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A GEOMETRIC MODEL
OF AN ARBITRARY DIFFERENTIALLY CLOSED FIELD
OF CHARACTERISTIC ZERO

STANISELAW SPODZIEJA

ABsTrACT. We give an elementary construction of an arbitrary differentially
closed field and of a universal extension of a differential field in terms of Nash
function fields. We also give a characterization of any Archimedean ordered
differentially closed field in terms of Nash functions.

INTRODUCTION

The study of differential algebras was started in the first half of the twentieth
century by J. F. Ritt [21,[22], and continued by E. R. Kolchin and J. F. Ritt [23] (see
also [12| [13]), I. Kaplansky [I1] and others (see for instance [10, [16], 19, 26| 27, 28]
29 32, [33]). The investigation of these algebras in the context of model theory was
initiated by A. Robinson [25]. Despite a fairly long period of study of differential
algebras, it is difficult to indicate papers where natural examples of differentially
closed fields are given. By A. Seidenberg’s embedding theorem [32] [33] we only
know that: FEwvery countable ordinary differential field of characteristic zero F is
differentially isomorphic over F to a differential subfield of the field of germs of
meromorphic functions in one variable at the origin. L. Harrington [9] proved that
if a complete and model complete decidable theory T has the finite basis property and
every quantifier-free constrained formula (in the language of T ) is complete, then
T has a recursively presentable prime model. He used this model-theoretic result

to construct the differential closure of any given recursively presentable differential
field.

The aims of this article are: to give models of ordinary differentially closed fields
of characteristic zero (Theorems and B.7); to construct a universal extension
of an ordinary differential field (Theorem BI2)); and to construct an Archimedean
ordinary ordered differentially closed field (Theorem [£8]). To this end we present a
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construction, in terms of Nash functions, of all algebraically closed fields of charac-
teristic zero, i.e., the algebraic closure of the rational function field kK = Q(Ar) in
the system of independent variables Ar = (A; : ¢t € T'), T # ), with coefficients in
Q (see [37]). It suffices to consider such fields, because any ordinary differentially
closed field K of characteristic zero is differentially isomorphic to the algebraic clo-
sure of some field Q(Ar) (Theorem B3). If T = @ then Q(Ar) = Q and so the
differential closure of Q(Ar) is contained in the algebraic closure of Q(Ay), i.e., one
can take T' = N (Proposition [[LT)). We assume the Kuratowski-Zorn Lemma (and
indirectly the axiom of choice, see [14]), so the set T can be well-ordered if T' # ().

The construction of any differentially closed field will be based on the construc-
tion of some family {2 of open connected semialgebraic subsets of C7', called a c-filter
(see Section [2]) and the rings N (U) of complex Nash functions on sets U € 2. The
algebraic closure of Q(A; : t € T) will be constructed as the set of equivalence

classes of the following relation in (J; oo, N(U):
(fl UL — (C) ~ (fg Uy — (C) iff f1|U3 = f2|U3 for some Uz € {2.

Y

Then the set N of equivalence classes of “~” with the usual operations of addition
and multiplication is a field, which is the algebraic closure of Q(Ar) (see Proposition
27 cf. [38, Theorem 2.4 and Corollary 2.5]). Whenever the space C? is infinite-
dimensional, we will construct a derivation § on N such that for each pair p,q €
Nao{y} of differential polynomials such that ordg < ordp, ¢ # 0, there is some
f € N with p(f) =0 and ¢q(f) # 0 (see Theorem [37), i.e., § satisfies the L. Blum

[3] definition of an ordinary differential closed field of characteristic zero.

To build various kinds of differentially closed fields we construct two c-filters,
2% and Wi, in KT, where K = R or K = C (see Section 22 and Proposition 210
in Section [2.5]). All sets in those c-filters will be simply connected. Moreover, each
Ue Wg is dense in CT'. This enables us to construct, for any ordinary differential
Nash field, a differentially closed extension of that field of the same cardinality (see
Corollary[3.9) and to construct a universal extension of an ordinary differential field
(Theorem [B12). We also construct, in terms of real Nash functions on U € 25 , a

model of an arbitrary ordinary Archimedean ordered differentially closed field (see
Section []).

1. DIFFERENTIAL FIELDS

In this section we will collect some fact concerning differential fields. For more
detailed information on this topic see for instance |11}, 12} [16] [19] 22] 28] 29].

1.1. Differential algebras. Let k& be a commutative ring with unity and let A be
a k-algebra, i.e., a left k-module with multiplication. A k-linear mapping d : A — A
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is called a derivation on A if 6(ab) = §(a)b+ ad(b) for any a,b € A. Then obviously

all elements of k are necessarily constants, i.e., §(A\) =0 for A € k.

A k-differential algebra (A, A) is defined as a k-algebra A with a nonempty set
A of derivations on A such that §6’(a) = §’d(a) for all a € A and 6,0" € A. If the
k-algebra A is a ring, an integral domain or a field, then we call the k-differential
algebra (A, A) a k-differential ring, a k-differential domain or a k-differential field
respectively. If & = Q, we will write “differential” instead of “k-differential”. If
m = card A = 1, the k-differential algebra (respectively ring, domain or field) is
called ordinary; if m > 1, it is called partial. If A = {6}, the k-differential algebra
(A, A) is denoted by (A, ).

Let (A, A) be a k-differential algebra and let © be the set of k-derivative operators
on A generated by A, i.e., the free commutative semigroup generated by A. Then
any 6 € © can be uniquely expressed in the form of a product 6 = []5c 500,
where e(6) € N (we assume that 0 € N). The number s = > 5. €(0) is called the
order of 0 and is denoted by ord 6.

1.2. Differential polynomials. Let (R, A) be a k-differential ring, © the set of
k-derivative operators on R generated by A, and J a nonempty set. We denote by
R{y, : j € J} the ring of k-differential polynomials, i.e., the ring of polynomials

Riy;:j € J}:=R[Ye]

with coeflicients in R, in the system of variables Y;o = (y;6 : j € J, 8 € ©), where
we assume that 01 (y;,6,) = yj,6,0, for 61,02 € © and y; = y;,¢ for § € © of order 0.
The ring R{y; : j € J} has the structure of a k-differential ring with the set of
k-derivations A if we set 6(y;0) = yj o0 for j € J, 0 € Aand 8 € ©. If card J =1,
we will write R{y} instead of R{y; : j € J}.

Take any k-differential polynomial p € R{y; : j € J}. Then there are d,n € N,
n >0, and (j1,601),..., (jn,0n) € J X O such that

p(Yr0) = D T o) Wga0,)™
it tin<d
where 71,...,i, € Nand ry, . ;. € R for iy +---+ 14, <d. The number

in 70,014 41, < d}

is called the degree of p and denoted by degp (degp = —o0 if p = 0). The number
max U {ord s : 7y, .4, #0,01+ -+ i, <d, is > 0}
1<s<n

is called the order of p and denoted by ordp (we set max () = —1, and then ordp =
—1lifp € R).
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If card J = 1 and A = {§}, then for any polynomial p € R{y}, we denote by p*

the unique polynomial from R[xo,...,Z,], where n = ord p, such that

p(y) =0 (Yso, - -, ysn).

Then for any a € R we have
p(a) =p*(a,d6(a),...,0"(a)).

1.3. Differentially closed fields. A field K of characteristic zero equipped with
m > 0 commuting derivations is called differentially closed (or partial differentially
closed for m > 1) if every system of differential polynomial equations and inequa-
tions in several variables with a solution in some differential extension of K has a
solution in K. If m = 1, then the ordinary differential field K is called ordinary
differentially closed.

In this paper we will use the following (equivalent) definition of ordinary differ-
entially closed fields, due to L. Blum [3]:

An ordinary differential field (K, d) of characteristic zero is called differentially
closed if for each pair p, g € K{y} of differential polynomials such that ord ¢ < ordp
and g # 0, there is some a € K with p(a) = 0 and ¢(a) # 0.

From [34, Lemma 4] we obtain the following fact (cf. [30, BT} [32] 33]).

Proposition 1.1. Assume that (K, 0) is a differentially closed field of characteristic
zero. Then the transcendence degree trdeggy K of K over Q is infinite.

