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Abstract

We investigate the method of conjugate gradients, exploiting inac-
curate matrix-vector products, for the solution of convex quadratic op-
timization problems. Theoretical performance bounds are derived, and
the necessary quantities occurring in the theoretical bounds estimated,
leading to a practical algorithm. Numerical experiments suggest that
this approach has significant potential, including in the steadily more
important context of multi-precision computations
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1 Introduction

We are interested in iterative methods for solving convex quadratic opti-
mization problems

min
x∈Rn

q(x)
def
=

1

2
xTAx− bTx (1.1)

and large symmetric positive-definite linear systems

Ax = b, (1.2)
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where A ∈ Rn×n is symmetric positive definite and b ∈ Rn. Such problems
are at the centre of efficient methods in a large variety of domains in applied
mathematics, the most prominent being large-scale numerical nonlinear op-
timization and the numerical solution of discretized partial differential equa-
tions. It is thus critical to make the solution of (1.1) and (1.2) as efficient
as possible. The cost of most iterative methods for solving these problems
is often dominated by the (potentially many) computations of products of
the form Ap for some vector p. It is therefore of interest to investigate if
efficiency gains may be obtained for this ‘core’ operation. This is the object
of the present paper.

Two different contexts motivate the analysis presented here. The first
is the frequent occurrence of problems involving a hierarchy of model repre-
sentations, themselves providing approximations of A to compute the prod-
uct Ap. This occurs for instance in discretized applications, possibly in a
multi-resolution framework, or in inexactly weighted linear and nonlinear
least-squares, where the product itself is obtained by applying an iterative
procedure(1). The second is the increasing importance of computations in
multi-precision arithmetic on the new generations of high-performance com-
puters (see [2, 3, 4, 5, 6, 7, 8] and the many references therein), in which
the use of varying levels of floating point precision is a key ingredient for
obtaining state-of-the-art energy-efficient computer architectures. In both
cases, using inexact matrix-vector products (while controlling their inexact-
ness) within the method of conjugate gradients (CG) of Hestenes and Stiefel
[9] is a natural option.

Although the use of inexact matrix-vector products in CG and other
Krylov subspace iterative methods has already been investigated (see for ex-
ample [10, 11, 12, 13, 14]), the proposed analyses typically focus on bounding
the Euclidean norm of the residual. This leads to criteria for controlling the
inaccuracy of the matrix-vector products that are somewhat different from
the one used here (for instance, see Eq. (4.4) from [14] for the inexact CG,
Eq. (5.8) and (5.9) from [10] for the inexact FOM and GMRES). We refer
to Section 3.5 for a discussion about the differences between these criteria.
We further refer to [15, Section 11], and the many references therein, for a
review on inexact Krylov methods.

To the best of our knowledge, none considers the decrease in the objec-
tive function of the associated optimization problem (1.1), which is related

(1)Our starting point was a nonlinear weighted least-squares problem occuring in large-
scale data assimilation for weather forecasting [1], where the inverse of the weighting
matrix can not be computed. It thus requires the iterative solution of an innermost linear
system.
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to the energy norm of the error in (1.2). This point of view is, however,
important. In optimization, monitoring the evolution of the nonlinear (and
possibly non-convex) objective function or of its model is an obvious con-
cern: ensuring a fraction of the optimal decrease is, for instance, a standard
convergence argument in trust-region and inexact Newton methods (see for
example[16, Chapter 6]). In applications arising from elliptic partial differ-
ential equations, several authors have argued that monitoring the energy
norm of the error leads to better termination rules, avoiding under- or over-
solving (see [17, 18, 19, 20, 21, 22, 23]). Monitoring the energy norm of the
error has been applied for CG with inexact preconditioning, where iterative
methods can be embedded for the resolution of the system associated with
the computation of the new directions. A stopping criterion in the resolution
of the inner systems was suggested in [24], that results in a decrease of the
energy norm of the residual, and so a decrease of the associated quadratic.
However, the accuracy level of the matrix-vector products is fixed.

Contributions. In Section 2 we derive theoretical bounds on the value
of the quadratic in (1.1) in the presence of inexact matrix-vector products
in CG. We then derive computable estimates required in these theoretical
bounds in Section 3, leading to a practical inexact CG algorithm. In Sec-
tion 4 we show that very significant efficiency gains can be obtained in CG
by this approach, both in the case where the accuracy of Ap can be varied
continuously and in the case where it is bound to discrete prescribed levels
(as is the case in multi-precision arithmetic).

Notations. Throughout this paper, ‖ · ‖2 denotes the standard Eu-
clidean norm for vectors and its induced (spectral) norm for matrices. If M
is symmetric positive definite and x is a vector, ‖x‖M = ‖M1/2x‖2. The
dual norm of ‖ · ‖M with respect to the Euclidean inner product is ‖ · ‖M−1 .
Tr(M) is the trace of the matrix M . If M is symmetric positive definite,
λmin(M) and λmax(M) are its smallest and largest eigenvalue, respectively.
ei is the i-th vector of the canonical basis of Rn.

2 Analysis of inexact CG

We start by stating the CG algorithm with inexact matrix-vector products,
initialized with x0 = 0.

In the above algorithm, the matrix Ek represents a perturbation of A
and is the source of inexactness in the matrix-vector product at iteration k.

The name ”inexact CG” can be viewed as an abuse of language since,
due to the error in the matrix-vector product at Step 2 of the algorithm, the
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Algorithm 1 Theoretical inexact CG algorithm

Given symmetric positive definite A ∈ Rn×n, b ∈ Rn,
(1) Set x0 = 0, β0 = ‖b‖22, r0 = −b, and p0 = b
for k = 0, 1, . . . , do

(2) ck = (A+ Ek)pk
(3) αk = βk/p

T
k ck

(4) xk+1 = xk + αkpk
(5) rk+1 = rk + αkck
if ‖rk+1‖A−1 is small enough then

(6) Stop
end if
(7) βk+1 = rTk+1rk+1

(8) pk+1 = −rk+1 + (βk+1/βk)pk
end for

standard conjugacy of search directions and orthogonality of the residuals is
lost. We nevertheless continue to use the designation ”inexact CG” because
of the very close similarity between the statements of the method and true
CG.

It is known that the residual of the linear system (1.2) provides a handle
for monitoring the error in the quadratic q(x) in (1.1), provided it is consid-
ered in the appropriate norm. Indeed, if x∗ = A−1b is the solution of (1.2)

and r(x)
def
= Ax− b, then

1
2‖r(x)‖2A−1 = 1

2(Ax− b)TA−1(Ax− b)
= 1

2(x− x∗)TA(x− x∗)
= 1

2(xTAx− 2xTAx∗ + xT∗Ax∗)
= q(x)− q(x∗).

(2.3)

However, monitoring ‖r(xk)‖A−1 in inexact CG requires that r(xk) or a
sufficiently good approximation thereof be available, and that its A−1-norm
be computed or estimated, both of which are non-trivial.

