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A GEOMETRIC MODEL

OF AN ARBITRARY DIFFERENTIALLY CLOSED FIELD

OF CHARACTERISTIC ZERO

STANISŁAW SPODZIEJA

Abstract. We give an elementary construction of an arbitrary differentially
closed field and of a universal extension of a differential field in terms of Nash
function fields. We also give a characterization of any Archimedean ordered
differentially closed field in terms of Nash functions.

Introduction

The study of differential algebras was started in the first half of the twentieth

century by J. F. Ritt [21, 22], and continued by E. R. Kolchin and J. F. Ritt [23] (see

also [12, 13]), I. Kaplansky [11] and others (see for instance [10, 16, 19, 26, 27, 28,

29, 32, 33]). The investigation of these algebras in the context of model theory was

initiated by A. Robinson [25]. Despite a fairly long period of study of differential

algebras, it is difficult to indicate papers where natural examples of differentially

closed fields are given. By A. Seidenberg’s embedding theorem [32, 33] we only

know that: Every countable ordinary differential field of characteristic zero F is

differentially isomorphic over F to a differential subfield of the field of germs of

meromorphic functions in one variable at the origin. L. Harrington [9] proved that

if a complete and model complete decidable theory T has the finite basis property and

every quantifier-free constrained formula (in the language of T ) is complete, then

T has a recursively presentable prime model. He used this model-theoretic result

to construct the differential closure of any given recursively presentable differential

field.

The aims of this article are: to give models of ordinary differentially closed fields

of characteristic zero (Theorems 3.3 and 3.7); to construct a universal extension

of an ordinary differential field (Theorem 3.12); and to construct an Archimedean

ordinary ordered differentially closed field (Theorem 4.8). To this end we present a
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2 S. SPODZIEJA

construction, in terms of Nash functions, of all algebraically closed fields of charac-

teristic zero, i.e., the algebraic closure of the rational function field k = Q(ΛT ) in

the system of independent variables ΛT = (Λt : t ∈ T ), T 6= ∅, with coefficients in

Q (see [37]). It suffices to consider such fields, because any ordinary differentially

closed field K of characteristic zero is differentially isomorphic to the algebraic clo-

sure of some field Q(ΛT ) (Theorem 3.3). If T = ∅ then Q(ΛT ) = Q and so the

differential closure of Q(ΛT ) is contained in the algebraic closure of Q(ΛN), i.e., one

can take T = N (Proposition 1.1). We assume the Kuratowski-Zorn Lemma (and

indirectly the axiom of choice, see [14]), so the set T can be well-ordered if T 6= ∅.

The construction of any differentially closed field will be based on the construc-

tion of some family Ω of open connected semialgebraic subsets of CT , called a c-filter

(see Section 2) and the rings N (U) of complex Nash functions on sets U ∈ Ω. The

algebraic closure of Q(Λt : t ∈ T ) will be constructed as the set of equivalence

classes of the following relation in
⋃

U∈Ω N (U):

(f1 : U1 → C) ∼ (f2 : U2 → C) iff f1|U3 = f2|U3 for some U3 ∈ Ω.

Then the set NΩ of equivalence classes of “∼” with the usual operations of addition

and multiplication is a field, which is the algebraic closure of Q(ΛT ) (see Proposition

2.5, cf. [38, Theorem 2.4 and Corollary 2.5]). Whenever the space CT is infinite-

dimensional, we will construct a derivation δ on NΩ such that for each pair p, q ∈

NΩ{y} of differential polynomials such that ord q < ord p, q 6= 0, there is some

f ∈ NΩ with p(f) = 0 and q(f) 6= 0 (see Theorem 3.7), i.e., δ satisfies the L. Blum

[3] definition of an ordinary differential closed field of characteristic zero.

To build various kinds of differentially closed fields we construct two c-filters,

ΩK
x0

and WK
T , in KT , where K = R or K = C (see Section 2.2 and Proposition 2.10

in Section 2.5). All sets in those c-filters will be simply connected. Moreover, each

U ∈ WC
T is dense in CT . This enables us to construct, for any ordinary differential

Nash field, a differentially closed extension of that field of the same cardinality (see

Corollary 3.9) and to construct a universal extension of an ordinary differential field

(Theorem 3.12). We also construct, in terms of real Nash functions on U ∈ ΩR
x0

, a

model of an arbitrary ordinary Archimedean ordered differentially closed field (see

Section 4).

1. Differential fields

In this section we will collect some fact concerning differential fields. For more

detailed information on this topic see for instance [11, 12, 16, 19, 22, 28, 29].

1.1. Differential algebras. Let k be a commutative ring with unity and let A be

a k-algebra, i.e., a left k-module with multiplication. A k-linear mapping δ : A → A



A GEOMETRIC MODEL 3

is called a derivation on A if δ(ab) = δ(a)b+aδ(b) for any a, b ∈ A. Then obviously

all elements of k are necessarily constants, i.e., δ(λ) = 0 for λ ∈ k.

A k-differential algebra (A,∆) is defined as a k-algebra A with a nonempty set

∆ of derivations on A such that δδ′(a) = δ′δ(a) for all a ∈ A and δ, δ′ ∈ ∆. If the

k-algebra A is a ring, an integral domain or a field, then we call the k-differential

algebra (A,∆) a k-differential ring, a k-differential domain or a k-differential field

respectively. If k = Q, we will write “differential” instead of “k-differential”. If

m = card∆ = 1, the k-differential algebra (respectively ring, domain or field) is

called ordinary; if m > 1, it is called partial. If ∆ = {δ}, the k-differential algebra

(A,∆) is denoted by (A, δ).

Let (A,∆) be a k-differential algebra and let Θ be the set of k-derivative operators

on A generated by ∆, i.e., the free commutative semigroup generated by ∆. Then

any θ ∈ Θ can be uniquely expressed in the form of a product θ =
∏

δ∈∆ δe(δ),

where e(δ) ∈ N (we assume that 0 ∈ N). The number s =
∑

δ∈∆ e(δ) is called the

order of θ and is denoted by ord θ.

1.2. Differential polynomials. Let (R,∆) be a k-differential ring, Θ the set of

k-derivative operators on R generated by ∆, and J a nonempty set. We denote by

R{yj : j ∈ J} the ring of k-differential polynomials, i.e., the ring of polynomials

R{yj : j ∈ J} := R[YJ,Θ]

with coefficients in R, in the system of variables YJ,Θ = (yj,θ : j ∈ J, θ ∈ Θ), where

we assume that θ1(yj,θ2) = yj,θ1θ2 for θ1, θ2 ∈ Θ and yj = yj,θ for θ ∈ Θ of order 0.

The ring R{yj : j ∈ J} has the structure of a k-differential ring with the set of

k-derivations ∆ if we set δ(yj,θ) = yj,δθ for j ∈ J , δ ∈ ∆ and θ ∈ Θ. If cardJ = 1,

we will write R{y} instead of R{yj : j ∈ J}.

Take any k-differential polynomial p ∈ R{yj : j ∈ J}. Then there are d, n ∈ N,

n > 0, and (j1, θ1), . . . , (jn, θn) ∈ J ×Θ such that

p(YJ,Θ) =
∑

i1+···+in≤d

ri1,...,in(yj1,θ1)
i1 · · · (yjn,θn)

in ,

where i1, . . . , in ∈ N and ri1,...,in ∈ R for i1 + · · ·+ in ≤ d. The number

max{i1 + · · ·+ in : ri1,...,in 6= 0, i1 + · · ·+ in ≤ d}

is called the degree of p and denoted by deg p (deg p = −∞ if p = 0). The number

max
⋃

1≤s≤n

{ord θs : ri1,...,in 6= 0, i1 + · · ·+ in ≤ d, is > 0}

is called the order of p and denoted by ord p (we set max ∅ = −1, and then ord p =

−1 if p ∈ R).
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If cardJ = 1 and ∆ = {δ}, then for any polynomial p ∈ R{y}, we denote by p∗

the unique polynomial from R[x0, . . . , xn], where n = ord p, such that

p(y) = p∗(yδ0 , . . . , yδn).

Then for any a ∈ R we have

p(a) = p∗(a, δ(a), . . . , δn(a)).

1.3. Differentially closed fields. A field K of characteristic zero equipped with

m > 0 commuting derivations is called differentially closed (or partial differentially

closed for m > 1) if every system of differential polynomial equations and inequa-

tions in several variables with a solution in some differential extension of K has a

solution in K. If m = 1, then the ordinary differential field K is called ordinary

differentially closed.

In this paper we will use the following (equivalent) definition of ordinary differ-

entially closed fields, due to L. Blum [3]:

An ordinary differential field (K, δ) of characteristic zero is called differentially

closed if for each pair p, q ∈ K{y} of differential polynomials such that ord q < ord p

and q 6= 0, there is some a ∈ K with p(a) = 0 and q(a) 6= 0.

From [34, Lemma 4] we obtain the following fact (cf. [30, 31, 32, 33]).

Proposition 1.1. Assume that (K, δ) is a differentially closed field of characteristic

zero. Then the transcendence degree trdegQ K of K over Q is infinite.

Proof. We will write y′ for yδ and y for y0. Consider the differential polynomials

p0 = (1 + y)y′ − y, q0 = y. Then 0 ≤ ord q0 < ord p0. So, there exists ϕ0 ∈

K such that p0(ϕ0) = 0 and q0(ϕ0) 6= 0. Consider a sequence of differential

polynomials pj = p0 and qj = qj−1(y − ϕj−1), where ϕj−1 ∈ K, pj−1(ϕj−1) = 0

and qj−1(ϕj−1) 6= 0 for j ∈ N, j > 0. Since (K, δ) is a differentially closed field, such

sequences exist. Consequently, there exist an infinite number of distinct nonzero

solutions of the equation p0 = 0. Then [34, Lemma 4] yields the assertion. �

Let the differential field (U , δ∗) be a differential extension of a differential field

(K, δ) of characteristic zero, i.e., K is a subfield of U and δ∗(a) = δ(a) for a ∈ K.