Proof. We will write 3’ for ys and y for yo. Consider the differential polynomials
po= 149y —y, g =y. Then 0 < ordgy < ordpy. So, there exists ¢y €
K such that po(¢o) = 0 and go(wo) # 0. Consider a sequence of differential
polynomials p; = po and ¢; = ¢;—1(y — ¢;—1), where ;1 € K, pj_1(pj—1) =0
and gj_1(pj—1) # 0 for j € N, j > 0. Since (K, ¢) is a differentially closed field, such
sequences exist. Consequently, there exist an infinite number of distinct nonzero

solutions of the equation py = 0. Then [34, Lemma 4] yields the assertion. O

Let the differential field (4, 0*) be a differential extension of a differential field
(K, ¢) of characteristic zero, i.e., K is a subfield of & and §*(a) = 6(a) for a € K.
We say that the extension (U,0*) of (K,J) is finitely generated if U has a finite
subset A such that (U, 6*) is the smallest differential extension of (K,0) in (U, §*)
that contains A. The set A is called the set of generators of the extension (U, §*)
over (K, ¢). The extension (U, d*) over (K, J) is called simply generated if it has a

set of generators consisting of one element.

After E.R. Kolchin [12] [13], we say that (U, d*) is a semiuniversal extension
of (K,¢) if every finitely generated differential extension of (K, ) differentially
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embeds over K in (U,0*). We say that (U, 5*) is a universal extension of (K, J) if
(U, 6*) is semiuniversal over every finitely generated differential extension of (K, §).

A universal extension of the field Q is called a universal differential field.

1.4. Ordered differentially closed fields. We will use the following definition
of ordered ordinary differentially closed fields, due to M. Singer [35].

Let R be a real field with an ordering > and a derivation §. The field (R, )
is called an ordered (or real) ordinary differentially closed field, or briefly ordered
differentially closed, if R is real closed and for any p,q1,...,qn € R{y} such that
n=ordp > ordg; for 1 <i < m, and any ao, . ..,a, € R such that p*(ag,...,a,) =
0 with %(GO,-.-,(M) # 0 and ¢ (ag,...,an) = 0for 1 <4 <m, there exists a € R
such that p(a) =0 and ¢;(a) > 0 for 0 < i < m.

Remark 1.2. From the definition we immediately see that if (R, ) is an ordered
differentially closed field, then for any n € N the space
V ={(a,0(a),...,6"(a)) € R"™ :a € R}
is dense in R, i.e., for any polynomials gi,...,gm € R[xo,..., 2], if
X ={(ag,...,an) € R"™ : gi(ag,...,a,) = 0, 1 <i<m} #0,
then VN X # 0.

The following is known (see [36]):

Proposition 1.3. If (R,§) is an ordered differentially closed field, then (R(i),0*),
where i = —1 and 6*(f1 +if2) = 8(f1) +i8(f2) for fi, f2 € R, is a differentially
closed field (of characteristic 0).

From the above and Proposition [[.T] we have

Corollary 1.4. Assume that (R,0) is an ordered differentially closed field. Then
the transcendence degree trdeggy R of R over Q is infinite.

Let R be a real closed field ordered by . For = (z1,...,z,) € R"™ we denote
||| = \/2? + - -- + 22. The Buclidean topology in R" is the topology for which the
open balls B(z,r) :={y € R" : [|[x —y|| <r}, x € R", r € R, r = 0, form a basis
of open subsets (see [4, Definition 2.1.9]). Polynomials are continuous with respect

to the Euclidean topology.

Proposition 1.5. Let (R,d) be an ordered differentially closed field, ordered by >.
Then for any p € R{y} and any a,b € R such that a < b and p(a)p(b) < 0 there
exists ¢ € R such that a < ¢ < b and p(c) = 0. Moreover, if n = ordp then ¢

can be chosen in such a way that ¢ € B(s,||s — al|), where ¢ = (¢, (c),...,0"(c)),

s=1(a+b) anda=(a,6(a),...,6"a)), b= (b,5(b),...,6"(b)).
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Proof. Take any p € R{y}, n = ordp, and a,b € R as in the assumption. Let
p* € R|xg,...,x,] be the unique polynomial such that p(y) = p*(yso, Ys, - - -, Ysn ),
and let a = (a,8(a),...,0"(a)), b= (b,6(b),...,0"(b)), s = i(a+b).

One can assume that the polynomial p* is irreducible in R[x,...,x,] and its
degree with respect to x,, is positive. Since p*(a)p*(b) < 0, the sign of the polyno-
mial p* changes in R"*! and by [4, Theorem 4.5.1], the ideal (p*) C R[xo, ..., %]
is real, prime and it is the ideal of polynomials vanishing on the hypersurface
V ={z € R""': p*(x) = 0}. Moreover, dimV = n. Consequently, % ¢ (p*) and
dim W < n, where W ={z €V : %(I) = 0}.

Take polynomials g1, g2 € R{y} defined by ¢1(y) = [|s—all*~||(yso, - - -, ys= ) —s||?,
@2(y) = (y—a)(b—y). Then ordqy = n, ordgz = 0 and q1(y) = q{ (Y50, Ys, - - -, Ysn)
for ¢i (zo, ..., 2s) = [|s —al®> = [[(zo, ..., #n) —s[*, and g2 (y) = a5 (Y50, Ys, - -, Ysn)
for ¢3(wo, ..., 2n) = (xo — a)(b— x0), and B(s,||s — a||) = {x € R"*' : ¢} (x) = 0}.

Take a polynomial r € R[t] defined by r(t) = p*(ta+ (1 — ¢)b). By the assump-
tions, r(0)r(1) < 0. Since R is real closed, there exists tg € R with 0 < 9 < 1 such
that 7(to) = 0 (see [4, Proposition 1.2.4]). We may assume that r changes sign at
the point g (i.e., r(t9) = 0 and r takes positive and negative values in any neigh-
bourhood of #g). Put ag = tpa+ (1 —tg)b. Then ag € B(s, ||s—al|), p*(ag) = 0 and
g3 (ag) = 0. So, there exists € = 0 such that B(ag,e) C B(s,||s—al|) and ¢5(z) = 0
for x € B(ag,e). Set B = B(ag,¢).

Let Uy = {x € R""' : p*(z) = 0} and U = {z € R"*! : p*(x) < 0}. Since p* is
irreducible and changes sign in B, we have Uy N B # () and Us N B # 0. So, by [4,
Lemma 3.4.2], dim(VNB) = dim(B\ (U1 UU3)) = n. Since dim W < n, there exists
a; € (VN B)\ W, and so p*(a;) = 0, %(al) # 0 and gj(a1) = 0, and obviously
ordg; < ordp for j = 1,2. Then by definition of ordered differentially closed field,
there exists ¢ € R such that p(c) = 0 and g;(c) > 0, j = 1,2. Consequently, c € B
and a < ¢ < b, which completes the proof. (I

J. van der Hoeven [I0] proved that the field T of transseries satisfies the first
part ot the assertion of Proposition [[LAl It is not clear whether the converse of the
van der Hoeven result holds for real differential fields. Nevertheless, we have the

converse of the “moreover” part of Proposition

Corollary 1.6. Let (R,0) be an ordered differential field, ordered by ». Assume

that R is real closed. Then the following conditions are equivalent:

(a) (R,9) is an ordered differentially closed field.
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(b) For any p € R{y}, n = ordp > 0, and any a,b € R"! with p*(a)p*(b) <
0, there exists ¢ € R such that p(c) = 0 and ¢ € B(s,||s — al|), where ¢ =
(¢,d(c),...,6"(c)) and s = £(a+b).

(c) For any p € R{y}, n = ordp > 0, any a € R"" at which p* changes sign,
and any ball B(a,r), r = 0, there exists c € R such that p(c) =0 and ¢ € B(a,r),
where ¢ = (¢,6(c),...,0"(c)).

d) For any p € R{y}, n = ordp > 0, any a € R"*! with p*(a zo,ﬁa #0,
Oz,

and any ball B(a,r), r = 0, there exists c € R such that p(c) =0 and ¢ € B(a,r),
where ¢ = (¢, 6(c),...,0"(c)).

Proof. The implication (a) = (b) is proved similarly to Proposition The im-
plication (c) = (d) is obvious.

If p € R{y} with n = ordp > 0 changes sign at a € R""!, then for any ball
B(a,r) with r > 0 there are aj,b; € B(a,r) such that p*(a;)p*(b1) < 0 and
B(s,||s —ai||) C B(a,r), where s = 3(a; + by). Thus, (b) gives (c).

