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METRIC NUMBER THEORY OF FOURIER

COEFFICIENTS OF MODULAR FORMS

PALOMA BENGOECHEA

Abstract. We discuss the approximation of real numbers by Fourier
coefficients of newforms, following recent work of Alkan, Ford and Za-
harescu. The main tools used here, besides the (now proved) Sato-Tate
Conjecture, come from metric number theory.

1. Introduction

Consider a newform

f(z) =
∞
∑

n=1

af (n)e
2πinz

of even integer weight k for Γ0(N). Suppose that f(z) is normalized so that
af (1) = 1. We denote by Snew

k (N) the set of such functions. In [3] Alkan,
Ford and Zaharescu approximate a given real number x by the normalized
Fourier coefficients

(1) a(n) =
af (n)

n(k−1)/2
,

assuming that the af (n) are integer and satisfy a divergence hypothesis.
It is well-known that the coefficients (1) satisfy

a(mn) = a(m)a(n) if (m,n) = 1,

a(pm) = a(p)a(pm−1)− a(pm−2) for p prime,(2)

|a(n)| ≤ d(n),

where d(n) is the divisor function. The inequality was proven by Deligne
as a consequence of his proof of the Weil Conjectures. The results above
determine everything about a(n) except for the distribution of the a(p) ∈
[−2, 2]. For any prime p, we define the angle 0 ≤ θp ≤ π such that

(3) a(p) = 2 cos θp.

The coefficients a(p)/2 are equidistributed in the interval [−1, 1] over
primes p with respect to different measures according to whether f has com-
plex multiplication (CM) or not. The Sato-Tate Conjecture, now a theorem
due to Barnet-Lamb, Geraghty, Harris, and Taylor [4], asserts that, if f has
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2 PALOMA BENGOECHEA

non-CM, then the a(p) are equidistributed with respect to the Sato-Tate
measure

(4)
2

π

√

1− t2 dt.

This means that for any fixed interval [α, β] ⊆ [−1, 1],

(5) # {p ≤ x : a(p) ∈ [α, β]} ∼
(

2

π

∫ β

α

√

1− t2 dt

)

π(x),

where π(x) as usual denotes the number of primes p ≤ x. For bounds on the
error term in (5) see [5], [20].

If f has CM, it is a classical result that the a(p)/2 are equidistributed in
[−1, 1] with respect to the measure

(6)
1

2
δ0([α, β]) +

1

2π

1√
1− t2

dt,

where δ0 denotes the Dirac measure at zero. This follows from the work of
Deuring on the equidistribution of the values of Hecke characters (see [13]
and [10] for a nice expository note).

With the aim of a better understanding of the distribution of the coeffi-
cients (1), several studies on the distribution of primes p for which a(p) = c
for some fixed c ∈ R and the distribution of integers n for which a(n) 6= 0
have been carried (see for example [22], [19], [9], [11] [20], etc.). In this note,
we propose a different and new approach that relates to Diophantine approx-
imation and metric number theory. We study the approximation of any real
number by the coefficients (1) with techniques and results commonly used
and developed in the area of metric number theory, such as Schmidt’s Game
(see section 4 for the definition and properties of this game). We hope that
these will contribute to give a better understanding of the distribution of the
a(n). We also hope that the reader may find some interest in how we relate
the two areas of modular forms and Diophantine approximation here.

The study of the approximation of any given real number by the coeffi-
cients a(n) has been introduced by Alkan, Ford and Zaharescu in [3] with the
theorem below. This result was motivated and inspired by metric number
theory connections exploited in [1] and [2].

Theorem (AFZ). Let

f(z) =

∞
∑

n=1

af (n)e
2πinz

be a newform in Snew
k (N). Assume that the coefficients af (n) are integer

and satisfy

(7)
∑

p

a(p)2 = ∞,
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where the summation is over all primes. Then for any real number x, there
exists a positive constant Cf,x depending only on f and x, such that

(8) |a(n)− x| ≤ Cf,x

log n

holds for infinitely many positive integers n.