We say that the extension (U , δ∗) of (K, δ) is finitely generated if U has a finite

subset A such that (U , δ∗) is the smallest differential extension of (K, δ) in (U , δ∗)

that contains A. The set A is called the set of generators of the extension (U , δ∗)

over (K, δ). The extension (U , δ∗) over (K, δ) is called simply generated if it has a

set of generators consisting of one element.

After E.R. Kolchin [12, 13], we say that (U , δ∗) is a semiuniversal extension

of (K, δ) if every finitely generated differential extension of (K, δ) differentially
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embeds over K in (U , δ∗). We say that (U , δ∗) is a universal extension of (K, δ) if

(U , δ∗) is semiuniversal over every finitely generated differential extension of (K, δ).

A universal extension of the field Q is called a universal differential field.

1.4. Ordered differentially closed fields. We will use the following definition

of ordered ordinary differentially closed fields, due to M. Singer [35].

Let R be a real field with an ordering ≻ and a derivation δ. The field (R, δ)

is called an ordered (or real) ordinary differentially closed field, or briefly ordered

differentially closed, if R is real closed and for any p, q1, . . . , qm ∈ R{y} such that

n = ord p ≥ ord qi for 1 ≤ i ≤ m, and any a0, . . . , an ∈ R such that p∗(a0, . . . , an) =

0 with ∂p∗

∂xn
(a0, . . . , an) 6= 0 and q∗i (a0, . . . , an) ≻ 0 for 1 ≤ i ≤ m, there exists a ∈ R

such that p(a) = 0 and qi(a) ≻ 0 for 0 ≤ i ≤ m.

Remark 1.2. From the definition we immediately see that if (R, δ) is an ordered

differentially closed field, then for any n ∈ N the space

V = {(a, δ(a), . . . , δn(a)) ∈ Rn+1 : a ∈ R}

is dense in Rn+1, i.e., for any polynomials g1, . . . , gm ∈ R[x0, . . . , xn], if

X = {(a0, . . . , an) ∈ Rn+1 : gi(a0, . . . , an) ≻ 0, 1 ≤ i ≤ m} 6= ∅,

then V ∩X 6= ∅.

The following is known (see [36]):

Proposition 1.3. If (R, δ) is an ordered differentially closed field, then (R(i), δ∗),

where i2 = −1 and δ∗(f1 + if2) = δ(f1) + iδ(f2) for f1, f2 ∈ R, is a differentially

closed field (of characteristic 0).

From the above and Proposition 1.1 we have

Corollary 1.4. Assume that (R, δ) is an ordered differentially closed field. Then

the transcendence degree trdegQ R of R over Q is infinite.

Let R be a real closed field ordered by ≻. For x = (x1, . . . , xn) ∈ Rn we denote

‖x‖ =
√

x2
1 + · · ·+ x2

n. The Euclidean topology in Rn is the topology for which the

open balls B(x, r) := {y ∈ Rn : ‖x − y‖ ≺ r}, x ∈ Rn, r ∈ R, r ≻ 0, form a basis

of open subsets (see [4, Definition 2.1.9]). Polynomials are continuous with respect

to the Euclidean topology.

Proposition 1.5. Let (R, δ) be an ordered differentially closed field, ordered by ≻.

Then for any p ∈ R{y} and any a, b ∈ R such that a ≺ b and p(a)p(b) ≺ 0 there

exists c ∈ R such that a ≺ c ≺ b and p(c) = 0. Moreover, if n = ord p then c

can be chosen in such a way that c ∈ B(s, ‖s− a‖), where c = (c, δ(c), . . . , δn(c)),

s = 1
2 (a+ b) and a = (a, δ(a), . . . , δn(a)), b = (b, δ(b), . . . , δn(b)).
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Proof. Take any p ∈ R{y}, n = ord p, and a, b ∈ R as in the assumption. Let

p∗ ∈ R[x0, . . . , xn] be the unique polynomial such that p(y) = p∗(yδ0 , yδ, . . . , yδn),

and let a = (a, δ(a), . . . , δn(a)), b = (b, δ(b), . . . , δn(b)), s = 1
2 (a+ b).

One can assume that the polynomial p∗ is irreducible in R[x0, . . . , xn] and its

degree with respect to xn is positive. Since p∗(a)p∗(b) ≺ 0, the sign of the polyno-

mial p∗ changes in Rn+1 and by [4, Theorem 4.5.1], the ideal (p∗) ⊂ R[x0, . . . , xn]

is real, prime and it is the ideal of polynomials vanishing on the hypersurface

V = {x ∈ Rn+1 : p∗(x) = 0}. Moreover, dimV = n. Consequently, ∂p∗

∂xn
/∈ (p∗) and

dimW < n, where W = {x ∈ V : ∂p∗

∂xn
(x) = 0}.

Take polynomials q1, q2 ∈ R{y} defined by q1(y) = ‖s−a‖2−‖(yδ0 , . . . , yδn)−s‖2,

q2(y) = (y− a)(b− y). Then ord q1 = n, ord q2 = 0 and q1(y) = q∗1(yδ0 , yδ, . . . , yδn)

for q∗1(x0, . . . , xn) = ‖s− a‖2 − ‖(x0, . . . , xn)− s‖2, and q2(y) = q∗2(yδ0 , yδ, . . . , yδn)

for q∗2(x0, . . . , xn) = (x0 − a)(b − x0), and B(s, ‖s− a‖) = {x ∈ Rn+1 : q∗1(x) ≻ 0}.

Take a polynomial r ∈ R[t] defined by r(t) = p∗(ta+ (1− t)b). By the assump-

tions, r(0)r(1) ≺ 0. Since R is real closed, there exists t0 ∈ R with 0 ≺ t0 ≺ 1 such

that r(t0) = 0 (see [4, Proposition 1.2.4]). We may assume that r changes sign at

the point t0 (i.e., r(t0) = 0 and r takes positive and negative values in any neigh-

bourhood of t0). Put a0 = t0a+(1− t0)b. Then a0 ∈ B(s, ‖s−a‖), p∗(a0) = 0 and

q∗2(a0) ≻ 0. So, there exists ε ≻ 0 such that B(a0, ε) ⊂ B(s, ‖s− a‖) and q∗2(x) ≻ 0

for x ∈ B(a0, ε). Set B = B(a0, ε).

Let U1 = {x ∈ Rn+1 : p∗(x) ≻ 0} and U2 = {x ∈ Rn+1 : p∗(x) ≺ 0}. Since p∗ is

irreducible and changes sign in B, we have U1 ∩B 6= ∅ and U2 ∩B 6= ∅. So, by [4,

Lemma 3.4.2], dim(V ∩B) = dim(B\(U1∪U2)) = n. Since dimW < n, there exists

a1 ∈ (V ∩ B) \W , and so p∗(a1) = 0, ∂p∗

∂xn
(a1) 6= 0 and q∗j (a1) ≻ 0, and obviously

ord qj ≤ ord p for j = 1, 2. Then by definition of ordered differentially closed field,

there exists c ∈ R such that p(c) = 0 and qj(c) ≻ 0, j = 1, 2. Consequently, c ∈ B

and a ≺ c ≺ b, which completes the proof. �

J. van der Hoeven [10] proved that the field T of transseries satisfies the first

part ot the assertion of Proposition 1.5. It is not clear whether the converse of the

van der Hoeven result holds for real differential fields. Nevertheless, we have the

converse of the “moreover” part of Proposition 1.5.

Corollary 1.6. Let (R, δ) be an ordered differential field, ordered by ≻. Assume

that R is real closed. Then the following conditions are equivalent:

(a) (R, δ) is an ordered differentially closed field.
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(b) For any p ∈ R{y}, n = ord p ≥ 0, and any a,b ∈ Rn+1 with p∗(a)p∗(b) ≺

0, there exists c ∈ R such that p(c) = 0 and c ∈ B(s, ‖s − a‖), where c =

(c, δ(c), . . . , δn(c)) and s = 1
2 (a+ b).

(c) For any p ∈ R{y}, n = ord p ≥ 0, any a ∈ Rn+1 at which p∗ changes sign,

and any ball B(a, r), r ≻ 0, there exists c ∈ R such that p(c) = 0 and c ∈ B(a, r),

where c = (c, δ(c), . . . , δn(c)).

(d) For any p ∈ R{y}, n = ord p ≥ 0, any a ∈ Rn+1 with p∗(a) = 0, ∂p∗

∂xn
(a) 6= 0,

and any ball B(a, r), r ≻ 0, there exists c ∈ R such that p(c) = 0 and c ∈ B(a, r),

where c = (c, δ(c), . . . , δn(c)).

Proof. The implication (a) ⇒ (b) is proved similarly to Proposition 1.5. The im-

plication (c) ⇒ (d) is obvious.

If p ∈ R{y} with n = ord p ≥ 0 changes sign at a ∈ Rn+1, then for any ball

B(a, r) with r ≻ 0 there are a1,b1 ∈ B(a, r) such that p∗(a1)p
∗(b1) ≺ 0 and

B(s, ‖s− a1‖) ⊂ B(a, r), where s = 1
2 (a1 + b1). Thus, (b) gives (c).

Take any p, q1, . . . , qm ∈ R{y} with n = ord p ≥ ord qj , 1 ≤ j ≤ m, and p∗(a) =

0, ∂p∗

∂xn
(a) 6= 0, and qj(a) ≻ 0, 1 ≤ j ≤ m, for some a ∈ Rn+1. Since polynomials

are continuous in the Euclidean topology in Rn+1, there exists a ball B(a, r), r ≻ 0,

such that qi(x) ≻ 0 for x ∈ B(a, r), 1 ≤ j ≤ m. Thus (d) gives (a). �

2. Semialgebraic preliminaries

2.1. Q-algebraic and semialgebraic sets. Let us recall some facts from [37]

concerning algebraic and semialgebraic sets in a space of infinite dimensions.

Let K = R or K = C. Let T be a nonempty set. We denote by ΛT = (Λt : t ∈ T )

a system of independent variables, and by K[ΛT ] and K(ΛT ) the ring of polynomials

in the variables of ΛT over K and its quotient field, respectively. More precisely, for

any P ∈ K(ΛT ) we have P ∈ K(Λt1 , . . . ,Λtm) for some finitely many t1, . . . , tm ∈ T .