Take any p,qi1,...,qm € R{y} with n = ordp > ordg;, 1 < j <m, and p*(a) =
0, %(a) # 0, and ¢;(a) = 0, 1 < j < m, for some a € R""!. Since polynomials
are continuous in the Euclidean topology in R"*!, there exists a ball B(a,r), r = 0,
such that g;(z) > 0 for x € B(a,r), 1 < j <m. Thus (d) gives (a). O

2. SEMIALGEBRAIC PRELIMINARIES

2.1. Q-algebraic and semialgebraic sets. Let us recall some facts from [37]

concerning algebraic and semialgebraic sets in a space of infinite dimensions.

Let K=R or K= C. Let T be a nonempty set. We denote by Ar = (A;:t€T)
a system of independent variables, and by K[A7] and K(Ar) the ring of polynomials
in the variables of A over K and its quotient field, respectively. More precisely, for
any P € K(Ar) we have P € K(Ay,,...,Ay,,) for some finitely many ¢1,...,t, € T.

We denote by KT the set of all functions T — K equipped with the product
topology. Then all projections K¥ 3 2 +— x(t) € K, t € T, are continuous.

A subset of K7 is called Q-algebraic when it is defined by a finite system of
equations P = 0, where P € Q[A7r]. Any Q-algebraic set in K is of the form
{x € KT : (z(t1),...,2(tm)) €V}, where m € N, t1,...,t,, € T and V C K™ is a
Q-algebraic subset of K™ (a complex Q-algebraic set if K = C).

Note that any Q-algebraic subset of CT is also Q-algebraic in (RT)2. However,
a Q-algebraic set in (RT)? is also Q-algebraic in CT only if it is Q-algebraic as a

complex algebraic set.
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A subset of KT (if K = C we identify CT with (RT)?) is called Q-semialgebraic
when it is defined by a finite boolean combination of inequalities P > 0 or P > 0,
where P € Q[Ar] (P € Q[Ar,A%], where AL, = (A; : ¢ € T) is a system of
independent variables and Ap, AZ. represent real and imaginary parts of complex
numbers, if K = C). Analogously to the above, any Q-semialgebraic set in K7 is
of the form {z € K* : (x(t1),...,z(tm)) € X}, where m € N, t1,...,t,, € T and
X C K™ is a Q-semialgebraic subset of K™.

From the basic properties of algebraic and semialgebraic sets in finite-dimensional

real vector spaces (see [2], [4], [5], [20]) we obtain

Proposition 2.1. (a) The family of Q-algebraic sets in KT is closed with respect

to finite unions and intersections.

(b) The family of Q-semialgebraic sets in KT is closed with respect to comple-
ments and finite unions and intersections.

(c) (Tarski-Seidenberg). Let m, . ¢, : RT 2 z — (2(t1),...,z(tm)) € R™,
where t1,...,tm €T. If X C RT and Y C R™ are Q-semialgebraic, then so are

yeebm

(d) For any Q-semialgebraic set X C RT, the interior Int X, closure X and the

boundary Fr X are Q-semialgebraic.

(e) Every connected component of a Q-semialgebraic subset of RT is Q-semialge-

braic.

2.2. c-filters. Let K = R or K = C. A family 2 of subsets of K” satisfying the

following conditions:

(i) any U € £2 is a nonempty open connected Q-semialgebraic set,

(ii) for any Q-algebraic set V' ¢ K7 there exists U € §2 such that VN U = (),

(iii) for any Uy, Us € 2 there exists Us € {2 such that Us C Uy N Uy,

(iv) for any U € (2 there exist an open connected and simply connected
Q-semialgebraic set Uy C KT and a set U’ € §2 such that U’ C Uy C U,

will be called a c-filter in KT (cf. [37]).

Condition (iv) in the definition of c-filter is necessary in the construction of the
C-field of Nash functions (see Section 23)), because the construction is based on
the monodromy theorem (see [38, Theorem 2.4] and [37, Remark 5.6]). In [37]
we used c-filters only in the real space R” and we omitted condition (iv), because
it was unnecessary. In the real case a Q-Nash function f : U — R such that
P(\, f(X) =0, where P € Q[Ar, Z], is defined by f(A) = &(N), A € U, for fixed
1 <4< m,where&(A) < -+ <& (A) are roots of the polynomial P(\, Z), provided
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the resultant of P with respect to Z has no zeros in U. However, in the real case we
can use the results from [37], because then condition (iv) follows from the others.

Namely we have

Proposition 2.2. Let 2 be a family of subsets of RT satisfying conditions (i), (ii)
and (i) in the definition of c-filter. Then 2 also satisfies condition (iv).

Proof. Take any U € §2. Then there exist m € N and t¢1,...,t, € T such that U =
{z € RT : (z(t1),...,2(ty)) € X} for some open connected Q-semialgebraic set
X C R™. Take a cylindrical decomposition Si,...,.S, of R™ into Q-semialgebraic
sets adapted to the set X (see [I, Theorem 5.6 and Algorithm 11.15]). We may
assume that X = U;'l:1 S; for some n < v, and IntSq,..., IntS, # 0, while
Int Spp1=---= IntS, =0. Then X = U§:1 Sj, and S1,. .., S are open connected
and simply connected Q-semialgebraic sets. Moreover, Ule Fr.S; is contained in
some proper (Q-algebraic subset W of R™, where Fr S; denotes the boundary of .S;.
Set

Uj={z eR" : (z(t),...,z(tm)) €S}, j=1,...,4,

V={zeR": (z(t1),...,2(ty)) € W}.

Then U\ V C Zle U; C U, and by conditions (ii) and (iii) in the definition of
c-filter, there exists U’ € §2 such that U’ C U\ V, and by (i), U’ C U; for some
je€{1,...,£}. Then taking Uy = U; we deduce the assertion. O

In the real case we have the following property of c-filters.

Proposition 2.3 ([37, Proposition 2.1]). For any c-filter 2 of subsets of RT, the
set 082 := (e U has at most one point.

The assertion of Proposition 23] fails in the complex case (see Remark 2.5 in
Section 2.5). However, it does hold for some c-filters in CT. Namely, let T C R be
a set algebraically independent over Q, and let xo € R” be defined by x(t) = t for
t € T. Then there exists a c-filter 25 of subsets of K” of the form

(1) U={zecK":|a(t;) -3l <e, j=1,...,m},
for any t1,...,tm € T with t; < --- < t,,, and € € Q4 and & = (Z1,...,Z,) € Q™
such that [t; — Z;| < e for j =1,...,m (and so x¢ € U).

A cfilter £2 in K7 such that xo € U for any U € £2 will be called centered at xq.

2.3. Field of Nash functions. A function f : U — R, where U C R” is an open
Q-semialgebraic set, is called a Q-Nash function if f is real analytic and there exists
a nonzero polynomial P € Q[Ar, Z] such that P(\, f(\)) =0 for A € U. In fact f
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depends on a finite number of variables, so the analyticity of f is clear. The ring
of Q-Nash functions in U is denoted by N%(U).

A function f : U — C, where U C C” is an open Q-semialgebraic set (as a subset
of RT x RT), is called a C-Q-Nash function if f is holomorphic and there exists a
nonzero polynomial P € Q[Ar, Z] such that P(A, f(A)) =0 for A € U. The ring of
C-Q-Nash functions in U is denoted by NC(U).

Any nonzero polynomial P € Q[Ar, Z] determines at most deg, P Q-Nash func-
tions in a nonempty open connected Q-semialgebraic set U C R7” (respectively

C-Q-Nash functions in a nonempty open connected Q-semialgebraic set U c CT).

For the basic properties of Nash functions and semialgebraic sets in finite-
dimensional vector spaces see for instance [2], [4], [5], [I8]. From these properties

we immediately obtain:

Proposition 2.4. Let K = R or K = C, and let U C KT be a nonempty open

connected Q-semialgebraic set. Then the ring N®(U) is a domain.

By Proposition 2.4, for any c-filter £2 in K? and any U € (2, the ring N¥(U) of
@Q-Nash functions if K = R or C-Q-Nash functions if K = C on U is a domain. In

Upeo N¥(U) we introduce an equivalence relation by
(fl UL — K) ~ (fg Uy — K) iff f1|U3 = f2|U3 for some Uz € {2.