When the products Ap are computed inexactly, the vector rk recurred
in CG is not the same as the true residual r(xk) = Axk − b. Current
literature (see [10, 11]) focuses on bounding the residual gap measured in the
Euclidean norm, ‖r(xk)−rk‖2. Because we are interested in the optimization
problem (1.1), we need to bound the residual gap in the A−1-norm, as
motivated by (2.3) and the following lemma.
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Lemma 2.1 Suppose that, at iteration k of the inexact CG algorithm,

max
[
‖r(xk)− rk‖A−1 , ‖rk‖A−1

]
≤
√
ε

2
‖b‖A−1 (2.4)

for some ε > 0. Then

|q(xk)− q(x∗)| ≤ ε|q(x∗)|. (2.5)

Proof. F 2

irst, evaluating the quadratic q(x) at x = x∗ = A−1b gives a very useful
identity, namely that

|q(x∗)| = −q(x∗) =
1

2
‖b‖2A−1 =

1

2
‖x∗‖2A =

1

2
|bTx∗|. (2.6)

Successively using (2.3), the triangle inequality, (2.4), and (2.6), we deduce
that

|q(xk)− q(x∗)| = 1
2‖r(xk)‖

2
A−1

≤ 1
2 (‖r(xk)− rk‖A−1 + ‖rk‖A−1)2

≤ 1
2 (
√
ε‖b‖A−1)

2

= ε|q(x∗)|.

(2.7)

Note that (2.5) implies

q(x∗) ≤ q(xk) ≤ (1− ε)q(x∗).

Thus, if (2.4) holds, the quadratic at xk is within a factor (1 − ε) of its
minimal value. Additionally, because q(x0) = 0,

|q(xk)− q(x0)| ≥ (1− ε)|q(x∗)− q(x0)|.

Thus, if (2.4) holds, the decrease of the quadratic q(x) obtained at xk is
at least (1 − ε) times the maximum obtainable decrease. This is exactly
the type of result required to terminate the minimization in a trust-region
context (see [16, Theorem 6.3.5]).

We assume that CG makes ‖rk‖A−1 small eventually, which it is not
guaranteed for the inexact CG. However, if we introduce a reorthogonal-
ization step on the internally-recured residuals, then rk becomes zero after
at most n steps. The rest of this paper is devoted to analyzing how to
enforce the part of (2.4) related to the residual gap, that is, the condition

‖r(xk)−rk‖A−1 ≤
√
ε
2 ‖b‖A−1 . Because this last condition measures the resid-

ual gap in the A−1-norm (i.e. a norm in the dual space), it is natural to use
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the A-norm in the primal space and the primal-dual matrix norm defined
by

‖E‖A−1,A
def
= sup

x 6=0

‖Ex‖A−1

‖x‖A
= ‖A−1/2EA−1/2‖2. (2.8)

We will thus use this norm to measure the size of the backward error Ek
made in the matrix-vector product. Note for future reference that

‖A‖A−1,A = 1 (2.9)

and
‖Ex‖A−1 ≤ ‖E‖A−1,A‖x‖A (2.10)

for any vector x.
We first restate, for completeness, a simple result relating the residual

gap to the error matrices Ej in inexact CG (see [11]).

Lemma 2.2 The residual gap in the inexact CG algorithm satisfies

r(xk)− rk = −
k−1∑
j=0

αjEjpj .

Proof. W 2

e proceed by induction. Observe that r(x0)− r0 = 0 and

r(x1)− r1 = (Ax1 − b)− r1
= (α0Ap0 − b)− (r0 + α0c0) = −α0E0p0.

Suppose now that the result is true for iterations j = 0, . . . , k. From the
recurrences for xk+1 and rk+1 we then have that

r(xk+1)− rk+1 = (Axk+1 − b)− rk+1

= (Axk + αkApk − b)− rk + rk − rk+1

= r(xk) + αkApk − rk − αk(A+ Ek)pk

= r(xk)− rk − αkEkpk,

from which the result follows.
We are now in a position the derive suitable bounds on the error matrices.
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Theorem 2.3 Let ε > 0 and let φ ∈ Rk be a positive vector satisfying

k∑
j=1

1

φj
≤ 1. (2.11)

Suppose furthermore that

‖Ej‖A−1,A ≤ ωj
def
=

√
ε ‖b‖A−1‖pj‖A

2φj+1‖rj‖22 +
√
ε ‖b‖A−1‖pj‖A

(2.12)

for all j ∈ {0, . . . , k − 1}. Then

‖r(xk)− rk‖A−1 ≤
√
ε

2
‖b‖A−1 .

If additionally

‖rk‖A−1 ≤
√
ε

2
‖b‖A−1 , (2.13)

then (2.4) and (2.5) both hold.

Proof. F 2

irst note that (2.12) ensures that ωj ∈ (0, 1). Lemma 2.2, the triangle
inequality, and (2.10) imply that

‖r(xk)− rk‖A−1 ≤
k−1∑
j=0

‖αjEjpj‖A−1

≤
k−1∑
j=0

|αj |‖Ej‖A−1,A‖pj‖A.
(2.14)

Now, using (2.10) again and (2.12),

αj =
‖rj‖22

pTj (A+ Ej)pj
≤ ‖rj‖22
pTj Apj − ‖Ej‖A−1,A‖pj‖2A

≤ ‖rj‖22
(1− ωj )‖pj‖2A

.

Substituting this bound in (2.14) and using (2.12) again, we obtain

‖r(xk)− rk‖A−1 ≤
k−1∑
j=0

ωj
1− ωj

‖rj‖22
‖pj‖A

. (2.15)
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But the definition of ωj in (2.12) gives

ωj
1− ωj

=

√
ε ‖b‖A−1‖pj‖A
2φj+1‖rj‖22

,

so that (2.15) becomes

‖r(xk)− rk‖A−1 ≤
k−1∑
j=0

√
ε ‖b‖A−1‖pj‖A
2φj+1‖rj‖22

‖rj‖22
‖pj‖A

=

√
ε

2
‖b‖A−1

k−1∑
j=0

1

φj+1
≤
√
ε

2
‖b‖A−1 .

(2.16)

The result then follows from Lemma 2.1.
Observe that (2.12) allows a perturbation in A whose norm ‖Ej‖A−1,A de-

pends on the ratio
‖rj‖22
‖pj‖A

. In particular, when this ratio decreases as the

iterations proceed (although the decrease of ‖rj‖2 is not generally monotonic
in CG) the error in the matrix-vector products is permitted to grow.

Some additional comments on Theorem 2.3 are in order at this stage.

1. (2.12) assumes that the primal-dual norm is the natural norm for mea-
suring the size of the error matrices Ej . While this may be true in
certain applications, ‖Ej‖A−1,A may be difficult to compute or esti-
mate in practice.

2. Even discounting that potential difficulty, verifying conditions (2.12)
and (2.13) remains impractical, as the quantities ‖pj‖A, ‖b‖A−1 , and
‖rk‖A−1 are not readily available in the course of the inexact CG al-
gorithm.