We denote by KT the set of all functions T → K equipped with the product

topology. Then all projections KT ∋ x 7→ x(t) ∈ K, t ∈ T , are continuous.

A subset of KT is called Q-algebraic when it is defined by a finite system of

equations P = 0, where P ∈ Q[ΛT ]. Any Q-algebraic set in KT is of the form

{x ∈ KT : (x(t1), . . . , x(tm)) ∈ V }, where m ∈ N, t1, . . . , tm ∈ T and V ⊂ Km is a

Q-algebraic subset of Km (a complex Q-algebraic set if K = C).

Note that any Q-algebraic subset of CT is also Q-algebraic in (RT )2. However,

a Q-algebraic set in (RT )2 is also Q-algebraic in CT only if it is Q-algebraic as a

complex algebraic set.
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A subset of KT (if K = C we identify CT with (RT )2) is called Q-semialgebraic

when it is defined by a finite boolean combination of inequalities P > 0 or P ≥ 0,

where P ∈ Q[ΛT ] (P ∈ Q[ΛT ,Λ
′
T ], where Λ′

T = (Λ′
t : t ∈ T ) is a system of

independent variables and ΛT ,Λ
′
T represent real and imaginary parts of complex

numbers, if K = C). Analogously to the above, any Q-semialgebraic set in KT is

of the form {x ∈ KT : (x(t1), . . . , x(tm)) ∈ X}, where m ∈ N, t1, . . . , tm ∈ T and

X ⊂ Km is a Q-semialgebraic subset of Km.

From the basic properties of algebraic and semialgebraic sets in finite-dimensional

real vector spaces (see [2], [4], [5], [20]) we obtain

Proposition 2.1. (a) The family of Q-algebraic sets in KT is closed with respect

to finite unions and intersections.

(b) The family of Q-semialgebraic sets in KT is closed with respect to comple-

ments and finite unions and intersections.

(c) (Tarski-Seidenberg). Let πt1,...,tm : RT ∋ x 7→ (x(t1), . . . , x(tm)) ∈ Rm,

where t1, . . . , tm ∈ T . If X ⊂ RT and Y ⊂ Rm are Q-semialgebraic, then so are

πt1,...,tm(X) and π−1
t1,...,tm

(Y ).

(d) For any Q-semialgebraic set X ⊂ RT , the interior IntX, closure X and the

boundary FrX are Q-semialgebraic.

(e) Every connected component of a Q-semialgebraic subset of RT is Q-semialge-

braic.

2.2. c-filters. Let K = R or K = C. A family Ω of subsets of KT satisfying the

following conditions:

(i) any U ∈ Ω is a nonempty open connected Q-semialgebraic set,

(ii) for any Q-algebraic set V  KT there exists U ∈ Ω such that V ∩ U = ∅,

(iii) for any U1, U2 ∈ Ω there exists U3 ∈ Ω such that U3 ⊂ U1 ∩ U2,

(iv) for any U ∈ Ω there exist an open connected and simply connected

Q-semialgebraic set U0 ⊂ KT and a set U ′ ∈ Ω such that U ′ ⊂ U0 ⊂ U ,

will be called a c-filter in KT (cf. [37]).

Condition (iv) in the definition of c-filter is necessary in the construction of the

C-field of Nash functions (see Section 2.3), because the construction is based on

the monodromy theorem (see [38, Theorem 2.4] and [37, Remark 5.6]). In [37]

we used c-filters only in the real space RT and we omitted condition (iv), because

it was unnecessary. In the real case a Q-Nash function f : U → R such that

P (λ, f(λ)) = 0, where P ∈ Q[ΛT , Z], is defined by f(λ) = ξi(λ), λ ∈ U , for fixed

1 ≤ i ≤ m, where ξ1(λ) < · · · < ξm(λ) are roots of the polynomial P (λ, Z), provided
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the resultant of P with respect to Z has no zeros in U . However, in the real case we

can use the results from [37], because then condition (iv) follows from the others.

Namely we have

Proposition 2.2. Let Ω be a family of subsets of RT satisfying conditions (i), (ii)

and (iii) in the definition of c-filter. Then Ω also satisfies condition (iv).

Proof. Take any U ∈ Ω. Then there exist m ∈ N and t1, . . . , tm ∈ T such that U =

{x ∈ RT : (x(t1), . . . , x(tm)) ∈ X} for some open connected Q-semialgebraic set

X ⊂ Rm. Take a cylindrical decomposition S1, . . . , Sν of Rm into Q-semialgebraic

sets adapted to the set X (see [1, Theorem 5.6 and Algorithm 11.15]). We may

assume that X =
⋃n

j=1 Sj for some n ≤ ν, and IntS1, . . . , IntSℓ 6= ∅, while

IntSℓ+1 = · · · = IntSn = ∅. Then X =
⋃ℓ

j=1 Sj , and S1, . . . , Sℓ are open connected

and simply connected Q-semialgebraic sets. Moreover,
⋃ℓ

j=1 FrSj is contained in

some proper Q-algebraic subset W of Rm, where FrSj denotes the boundary of Sj .

Set

Uj = {x ∈ RT : (x(t1), . . . , x(tm)) ∈ Sj}, j = 1, . . . , ℓ,

V = {x ∈ RT : (x(t1), . . . , x(tm)) ∈ W}.

Then U \ V ⊂
∑ℓ

j=1 Uj ⊂ U , and by conditions (ii) and (iii) in the definition of

c-filter, there exists U ′ ∈ Ω such that U ′ ⊂ U \ V , and by (i), U ′ ⊂ Uj for some

j ∈ {1, . . . , ℓ}. Then taking U0 = Uj we deduce the assertion. �

In the real case we have the following property of c-filters.

Proposition 2.3 ([37, Proposition 2.1]). For any c-filter Ω of subsets of RT , the

set ∂Ω :=
⋂

U∈Ω U has at most one point.

The assertion of Proposition 2.3 fails in the complex case (see Remark 2.15 in

Section 2.5). However, it does hold for some c-filters in CT . Namely, let T ⊂ R be

a set algebraically independent over Q, and let x0 ∈ RT be defined by x0(t) = t for

t ∈ T . Then there exists a c-filter ΩK
x0

of subsets of KT of the form

(1) U = {x ∈ KT : |x(tj)− x̃j | < ε, j = 1, . . . ,m},

for any t1, . . . , tm ∈ T with t1 < · · · < tm and ε ∈ Q+ and x̃ = (x̃1, . . . , x̃m) ∈ Qm

such that |tj − x̃j | < ε for j = 1, . . . ,m (and so x0 ∈ U).

A c-filter Ω in KT such that x0 ∈ U for any U ∈ Ω will be called centered at x0.

2.3. Field of Nash functions. A function f : U → R, where U ⊂ RT is an open

Q-semialgebraic set, is called a Q-Nash function if f is real analytic and there exists

a nonzero polynomial P ∈ Q[ΛT , Z] such that P (λ, f(λ)) = 0 for λ ∈ U . In fact f
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depends on a finite number of variables, so the analyticity of f is clear. The ring

of Q-Nash functions in U is denoted by NR(U).

A function f : U → C, where U ⊂ CT is an open Q-semialgebraic set (as a subset

of RT × RT ), is called a C-Q-Nash function if f is holomorphic and there exists a

nonzero polynomial P ∈ Q[ΛT , Z] such that P (λ, f(λ)) = 0 for λ ∈ U . The ring of

C-Q-Nash functions in U is denoted by NC(U).

Any nonzero polynomial P ∈ Q[ΛT , Z] determines at most degZ P Q-Nash func-

tions in a nonempty open connected Q-semialgebraic set U ⊂ RT (respectively

C-Q-Nash functions in a nonempty open connected Q-semialgebraic set U ⊂ CT ).

For the basic properties of Nash functions and semialgebraic sets in finite-

dimensional vector spaces see for instance [2], [4], [5], [18]. From these properties

we immediately obtain:

Proposition 2.4. Let K = R or K = C, and let U ⊂ KT be a nonempty open

connected Q-semialgebraic set. Then the ring NK(U) is a domain.

By Proposition 2.4, for any c-filter Ω in KT and any U ∈ Ω, the ring NK(U) of

Q-Nash functions if K = R or C-Q-Nash functions if K = C on U is a domain. In
⋃

U∈Ω NK(U) we introduce an equivalence relation by

(f1 : U1 → K) ∼ (f2 : U2 → K) iff f1|U3 = f2|U3 for some U3 ∈ Ω.

The ∼-equivalence class of f : U → R will be denoted by [f ]Ω or simply by f , and

the set of all such classes by NK
Ω . The set NK

Ω , together with the usual operations

of addition and multiplication

[f1]Ω + [f2]Ω =
[

f1|U + f2|U
]

Ω
, [f1]Ω · [f2]Ω =

[

f1|Uf2|U
]

Ω
,

where f1 ∈ NK(U1), f2 ∈ NK(U2) and U ∈ Ω, U ⊂ U1 ∩ U2, is a field, called the

K-field of Nash functions.

From [37, Theorems 5.2 and Remark 5.6] we obtain the following proposition.

Proposition 2.5. Let Ω be a c-filter in KT .

(a) If K = R, then the field NK
Ω is a real closure of the field Q(ΛT ), where the

c-filter Ω determines a linear ordering ≻Ω in NK
Ω by (see Section 2.4)

f ≻Ω g iff there exists U ∈ Ω such that f(x) > g(x) for all x ∈ U.

(b) If K = C, then the field NK
Ω is the algebraic closure of the field Q(ΛT ).

Note that in Proposition 2.5 (b), the existence of solutions of any equation

P (Z) = 0, where P ∈ NC
Ω[Z], degP > 0, follows from the monodromy theorem and

the condition (iv) in the definition of c-filter (cf. [38, proof of Theorem 2.4]).
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2.4. Orderings in fields of real Nash functions. Let us fix a c-filter Ω in RT .

Recall that by ∂Ω we denote the set
⋂

U∈Ω U . Recall also that Ω determines an

ordering ≻ in NR
Ω (see Proposition 2.5), i.e., a total ordering satisfying:

f ≻ g ⇒ f + h ≻ g + h and f ≻ 0 ∧ g ≻ 0 ⇒ fg ≻ 0

such that f ≻ 0 iff f > 0 on some U ∈ Ω. If f ≻ g then we also write g ≺ f .