The ~-equivalence class of f: U — R will be denoted by [f]s or simply by f, and
the set of all such classes by N %. The set N. %, together with the usual operations

of addition and multiplication

[Ala+[fole = [filv+ folu],,  [Ale - [fle = [Aluflu],,

where f; € NK(Uy), fo € N¥(Up) and U € 2, U C U; N Uy, is a field, called the
K-field of Nash functions.

From [37, Theorems 5.2 and Remark 5.6] we obtain the following proposition.

Proposition 2.5. Let 2 be a c-filter in KT.

(a) If K = R, then the field N5 is a real closure of the field Q(Ar), where the
c-filter 2 determines a linear ordering =g in N by (see Section[2.7)

f=qg iff there exists U € 2 such that f(x) > g(x) for all x € U.

(b) If K = C, then the field N§ is the algebraic closure of the field Q(Ar).

Note that in Proposition (b), the existence of solutions of any equation
P(Z) =0, where P € N§[Z], deg P > 0, follows from the monodromy theorem and
the condition (iv) in the definition of c-filter (cf. [38] proof of Theorem 2.4]).
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2.4. Orderings in fields of real Nash functions. Let us fix a c-filter £2 in R”.
Recall that by 912 we denote the set ();;c, U. Recall also that {2 determines an
ordering > in N (see Proposition ZH), i.e., a total ordering satisfying:

f9g= f+h=g+h and f>=0ANg>=0 = fg=0

such that f > 0iff f > 0 on some U € §2. If f > g then we also write g < f.
From [37, Theorem 3.1, Remark 3.2 and Corollary 5.4] we have

Theorem 2.6. The following conditions are equivalent:
(a) The field (NE, =) is Archimedean.

(b) There exists xy. € 012 whose coordinates are pairwise different and the set of

these coordinates is algebraically independent over Q.
(¢) There exists xo € 02 such that x. € U for any U € (2.
(d) There exists x,. € O such that f = 0 iff f(zy) > 0, provided f € N§.

Remark 2.7. If (N5, ) is an Archimedean field, where {2 is a c-filter in R”, then
one can assume that 7" C R and it is algebraically independent over Q and ordered
in such a way that for ¢1,t2 € T we have Ay, = Ay, iff 1 > t2. In fact, according
to Theorem [2.6] it suffices to take the set of coordinates of x. as the set T

Let K =R or K= C. Let T' C R be an infinite set algebraically independent
over Q. Let xg € R” be defined by xo(t) = t for t € T. Take the c-filter 25
centered at xo defined in SectionZ2l The field N5 will be denoted by NS . Then
Theorem gives "

Corollary 2.8. The field ./V;H}O is an Archimedean, real closed field which is the
real closure of Q(Ar). Moreover the function Nii 3 f — f(x0) € R is an order

preserving monomorphism.

It is easy to prove that 25 ={UNRT : U € (% }. Since any analytic function
f:U — C, where U C RT is an open set, has a unique holomorphic extension
f : U — C onto some open set U ¢ CT with U ¢ U, by Proposition we

immediately obtain

Corollary 2.9. The field N,((CO is the algebraic closure of Q(Ar) and of/\/',ﬂfo. More-

over, the mapping
NS S f e Reflgr +iIm flgr € NE (4)

is an isomorphism of fields, where i> = —1.
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2.5. Another c-filter on K”. Let K = R or K = C. Let m be a fixed positive

integer and A a system of m variables Aq,..., A,,.
Take any nonzero P € Q[A]. Set
Fp={(M,..-, Am) €K™ : P(A1,..., Am—1, A\ +7) = 0 for some v € [0,00)}.

We define a polynomial w(P) € Q[Aq, ..., Apm—1]\ {0} (or a number w(P) € Q\ {0}
if m =1) by w(P) = Py, where

P =P\, + PAL + -+ Py,
and P, € Q[Ay,...,Ap—1] (or P, €Qifm=1)fori=0,...,d, Py #0.
We now define sets Wp C K™, P € Q[A] \ {0}, by induction on m:
Wp=K\TpCK if m=1,
Wp = (K" \Tp)Nn(Wypy xK) K™ if m>1.
By the Tarski-Seidenberg Theorem (see [31, [39]), the sets Wp for P € Q[A] \

{0} are Q-semialgebraic. Indeed, this is clear for K = R. Let us explain it in

the case when K = C. Then P(A1,...,Am) = P(x1 + Y1, ., Tm + iYm) =

2

W(T1y ooy Ty Y1y -+ Ym) + 0(T1, -+ Ty Yy - -+, Ym), Where i = —1 and u,v €

Q[z1,. -y Tm, Y1, .., Ym) are the real and imaginary parts of P respectively. So,
Tp={(1, s Ty Y1+ s Ym) E RZ™ s (1,0 Ty + YY1y - - Ym)
=0(Z1,. s T + Y, Y1y - - Ym) = 0 for some v € [0,00)}
is Q-semialgebraic in R?™, and consequently Wp is Q-semialgebraic in C™ = R?™.
An argument analogous to the proof of [38] Theorem 1.1] gives the following

Proposition 2.10. The family W = {Wp : P € Q[A], P # 0} is a c-filter and

satisfies the following conditions:

Ry. WpCc{AeK™: P(\) #0},

Ri. WpnWg=Wpqg,

Ry. Wp is an unbounded subset of K™,

Rs. Wp is open, connected and simply connected,
Ry, for K=C, Wp is a dense subset of C™.

Rs. Wp =K" for P=const, P #0.

We have (cf. [37, Lemma 4.2])

Lemma 2.11. Let 1 <iy < -+ < iy, <, and let P € Q[A;,,..., A, ]\ {0}. Let
Q € Q[A1,...,A,] be a polynomial of the form

Q(z1,. - xn) = Pmiy, -y, ), (71,...,2,) € K™
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Then Wp C K™, Wgo C K", and
Wo ={(z1,...,2n) € K" : (z4,,..., 2, ) € Wp}.

Let T be a nonempty linearly ordered set with ordering . For any ¢1,...,t,, € T
with ¢; < --- <, we consider the projection map
KT sz (2(ty),. .., x(t,)) € K™
We define a family W? of Q-semialgebraic subsets U of K” by

U= (Ftl,...,tm)_l(WP)

for any m € N\ {0}, t1,...,tm €T, t1 < --- <ty and P € Q[Ay, ..., Ay ]\ {0}
From Lemma [ZTT] and Proposition 10l (cf. [37, Proposition 4.3]) we obtain

Proposition 2.12. W5 is a c-filter.

In Section 22 we observed that there exists a c-filter (25 in K” provided T' C R.
Proposition 2.12] generalizes this to any set T

From the definition of the sets Wp in the real and complex cases and from [37]
Corollary 4.5], Proposition .10l and Lemma [2.11] we have

Corollary 2.13. W% = {UNRT : U e W5}

Remark 2.14. It is easy to see that for K = R and P = As — A1 € Q[A1, A3
we have Wp = {(A1,A2) € R? : Ay > A1}, so Ay = A; for the ordering =y in
N3}, determined by the c-filter W in R? (see Proposition 2ZI0). So, for any linearly
ordered set T with ordering > we have t; > to iff Ay, W Ay,

Remark 2.15. By Proposition 210 for any U € Wg we have U = CT, so 9WS =
ﬂerg U = CT. On the other hand, 9W5 = . Indeed, take any t € T. Then

Uy ={x €RT : 2(t) >n} € W5 for all n € N, and so W5 C (), o Un = 0.

neN

We will denote by N5 the field of Nash functions N, where 2 = W5 is the
c-filter defined above. A similar argument to that for Corollary 29| gives

Proposition 2.16. The mapping
U NE 5 f Re flgr 4+ iIm flgr € NE(i)

is an isomorphism of fields, where flgr is the restriction f|yorr : U NRT — C,
provided f € ./V'ﬁg(U), U e Wg and i> = —1. Consequently, ./\/;9 is an algebraic
extension of N& of degree 2. Moreover, the field ./\/é,g is the algebraic closure of NF.

Remark 2.17. By the definition of the c-filter W%, any function f € NF is

holomorphic in an open connected, simply connected and dense subset of C7.
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2.6. Extensions of c-filters. Let K = R or K = C. Let (71,7%) be a pair of
nonempty disjoint linearly ordered sets with orderings >; and >3, respectively.
Then T3 UT5 is linearly ordered by: for any t,t' € Th UTy, t =1 ¢ iff either t € T,
andt' € T, ort,t' € Ty and t =1 t/, ort,t’ € Ty and ¢t =5 t. Then one can consider
the space K™* x K™ ag KT1V72,

Under the above convention, the construction of the c-filter W5 gives

Proposition 2.18. The c-filter W%un of subsets of KT x K™ contains the fam-
ilies {U x K2 : U € W%} and {KI' x U : U € WHQ(EZ}.