3. The φj appearing in (2.12) may be used as part of a global “error
management strategy”. A simple choice that obviously satisfies (2.11)
is to define φj = kmax for all j, where kmax is the maximum allowable
number of iterations. In fact, the φj can be used to further advantage.

We shall address the above issues in the following section.

3 A practical inexact CG algorithm

3.1 Managing the inaccuracy budget

An important ingredient of a practical inexact CG algorithm is the choice of
the φj in (2.12). Note that (2.11) constrains the φj over all iterations until
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termination. As mentioned earlier, choosing φj = kmax is adequate but often
suboptimal. Indeed, it is possible to adjust the φj adaptively, in particular
when the inaccuracy of the product Ap cannot be varied continuously but
is bound to prescribed levels (for example, different levels of floating point
precision).

Suppose that for a given φj+1, an inexactness ωj(φj+1) in the matrix-
vector product at step j is allowed by Theorem 2.3, but the actual error Ej
satisfies ‖Ej‖A−1,A = ω̂j < ωj . This implies that a larger value φ̂j+1 could

have been used instead of φj+1. Solving for φ̂j+1 in the linear equation

ω̂j = ωj(φ̂j+1) in (2.12) gives

φ̂j+1 =
1− ω̂j
ω̂j

√
ε ‖b‖A−1‖pj‖A

2‖rj‖22
> φj+1. (3.17)

We may then distribute the unused inaccuracy 1−
∑j+1

p=1 φ̂
−1
p evenly in the

remaining kmax − j − 1 iterations, by setting

φi =
kmax − j − 1

1−
∑j+1

p=1 φ̂
−1
p

, i = j + 2, . . . , kmax.

This leads to smaller values of φi (and therefore larger allowable errors) in
subsequent iterations. The updated φi still satisfies (2.11), as shown below:

kmax∑
i=1

φ−1i =

j+1∑
i=1

φ−1i +

kmax∑
i=j+2

φ−1i

=

j+1∑
i=1

φ−1i + (kmax − j − 1)
1−

∑j+1
p=1 φ̂

−1
p

kmax − j − 1

=

j+1∑
i=1

φ−1i + 1−
j+1∑
i=1

φ̂−1i < 1,

since φ̂i > φi. In practice, this allows maintaining only single running values
for φj+1 and

Φj
def
= 1−

j∑
p=1

φ̂−1p

for j ranging from 0 to kmax − 1.
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3.2 Computable estimates of ‖Ej‖A−1,A and ‖pj‖A
We now attempt to estimate the quantities required by Theorem 2.3 that
are unavailable in the inexact CG algorithm.

We first consider that ‖Ej‖A−1,A in (2.12) may not be available from the
application context and note that, from (2.8),

‖Ej‖A−1,A = ‖A−1/2EjA−1/2‖2 ≤ λmin(A)−1‖Ej‖2, (3.18)

so that a bound on ‖Ej‖2 can be used provided one knows (an approximation
of) the smallest eigenvalue of A. To estimate ‖pj‖A, we can use the fact that

λmin(A)1/2‖pj‖2 ≤ ‖pj‖A ≤ λmax(A)1/2‖pj‖2.

However, for ill-conditioned problem, the above bounds are likely to be very
loose. Another approach is to choose

‖pj‖A ≈
√

1

n
Tr(A)‖pj‖2. (3.19)

This can be justified by the fact that each side of the above expression would
have the same mean squared value if the entries of pj were independent
standard normal variables.

3.3 A computable estimate of ‖b‖A−1

Finding an estimate of ‖b‖A−1 is more difficult, since this quantity is re-
lated to the value of the quadratic q(x) at the solution x∗, see (2.6). Note
from (2.3) that

|q(x∗)| ≤ |q(xk)|+
1

2
‖r(xk)‖2A−1 .

To our knowledge, the best available approximation is the absolute value of
the quadratic at the current iterate, and thus we choose

‖b‖A−1 =
√

2|q(x∗)| ≈
√

2|q(xk)|. (3.20)

If there is no error in the products Apj in CG, assuming exact arithmetic,
r(xk) is orthogonal to xk and it follows that

q(xk) =
1

2
xTkAxk − bTxk =

1

2
xTk (Axk − b)−

1

2
bTxk = −1

2
bTxk.

In the presence of errors in the matrix-vector products, the above property
may no longer hold, and it is of interest to analyze how much

qk
def
= −1

2
bTxk (3.21)
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differs from q(xk). This is also important if the decrease in the quadratic
objective function is used for other purposes, as is the case, for instance,
in trust-region methods, where it is a key ingredient in the management of
the trust-region radius (see [16, Chapter 6]). To this end, we first prove the
following backward error property.

Lemma 3.1 Let A ∈ Rn×n be symmetric positive definite and b ∈ Rn. For
any nonzero x ∈ Rn, with r(x) = Ax− b,

min
E

{‖E‖A−1,A

‖A‖A−1,A
| xT (A+ E)x = xT b

}
=
|xT r(x)|
‖x‖2A

. (3.22)

Proof. U 2

sing (2.8) and (2.9), we rewrite the optimization problem as

min
E

{
‖A−1/2EA−1/2‖2 | xTEx = xT (b−Ax)

}
which, since A is positive definite and setting y = A1/2x, is itself equivalent
to

min
E

{
‖A−1/2EA−1/2‖2 | yTA−1/2EA−1/2y = −xT r(x)

}
.

But for any nonzero vector y and scalar γ,

min
M

{
‖M‖2 | yTMy = γ

}
=

γ

‖y‖22

and the minimum is attained by M = γyyT /‖y‖42 with ‖M‖2 = γ/‖y‖22.
Thus the minimum in (3.22) is

‖E‖A−1,A = ‖A−1/2EA−1/2‖2 =
|xT r(x)|
‖x‖2A

.

We can now show that qk remains close to q(xk) despite the inexact matrix-
vector products.

Theorem 3.2 Let xk be the result of applying the inexact CG algorithm
and let qk = −1

2b
Txk. If the inexactness of the matrix-vector products is

controlled as in (2.12), and (2.13) holds, then

|q(xk)− qk|
|q(x∗)|

≤
√
ε(1 +

√
ε)

2
. (3.23)



Variable precision CG 12

Proof. W 2

e deduce from Lemma 3.1 that there exists a quadratic

q̂(xk) =
1

2
xTk (A+ E)xk − bTxk (3.24)

such that by construction q̂(xk) = −1
2b
Txk = qk and

|q(xk)− qk| = |q(xk)− q̂(xk)|

= 1
2 |x

T
kExk|

≤ 1
2‖E‖A−1,A‖xk‖2A

= 1
2 |x

T
k r(xk)|

≤ 1
2‖r(xk)‖A−1‖xk‖A,

(3.25)

where we used (3.24), Lemma 3.1, and the Cauchy-Schwarz inequality. But
by Theorem 2.3 and (2.6),

‖xk‖A ≤ ‖x∗‖A + ‖xk − x∗‖A
= ‖x∗‖A + ‖r(xk)‖A−1

≤ ‖x∗‖A + ‖r(xk)− rk‖A−1 + ‖rk‖A−1

≤ (1 +
√
ε)‖x∗‖A

and hence, using (2.13) and (2.6) again,

|q(xk)− qk| ≤
1

2
‖r(xk)‖A−1(1 +

√
ε)‖x∗‖A ≤

1

2

√
ε(1 +

√
ε)|q(x∗)|.