From [37, Theorem 3.1, Remark 3.2 and Corollary 5.4] we have

Theorem 2.6. The following conditions are equivalent:

(a) The field (NR
Ω ,≻) is Archimedean.

(b) There exists x≻ ∈ ∂Ω whose coordinates are pairwise different and the set of

these coordinates is algebraically independent over Q.

(c) There exists x≻ ∈ ∂Ω such that x≻ ∈ U for any U ∈ Ω.

(d) There exists x≻ ∈ ∂Ω such that f ≻ 0 iff f(x≻) > 0, provided f ∈ NR
Ω.

Remark 2.7. If (NR
Ω ,≻) is an Archimedean field, where Ω is a c-filter in RT , then

one can assume that T ⊂ R and it is algebraically independent over Q and ordered

in such a way that for t1, t2 ∈ T we have Λt1 ≻ Λt2 iff t1 > t2. In fact, according

to Theorem 2.6, it suffices to take the set of coordinates of x≻ as the set T .

Let K = R or K = C. Let T ⊂ R be an infinite set algebraically independent

over Q. Let x0 ∈ RT be defined by x0(t) = t for t ∈ T . Take the c-filter ΩK
x0

centered at x0 defined in Section 2.2. The field NK
ΩK

x0

will be denoted by NK
x0

. Then

Theorem 2.6 gives

Corollary 2.8. The field NR
x0

is an Archimedean, real closed field which is the

real closure of Q(ΛT ). Moreover the function NR
x0

∋ f 7→ f(x0) ∈ R is an order

preserving monomorphism.

It is easy to prove that ΩR
x0

= {U ∩ RT : U ∈ ΩC
x0
}. Since any analytic function

f : U → C, where U ⊂ RT is an open set, has a unique holomorphic extension

f̃ : Ũ → C onto some open set Ũ ⊂ CT with U ⊂ Ũ , by Proposition 2.5 we

immediately obtain

Corollary 2.9. The field NC
x0

is the algebraic closure of Q(ΛT ) and of NR
x0

. More-

over, the mapping

Ψ : NC
x0

∋ f 7→ Re f |RT + i Im f |RT ∈ NR
x0
(i)

is an isomorphism of fields, where i2 = −1.
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2.5. Another c-filter on KT . Let K = R or K = C. Let m be a fixed positive

integer and Λ a system of m variables Λ1, . . . ,Λm.

Take any nonzero P ∈ Q[Λ]. Set

ΓP = {(λ1, . . . , λm) ∈ Km : P (λ1, . . . , λm−1, λm + γ) = 0 for some γ ∈ [0,∞)}.

We define a polynomial ω(P ) ∈ Q[Λ1, . . . ,Λm−1]\{0} (or a number ω(P ) ∈ Q\{0}

if m = 1) by ω(P ) = P0, where

P = P0Λ
d
m + P1Λ

d−1
m + · · ·+ Pd,

and Pi ∈ Q[Λ1, . . . ,Λm−1] (or Pi ∈ Q if m = 1) for i = 0, . . . , d, P0 6= 0.

We now define sets WP ⊂ Km, P ∈ Q[Λ] \ {0}, by induction on m:

WP = K \ ΓP ⊂ K if m = 1,

WP = (Km \ ΓP ) ∩ (Wω(P ) ×K) ⊂ K
m if m > 1.

By the Tarski-Seidenberg Theorem (see [31, 39]), the sets WP for P ∈ Q[Λ] \

{0} are Q-semialgebraic. Indeed, this is clear for K = R. Let us explain it in

the case when K = C. Then P (λ1, . . . , λm) = P (x1 + iy1, . . . , xm + iym) =

u(x1, . . . , xm, y1, . . . , ym) + iv(x1, . . . , xm, y1, . . . , ym), where i2 = −1 and u, v ∈

Q[x1, . . . , xm, y1, . . . , ym] are the real and imaginary parts of P respectively. So,

ΓP = {(x1, . . . , xm, y1, . . . , ym) ∈ R2m : u(x1, . . . , xm + γ, y1, . . . , ym)

= v(x1, . . . , xm + γ, y1, . . . , ym) = 0 for some γ ∈ [0,∞)}

is Q-semialgebraic in R2m, and consequently WP is Q-semialgebraic in Cm = R2m.

An argument analogous to the proof of [38, Theorem 1.1] gives the following

Proposition 2.10. The family W = {WP : P ∈ Q[Λ], P 6= 0} is a c-filter and

satisfies the following conditions:

R0. WP ⊂ {λ ∈ Km : P (λ) 6= 0},

R1. WP ∩WQ = WPQ,

R2. WP is an unbounded subset of Km,

R3. WP is open, connected and simply connected,

R4. for K = C, WP is a dense subset of Cm.

R5. WP = Km for P = const, P 6= 0.

We have (cf. [37, Lemma 4.2])

Lemma 2.11. Let 1 ≤ i1 < · · · < im ≤ n, and let P ∈ Q[Λi1 , . . . ,Λim ] \ {0}. Let

Q ∈ Q[Λ1, . . . ,Λn] be a polynomial of the form

Q(x1, . . . , xn) = P (xi1 , . . . , xim), (x1, . . . , xn) ∈ K
n.
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Then WP ⊂ Km, WQ ⊂ Kn, and

WQ = {(x1, . . . , xn) ∈ K
n : (xi1 , . . . , xim) ∈ WP }.

Let T be a nonempty linearly ordered set with ordering ≻. For any t1, . . . , tm ∈ T

with t1 ≺ · · · ≺ tm we consider the projection map

πt1,...,tm : KT ∋ x 7→ (x(t1), . . . , x(tm)) ∈ Km.

We define a family WK
T of Q-semialgebraic subsets U of KT by

U = (πt1,...,tm)−1(WP )

for any m ∈ N \ {0}, t1, . . . , tm ∈ T , t1 ≺ · · · ≺ tm and P ∈ Q[Λt1 . . . ,Λtm ] \ {0}.

From Lemma 2.11 and Proposition 2.10 (cf. [37, Proposition 4.3]) we obtain

Proposition 2.12. WK
T is a c-filter.

In Section 2.2 we observed that there exists a c-filter ΩK
x0

in KT provided T ⊂ R.

Proposition 2.12 generalizes this to any set T .

From the definition of the sets WP in the real and complex cases and from [37,

Corollary 4.5], Proposition 2.10 and Lemma 2.11 we have

Corollary 2.13. WR
T = {U ∩ RT : U ∈ WC

T }.

Remark 2.14. It is easy to see that for K = R and P = Λ2 − Λ1 ∈ Q[Λ1,Λ2]

we have WP = {(λ1, λ2) ∈ R2 : λ2 > λ1}, so Λ2 ≻W Λ1 for the ordering ≻W in

NR
W determined by the c-filter W in R2 (see Proposition 2.10). So, for any linearly

ordered set T with ordering ≻ we have t1 ≻ t2 iff Λt1 ≻WR

T
Λt2 .

Remark 2.15. By Proposition 2.10 for any U ∈ WC
T we have U = CT , so ∂WC

T =
⋂

U∈WC

T
U = CT . On the other hand, ∂WR

T = ∅. Indeed, take any t ∈ T . Then

Un = {x ∈ RT : x(t) > n} ∈ WR
T for all n ∈ N, and so ∂WR

T ⊂
⋂

n∈N Un = ∅.

We will denote by NK
T the field of Nash functions NK

Ω , where Ω = WK
T is the

c-filter defined above. A similar argument to that for Corollary 2.9 gives

Proposition 2.16. The mapping

Ψ : NC
T ∋ f 7→ Re f |RT + i Im f |RT ∈ NR

T (i)

is an isomorphism of fields, where f |RT is the restriction f |U∩RT : U ∩ RT → C,

provided f ∈ NC
T (U), U ∈ WC

T and i2 = −1. Consequently, NC
T is an algebraic

extension of NR
T of degree 2. Moreover, the field NC

T is the algebraic closure of NR
T .

Remark 2.17. By the definition of the c-filter WC
T , any function f ∈ NC

T is

holomorphic in an open connected, simply connected and dense subset of CT .
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2.6. Extensions of c-filters. Let K = R or K = C. Let (T1, T2) be a pair of

nonempty disjoint linearly ordered sets with orderings ≻1 and ≻2, respectively.

Then T1 ∪ T2 is linearly ordered by: for any t, t′ ∈ T1 ∪ T2, t ≻1,2 t′ iff either t ∈ T2

and t′ ∈ T1, or t, t′ ∈ T1 and t ≻1 t′, or t, t′ ∈ T2 and t ≻2 t′. Then one can consider

the space KT1 ×KT2 as KT1∪T2 .

Under the above convention, the construction of the c-filter WK
T gives

Proposition 2.18. The c-filter WK
T1∪T2

of subsets of KT1 ×KT2 contains the fam-

ilies {U ×KT2 : U ∈ WK
T1
} and {KT1 × U : U ∈ WK

T2
}.

On account of the above proposition, the c-filter WK
T1∪T2

will be called an exten-

sion of WK
T1

and of WK
T2

.

It is easy to observe that the assertion of Proposition 2.18 also holds for c-filters

centered at points ΩK
x1

, ΩK
x2

, respectively in KT1 , KT2 , provided T1, T2 ⊂ R are

disjoint and their union T1 ∪ T2 is algebraically independent over Q. In the case of

arbitrary c-filters, a similar construction cannot be made, because it leads to many

filters in the Cartesian product of appropriate spaces. For instance Ω = {(0, ε) :

ε ∈ Q+} is a c-filter in R but there are infinitely many c-filters in R2 containing

{U × R : U ∈ Ω} and {R× U : U ∈ Ω}.

Let (T1, T2) be a pair of nonempty disjoint linearly ordered sets.

Proposition 2.19. The field NK
T1∪T2

is an extension of NK
T1

and NK
T2

.

Proof. Indeed, any function f ∈ NK
T1

has a representative f : U → K, where

U ∈ WK
T1

, which we may consider as a function f : U ×KT2 → K. So, f ∈ NK
T1∪T2

.