On account of the above proposition, the c-filter W% ur, Will be called an exten-
sion of W% and of W%.

It is easy to observe that the assertion of Proposition [2.18 also holds for c-filters
centered at points .Q;Ifl, foz, respectively in K, K2, provided T;,T» C R are
disjoint and their union 77 UT5 is algebraically independent over Q. In the case of
arbitrary c-filters, a similar construction cannot be made, because it leads to many
filters in the Cartesian product of appropriate spaces. For instance 2 = {(0,¢) :

e € Q4} is a cfilter in R but there are infinitely many c-filters in R? containing
{UxR:UeN}and {Rx U :U € 2}.

Let (T1,T5>) be a pair of nonempty disjoint linearly ordered sets.

Proposition 2.19. The field N, 5, is an extension of N, and N .

Proof. Indeed, any function f € N:}I% has a representative f : U — K, where
Ue W%, which we may consider as a function f: U x K> =+ K. So, f € N%UB'
Obviously addition and multiplication extend from N, to NF, 5. Analogously
we consider the case of f € N . O

3. A GEOMETRIC MODEL OF AN ARBITRARY DIFFERENTIALLY CLOSED FIELD

3.1. Derivations on a field of Nash functions. Let K =R or K = C. Consider
a c-filter 2 in K” and the K-field N of Nash functions. Take any family

g=(gt ENG5:teT),

and let §, : N§ — N5 be the mapping defined by
@) 50 = a2l for e NS
! teT "OA, .

The mapping 4, is well defined, because any representative of f € N5 depends only
on a finite number of variables, so g—Aft € N5 and the sum in (2] is finite. We have
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Proposition 3.1. The mapping §, defined by @) is a derivation (more precisely,

a Q-derivation) on N§. Moreover, any derivation on N5 is of the form ).

Proposition 3.2. Assume that (K, 0) is a differential field of characteristic zero, let
¢ : K — NE be a Q-embedding, and let K = ¢(K). Then the mapping 0, : K=K
defined by

5,(f) = @6~ (f)))

is a derivation on KC, and ¢ is a Q-differential isomorphism of the differential fields

(K,9), (K,6,).

Proof. Obviously §, is a Q-linear mapping, and for any f,g € K,

5,(f9) = e(6(e " (f9))) = 0(0(™ (N~ (9)))
= o(8(e (f))g + fe(e™(9) = 0,(f)g + [I,(9).

On the other hand, for any a € K, ¢(5(a)) = ¢(6(¢~(¢(a)))) = d,(¢(a)), which
completes the proof. O

Theorem 3.3. Let (K,0) be a differentially closed field of characteristic zero.
Then there exists an infinite set T such that (K,0) is Q-differentially isomorphic
to (NS, 8y) for an arbitrary c-filter 2 in CT and some family

(3) g= (g EN5:teT).

Proof. Let T be a transcendence basis of K over Q. By Proposition [[LT| T is an
infinite set. Since K is algebraically closed, being differentially closed, Proposition
Z5(b) implies that K is Q-isomorphic to N5 for an arbitrary c-filter £ in C7.
Then, by Propositions 3.1l and we see that (K, 9) is Q-differentially isomorphic
to (NG, d,) for some family g of the form (). O

3.2. A derivation which makes the field of Nash functions differentially
closed. Let T be a linearly ordered infinite set with ordering . Let {2 be a c-filter
in CT (e.g., the one defined in Section [Z.5). Set

K=N§.
Consider the ring of polynomials
KIY] = KIY; : j € NI
For any P € K[Y] we set

D(P)_{teT:g—Z_O}.

Obviously T\ D(P) is a finite set.
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For P € K[Y] with degP > 0, we set
a(P) = max{j € N:degy, P > 0},
where degyj P denotes the degree of P as a polynomial in Y;. Additionally we set
a(P)=-1if P e K\ {0}, and a(0) = —c0.
Define
A={(P,Q) € K[Y]*: a(P) > a(Q) > —1}.

Fact 3.4. The sets T, K, K[Y] and A have the same cardinality.

Proof. Since T is infinite, it has the same cardinality as the set Fin(T) of all finite
subsets of T'. So, Q[Ar] has cardinality card T, because it is the union of the count-
able sets Q[Ay,, ..., A, | for {t1,...,tn} € Fin(T'). Consequently, card Q[Ar, Z] =
cardT. Hence card L = card T, because any polynomial P € Q[Ar, Z] determines
a finite subset of K and the set Q[Ar] of cardinality card T is contained in K. Anal-
ogously, K[Y] is the union of the sets K[Yp, ..., Y], m € N, so card K[Y] = card T
Since [Y1(K[Y]\ {0})] x {1} € A C K[Y]?, we obtain card A = card T O

Fact 3.5. There exists a family of pairwise disjoint infinite and countable subsets
TpoCT, (P,Q)€ A, such that

7= |J Tre
(P,Q)eA
Proof. Since T is infinite, there exists a bijection 7: N x T'— T. By Fact B4 there
exists a bijection n: A — T. Thus for Tp o = T(N x {n(P,Q)}) C T, (P,Q) € A,

we obtain the assertion. O

Fact 3.6. Let (P, Q) € A. For any tp 0o0,---, ip,0,a(P)-1 € D(P)ND(Q)NTp o
such that tp g0 < -+ < lp g .a(p)—1 we have

QA tp gor s Mp g amy_r) 0
and
dnga(”P) P(Atp.gor--- Aty oampy1 Yap)) >0,
under the natural convention when «(P) = 0. Moreover, points tp go,.--,
tp,0,aP)—1 € D(P) N D(Q) NTp o such that tp oo < - < tp,g.amp)—1 always
exist, provided o (P) > 0.

Proof. If a(P) = 0 then the assertion is trivial. Assume that «(P) > 0. By the
definition of A, the polynomial Q depends on at most a(P) — 1 first variables
Y;. Since D(P) N D(Q) N Tp g is an infinite set, there exist to,...,tap)—1 €
D(P) N D(Q) N Tp o such that tg < -+ < topy—1, and hence we immediately

deduce the assertion. O
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Assume that we have fixed a choice of tp o ; for (P, Q) € A as in Fact

Let (P, Q) € A and let gp o € K be a solution of the equation

P(Atp,g,ov S 7At7>,g,a(7>)71 J YQ(P)) =0

with respect to Y,(p). Recall that K = N g is an algebraically closed field, so
gp,o € K always exists.

Define a family g of points g; € K, t € T, by

AtP,Q,i+1 for t = tpﬁgﬁi, 1= 0,...,0&(73) —2,
(4) gt =4 9p,0 for t = tp g a(p)-1;
ft for t € prQ \ {tpygyo, Ce tP,Q,a(P)—l}v
under the natural convention when a(P) € {0,1}, where f, € K are arbitrary for

te TpﬁQ \ {tpygyo, .. -atP,Q,a(P)—1}7 for each (73, Q) € A. Since tp.o: € prg, by
Fact the family g is well defined. Consider the derivation

5,(f) = thg—/i for f € K.

teT

Theorem 3.7. (K, d,) is a differentially closed field.

Proof. Obviously (K, d,) is a differential field. It suffices to prove that for each pair
p,q € K{y} of differential polynomials such that ord ¢ < ordp, ¢ # 0, there is some
f € K with p(f) = 0 and ¢(f) # 0. Since the field K is algebraically closed, this
condition obviously holds in the case ordp = 0. Assume that ordp > 0.