The above theorem shows that qk in (3.21) remains close to q(xk). The
bound is considerably weaker than (2.5), but it is likely to be pessimistic as
we have not taken into account in (3.25) the fact that the angle between xk
and r(xk) is expected to be small. (For CG in exact arithmetic with exact
matrix-vector products, xTk rk = 0.) This will be numerically confirmed in
Section 4.

From (3.20) and Theorem 3.2, we use the approximation

‖b‖A−1 ≈
√

2|qk|, (3.26)

for k = 1, . . . , kmax in our practical inexact CG algorithm. For k = 0,
because x0 = 0, we use the rougher approximation ‖b‖A−1 ≈ ‖b‖2/

√
λmax(A).
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This conservative estimate is likely to result with the computation of the
first matrix-vector product in double precision. Different values could be

naturally chosen in

[
‖b‖2√
λmax(A)

,
‖b‖2√
λmin(A)

]
.

3.4 A computable estimate of ‖rk‖A−1

It is also necessary to estimate ‖rk‖A−1 , in order to perform the termination
test (2.13). Estimating the energy norm of the error in CG is a well-studied
problem (see for example [25, 26, 27, 28, 29]). We follow these ideas, ignoring
pathological convergence instances, and estimate

1

2
‖rk‖2A−1 ≈ q(xk)− q(x∗) ≈ q(xk−d)− q(xk)

where d is a small integer (d = 10 in our case). Using this estimate in (2.13)
leads to

q(xk−d)− q(xk) ≤
1

4
ε|q(xk)|,

which, using (3.26), is itself approximated by

qk−d − qk ≤
1

4
ε|qk|. (3.27)

3.5 Resulting practical algorithm

We now consolidate our approximations in order to obtain a practical version
of the inexact CG algorithm that relies only on computable quantities. We
note that our definitions of these quantities nevertheless requires the user
to provide a (potentially very rough, see Section 4) approximation of the
smallest and largest eigenvalues of A.

Making use of (3.18), (3.19), and (3.26), we suggest to approximate (2.12)
by

‖Ej‖2
λmin(A)

≤
√
ε
√
|qj |
√

Tr(A) ‖pj‖2√
2nφj+1‖rj‖22 +

√
ε
√
|qj |
√

Tr(A) ‖pj‖2
, (3.28)

for j = 1, . . . k − 1. The formula is similar for j = 0, with
√
|q0| replaced

by
√

2‖b‖2/
√
λmax(A). We also replace the termination test (2.13) by its

practical version (3.27).
Our practical bound differs from the one suggested by [14] and defined

as

‖Ej‖2 ≤
σmin(A)

2
min(1,

√
ε‖pj‖2
m‖rj‖22

), ∀j = 0, 1, · · · ,m− 1.
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However, we note that the two bounds depend in the same manner of the

smallest eigenvalue of A and the ratio
‖rj‖22
‖pj‖2

when it is large. The decrease

in
‖rj‖22
‖pj‖2

allows the increase of the bounds of the error in the matrix-vector

products, while the smallest eigenvalue of A may constrain the bound to
remain tiny.

We include the option of reorthogonalization in our practical inexact
CG method. It is well known that the residual vectors, though theoretically
orthogonal, quickly lose their orthogonality in finite precision computations.
The reorthogonalization step is applied to the sequence of the internally-
recurred residuals using the MGS algorithm prior to the computation of the
new search direction. It means that the A-norm of the error is minimized
over some expanding subspaces. To the limits of the machine precision, the
iterative process is expected to converge in n steps at most, and guarantees
that ‖rk‖A−1 will become lower than the prescribed tolerance.

However, it is well beyond the scope of this paper to analyze the effects
of finite precision and the loss of orthogonality on the convergence of CG
with inexact matrix-vector products, but we do report on some numerical
experiments with and without reorthogonalization in the following section.

4 Numerical experiments

We first provide some figures to illustrate typical behaviour of the theoretical
and practical inexact CG algorithms.

4.1 Continuously varying precision

In our first example, A is a 100× 100 diagonal matrix with entries logarith-
mically equally-spaced between 1 and 10−4, and b = A[1, . . . , 1]T .
We plot both the decrease in the quadratic and the A−1 norm of the residual.
We terminate the iteration when (2.13) holds with ε = εM = 2−52, the IEEE
double machine precision. Lemma 2.1 then ensures that (2.5) holds.

In Figure 4.1(a) the matrix-vector products are performed in full double
precision arithmetic. In Figure 4.1(b) they are performed inexactly, with
a random perturbation E satisfying the theoretical condition (2.12). In
Figure 4.1(c) the matrix-vector products are once again performed inexactly,
but with a random perturbation E satisfying the practical condition (3.28).
Figure 4.1(d) is the same as Figure 4.1(c), except CG is performed with full
reorthogonalization.
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Algorithm 2 Practical inexact CG algorithm

Given symmetric positive definite A ∈ Rn×n, b ∈ Rn, ε, kmax, λmin, λmax,
and reorth.
(1) Set x0 = 0, r0 = −b, q0 = 0, β0 = ‖b‖22, u1 = b/β0, p0 = b, φ0 = kmax,
and Φ0 = 1
for k = 0, 1, . . . , kmax do

(2) Determine ωk defined by the right hand side of Eq. (3.28)
(3) Compute the product ck = (A+Ek)pk with ‖Ek‖A−1,A ≤ ωk, also

returning ω̂k
(4) αk = βk/p

T
k ck

(5) xk+1 = xk + αkpk
(6) qk+1 = 1

2b
Txk+1

if (qk+1−d − qk+1) ≤ 1
4ε|qk+1| then

(7) Stop
end if
(8) Compute φ̂k from ω̂k using the first part of Eq. (3.17)
(9) Φk+1 = Φk − φ̂−1k
if k < kmax then

(10) φk+1 = (kmax − k)/Φk+1

else
(11) φk+1 = φk

end if
(12) rk+1 = rk + αkck
if (reorth) then

for i = 1, . . . , k do
(13) rk+1 = rk+1 − (uTi rk+1)ui

end for
(14) βk+1 = rTk+1rk+1

(15) uk+1 = rk+1/
√
βk+1

else
(16) βk+1 = rTk+1rk+1

end if
(17) pk+1 = −rk+1 + (βk+1/βk)pk

end for
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(a) double precision CG (b) theoretical inexact CG

(c) practical inexact CG (d) with reorthogonalization

Figure 4.1: CG applied to diag(logspace(−4, 0, 100))

In our second example, we repeat the same tests with A the matrix
nos1.mat from the Matrix Market, scaled to have Euclidean norm 1. This is
a 237 × 237 matrix with condition number approximately 108. Results are
shown in Figure 4.2.