Obviously addition and multiplication extend from NK
T1

to NK
T1∪T2

. Analogously

we consider the case of f ∈ NK
T2

. �

3. A geometric model of an arbitrary differentially closed field

3.1. Derivations on a field of Nash functions. Let K = R or K = C. Consider

a c-filter Ω in KT and the K-field NK
Ω of Nash functions. Take any family

g = (gt ∈ NK
Ω : t ∈ T ),

and let δg : NK
Ω → NK

Ω be the mapping defined by

(2) δg(f) =
∑

t∈T

gt
∂f

∂Λt

for f ∈ NK
Ω .

The mapping δg is well defined, because any representative of f ∈ NK
Ω depends only

on a finite number of variables, so ∂f
∂Λt

∈ NK
Ω and the sum in (2) is finite. We have
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Proposition 3.1. The mapping δg defined by (2) is a derivation (more precisely,

a Q-derivation) on NK
Ω . Moreover, any derivation on NK

Ω is of the form (2).

Proposition 3.2. Assume that (K, δ) is a differential field of characteristic zero, let

ϕ : K → NK
Ω be a Q-embedding, and let K = ϕ(K). Then the mapping δϕ : K → K

defined by

δϕ(f) = ϕ(δ(ϕ−1(f)))

is a derivation on K, and ϕ is a Q-differential isomorphism of the differential fields

(K, δ), (K, δϕ).

Proof. Obviously δϕ is a Q-linear mapping, and for any f, g ∈ K,

δϕ(fg) = ϕ(δ(ϕ−1(fg))) = ϕ(δ(ϕ−1(f)ϕ−1(g)))

= ϕ(δ(ϕ−1(f)))g + fϕ(δ(ϕ−1(g))) = δϕ(f)g + fδϕ(g).

On the other hand, for any a ∈ K, ϕ(δ(a)) = ϕ(δ(ϕ−1(ϕ(a)))) = δϕ(ϕ(a)), which

completes the proof. �

Theorem 3.3. Let (K, δ) be a differentially closed field of characteristic zero.

Then there exists an infinite set T such that (K, δ) is Q-differentially isomorphic

to (NC
Ω , δg) for an arbitrary c-filter Ω in CT and some family

(3) g = (gt ∈ NC
Ω : t ∈ T ).

Proof. Let T be a transcendence basis of K over Q. By Proposition 1.1, T is an

infinite set. Since K is algebraically closed, being differentially closed, Proposition

2.5(b) implies that K is Q-isomorphic to NC
Ω for an arbitrary c-filter Ω in CT .

Then, by Propositions 3.1 and 3.2 we see that (K, δ) is Q-differentially isomorphic

to (NC
Ω , δg) for some family g of the form (3). �

3.2. A derivation which makes the field of Nash functions differentially

closed. Let T be a linearly ordered infinite set with ordering ≻. Let Ω be a c-filter

in CT (e.g., the one defined in Section 2.5). Set

K = NC
Ω.

Consider the ring of polynomials

K[Y ] = K[Yj : j ∈ N].

For any P ∈ K[Y ] we set

D(P) =

{

t ∈ T :
∂P

∂Λt

= 0

}

.

Obviously T \D(P) is a finite set.
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For P ∈ K[Y ] with degP > 0, we set

α(P) = max
{

j ∈ N : degYj
P > 0

}

,

where degYj
P denotes the degree of P as a polynomial in Yj . Additionally we set

α(P) = −1 if P ∈ K \ {0}, and α(0) = −∞.

Define

A = {(P ,Q) ∈ K[Y ]2 : α(P) > α(Q) ≥ −1}.

Fact 3.4. The sets T , K, K[Y ] and A have the same cardinality.

Proof. Since T is infinite, it has the same cardinality as the set Fin(T ) of all finite

subsets of T . So, Q[ΛT ] has cardinality cardT , because it is the union of the count-

able sets Q[Λt1 , . . . ,Λtm ] for {t1, . . . , tm} ∈ Fin(T ). Consequently, cardQ[ΛT , Z] =

cardT . Hence cardK = cardT , because any polynomial P ∈ Q[ΛT , Z] determines

a finite subset of K and the set Q[ΛT ] of cardinality cardT is contained in K. Anal-

ogously, K[Y ] is the union of the sets K[Y0, . . . , Ym], m ∈ N, so cardK[Y ] = cardT .

Since [Y1(K[Y ] \ {0})]× {1} ⊂ A ⊂ K[Y ]2, we obtain cardA = cardT . �

Fact 3.5. There exists a family of pairwise disjoint infinite and countable subsets

TP,Q ⊂ T , (P ,Q) ∈ A, such that

T =
⋃

(P,Q)∈A

TP,Q.

Proof. Since T is infinite, there exists a bijection τ : N×T → T . By Fact 3.4 there

exists a bijection η : A → T . Thus for TP,Q = τ(N× {η(P ,Q)}) ⊂ T , (P ,Q) ∈ A,

we obtain the assertion. �

Fact 3.6. Let (P ,Q) ∈ A. For any tP,Q,0, . . . , tP,Q,α(P)−1 ∈ D(P) ∩D(Q) ∩ TP,Q

such that tP,Q,0 ≺ · · · ≺ tP,Q,α(P)−1 we have

Q(ΛtP,Q,0 , . . . ,ΛtP,Q,α(P)−1
) 6= 0

and

degYα(P)
P(ΛtP,Q,0 , . . . ,ΛtP,Q,α(P)−1

, Yα(P)) > 0,

under the natural convention when α(P) = 0. Moreover, points tP,Q,0, . . . ,

tP,Q,α(P )−1 ∈ D(P) ∩ D(Q) ∩ TP,Q such that tP,Q,0 ≺ · · · ≺ tP,Q,α(P)−1 always

exist, provided α(P) > 0.

Proof. If α(P) = 0 then the assertion is trivial. Assume that α(P) > 0. By the

definition of A, the polynomial Q depends on at most α(P) − 1 first variables

Yj . Since D(P) ∩ D(Q) ∩ TP,Q is an infinite set, there exist t0, . . . , tα(P)−1 ∈

D(P) ∩ D(Q) ∩ TP,Q such that t0 ≺ · · · ≺ tα(P)−1, and hence we immediately

deduce the assertion. �
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Assume that we have fixed a choice of tP,Q,i for (P ,Q) ∈ A as in Fact 3.6.

Let (P ,Q) ∈ A and let gP,Q ∈ K be a solution of the equation

P(ΛtP,Q,0 , . . . ,ΛtP,Q,α(P)−1
, Yα(P)) = 0

with respect to Yα(P). Recall that K = NC
Ω is an algebraically closed field, so

gP,Q ∈ K always exists.

Define a family g of points gt ∈ K, t ∈ T , by

(4) gt =











ΛtP,Q,i+1 for t = tP,Q,i, i = 0, . . . , α(P)− 2,

gP,Q for t = tP,Q,α(P)−1,

ft for t ∈ TP,Q \ {tP,Q,0, . . . , tP,Q,α(P)−1},

under the natural convention when α(P) ∈ {0, 1}, where ft ∈ K are arbitrary for

t ∈ TP,Q \ {tP,Q,0, . . . , tP,Q,α(P)−1}, for each (P ,Q) ∈ A. Since tP,Q,i ∈ TP,Q, by

Fact 3.5 the family g is well defined. Consider the derivation

δg(f) =
∑

t∈T

gt
∂f

∂Λt

for f ∈ K.

Theorem 3.7. (K, δg) is a differentially closed field.

Proof. Obviously (K, δg) is a differential field. It suffices to prove that for each pair

p, q ∈ K{y} of differential polynomials such that ord q < ord p, q 6= 0, there is some

f ∈ K with p(f) = 0 and q(f) 6= 0. Since the field K is algebraically closed, this

condition obviously holds in the case ord p = 0. Assume that ord p > 0.

Since K{y} = K[yδng : n ∈ N], there exists a one-to-one correspondence between

K{y} and K[Y ] determined by Yj 7→ yδjg for j ∈ N. So, for any p, q ∈ K{y} with

n =ord p > ord q, q 6= 0, there exist P ,Q ∈ K[Y ] with P = p∗ and Q = q∗, i.e.,

p = P(y0, yδ, . . . , yδn) and q = Q(y0, yδ, . . . , yδn),

α(P) = n ≥ 0 and α(Q) = ord q. Then by the definition of δg for f = ΛtP,Q,0 ∈ K

we have δmg (f) = ΛtP,Q,m
for 0 ≤ m ≤ n − 1 and δng (f) = gP,Q. So, by Facts 3.5

and 3.6, p(f) = 0 and q(f) 6= 0, which completes the proof. �

From the choice of g in (4) and Theorem 3.7 we have

Corollary 3.8. The set of all derivations δ on NC
Ω such that (NC

Ω, δ) is a differ-

entially closed field has cardinality 2card(T ).

3.3. A universal extension of a differential field. Let T 6= ∅ be a linearly

ordered set. Take the c-filter WC
T in CT defined in Section 2.5. Consider a pair

(T1, T2) of nonempty sets, where T1 = T and T2 is a linearly ordered infinite set
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such that T1 ∩ T2 = ∅ and cardT2 = max{cardT, cardN}. Let ≻ be the ordering

of T1 ∪ T2 defined in Section 2.6. Let

K = NC
T1∪T2

be the extension of NC
T (see Proposition 2.19).

Let T2 = T3 ∪ T4, where T3 ∩ T4 = ∅ and cardT3 = cardT2.

We will use similar notation to that of Section 3.2. Consider the ring of polyno-

mials K[Y ] = K[Yj : j ∈ N] and set

DT3(P) =

{

t ∈ T3 :
∂P

∂Λt

= 0

}

for P ∈ K[Y ].

Then T3 \DT3(P) is a finite set.

Consider the set A = {(P ,Q) ∈ K[Y ]2 : α(P) > α(Q) ≥ −1}.

We easily see that the sets T2, K, K[Y ] and A have the same cardinality (cf.

Fact 3.4). By Fact 3.5 there exists a family of pairwise disjoint countable subsets

TP,Q ⊂ T3, (P ,Q) ∈ A, such that

T3 =
⋃

(P,Q)∈A

TP,Q.