Since K{y} = K[ys» : n € NJ, there exists a one-to-one correspondence between
K{y} and K[Y] determined by Y; — Ys; for j € N. So, for any p,q € K{y} with
n =ordp > ordgq, g # 0, there exist P, Q € K[Y] with P = p* and Q = ¢*, i.e.,

p:P(y07y57"'7y5") and q:Q(yO;ytsa"'ayJ")v

a(P) =n >0 and a(Q) = ordg. Then by the definition of §, for f = A, ,, €K
we have 67 (f) = Aty o, for 0 <m < n —1and 67 (f) = gp,o- So, by Facts [3.3]
and 38 p(f) =0 and ¢(f) # 0, which completes the proof. O

From the choice of ¢ in { @) and Theorem B.7] we have

Corollary 3.8. The set of all derivations § on N such that (NS, 6) is a differ-
2card(T)'

entially closed field has cardinality
3.3. A universal extension of a differential field. Let T' # () be a linearly
ordered set. Take the c-filter W§ in CT defined in Section Consider a pair

(T1,T») of nonempty sets, where T3 = T and T5 is a linearly ordered infinite set
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such that 73 N Ty = @ and card T» = max{card T, card N}. Let > be the ordering
of Ty U T, defined in Section Let

K =N, él(“:l UTs,
be the extension of A% (see Proposition Z19).
Let Ty = T3 U Ty, where T3 N1y = () and card T3 = card T5.
We will use similar notation to that of Section Consider the ring of polyno-
mials K[Y] = K[Y; : j € N] and set

Dr, (P) = {t €Ts: gTP = 0} for P € K[Y].
t

Then T3 \ Dr, (P) is a finite set.
Consider the set A= {(P,Q) € K[Y]?: a(P) > a(Q) > —1}.
We easily see that the sets Th, K, K[Y] and A have the same cardinality (cf.

Fact B4)). By Fact there exists a family of pairwise disjoint countable subsets
Tpo CTs, (P,Q) € A, such that

Ts= |J Tro
(P,Q)cA

For any (P,Q) € A the set D, (P) N Dr,(Q) N Tp g is infinite. So there
are 1p,0,0,0,---,tP,0.L,a(P)-1 € D1, (P) N D1, (Q) N Tp,o, where 1 < ¢ < k,
k= degya(m P > 1, such that
(5)  tpo10 =< =tporaP 1= <tPoko = <P Qka(P)-1 ;

QAip oo Mipornp ) 20, 1<L<E,

and

(6) k= dnga('p) P(Atp,g,z,o’ s ’AtP,Q,l,a(P)—l ) YQ(P))’ L<t<k

Hence there exist hp g, € N%Cu{tp 0t tp 0Py 1} C K, 1</{ <k, such that
(7) P(Atp,g,e,ov R 7At7>,g,e,a(7>)717h73,9,f) =0, 1</¢<k,

and for some 1 < j < k (equivalently, for each 1 < j < k),
hp,0e(Mtp o003 Mip o apy_1), 1 <€ <k, are all solutions counted
with multiplicity of the equation P(Aip o ;53 Mtp o aipy1s Ya(P)) = 0.
Obviously hp, 0.¢(Atp o505+ Mg oy aim-1) € N%Cu{tp,g,j,o,...,tp,g,j,a@),l} C K for
any 1 < j <k.
Define a family h of points hy € K, t € T3, by
Aip gy fort=tpgei, 0<i<a(P)—-2,1<0<E,
he =< hpoe fort =tp gramr)-1, 1 <LK,
Tt fort € Tp o \ {tp,0,1,0,- - tP,0 k,a(P)-1}
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under the natural convention when a(P) € {0,1}, we take k = degy, , P and
ft € K are arbitrary for t € Tp o \{tP,0,1,0,-+tP,0ka(P)-1}, for each (P, Q) € A.
Let &4 be a derivation on N5 of the form
th o7 for f € N&
oA, !
teT

for some family g = (g; € N'% : t € T'). Take any family w = (w; € K : t € Ty).
Then the mapping § : K — K defined by

zw“+2m +

teT
is a derivation extending d4. So, by an analogous argument to that for Theorem
B we deduce that

Corollary 3.9. (K, 0) is a differentially closed field differentially extending (N7, d,).

Proof. Obviously (K, §) is a differential extension of (N, ;). Take any p, ¢ € K{y}
such that ordp > ordgq and ¢ # 0. Then p* = P and ¢* = Q for some (P, Q) € A.
So, for f = A¢p o1, We have p(f) = 0 and ¢(f) # 0. O

Assume that card T; = card N. For simplicity one can assume that T, = N. Take

a bijection o : Ty x N — Ty and a family v = (v; : t € Ty) defined by
v = No(s 1) ift=o0(s,k) €Ty, (s,k) €Ty xN.

Let Ty s = o({s} x N), s € Ty. Then the sets Ty s are countable, pairwise disjoint,

Ty= | Tus

s€Ty
Further, the mapping 6* : K — K defined by

0 9f
th Z (9A

teT teTy

and

is a derivation extending 4, and by CorollaryBEI, (K,d%) is a differentially closed

field. Moreover, we have

Lemma 3.10. (a) For any s € Ty the mapping 6* is a derivation in Nélgun .-

(b) If (P, Q) € A and P € NX[Y] then for any 1 < £ < degy, ., P the mapping
0* is a derivation in N}CUT,, where T' = {tp.0.0,0,-- -, 1P,0,0,a(P)—1}-

Lemma 3.11. Let (N5,8) be a differential extension of a differential field (L, 0)
such that N'S is an algebraic extension of L. Let F C Niw_po, with (TUT,)NT® = 0,
be a field such that (F,d1) is a simply generated differential extension of (L,d) and

let ¢ be a generator of the extension. Assume that c is transcendental over L.
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(a) If the sequence (67 (c) : n € N) is algebraically independemﬂ over L, then for
any s € Ty the mapping @ : F — N:}Cun . CK defined by
9) S(fy=f forfel and (07 (c)) = Ap(sn) forn €N,
is a differential embedding over L. Moreover, the field N}CuT4S is an algebraic
extension of ¢(F).

(b) If 69(c), . .., 07 (c) is the longest sequence algebraically independent over L,
then there exists (P, Q) € A such that a(P) = m and for some open and connected
subset V. .c CTVUT"

(10)  P(6%(c),.... 07" (), 07" (c)) =0 inV,
(11) §7(c) = hp,ge(6Y(c),..., 67" (c)) inV for some 1< €< degy P.
Moreover, for any such (P,Q), V.C CTYT" and 1 < ¢ < degy. P, the mapping
@y F = Nf v C K defined by
(12) &1(f)=f for feL, @1(67(c)) =Aipo,, for 0<n<m-—1,

and ®1(87(c)) = (6°)" " (hp.ox) € Ne g for n>m,

is o differential embedding over L, where T' = {tp.00,0,---,tP,0.0,m—1}. In partic-
ular the field NiS r is an algebraic extension of &1 (F).

Proof. Let the sequence (07(c) : n € N) be algebraically independent over L, let
s € Ty and let &1 : F — K be the mapping defined by @)). By Lemma BI0(a), 6*
is a derivation in N7, = and obviously &(F) C Nf ., .. Moreover,

P(67(¢)) = (67)" (Ao (s,0) = (0)"(2(c)) for n €N,
so, @ is a differential embedding over £. Obviously N}CUT4 _ is an algebraic extension
of &(F), which gives (a).

Assume now that 69(c),..., 67" !(c) is the longest sequence algebraically inde-
pendent over £. Then &7 (c) € NC(W), 0 < n < m, for some W € W5, yo. Let

F:W3s(\x) = \e)\z),..., 0" e)(\z)) e CT xC™,
where A € CT and z € C7T°.

We claim that there exists an open connected subset V' C W such that F(V) C
CT x C™ has nonempty connected interior. Indeed, since 67(c), 0 < n < m — 1,
depends on a finite number of variables, it suffices to consider the case when T'UT™®
is a finite set. Let X c CT x CT° x C™ be the graph of F'| let Y be the Zariski
closure of X, and let 7 : Y 3 (A, x,y) — (\,y) € CT x C™. Take the ideal
Z C Cl(Ay;t € T), (x40 = t° € T°),(yo,---Ym—1)] of polynomials vanishing on

Y. Since X is the graph of a mapping which components are (Q-Nash functions

Le., 5(1) (¢),...,07(c) are algebraically independent over L, for any m € N.
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on open connected set W, it is a connected complex analytic manifold and so,
irreducible analytic subset of W x C™ (see [I5, Corollary 3, p.216]). So, by [15,
Proposition 4, p. 217 and Corollary after Proposition 2, p. 408| the set Y is
irreducible and consequently the ideal Z is prime. Moreover, using Grobner bases
(see for instance [24, Theorem 2.4], [T, Section 9|, see also [1], [§]), we obtain
that Z is generated by polynomials with rational coefficients, and that the ideal
J CCl(At €T), (Yo, ---,Ym—1)] of the set m(Y) € CT x C™ is also generated by

polynomials with rational coefficients.