In both examples, performing inexact matrix-vector products may lead
to delays in convergence compared to double precision CG. The quantity
ωj in (2.12) can be quite oscillatory (see figures (b)). When it is estimated
as in (3.28), however, it seems to increase monotonically (see figures (c)).
In these examples, despite the heuristic nature of the estimates, the prac-
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(a) double precision CG (b) theoretical inexact CG

(c) practical inexact CG (d) with reorthogonalization

Figure 4.2: CG applied to nos1.mat

tical criterion (3.28) works just as well as the theoretical criterion (2.12)
(compare figures (b) and (c)). Without reorthogonalization, CG may re-
quire (much) more than n iterations to converge to the required tolerance,
especially in the second ill-conditioned problem. In both these examples,
however, reorthogonalization ensures convergence of the practical inexact
CG algorithm in fewer than n iterations (see figures (d)).
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4.2 Discrete precision levels

In the next example, we suppose that only IEEE double, single and half
precisions are available. We will refer to IEEE precisions when using the
expressions double, simple or half precisions until the end of the manuscript.
We switch to matrix-vector products in a lower precision once the error in
the lower precision satisfies the practical condition (3.28). We modify the φj
adaptively as explained in Section 3.1. In practice, the use of the single and
half precisions is likely to trigger under- and overflows both when converting
numbers in the targeted format and computing the matrix-vector products.
However, [7] suggested an algorithm that prevent overflows when converting
a matrix from double or single precision to half precision. Nevertheless if
occurence of such issues, the precision and the inaccuracy budget will have
to be adapted accordingly (computation in simple or double precision). This
would certainly prevent the use of the IEEE half precision depending on the
application. We did not implement such strategy nor assess the occurence of
this issue in the following numerical experiments due to the use of emulated
accuracy.

(a) diag(logspace(−4, 0, 100)) (b) nos1.mat

Figure 4.3: inexact CG in discrete precision levels

Results are shown in Figure 4.3. The convergence behaviour is similar
to that of the continuously-varying precision case.
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4.3 Performance comparisons

We consider 4 algorithms:

CG: the standard CG algorithm with products computed in double precision,
CGR: the standard CG algorithm with reorthogonalization and products computed

in double precision
iCG: the inexact CG algorithm without reorthogonalization,
iCGR: the inexact CG algorithm with reorthogonalization (computed in double

precision).

The reorthogonalization step introduced in CGR and iCGR corresponds
to the Gram-Schmidt process with the standard inner product. In both
algorithms, it is applied to the sequence of the recurred residual {rk} and is
computed in double precision. iCGR differs from the flexible CG algorithm
[30] in the sense that the Gram-Schmidt process is not used to prevent the
loss of the A-conjugacy of the search directions {pk}, but rather a loss of
orthogonality of the recurred residual {rk}. Therefore, the practical variant
of iCGR does not require computing the matrix-vector products with A in
double precision, at variance with the flexible CG algorithm.

In order compare the performance of these algorithms, we assume that
the computational cost, and so the energy cost, is dominated by the matrix-
vector products, and use the following two models of energy cost. For the
continuously-varying precision case, we suppose that computing Ap is per-
formed by running a linearly convergent process, whose rate is given by

ρ =

√
λmax/λmin − 1√
λmax/λmin + 1

.

This would be the case, for instance, if A = JTW−1J and only W is
known (2). The energy cost of a full accuracy product is then given by
log(εM )/ log(ρ), where εM is the IEEE double machine precision, while that
of an inexact product with accuracy requirement ω is log(ω)/ log(ρ).

For the discrete precision levels case, we assume that the products Ap
can be computed in double, single, or half precision. The gain in energy
efficiency in this context depend on the details of the computer architecture.
According to [31, 32, 2, 3], a gain between 3× and 5× can be achieved for
each decrease from double to single, and from single to half. To model this,
we assign a unit energy cost for a matrix-vector product in double precision,

(2)This case occurs in approximately weighted nonlinear least-squares, for instance in
data assimilation for weather forecasting.
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a cost 1
4 for a product in single precision, and a cost 1

16 for a product in half
precision.

In both cases, we sum up the costs over all iterations to obtain a cost in
number of equivalent full double precision matrix-vector products.

Tables 4.1 to 4.6 summarize our results for the accuracy level ε = 10−5.
In these tables,

κ(A) is the condition number of A,
nit is the number of iterations required for termination,
cost is the equivalent number of full accuracy products used,
r.res.gap is the squared relative residual gap 1

2‖r(x)− r‖2A−1/|q(x∗)| at termination,
r.sol.err is the relative error in the solution value (q(x)−q(x∗))/|q(x∗)| at termination,
r.val.err is the relative error in the quadratic value |q(x)− q|/|q(x∗)| at termination.

Recall from (2.4) and (2.5) that r.res.gap ≤ 1
4ε and r.sol.err ≤ ε, while

r.val.err obeys (3.23).

4.3.1 Synthetic examples

In order to illustrate the theory of Section 2, we first run versions of CG
where we use the exact test (2.12) (rather than (3.28)), the true ‖Ej‖A−1,A,
and the original termination test (2.13). This is of course impractical but
allows measuring the potential for inexactness provided by Theorem 2.3.
Table 4.1 reports the results obtained in the continuously-varying accu-
racy case. Similar conclusions hold in the discrete precision levels case (not
shown). First, we note that the double precision and inexact variants of CG
and CGR lead to the same relative error on the solution value (r.sol.err). As
targeted, this value is lower than ε = 10−5 for condition numbers lower than
107 without reorthogonalization. Compared to the double precision versions
CG and CGR, the inexact variants iCG and iCGR exhibit very significant
potential savings in the costs of the products Ap. This is especially the
case when the conditioning of the problem is moderate (at most 105). As it
could be argued that the methods discussed here should be applied on pre-
conditioned systems, this restriction only moderately affects the practical
applicability of the technique. Despite an increase in the number of itera-
tions for iCG compared to CG for condition numbers larger 104, the overall
cost remains lower with iCG. Finally, the theoretical bound (2.12) can be
too conservative, leading to smaller values of r.res.gap than necessary.

