Consider element xy ∈ G. Since G is

finite, xy has finite order. If xy is of order 1 (i.e. xy = 1), then x = y. So G ∼= C2. By

[8, Theorem 5.7], d(Γ) ≤ n. If xy is of order 2 (i.e. xyxy = 1), then xy = yx. Hence

G ∼= C2 × C2. By [8, Theorem 5.7], we have d(Γ) ≤ n. Lastly, we assume xy is of order

k, where k ≥ 3. We can rewrite the generating set of Γ to be {ι(e1), ..., ι(en), αβ, β}.

Define Γ′′ = 〈ι(e1), ..., ι(en), αβ〉, which is an n-dimensional Bieberbach subgroup of Γ with

holonomy group isomorphic to Ck. By Theorem A, d(Γ′′) ≤ n−1. Therefore d(Γ) ≤ n. �
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