By the assumption 09(c),...,d7" ' (c) are algebraically independent over £ and
L C N%C is an algebraic extension, so they are algebraically independent over /\/’ﬁTC
and in particular — over Q(Ar). So A, t € T, and 69(c),...,d7 (c) are alge-
braically independent over Q. Since the ideal J is generated by polynomials with
rational coefficients, [I, Theorem 1.22] gives that J = {0} and the set 7(Y) is a
constructible (i.e., it is in the Boolean algebra generated by the closed algebraic
sets, see [L7]) and dense subset of CT x C™. Since Y is an irreducible algebraic set,
there exists a proper algebraic subset Yy & Y such that 7|y\y, : Y\ Yy — CTxcm
is an open mapping (see [I7, Corollary 3.15] and the Riemann Open Mapping The-
orem [I5, Theorem V.6.2]). Consequently F(W) = 7(X) has nonempty interior
because X C Y and X contains a nonempty open subset of Y \ Yy. This easily

gives the announced claim.

By the assumption, 69(c),...,87(c) are algebraically dependent over L. So,
there exists (P,Q) € A with a(P) = m and P € L[Y] C NE[Y] such that
P(8Y(c),...,0" (c),87(c)) = 0. Take any such (P, Q), tp.0.r.0s---,tP.0bm-1 €
Dz, (P) N D1, (Q) N Tp.g, and hp gos € K, where 1 < £ < k, k = degy. P,
for which (B) —~ (8) hold. Since P € NF[Y], we have hp gos € Ni v, where
T = {tp,0,0,---+tP,0,t,m—1}. So, P € NC(U)[Y] and hp o € NO(U),1 < ¢ <k,
for some U € W5, 7. By LemmaBI0(b) the mapping 6* is a derivation in N5 7.

From Proposition Z-I0, U is an open and dense subset of CT x C™, so by the
above claim for some nonempty open connected set V- C W we have that F(V) C U

is an open and connected set. Consequently, (I0) holds in V" and by (8]), there exists
1 < /4y < k such that

ST (e) (N x) = hp gy (N 02 ()N, ), ..., 07 He)(N\, z))  for (\,x) €V

and () holds. So, it is easy to observe that the mapping ®; : F — K defined
by ([I2) is an embedding over £. By the definition of ¢* we conclude that @ is a
differential embedding of (F, 1) in N5 7 over £. Furthermore, the homomorphism
@, transforms the transcendence basis {69(c),...,d67" (c)} of F over L onto the

transcendence basis {A; : t € T'} of Nif 1 over Nif. Since N 7 is an algebraically
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closed field and ./\/;9 is an algebraic extension of £, the field Né/gu:r/ is an algebraic

extension of @ (F), which gives (b) and completes the proof. O

Theorem 3.12. (K, %) is a universal extension of (N, d,).

Proof. We claim that (KC,5*) is a semiuniversal extension of (NV%,d,). Take any
finitely generated differential extension (F,8;) of (N5, d,) and let {c1,...,cn} be
the set of generators of the extension. Obviously (F,d1) is equal to the quotient
field of the differential domain N=[07(c;) : n € N, 1 < j < N] with derivation d;.

Let F, be the quotient field of the domain N5[67(c;) :n € N, 1 < j < v,
0 <v < N. Then Fy = Nt and (F,41,01) is a simply generated extension of
(Fu,01) for 1 < v < N — 1. By [12] Proposition II.2.3] one can assume that
¢y+1 s transcendental over F,. If the sequence (67 (cy1) : n € N) is algebraically
independent over Ng then by Lemma [BITla) for any s € T4 the mapping & : F; —
N}CuT4,S C K defined by (@) with ¢ = ¢; is a differential embedding over A/F and
N%UT“ is an algebraic extension of @¢(F;). Therefore, using several times Lemma
BI1(a), we may assume that for any 1 < j < N there exists m; € N such that
8(ej)y .. ,6;nj71(cj) is the longest sequence algebraically independent over F;_i.
By Proposition B2l we may assume that F; C N5 70 C N5 o for some finite sets
WG ... Ty =T° with (TUT,)NT° =0, su(J:h that N%Cuij is an algebraic
extension of Fj. Then 67 (c;) € NC(W), 0 < n < my, for some W € W5 po.

Since ¢ is transcendental over A=, by Lemma BIT(b) there exist (P, Q) € A
with a(P) = my, there exists 1 < ¢ < degy, P, T = {tp,0.0,---:P,0.t;m —1}
and hp,o¢ € Npq such that &1 : Fi — K defined by ([2) with ¢ = ¢1 is a
differential embedding over N/% and N%JT{ is an algebraic extension of ¢(Fy). So,
we may assume that F; C NéFCuT{ is an algebraic extension. Then ¢y is transcen-
dental over F; and we may repeat the above argument with cy and the extension
F1 C F2. By applying Lemma BII(b) N times we find that (F,d1) = (Fn,01)
differentially embeds over N in (N5 p,6%) for some finite set 7 C T3. These
iterations of Lemma B.I1] are possible, because for a fixed Py € K[Y], a(Po) > 0,
there are infinitely many Q € K[Y] such that (Py, Q) € A, and so the family of
sets {Tpy.0 : (Po, Q) € A} is infinite and for any P, Q we have defined all roots
hp0e of P(Atp oi1os- s Aip g 1apy1s Ya(p)) =0, S0 we can choose appropriate ¢
for which () holds. Summing up, (K, *) is a semiuniversal extension of (N, §,).

To complete the proof it suffices to prove that for any finitely generated differ-
ential extension (F,d*) of (N&,d,) in (K,d*), the field (K,5*) is a semiuniversal
extension of (F,d*). Indeed, by the above, there are a finite set 77 C T3 and a
finite union 7" = Ty 5, U--- U Ty C Ty such that NE zrope is an algebraic ex-
tension of F. Let (G,01) be a finitely generated differential extension of (F,d5*).
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Then, an analogous argument as in the first two paragraphs of the proof, but using
(G,61) in place of (F,8*) and (F,d*) in place of (N, d,), gives that (G, d1) can be
differentially embedded in (K, §*) over (F,*). This completes the proof. O

Remark 3.13. If £ = Q then (K, J*) is the universal differential field.

4. AN ARCHIMEDEAN ORDERED DIFFERENTIALLY CLOSED FIELD

4.1. A geometric model of an arbitrary ordered differential field. In [37]
we proved that there exists a one-to-one correspondence between the family of
orderings in Q(Ar) and the family of plain filters (see [37, Theorem 5.2, Proposition
2.4 and Corollary 2.5], cf. [6]). By a plain filter we mean a c-filter {2 of subsets of
R” defined by:

1) any U € {2 is a connected component of the complement of a proper Q-
algebraic set V C RT,

2) for any proper Q-algebraic set V' C R”, some connected component U of the

complement of V' belongs to (2.

The above mentioned correspondence is as follows:

Fact 4.1. For any ordering » of Q(Ar) there exists a unique plain filter 2 such
that f = 0 iff f > 0 on some U € (2. Conversely, any plain filter {2 determines a
unique ordering = of Q(Ar) in the above way.

Since any ordering in N5 is uniquely determined by an ordering in Q(Ar), from
the above fact we obtain (cf. Theorem B3] for differentially closed fields)

Corollary 4.2. Let (K, 0) be an ordered differentially closed field. Then there exists
an infinite set T such that (K,6) is Q-differentially order isomorphic to (N5, 68,)

for some c-filter 2 in RT and some family

(13) g= (g ENS:teT).

Proof. Let T be the transcendence basis of K over Q. By Corollary [L4, T is an
infinite set. Since K is a real closed field, being ordered and differentially closed,
Proposition 2.5(a) shows that K is Q-order isomorphic to A& for some plain filter
2 of subsets of R”. Then, by Propositions B.1] and we see that (K,J) is Q-
differentially order isomorphic to (N5, d,) for some family g of the form [@3). O

4.2. A derivation which makes an Archimedean Nash field ordered dif-
ferentially closed. Let T' C R be an infinite set algebraically independent over Q
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ordered by the usual ordering > on R. Let 2 = (25 be the c-filter of subsets of R
centered at xo € RT, defined by () in Section 24 Set
K=Ng.
By Theorem [2.0] the field K is Archimedean, where the ordering > in K is described
by f > 0iff f(x¢) > 0. Set
cho = {f(XO) : f € IC}

Remark 4.3. By the definition of the c-filter .foo, each f € K is a real analytic
function in a neighbourhood of xo, or more precisely, f is a germ of real analytic
function at xg. Consequently, one can consider the elements f as sums of power

series centered at X¢ in a finite number of variables.