For any (P ,Q) ∈ A the set DT3(P) ∩ DT3(Q) ∩ TP,Q is infinite. So there

are tP,Q,ℓ,0, . . . , tP,Q,ℓ,α(P)−1 ∈ DT3(P) ∩ DT3(Q) ∩ TP,Q, where 1 ≤ ℓ ≤ k,

k = degYα(P)
P ≥ 1, such that

(5) tP,Q,1,0 ≺ · · · ≺ tP,Q,1,α(P)−1 ≺ · · · ≺ tP,Q,k,0 ≺ · · · ≺ tP,Q,k,α(P)−1 ,

Q(ΛtP,Q,ℓ,0
, . . . ,ΛtP,Q,ℓ,α(P)−1

) 6= 0, 1 ≤ ℓ ≤ k,

and

(6) k = degYα(P)
P(ΛtP,Q,ℓ,0

, . . . ,ΛtP,Q,ℓ,α(P)−1
, Yα(P)), 1 ≤ ℓ ≤ k.

Hence there exist hP,Q,ℓ ∈ NC
T∪{tP,Q,ℓ,0,...,tP,Q,ℓ,α(P)−1}

⊂ K, 1 ≤ ℓ ≤ k, such that

(7) P(ΛtP,Q,ℓ,0
, . . . ,ΛtP,Q,ℓ,α(P)−1

, hP,Q,ℓ) = 0, 1 ≤ ℓ ≤ k,

and for some 1 ≤ j ≤ k (equivalently, for each 1 ≤ j ≤ k),

hP,Q,ℓ(ΛtP,Q,j,0 , . . . ,ΛtP,Q,j,α(P)−1
), 1 ≤ ℓ ≤ k, are all solutions counted

with multiplicity of the equation P(ΛtP,Q,j,0 , . . . ,ΛtP,Q,j,α(P)−1
, Yα(P)) = 0.

(8)

Obviously hP,Q,ℓ(ΛtP,Q,j,0 , . . . ,ΛtP,Q,j,α(P)−1
) ∈ NC

T∪{tP,Q,j,0,...,tP,Q,j,α(P)−1}
⊂ K for

any 1 ≤ j ≤ k.

Define a family h of points ht ∈ K, t ∈ T3, by

ht =











ΛtP,Q,ℓ,i+1
for t = tP,Q,ℓ,i, 0 ≤ i ≤ α(P)− 2, 1 ≤ ℓ ≤ k,

hP,Q,ℓ for t = tP,Q,ℓ,α(P)−1, 1 ≤ ℓ ≤ k,

ft for t ∈ TP,Q \ {tP,Q,1,0, . . . , tP,Q,k,α(P)−1}
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under the natural convention when α(P) ∈ {0, 1}, we take k = degYα(P)
P and

ft ∈ K are arbitrary for t ∈ TP,Q\{tP,Q,1,0, . . . , tP,Q,k,α(P)−1}, for each (P ,Q) ∈ A.

Let δg be a derivation on NC
T of the form

δg(f) =
∑

t∈T

gt
∂f

∂Λt

for f ∈ NC
T1

for some family g = (gt ∈ NC
T : t ∈ T ). Take any family w = (wt ∈ K : t ∈ T4).

Then the mapping δ : K → K defined by

δ(f) =
∑

t∈T

gt
∂f

∂Λt

+
∑

t∈T3

ht

∂f

∂Λt

+
∑

t∈T4

wt

∂f

∂Λt

is a derivation extending δg. So, by an analogous argument to that for Theorem

3.7 we deduce that

Corollary 3.9. (K, δ) is a differentially closed field differentially extending (NC
T , δg).

Proof. Obviously (K, δ) is a differential extension of (NC
T , δg). Take any p, q ∈ K{y}

such that ord p > ord q and q 6= 0. Then p∗ = P and q∗ = Q for some (P ,Q) ∈ A.

So, for f = ΛtP,Q,1,0 we have p(f) = 0 and q(f) 6= 0. �

Assume that cardT4 = cardN. For simplicity one can assume that T4 = N. Take

a bijection σ : T4 × N→ T4 and a family v = (vt : t ∈ T4) defined by

vt = Λσ(s,k+1) if t = σ(s, k) ∈ T4, (s, k) ∈ T4 × N.

Let T4,s = σ({s} × N), s ∈ T4. Then the sets T4,s are countable, pairwise disjoint,

and

T4 =
⋃

s∈T4

T4,s.

Further, the mapping δ∗ : K → K defined by

δ∗(f) =
∑

t∈T

gt
∂f

∂Λt

+
∑

t∈T3

ht

∂f

∂Λt

+
∑

t∈T4

vt
∂f

∂Λt

is a derivation extending δg, and by Corollary 3.9, (K, δ∗) is a differentially closed

field. Moreover, we have

Lemma 3.10. (a) For any s ∈ T4 the mapping δ∗ is a derivation in NC
T∪T4,s

.

(b) If (P ,Q) ∈ A and P ∈ NC
T [Y ] then for any 1 ≤ ℓ ≤ degYα(P)

P the mapping

δ∗ is a derivation in NC
T∪T ′ , where T ′ = {tP,Q,ℓ,0, . . . , tP,Q,ℓ,α(P)−1}.

Lemma 3.11. Let (NC
T , δ) be a differential extension of a differential field (L, δ)

such that NC
T is an algebraic extension of L. Let F ⊂ NC

T∪T◦ , with (T∪T2)∩T
◦ = ∅,

be a field such that (F , δ1) is a simply generated differential extension of (L, δ) and

let c be a generator of the extension. Assume that c is transcendental over L.
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(a) If the sequence (δn1 (c) : n ∈ N) is algebraically independent1 over L, then for

any s ∈ T4 the mapping Φ : F → NC
T∪T4,s

⊂ K defined by

(9) Φ(f) = f for f ∈ L and Φ(δn1 (c)) = Λσ(s,n) for n ∈ N,

is a differential embedding over L. Moreover, the field NC
T∪T4,s

is an algebraic

extension of Φ(F).

(b) If δ01(c), . . . , δ
m−1
1 (c) is the longest sequence algebraically independent over L,

then there exists (P ,Q) ∈ A such that α(P) = m and for some open and connected

subset V ⊂ CT∪T◦

,

P(δ01(c), . . . , δ
m−1
1 (c), δm1 (c)) = 0 in V,(10)

δm1 (c) = hP,Q,ℓ(δ
0
1(c), . . . , δ

m−1
1 (c)) in V for some 1 ≤ ℓ ≤ degYm

P .(11)

Moreover, for any such (P ,Q), V ⊂ CT∪T◦

and 1 ≤ ℓ ≤ degYm
P, the mapping

Φ1 : F → NC
T∪T ′ ⊂ K defined by

(12) Φ1(f) = f for f ∈ L, Φ1(δ
n
1 (c)) = ΛtP,Q,ℓ,n

for 0 ≤ n ≤ m− 1,

and Φ1(δ
n
1 (c)) = (δ∗)n−m(hP,Q,ℓ) ∈ NC

T∪T ′ for n ≥ m,

is a differential embedding over L, where T ′ = {tP,Q,ℓ,0, . . . , tP,Q,ℓ,m−1}. In partic-

ular the field NC
T∪T ′ is an algebraic extension of Φ1(F).

Proof. Let the sequence (δn1 (c) : n ∈ N) be algebraically independent over L, let

s ∈ T4 and let Φ1 : F → K be the mapping defined by (9). By Lemma 3.10(a), δ∗

is a derivation in NC
T∪T4,s

and obviously Φ(F) ⊂ NC
T∪T4,s

. Moreover,

Φ(δn1 (c)) = (δ∗)n(Λσ(s,0)) = (δ∗)n(Φ(c)) for n ∈ N,

so, Φ is a differential embedding over L. Obviously NC
T∪T4,s

is an algebraic extension

of Φ(F), which gives (a).

Assume now that δ01(c), . . . , δ
m−1
1 (c) is the longest sequence algebraically inde-

pendent over L. Then δn1 (c) ∈ NC(W ), 0 ≤ n ≤ m, for some W ∈ WC
T∪T◦ . Let

F : W ∋ (λ, x) 7→ (λ, δ01(c)(λ, x), . . . , δ
m−1
1 (c)(λ, x)) ∈ CT × Cm,

where λ ∈ CT and x ∈ CT◦

.

We claim that there exists an open connected subset V ⊂ W such that F (V ) ⊂

CT × Cm has nonempty connected interior. Indeed, since δn1 (c), 0 ≤ n ≤ m − 1,

depends on a finite number of variables, it suffices to consider the case when T ∪T ◦

is a finite set. Let X ⊂ CT × CT◦

× Cm be the graph of F , let Y be the Zariski

closure of X , and let π : Y ∋ (λ, x, y) 7→ (λ, y) ∈ CT × Cm. Take the ideal

I ⊂ C[(Λt; t ∈ T ), (xt◦ : t◦ ∈ T ◦), (y0, . . . , ym−1)] of polynomials vanishing on

Y . Since X is the graph of a mapping which components are Q-Nash functions

1i.e., δ0
1
(c), . . . , δm

1
(c) are algebraically independent over L, for any m ∈ N.
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on open connected set W , it is a connected complex analytic manifold and so,

irreducible analytic subset of W × Cm (see [15, Corollary 3, p.216]). So, by [15,

Proposition 4, p. 217 and Corollary after Proposition 2, p. 408] the set Y is

irreducible and consequently the ideal I is prime. Moreover, using Gröbner bases

(see for instance [24, Theorem 2.4], [7, Section 9], see also [1], [8]), we obtain

that I is generated by polynomials with rational coefficients, and that the ideal

J ⊂ C[(Λt; t ∈ T ), (y0, . . . , ym−1)] of the set π(Y ) ⊂ CT × Cm is also generated by

polynomials with rational coefficients.