We now show the effect of using the practical algorithm outlined in Sec-
tion 2. In addition to using the approximate constants and tests described
in Section 3, we also use estimates of the smallest and largest eigenvalues
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method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

CG 101 11 1.1e+01 4.6e-30 8.3e-07 8.8e-16 102 34 3.4e+01 6.0e-29 2.0e-06 4.6e-16
CGR 11 1.1e+01 6.4e-30 8.3e-07 4.4e-16 34 3.4e+01 8.6e-29 2.0e-06 3.2e-15
iCG 11 4.0e+00 1.1e-08 8.5e-07 2.9e-07 34 1.3e+01 1.0e-09 2.0e-06 9.1e-07
iCGR 11 4.0e+00 1.1e-08 8.4e-07 4.8e-06 34 1.3e+01 1.0e-09 2.0e-06 8.2e-07

CG 103 104 1.0e+02 2.6e-27 2.4e-06 2.1e-07 104 313 3.1e+02 1.4e-25 2.4e-06 4.0e-08
CGR 104 1.0e+02 2.7e-27 2.3e-06 4.1e-15 263 2.6e+02 1.3e-25 2.5e-06 2.5e-14
iCG 105 4.3e+01 9.8e-11 2.4e-06 7.7e-07 323 1.5e+02 9.9e-12 2.4e-06 2.1e-07
iCGR 104 4.3e+01 1.1e-10 2.3e-06 3.1e-07 263 1.2e+02 1.2e-11 2.5e-06 2.1e-07

CG 105 928 9.3e+02 1.0e-23 2.5e-06 1.1e-07 106 2764 2.8e+03 6.8e-22 2.5e-06 1.7e-08
CGR 433 4.3e+02 9.8e-24 2.4e-06 2.5e-13 554 5.5e+02 6.9e-22 2.3e-06 2.9e-12
iCG 983 5.0e+02 1.0e-12 2.5e-06 6.0e-08 3000 1.6e+03 3.5e-13 2.5e-06 9.4e-09
iCGR 433 2.2e+02 3.7e-12 2.4e-06 6.4e-08 554 3.2e+02 5.0e-12 2.3e-06 2.2e-08

CG 107 3000 3.0e+03 5.4e-20 1.3e-02 6.0e-07 108 3000 3.0e+03 1.3e-18 3.0e-01 3.6e-06
CGR 636 6.4e+02 4.6e-20 2.5e-06 1.8e-11 697 7.0e+02 3.4e-18 2.3e-06 2.8e-10
iCG 3000 1.9e+03 1.4e-13 1.9e-02 5.3e-08 3000 2.1e+03 3.2e-14 3.4e-01 6.2e-06
iCGR 636 4.0e+02 5.7e-12 2.5e-06 1.6e-07 697 4.7e+02 5.6e-12 2.3e-06 1.0e-07

Table 4.1: Synthetic examples: exact bound in the continuously-varying
accuracy case.

obtained by perturbing the true eigenvalues by a random relative perturba-
tion of magnitude between 0 and 100%, with the result that these estimates
only hold in order, but typically have no exact digit. We report the re-
sults of the corresponding runs in Tables 4.2 (continuously-varying accuracy
case) and 4.3 (discrete precision levels case), using the same conventions as
for Table 4.1. We also provide Figure 4.4 in order to better highlight the
gain in costs obtained using the inexact variants iCG and iCGR for both
cases. In these figures we discarded the cases for which the double precision
CG did not converge before reaching the maximum number of iterations
(high condition numbers). For each variant, the black bar corresponds to
the number of iterations and the grey bar to the modelled cost. (For the
double precision CG and CGR, these numbers are equal and only the grey
bar is visible.)

In the continuous-varying accuracy case, Table 4.2 shows that the practi-
cal variants of iCG and iCGR present similar performances to the theoretical
inexact CG methods in terms of errors on the solution value, except for the
practical iCG when the condition number is larger than 105. For condition
numbers in {105, 106}, we note that the number of iterations of the practi-
cal iCG is lower than in double precision CG. The approximations involved
in the stopping criterion (3.27) lead to early termination, which result in
a solution error slightly larger than the targeted one (16.10−6 and 56.10−6
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method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

CG 101 11 1.1e+01 4.6e-30 8.3e-07 8.8e-16 102 34 3.4e+01 6.0e-29 2.0e-06 4.6e-16
CGR 11 1.1e+01 6.4e-30 8.3e-07 4.4e-16 34 3.4e+01 8.6e-29 2.0e-06 3.2e-15
iCG 21 6.0e+00 1.2e-08 1.2e-08 5.3e-06 46 1.6e+01 9.8e-10 1.6e-08 2.1e-06
iCGR 21 6.0e+00 1.2e-08 1.2e-08 4.6e-07 44 1.6e+01 1.1e-09 3.4e-08 3.5e-07

CG 103 104 1.0e+02 2.6e-27 2.4e-06 2.1e-07 104 313 3.1e+02 1.4e-25 2.4e-06 4.0e-08
CGR 104 1.0e+02 2.7e-27 2.3e-06 4.1e-15 263 2.6e+02 1.3e-25 2.5e-06 2.5e-14
iCG 112 4.6e+01 1.4e-10 9.9e-07 2.5e-07 307 1.4e+02 2.1e-11 5.0e-06 2.0e-07
iCGR 112 4.6e+01 1.3e-10 7.9e-07 4.2e-07 266 1.2e+02 3.5e-11 2.0e-06 1.6e-07

CG 105 928 9.3e+02 1.0e-23 2.5e-06 1.1e-07 106 2764 2.8e+03 6.8e-22 2.5e-06 1.7e-08
CGR 433 4.3e+02 9.8e-24 2.4e-06 2.5e-13 554 5.5e+02 6.9e-22 2.3e-06 2.9e-12
iCG 854 4.3e+02 4.6e-12 1.6e-05 7.7e-08 2314 1.3e+03 3.4e-12 5.6e-05 5.0e-07
iCGR 436 2.2e+02 6.5e-11 1.9e-06 1.9e-09 558 3.0e+02 6.5e-10 1.6e-06 4.2e-07

CG 107 3000 3.0e+03 5.4e-20 1.3e-02 6.0e-07 108 3000 3.0e+03 1.3e-18 3.0e-01 3.6e-06
CGR 636 6.4e+02 4.6e-20 2.5e-06 1.8e-11 697 7.0e+02 3.4e-18 2.3e-06 2.8e-10
iCG 3000 1.8e+03 3.4e-12 2.0e-02 1.6e-06 3000 2.0e+03 1.3e-12 3.4e-01 7.4e-07
iCGR 642 3.7e+02 4.0e-09 1.4e-06 2.6e-06 704 4.4e+02 2.4e-08 1.0e-06 1.5e-06

Table 4.2: Synthetic examples: practical algorithms in the continuously-
varying accuracy case.

instead of 10−5). For condition numbers larger than 107, both the double
precision CG and inexact iCG reach the maximum number of iterations
without having converged. Furthermore, the practical methods effectively
provide significant gains in the cost of performing the matrix-vector prod-
ucts in CG, as highlighted in Table 4.2 and Figure 4.4. Finally, we note a
slight increase in the number of iterations for the practical variants of iCG
and iCGR at low to medium condition numbers, which is partly explained
by the fact that the termination criterion is based on the delay d (10 in
our case) to assess termination. The tuning of the parameter d is problem
dependent and should be adapted to the condition number.