By Corollary 2.8 we have

Fact 4.4. K, is a real closed field order isomorphic to K.

We will adopt the notation of Section Consider the ring of polynomials
KlY]|=K[Y;:jeN].
For a polynomial R € K[Y] of the form

JOseees I >0

defined by
RXU(YE),...,Y]Q): Z fjo,nwjk(xO)YEJm"'ijk'

Jos--sJk >0

Consider the sets
Bin={(P,Q1,...,Qn) €eKY]" ™ 1k =a(P)>a(Qs) > -1, s=1,...,n}

for k,n € N, and let

oo

(14) Z= U {(Paglu"'agn7f07"'afk) EBk,n X’Ck+1 :P(f07"'7fk):07

k.n=1
oP
a—(fo,...,fk) #0, Qs(fo,...,fk) =0, s= 1,...,71}.
T
We immediately obtain the following fact (cf. Fact B]).
Fact 4.5. The sets T, K, K[Y] and Z have the same cardinality.

Fact 4.6. There exists a family of pairwise disjoint infinite and countable subsets
TP;Q1;~~~;Qn7fU;~~~7fk cT, (P, Q1,5 Qny fo, -1, f;g) € Z, such that

= U TP,Q1 ., Qu oo fre-
(P,Q1,--,Qn,fo,, fu)EZ
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Proof. Since T is infinite, there exists a bijection 7: N x T — T'. By Fact there
exists a bijection 7 : Z — T. Thus setting

Tp,0:1,....0n fornfr = TN X {N(P, Q1,..., Qn, fo, ..., f)}) C T
for (P,Q1,..., Qn, fo,.--, fx) € Z, we obtain the assertion. O
Proposition 4.7. Let z = (P,Q1,..., Qn, fo,---, fx) € Z, k = a(P). For any
(15) t2.05--stzk1 € D(P)ND(Q1)N...ND(Qy)NT,

such that t,0 < -+ <t,_1 there are r,0,...,7, -1 € Q\ {0}, such that

(16) P(raoli. sy Tak—1Mi. s f2) =0
and
(17) QS(TZ,OAtz’(”"'7TZ,k71Atzyk717fz) - O, s = 1,...,7’L,

for some f, € K. Moreover, points in ([IB) such that t,o < --- < t,p—1 always

exist.

Proof. By definition of Z, the polynomial Q4 depends on at most the first k£ 4+ 1
variables Yj. Since T is infinite, there exist t.,...,t.x € D(P)ND(Q1)N---N
D(Q,)NT, such that ¢, ¢ < --- <t, . The set of coordinates of xq is algebraically
independent over Q, so x¢(t, ;) # 0 for j =0,...,k.

Let & = fj(x0) € Kxy, 7 =0,...,k. In view of the choice of the point z,

Pxo(gou'-'ugk)zoa 687;};0 (507"-75}%)7507

(Qs)xo(€0y---,8k) >0, s=1,...,n.

For any r; € Kx, \ {0} sufficiently close to XD(Etjz,j) for j =0,...,k we have
(18) (Qs)xo (Troxo(tz,0)s- -, rexo(tz k) >0, s=1,...,n,

and moreover 7;Xo(t.,;) = 7;Fj(x0) € Kx,, where Fj(Ar) = Ay, ; for j =0,... k.
Then there exists € > 0 such that any point of the set
&

Xo(t,5)

J

L{E—{r—(ro,...,rk)EICijlzr <a,j—0,...,k}

687;’;0 (&0, -.-,&k) # 0 and Ky, is real closed, the function
K:xo > C — ,PX()(goa v 7§k—17<) S K:xo

changes sign at &. Thus there are a,b € Ky, such that ¢ < b and

satisfies (I8]). Since

(19) o = &kl <elxo(tz )l 16— &kl < elxo(tzp)l

and
Pxo(éo, ce ,§k71, CL),PxO(fO, s agkflv b) < 0.
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Since Q is a dense subset of Ky, there exists r = (rg,...,r%) € U N Q¥ such
that r; #0 for j =0,...,k, and
Pxo(roxo(tz,0), -+ Te—1X0(tz k—1), @) Pxy (ToX0(t2,0), - - - Tk—1X0(t2,6—1),b) <O.

As Ky, is real closed, this implies that there exists £* € Ky, such that a < £ < b

and
(20) Pxo(Toxo(t2,0)s - s Th—1X0(t2, 1), ") =0,
and by ([19),
Xo(gtz,k) - xOfti,k) =
Hence, (ro, ey Th—1, m) € U., and consequently
(21) (Qs)xo(roxo(t2,0)s -y re—1X0(tz -1),€") >0, s=1,...,n.

By definition of Ky, there exists f, € K such that f,(xo) = &*. Moreover,
r.j:=r1; € Qandsor, ;A , € Kfor j=0,...,k—1. Now, 20), ZI) and Fact
A4 immediately give the assertion. O

Assume that for any z = (P, Q1,..., Qn, fo,---, fx) € Z, we have chosen points

t20,-- - tzi—1 € D(P)ND(Q1)N---ND(Q,)NT,
where k = «(P), such that t,o < -+ < t, -1 and r,0,...,7.k—1 € Q\ {0}, and
f- € K as in Proposition [£7] i.e., (IG) and (I7) hold.
Define a family g of points g, € K, t € T, by
DAy vy fort=t.;, i=0,...,a(P) -2,

_ o _
(22) R v fo fort=t, opy_1,
ht fOI‘t6Tz\{tz70,...,fz7a(7)),1},

where hy € K are arbitrary for t € T.\{t.0,...,t; o(p)-1}, for each z = (P, Q1,...,
anf()v cee 7f0¢(73)> S Z

Consider the following derivation on K:
of
(23) dg(f) = thTgta—At for f € K.

Theorem 4.8. (K, 4,) is an ordered differentially closed field.

Proof. Obviously (K,d,) is an ordered differential field and by Corollary 2.8 K is
real closed. Take any p,q1,...,¢, € K{y} such that k = ordp > ordg;, 1 <j < mn,
and any fo,...,fr € K such that p*(fo,....fs) = 0, S&(fo,....fx) # 0 and
aj(fo,..-, fx) = 0,1 < j <mn. Then 2 = (p*,q7,...,4,, fo,..., fx) € Z and
k= a(p*). Since r. ; € Q, by 22) for f =7, 0As, , we have

§(f) =r200(Aee ) =7m20hsny ooy OFH) = o piAs i1, 0 (F) = fo
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So, Proposition 7] similarly to the proof of Theorem B.7 shows that p(f) = 0 and
q;(f) = 0,1 <j <mn, which gives the assertion. O

From the choice of ¢ in (22)) and Theorem (.8 we have

Corollary 4.9. The set of all derwations § on Nii such that (N ,8) is an ordered
differentially closed field has cardinality geard(Wig,).

Remark 4.10. By Corollary [[L6 to construct a derivation é on K such that (K, §)
becomes ordered differentially closed, it suffices to consider the set

o0

Z= U {(P,s,fo,...,fk)elC[Y]xQerle“:k:_a(P)ZO,

k,n=1
P(fos---» fr) =0, S—Z(fo7---,fk) # 0}

instead of the one defined in (Id]), and repeat the construction in Proposition [£.7]

without taking into consideration the polynomials Q1,..., Q.

Remark 4.11. Let (./\/}]50, dg) be the ordered differentially closed field with deriva-
tion 6, defined by [22) and (23). By Proposition [L3 (see also [36]), the field N5 (7)

with the derivation
5(f1 + ZfZ) = 5g(f1) + Mg(fZ)a
extending dg, is a differentially closed field.

Indeed, since 7 is algebraic over NX | it follows that ¢ is the unique derivation in

Xp?

NZ (i) extending d,. Thus Proposition [3] gives the assertion.

Remark 4.12. By Remarks [4.3] [£11] and Corollary we see that any function
fe Nfo = N} (i) is holomorphic in a neighborhood of x¢ in C*. Consequently,
one can consider the elements f as sums of power series centered at xg in a finite

number of complex variables (or as germs of holomorphic functions).
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