By the assumption δ01(c), . . . , δ
m−1
1 (c) are algebraically independent over L and

L ⊂ NC
T is an algebraic extension, so they are algebraically independent over NC

T

and in particular – over Q(ΛT ). So Λt, t ∈ T , and δ01(c), . . . , δ
m−1
1 (c) are alge-

braically independent over Q. Since the ideal J is generated by polynomials with

rational coefficients, [1, Theorem 1.22] gives that J = {0} and the set π(Y ) is a

constructible (i.e., it is in the Boolean algebra generated by the closed algebraic

sets, see [17]) and dense subset of CT ×Cm. Since Y is an irreducible algebraic set,

there exists a proper algebraic subset Y0  Y such that π|Y \Y0
: Y \Y0 → CT ×Cm

is an open mapping (see [17, Corollary 3.15] and the Riemann Open Mapping The-

orem [15, Theorem V.6.2]). Consequently F (W ) = π(X) has nonempty interior

because X ⊂ Y and X contains a nonempty open subset of Y \ Y0. This easily

gives the announced claim.

By the assumption, δ01(c), . . . , δ
m
1 (c) are algebraically dependent over L. So,

there exists (P ,Q) ∈ A with α(P) = m and P ∈ L[Y ] ⊂ NC
T [Y ] such that

P(δ01(c), . . . , δ
m−1
1 (c), δm1 (c)) = 0. Take any such (P ,Q), tP,Q,ℓ,0, . . . , tP,Q,ℓ,m−1 ∈

DT3(P) ∩ DT3(Q) ∩ TP,Q, and hP,Q,ℓ ∈ K, where 1 ≤ ℓ ≤ k, k = degYm
P ,

for which (5) – (8) hold. Since P ∈ NC
T [Y ], we have hP,Q,ℓ ∈ NC

T∪T ′ , where

T ′ = {tP,Q,ℓ,0, . . . , tP,Q,ℓ,m−1}. So, P ∈ NC(U)[Y ] and hP,Q,ℓ ∈ NC(U), 1 ≤ ℓ ≤ k,

for some U ∈ WC
T∪T ′ . By Lemma 3.10(b) the mapping δ∗ is a derivation in NC

T∪T ′ .

From Proposition 2.10, U is an open and dense subset of CT × Cm, so by the

above claim for some nonempty open connected set V ⊂ W we have that F (V ) ⊂ U

is an open and connected set. Consequently, (10) holds in V and by (8), there exists

1 ≤ ℓ0 ≤ k such that

δm1 (c)(λ, x) = hP,Q,ℓ0(λ, δ
0
1(c)(λ, x), . . . , δ

m−1
1 (c)(λ, x)) for (λ, x) ∈ V

and (11) holds. So, it is easy to observe that the mapping Φ1 : F → K defined

by (12) is an embedding over L. By the definition of δ∗ we conclude that Φ1 is a

differential embedding of (F , δ1) in NC
T∪T ′ over L. Furthermore, the homomorphism

Φ1 transforms the transcendence basis {δ01(c), . . . , δ
m−1
1 (c)} of F over L onto the

transcendence basis {Λt : t ∈ T ′} of NC
T∪T ′ over NC

T . Since NC
T∪T ′ is an algebraically
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closed field and NC
T is an algebraic extension of L, the field NC

T∪T ′ is an algebraic

extension of Φ1(F), which gives (b) and completes the proof. �

Theorem 3.12. (K, δ∗) is a universal extension of (NC
T , δg).

Proof. We claim that (K, δ∗) is a semiuniversal extension of (NC
T , δg). Take any

finitely generated differential extension (F , δ1) of (NC
T , δg) and let {c1, . . . , cN} be

the set of generators of the extension. Obviously (F , δ1) is equal to the quotient

field of the differential domain NC
T [δ

n
1 (cj) : n ∈ N, 1 ≤ j ≤ N ] with derivation δ1.

Let Fν be the quotient field of the domain NC
T [δ

n
1 (cj) : n ∈ N, 1 ≤ j ≤ ν],

0 ≤ ν ≤ N . Then F0 = NC
T and (Fν+1, δ1) is a simply generated extension of

(Fν , δ1) for 1 ≤ ν ≤ N − 1. By [12, Proposition II.2.3] one can assume that

cν+1 is transcendental over Fν . If the sequence (δn1 (c1) : n ∈ N) is algebraically

independent over NC
T then by Lemma 3.11(a) for any s ∈ T4 the mapping Φ : F1 →

NC
T∪T4,s

⊂ K defined by (9) with c = c1 is a differential embedding over NC
T and

NC
T∪T4,s

is an algebraic extension of Φ(F1). Therefore, using several times Lemma

3.11(a), we may assume that for any 1 ≤ j ≤ N there exists mj ∈ N such that

δ01(cj), . . . , δ
mj−1
1 (cj) is the longest sequence algebraically independent over Fj−1.

By Proposition 3.2 we may assume that Fj ⊂ NC
T∪T◦

j
⊂ NC

T∪T◦ for some finite sets

T ◦
1  . . .  T ◦

N = T ◦ with (T ∪ T2) ∩ T ◦ = ∅, such that NC
T∪T◦

j
is an algebraic

extension of Fj . Then δn1 (cj) ∈ NC(W ), 0 ≤ n ≤ mj , for some W ∈ WC
T∪T◦ .

Since c1 is transcendental over NC
T , by Lemma 3.11(b) there exist (P ,Q) ∈ A

with α(P) = m1, there exists 1 ≤ ℓ ≤ degYm1
P , T ′

1 = {tP,Q,ℓ,0, . . . , tP,Q,ℓ,m1−1}

and hP,Q,ℓ ∈ NC
T∪T ′

1
such that Φ1 : F1 → K defined by (12) with c = c1 is a

differential embedding over NC
T and NC

T∪T ′
1

is an algebraic extension of Φ(F1). So,

we may assume that F1 ⊂ NC
T∪T ′

1
is an algebraic extension. Then c2 is transcen-

dental over F1 and we may repeat the above argument with c2 and the extension

F1 ⊂ F2. By applying Lemma 3.11(b) N times we find that (F , δ1) = (FN , δ1)

differentially embeds over NC
T in (NC

T∪T ′ , δ∗) for some finite set T ′ ⊂ T3. These

iterations of Lemma 3.11 are possible, because for a fixed P0 ∈ K[Y ], α(P0) ≥ 0,

there are infinitely many Q ∈ K[Y ] such that (P0,Q) ∈ A, and so the family of

sets {TP0,Q : (P0,Q) ∈ A} is infinite and for any P , Q we have defined all roots

hP,Q,ℓ of P(ΛtP,Q,1,0 , . . . ,ΛtP,Q,1,α(P)−1
, Yα(P)) = 0, so we can choose appropriate ℓ

for which (11) holds. Summing up, (K, δ∗) is a semiuniversal extension of (NC
T , δg).

To complete the proof it suffices to prove that for any finitely generated differ-

ential extension (F , δ∗) of (NC
T , δg) in (K, δ∗), the field (K, δ∗) is a semiuniversal

extension of (F , δ∗). Indeed, by the above, there are a finite set T ′ ⊂ T3 and a

finite union T ′′ = T4,s′1
∪ · · · ∪ T4,s′µ ⊂ T4 such that NC

T∪T ′∪T ′′ is an algebraic ex-

tension of F . Let (G, δ1) be a finitely generated differential extension of (F , δ∗).
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Then, an analogous argument as in the first two paragraphs of the proof, but using

(G, δ1) in place of (F , δ∗) and (F , δ∗) in place of (NC
T , δg), gives that (G, δ1) can be

differentially embedded in (K, δ∗) over (F , δ∗). This completes the proof. �

Remark 3.13. If L = Q then (K, δ∗) is the universal differential field.

4. An Archimedean ordered differentially closed field

4.1. A geometric model of an arbitrary ordered differential field. In [37]

we proved that there exists a one-to-one correspondence between the family of

orderings in Q(ΛT ) and the family of plain filters (see [37, Theorem 5.2, Proposition

2.4 and Corollary 2.5], cf. [6]). By a plain filter we mean a c-filter Ω of subsets of

RT defined by:

1) any U ∈ Ω is a connected component of the complement of a proper Q-

algebraic set V ⊂ RT ,

2) for any proper Q-algebraic set V ⊂ RT , some connected component U of the

complement of V belongs to Ω.

The above mentioned correspondence is as follows:

Fact 4.1. For any ordering ≻ of Q(ΛT ) there exists a unique plain filter Ω such

that f ≻ 0 iff f > 0 on some U ∈ Ω. Conversely, any plain filter Ω determines a

unique ordering ≻ of Q(ΛT ) in the above way.

Since any ordering in NR
Ω is uniquely determined by an ordering in Q(ΛT ), from

the above fact we obtain (cf. Theorem 3.3 for differentially closed fields)

Corollary 4.2. Let (K, δ) be an ordered differentially closed field. Then there exists

an infinite set T such that (K, δ) is Q-differentially order isomorphic to (NR
Ω , δg)

for some c-filter Ω in RT and some family

(13) g = (gt ∈ NR
Ω : t ∈ T ).

Proof. Let T be the transcendence basis of K over Q. By Corollary 1.4, T is an

infinite set. Since K is a real closed field, being ordered and differentially closed,

Proposition 2.5(a) shows that K is Q-order isomorphic to NR
Ω for some plain filter

Ω of subsets of RT . Then, by Propositions 3.1 and 3.2 we see that (K, δ) is Q-

differentially order isomorphic to (NC
Ω, δg) for some family g of the form (13). �

4.2. A derivation which makes an Archimedean Nash field ordered dif-

ferentially closed. Let T ⊂ R be an infinite set algebraically independent over Q
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ordered by the usual ordering > on R. Let Ω = ΩR
x0

be the c-filter of subsets of RT

centered at x0 ∈ RT , defined by (1) in Section 2.4. Set

K = NR
x0
.

By Theorem 2.6, the field K is Archimedean, where the ordering ≻ in K is described

by f ≻ 0 iff f(x0) > 0. Set

Kx0 = {f(x0) : f ∈ K}.

Remark 4.3. By the definition of the c-filter ΩR
x0

, each f ∈ K is a real analytic

function in a neighbourhood of x0, or more precisely, f is a germ of real analytic

function at x0. Consequently, one can consider the elements f as sums of power

series centered at x0 in a finite number of variables.

By Corollary 2.8 we have

Fact 4.4. Kx0 is a real closed field order isomorphic to K.