Similar conclusions hold for the discrete precision levels case. Further-
more, the results indicate that the management of the inaccuracy budget
discussed in Section 3.1 is quite effective. We note that it leads to even
more significant efficiency gains for moderately conditioned problems. The
situation is, however, reversed for the more ill-conditioned cases, because
ω then exceeds more quickly the accuracy threshold allowing single preci-
sion. While the small inaccuracy allowed by the bound can be exploited in
the continuous case, this is no longer the case here and many products are
computed in double precision.
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method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

CG 101 11 1.1e+01 4.6e-30 8.3e-07 8.8e-16 102 34 3.4e+01 6.0e-29 2.0e-06 4.6e-16
CGR 11 1.1e+01 6.4e-30 8.3e-07 4.4e-16 34 3.4e+01 8.6e-29 2.0e-06 3.2e-15
iCG 21 1.9e+00 3.0e-11 3.2e-11 5.1e-08 44 6.7e+00 6.3e-14 3.3e-08 1.9e-08
iCGR 21 1.9e+00 3.0e-11 3.2e-11 3.9e-08 44 6.7e+00 6.7e-14 3.3e-08 1.6e-10

CG 103 104 1.0e+02 2.6e-27 2.4e-06 2.1e-07 104 313 3.1e+02 1.4e-25 2.4e-06 4.0e-08
CGR 104 1.0e+02 2.7e-27 2.3e-06 4.1e-15 263 2.6e+02 1.3e-25 2.5e-06 2.5e-14
iCG 112 2.7e+01 1.2e-16 9.1e-07 3.7e-08 302 9.6e+01 3.8e-20 4.9e-06 3.1e-07
iCGR 112 2.6e+01 1.3e-16 7.9e-07 7.9e-11 266 8.7e+01 6.1e-20 2.0e-06 1.7e-11

CG 105 928 9.3e+02 1.0e-23 2.5e-06 1.1e-07 106 2764 2.8e+03 6.8e-22 2.5e-06 1.7e-08
CGR 433 4.3e+02 9.8e-24 2.4e-06 2.5e-13 554 5.5e+02 6.9e-22 2.3e-06 2.9e-12
iCG 805 4.8e+02 2.2e-22 2.0e-05 3.5e-07 2067 1.7e+03 7.2e-22 8.9e-05 8.1e-07
iCGR 436 2.8e+02 2.1e-21 1.9e-06 4.9e-14 558 4.6e+02 1.1e-21 1.6e-06 2.0e-12

CG 107 3000 3.0e+03 5.4e-20 1.3e-02 6.0e-07 108 3000 3.0e+03 1.3e-18 3.0e-01 3.6e-06
CGR 636 6.4e+02 4.6e-20 2.5e-06 1.8e-11 697 7.0e+02 3.4e-18 2.3e-06 2.8e-10
iCG 3000 2.9e+03 4.4e-20 1.3e-02 5.9e-07 3000 3.0e+03 1.3e-18 3.0e-01 3.6e-06
iCGR 642 5.9e+02 5.8e-20 1.4e-06 2.1e-11 704 6.8e+02 3.8e-18 9.9e-07 1.3e-10

Table 4.3: Synthetic examples: practical algorithms in the discrete precision
levels case.

4.3.2 Examples from the Matrix Market

We conclude our experiments with some examples from the NIST Matrix
Market. Properties of these matrices are given in Table 4.4. All of them are
symmetric positive definite and result from discretization of PDEs. Again,
in our computations, we use estimates of the smallest and largest eigenvalues
obtained by perturbating the exact eigenvalues by a random relative per-
turbation of magnitude between 0 and 100%. We report the results of the
corresponding runs in Tables 4.5 (continuous-varying accuracy case) and 4.6
(discrete accuracy levels case), using the same conventions as for Table 4.1.
The number of iterations and associated relative costs are also shown in
Figure 4.4.

Similar comments to the synthetic cases can be made. Regarding the
continuous-varying accuracy case, the practical iCG and iCGR tend to re-
sult in an increase of the iteration numbers compared to both the dou-
ble precision CG and CGR, and the impractical methods with inaccurate
matrix-vector products (not shown for the latter ones in Table 4.5 nor Fig-
ure 4.4). However, a tiny gain in iteration numbers may be obtained with
the practical iCG and iCGR as observed for the matrix bcsstk27. Despite
these increases in the iteration number, the costs of the practical methods
remain lower than those of the methods in double precision. Again the
practical algorithms seem more sensitive to rounding errors. For instance,
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Continuously varying precision Discrete precision levels

Figure 4.4: Number of iterations and associated costs for the continuously
varying precision and discrete precision levels models. First row: synthetic
matrices with varying logspace condition number. Second row: matrices
from Matrix Market. (a): double precision CG, (b): inexact practical CG,
(c): double precision CG with reorthogonalization, (d): inexact practical
CG with reorthogonalization.

the desired accuracy is not reached for matrices nos1 and nos7 without re-
orthogonalization. As observed in the synthetic matrices, it can result in
a decrease in the number of iterations of the practical methods, and so a
damage of the quality of the solution, compared to the methods with matrix-
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Matrix Dimension κ2(A) ‖A‖2
bcsstm02 66 8.8 0.17
nos4 100 1.5e03 0.85
bcsstk09 1083 9.5e03 6.8e07
bcsstk05 153 1.4e04 6.2e06
bcsstk27 1224 2.4e04 3.5e06
685 bus 685 4.2e05 2.6e04
nos1 237 2.0e07 2.5e09
nos7 729 2.4e09 9.9e06

Table 4.4: Properties of the Matrix Market matrices (sorted by increasing
condition number)

vector products in double precision. Finally, as for the synthetic matrices,
the fact that the delay d = 10 introduced in the stopping criterion is too
large partly explains the cost increases observed for matrices with a small
condition number (bcsstm02 and nos4).

method matrix nit cost r.res.gap r.sol.err r.val.err. matrix nit cost r.res.gap r.sol.err r.val.err.

CG bcsstm02 9 9.0e+00 2.2e-32 2.2e-06 0.0e+00 nos4 53 5.3e+01 1.1e-28 2.3e-06 4.7e-11
CGR 9 9.0e+00 9.8e-32 2.2e-06 0.0e+00 53 5.3e+01 2.7e-28 2.3e-06 8.6e-15
iCG 18 5.0e+00 2.0e-08 2.0e-08 2.8e-05 64 2.9e+01 1.1e-12 4.0e-09 8.1e-07
iCGR 19 6.0e+00 3.0e-08 3.0e-08 2.8e-06 63 2.8e+01 1.3e-11 2.7e-09 1.2e-06

CG bcsstk09 154 1.5e+02 4.3e-27 2.4e-06 1.7e-08 bcsstk05 187 1.9e+02 7.6e-28 2.5e-06 6.3e-08
CGR 153 1.5e+02 4.5e-27 2.5e-06 4.4e-14 119 1.2e+02 8.9e-28 2.2e-06 2.2e-14
iCG 152 7.6e+01 4.5e-13 2.8e-06 4.3e-07 188 8.8e+01 2.4e-11 1.0e-05 4.5e-06
iCGR 152 7.6e+01 2.3e-12 2.7e-06 5.8e-08 129 6.0e+01 2.0e-09 4.6e-09 8.0e-06

CG bcsstk27 420 4.2e+02 2.1e-29 2.4e-06 2.4e-08 685 bus 302 3.0e+02 8.2e-27 2.5e-06 3.3e-08
CGR 302 3.0e+02 1.9e-27 2.4e-06 2.9e-15 182 1.8e+02 1.4e-26 2.3e-06 1.4e-14
iCG 404 2.0e+02 2.6e-12 7.7e-06 5.0e-08 368 2.0e+02 1.6e-13 4.8e-06 2.3e-07
iCGR 293 1.4e+02 4.0e-12 4.1e-06 7.5e-08 188 9.9e+01 3.9e-12 1.0e-06 4.3e-07

CG nos1 711 7.1e+02 3.6e-23 3.1e-01 6.8e-07 nos7 1810 1.8e+03 1.3e-19 2.1e-06 2.6e-08
CGR 220 2.2e+02 2.5e-23 2.1e-06 6.1e-13 270 2.7e+02 2.9e-19 1.8e-06 4.0e-12
iCG 711 4.4e+02 2.2e-12 4.0e-01 7.3e-06 1031 7.1e+02 2.0e-09 1.0e-02 1.5e-05
iCGR 230 1.4e+02 1.9e-08 2.5e-08 2.5e-05 260 1.7e+02 8.3e-08 1.3e-05 2.1e-05

Table 4.5: Matrix Market: practical algorithms in the continuously-varying
accuracy case.

Regarding the discrete precision levels case (see Table 4.6 and Figure
4.4), we note that it leads to even more significant efficiency gains for mod-
erately conditioned problems and large efficiency gains for the ill-conditioned
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cases. This can be partly associated with the fact that these problems are
easier than those obtained in the synthetic cases. However, it remains cases
where the desired accuracy cannot be reached without reorthogonalization
due to rounding errors. As a consequence, a good problem preconditioning
is even more important in the multi-precision context.

method κ(A) nit cost r.res.gap r.sol.err r.val.err. κ(A) nit cost r.res.gap r.sol.err r.val.err.

CG bcsstm02 9 9.0e+00 2.2e-32 2.2e-06 0.0e+00 nos4 53 5.3e+01 1.1e-28 2.3e-06 4.7e-11
CGR 9 9.0e+00 9.8e-32 2.2e-06 0.0e+00 53 5.3e+01 2.7e-28 2.3e-06 8.6e-15
iCG 19 1.9e+00 2.4e-12 2.4e-12 8.7e-08 63 2.0e+01 5.3e-21 5.2e-09 6.8e-09
iCGR 19 1.9e+00 2.7e-12 2.7e-12 3.1e-08 63 1.7e+01 1.4e-20 2.7e-09 4.3e-11

CG bcsstk09 154 1.5e+02 4.3e-27 2.4e-06 1.7e-08 bcsstk05 187 1.9e+02 7.6e-28 2.5e-06 6.3e-08
CGR 153 1.5e+02 4.5e-27 2.5e-06 4.4e-14 119 1.2e+02 8.9e-28 2.2e-06 2.2e-14
iCG 152 9.5e+00 2.9e-13 2.8e-06 4.0e-07 185 1.2e+01 1.2e-11 1.0e-05 2.9e-06
iCGR 152 9.5e+00 2.8e-12 2.7e-06 2.6e-07 129 8.1e+00 4.2e-11 2.7e-09 2.6e-06

CG bcsstk27 420 4.2e+02 2.1e-29 2.4e-06 2.4e-08 685 bus 302 3.0e+02 8.2e-27 2.5e-06 3.3e-08
CGR 302 3.0e+02 1.9e-27 2.4e-06 2.9e-15 182 1.8e+02 1.4e-26 2.3e-06 1.4e-14
iCG 402 2.5e+01 6.5e-13 7.7e-06 4.3e-08 323 6.5e+01 7.5e-18 4.7e-06 4.6e-08
iCGR 293 1.8e+01 6.6e-13 4.1e-06 7.0e-08 188 3.1e+01 7.1e-16 1.0e-06 3.9e-10

CG nos1 711 7.1e+02 3.6e-23 3.1e-01 6.8e-07 nos7 1810 1.8e+03 1.3e-19 2.1e-06 2.6e-08
CGR 220 2.2e+02 2.5e-23 2.1e-06 6.1e-13 270 2.7e+02 2.9e-19 1.8e-06 4.0e-12
iCG 711 4.5e+01 7.0e-15 3.9e-01 1.7e-06 957 2.1e+02 4.4e-15 3.0e-03 4.9e-08
iCGR 230 1.4e+01 2.5e-12 9.0e-09 6.1e-07 269 4.1e+01 9.6e-14 4.1e-06 1.3e-08

Table 4.6: Matrix Market: practical algorithms in the discrete precision
levels case.

5 Conclusions

We have considered the iterative solution of convex quadratic optimization
problems (1.1) and linear systems (1.2) using the CG algorithm with inac-
curate matrix-vector products, with the aim of monitoring the decrease of
the quadratic objective function. Circumventing the unavailability of some
of the quantities involved in the theory, we have proposed estimates and
derived a practical algorithm that use them. Our numerical experiments
suggest that significant gains in energy efficiency can be achieved by the use
of variable precision matrix-vector products. Such gains are most notice-
able for problems that are reasonably well-conditioned, and occur both in
the case where the accuracy of the products can be controlled continuously,
and in the case where it is limited to discrete predefined levels. We have
illustrated the latter in the important context of multi-precision computa-
tions. However, the potential speed-up in this context, as well as the gain
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in energy efficiency, are limited by the ability of the algorithm to run with
precisions lower than the IEEE double precision. This depends both on the
data (A, b) and the decrease in the quadratic that is targeted.

In view of the promising potential of this approach, it may be of interest
to apply it in a more general context, for example, other optimization algo-
rithms involving nonquadratic and possibly nonconvex objective functions.
It is also worthwhile, in our opinion, to pursue experimentation with other
methods beyond CG in the framework of multi-precision arithmetic.

While we focused our analysis on inexact matrix-vector products, a real-
istic assumption in large-scale applications where this product often involves
the application of several complicated operators (see [1] for example), the
cost of inner-products involved in CG (and also potentially in reorthogonal-
ization) may also be significant in some applications. Strategies to reduce
this cost are therefore also of interest. It is not the purpose of this paper to
develop a rigorous analysis of CG with inexact inner products or reorthog-
onalization techniques, but we defer this analysis to a future contribution.

Finally, it would be interesting to investigate how this approach can
be adapted to communication-avoiding algorithms like the s-step Krylov
methods [33, 34]. In recent works on the s-step CG, [35] suggested a criterion
for the adaptive selection of the parameter s (defining the size of the block
of iterations) explointing bounds on the residual gap. While combining both
approaches would be of interest, this is out of the scope of the present work.
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tecture, and to Pr. M. Daydé (IRIT) for his continued and friendly support.
Ph. Toint was partially supported by ANR-11-LABX-0040-CIMI within the
program ANR-11-IDEX-0002-02.

References
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