We will adopt the notation of Section 3.2. Consider the ring of polynomials

K[Y ] = K[Yj : j ∈ N].

For a polynomial R ∈ K[Y ] of the form

R(Y0, . . . , Yk) =
∑

j0,...,jk≥0

fj0,...,jkY
j0
0 · · ·Y jk

k

where fi0,...,ik ∈ K for all i0, . . . ik, we denote by Rx0 the polynomial in Kx0 [Y ]

defined by

Rx0(Y0, . . . , Yk) =
∑

j0,...,jk≥0

fj0,...,jk(x0)Y
j0
0 · · ·Y jk

k .

Consider the sets

Bk,n = {(P ,Q1, . . . ,Qn) ∈ K[Y ]n+1 : k = α(P) ≥ α(Qs) ≥ −1, s = 1, . . . , n}

for k, n ∈ N, and let

(14) Z =

∞
⋃

k,n=1

{

(P ,Q1, . . . ,Qn, f0, . . . , fk) ∈ Bk,n ×Kk+1 : P(f0, . . . , fk) = 0,

∂P

∂xk

(f0, . . . , fk) 6= 0, Qs(f0, . . . , fk) ≻ 0, s = 1, . . . , n

}

.

We immediately obtain the following fact (cf. Fact 3.4).

Fact 4.5. The sets T , K, K[Y ] and Z have the same cardinality.

Fact 4.6. There exists a family of pairwise disjoint infinite and countable subsets

TP,Q1,...,Qn,f0,...,fk ⊂ T , (P ,Q1, . . . ,Qn, f0, . . . , fk) ∈ Z, such that

T =
⋃

(P,Q1,...,Qn,f0,...,fk)∈Z

TP,Q1,...,Qn,f0,...,fk .
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Proof. Since T is infinite, there exists a bijection τ : N×T → T . By Fact 4.5 there

exists a bijection η : Z → T . Thus setting

TP,Q1,...,Qn,f0,...,fk = τ(N× {η(P ,Q1, . . . ,Qn, f0, . . . , fk)}) ⊂ T

for (P ,Q1, . . . ,Qn, f0, . . . , fk) ∈ Z, we obtain the assertion. �

Proposition 4.7. Let z = (P ,Q1, . . . ,Qn, f0, . . . , fk) ∈ Z, k = α(P). For any

(15) tz,0, . . . , tz,k−1 ∈ D(P) ∩D(Q1) ∩ . . . ∩D(Qn) ∩ Tz

such that tz,0 < · · · < tz,k−1 there are rz,0, . . . , rz,k−1 ∈ Q \ {0}, such that

(16) P(rz,0Λtz,0, . . . , rz,k−1Λtz,k−1
, fz) = 0

and

(17) Qs(rz,0Λtz,0, . . . , rz,k−1Λtz,k−1
, fz) ≻ 0, s = 1, . . . , n,

for some fz ∈ K. Moreover, points in (15) such that tz,0 < · · · < tz,k−1 always

exist.

Proof. By definition of Z, the polynomial Qs depends on at most the first k + 1

variables Yj . Since Tz is infinite, there exist tz,0, . . . , tz,k ∈ D(P) ∩D(Q1) ∩ · · · ∩

D(Qn)∩Tz such that tz,0 < · · · < tz,k. The set of coordinates of x0 is algebraically

independent over Q, so x0(tz,j) 6= 0 for j = 0, . . . , k.

Let ξj = fj(x0) ∈ Kx0 , j = 0, . . . , k. In view of the choice of the point z,

Px0(ξ0, . . . , ξk) = 0,
∂Px0

∂xk

(ξ0, . . . , ξk) 6= 0,

(Qs)x0(ξ0, . . . , ξk) > 0, s = 1, . . . , n.

For any rj ∈ Kx0 \ {0} sufficiently close to
ξj

x0(tz,j)
for j = 0, . . . , k we have

(18) (Qs)x0(r0x0(tz,0), . . . , rkx0(tz,k)) > 0, s = 1, . . . , n,

and moreover rjx0(tz,j) = rjFj(x0) ∈ Kx0 , where Fj(ΛT ) = Λtz,j for j = 0, . . . , k.

Then there exists ε > 0 such that any point of the set

Uε =

{

r = (r0, . . . , rk) ∈ Kk+1
x0

:

∣

∣

∣

∣

rj −
ξj

x0(tz,j)

∣

∣

∣

∣

< ε, j = 0, . . . , k

}

satisfies (18). Since
∂Px0

∂xk
(ξ0, . . . , ξk) 6= 0 and Kx0 is real closed, the function

Kx0 ∋ ζ 7→ Px0(ξ0, . . . , ξk−1, ζ) ∈ Kx0

changes sign at ξk. Thus there are a, b ∈ Kx0 such that a < b and

(19) |a− ξk| < ε|x0(tz,k)|, |b− ξk| < ε|x0(tz,k)|

and

Px0(ξ0, . . . , ξk−1, a)Px0(ξ0, . . . , ξk−1, b) < 0.
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Since Q is a dense subset of Kx0 , there exists r = (r0, . . . , rk) ∈ Uε ∩ Qk+1 such

that rj 6= 0 for j = 0, . . . , k, and

Px0(r0x0(tz,0), . . . , rk−1x0(tz,k−1), a)Px0(r0x0(tz,0), . . . , rk−1x0(tz,k−1), b) < 0.

As Kx0 is real closed, this implies that there exists ξ∗ ∈ Kx0 such that a < ξ∗ < b

and

(20) Px0(r0x0(tz,0), . . . , rk−1x0(tz,k−1), ξ
∗) = 0,

and by (19),
∣

∣

∣

∣

ξ∗

x0(tz,k)
−

ξk
x0(tz,k)

∣

∣

∣

∣

< ε.

Hence,
(

r0, . . . , rk−1,
ξ∗

x0(tz,k)

)

∈ Uε, and consequently

(21) (Qs)x0(r0x0(tz,0), . . . , rk−1x0(tz,k−1), ξ
∗) > 0, s = 1, . . . , n.

By definition of Kx0 there exists fz ∈ K such that fz(x0) = ξ∗. Moreover,

rz,j := rj ∈ Q and so rz,jΛtz,j ∈ K for j = 0, . . . , k − 1. Now, (20), (21) and Fact

4.4 immediately give the assertion. �

Assume that for any z = (P ,Q1, . . . ,Qn, f0, . . . , fk) ∈ Z, we have chosen points

tz,0, . . . , tz,k−1 ∈ D(P) ∩D(Q1) ∩ · · · ∩D(Qn) ∩ Tz,

where k = α(P), such that tz,0 < · · · < tz,k−1 and rz,0, . . . , rz,k−1 ∈ Q \ {0}, and

fz ∈ K as in Proposition 4.7, i.e., (16) and (17) hold.

Define a family g of points gt ∈ K, t ∈ T , by

(22) gt =











rz,i+1

rz,i
Λtz,i+1 for t = tz,i, i = 0, . . . , α(P)− 2,

1
rz,α(P)−1

fz for t = tz,α(P)−1,

ht for t ∈ Tz \ {tz,0, . . . , tz,α(P)−1},

where ht ∈ K are arbitrary for t ∈ Tz\{tz,0, . . . , tz,α(P)−1}, for each z = (P ,Q1, . . . ,

Qn, f0, . . . , fα(P)) ∈ Z.

Consider the following derivation on K:

(23) δg(f) =
∑

t∈T

gt
∂f

∂Λt

for f ∈ K.

Theorem 4.8. (K, δg) is an ordered differentially closed field.

Proof. Obviously (K, δg) is an ordered differential field and by Corollary 2.8, K is

real closed. Take any p, q1, . . . , qn ∈ K{y} such that k = ord p ≥ ord qj , 1 ≤ j ≤ n,

and any f0, . . . , fk ∈ K such that p∗(f0, . . . , fk) = 0, ∂p∗

∂xk
(f0, . . . , fk) 6= 0 and

q∗j (f0, . . . , fk) ≻ 0, 1 ≤ j ≤ n. Then z = (p∗, q∗1 , . . . , q
∗
n, f0, . . . , fk) ∈ Z and

k = α(p∗). Since rz,j ∈ Q, by (22) for f = rz,0Λtz,0 we have

δ(f) = rz,0δ(Λtz,0) = rz,1Λz,1, . . . , δk−1(f) = rz,k−1Λz,k−1, δk(f) = fz.
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So, Proposition 4.7, similarly to the proof of Theorem 3.7, shows that p(f) = 0 and

qj(f) ≻ 0, 1 ≤ j ≤ n, which gives the assertion. �

From the choice of g in (22) and Theorem 4.8 we have

Corollary 4.9. The set of all derivations δ on NR
x0

such that (NR
x0
, δ) is an ordered

differentially closed field has cardinality 2card(N
R

x0
).

Remark 4.10. By Corollary 1.6, to construct a derivation δ on K such that (K, δ)

becomes ordered differentially closed, it suffices to consider the set

Z =

∞
⋃

k,n=1

{

(P , ε, f0, . . . , fk) ∈ K[Y ]×Q+ ×Kk+1 : k = α(P) ≥ 0,

P(f0, . . . , fk) = 0,
∂P

∂xk

(f0, . . . , fk) 6= 0

}

instead of the one defined in (14), and repeat the construction in Proposition 4.7

without taking into consideration the polynomials Q1, . . . ,Qn.

Remark 4.11. Let (NR
x0
, δg) be the ordered differentially closed field with deriva-

tion δg defined by (22) and (23). By Proposition 1.3 (see also [36]), the field NR
x0
(i)

with the derivation

δ(f1 + if2) = δg(f1) + iδg(f2),

extending δg, is a differentially closed field.

Indeed, since i is algebraic over NR
x0

, it follows that δ is the unique derivation in

NR
x0
(i) extending δg. Thus Proposition 1.3 gives the assertion.

Remark 4.12. By Remarks 4.3, 4.11 and Corollary 2.9 we see that any function

f ∈ NC
x0

= NR
x0
(i) is holomorphic in a neighborhood of x0 in CT . Consequently,

one can consider the elements f as sums of power series centered at x0 in a finite

number of complex variables (or as germs of holomorphic functions).
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