Thanks to Sato-Tate, one can remove now the integrality and divergence
hypothesis (7) on the Fourier coefficients. The condition that the a(n) are in-
tegers is quite restrictive in the case of the full modular group (when N = 1),
since it is expected that there are no Hecke newforms of weight k > 22 with
integer coefficients (as a consequence of Maeda’s Conjecture, see [14]). How-
ever, Alkan, Ford and Zaharescu presented an example of an infinite set of
newforms of weight 2 arising from elliptic curves in their paper where the
AFZ Theorem applies. Also the inequality (8) holds in fact for infinitely
many integers of the form n = pm, where p ≥ 5 is a fixed prime. Theorem
2.2 comprises these refinements.

The statements of Theorems 2.2 and (AFZ) hold for all x, and in this sense
they can be viewed as analogs of Dirichlet’s theorem in the classical theory
of Diophantine approximation. In [3] the question of developing a metric
number theory is asked. For example, what would the rate of approximation
be for almost all x? We study this problem in section 3.

One may also ask what is the best rate of approximation for all x in (AFZ)
and Theorem 2.2. In this direction, we show in Theorem 4.1, that for any
prime p, there are x for which there exists a constant γx,f,p such that

(9) |a(pm)− x| > γx,f,p
m2

∀m ∈ N.

Moreover, we show that, for every prime p, the set of x ∈ (0, 1
2 sin θp

) satisfying

(9) has full Hausdorff dimension. In fact we prove that this set is winning
with respect to the famous Schmidt Game.

Throughout we denote by ‖ · ‖ the distance to a nearest integer.

2. Refinement of Theorem (AFZ)

Throughout this section we fix a newform f of level N . We follow the
ideas of [3] but we use the equidistribution results on the angles θp to get rid
of the assumptions in Theorem (AFZ).

It follows from Deligne’s proof of the Ramanujan conjecture for newforms
(c.f. [8]) that, for any prime number p,

a(p) = µp + µp

for some µp ∈ C with |µp| = 1. Using the recursion (2), it follows by
induction on m that

(10) a(pm) =
µm+1
p − µp

m+1

µp − µp
=

sin((m+ 1)θp)

sin θp
.
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This relation plays a key role in [3] and here again.
We need information about the distribution of the numbers θp/2π that

are irrational. This is provided by the following lemma.

Lemma 2.1. The angles θp/2π that are irrational are dense in [0, 12 ].

Proof. Since the angles θp are dense in [0, π], it is enough to show that the
θp/2π that are rational constitute a finite set. Let p be a prime such that
θp/2π is rational. We write θp/2π = Ap/Bp where Bp ≥ 1, Ap < Bp and

(Ap, Bp) = 1. Since µp = e2πi(Ap/Bp) is a primitive Bp-th root of unity, we
have [Q(µp) : Q] = φ(Bp), where φ is the Euler function. On the other hand,
µp is a zero of the polynomial

P (z) = (z − µp)(z − µp)(z + µp)(z + µp)

= (z2 − a(p)z + 1)(z2 + a(p)z + 1) = z4 + (2− a(p)2)z2 + 1.

It is well-known that the field K generated by the coefficients of the newforms
in Snew

k (N) is a finite extension over Q; let d be the degree. Since P (z) has
coefficients in K, it follows that [Q(µp) : Q] ≤ 4d. Hence φ(Bp) ≤ 4d, and
therefore Bp belongs to a finite set of integers independent of p, and so does
θp. Hence the lemma follows.

�

Theorem 2.2. For any real number x, there exist infinitely many primes p
and a constant Cf,x depending only on f and x such that

|a(pm)− x| ≤ Cf,x

m

for infinitely many positive integers m.

In the proof we use the following well-known theorem due to Minkowski
(see for example [15]).

Theorem (M). For any irrational number θ and any real number x,

‖mθ + x‖ <
3

m

for infinitely many positive integers m.

Proof of Theorem 2.2. Let x ∈ R. Let p be a prime satisfying that | sin θp| <
1/|x| and that θp/2π is irrational. By Lemma 2.1 there exist infinitely many
such primes. Let δ be the angle 0 ≤ δ < 2π such that sin δ = x sin θp.

By Theorem (M) there exist infinitely many positive integers m such that
∥

∥

∥

∥

(m+ 1)
θp
2π

− δ

2π

∥

∥

∥

∥

=

∣

∣

∣

∣

(m+ 1)
θp
2π

−
[

(m+ 1)
θp
2π

− δ

2π

]

− δ

2π

∣

∣

∣

∣

<
3

m+ 1
,

where [·] is either the floor or the ceiling part. For each m as above, we have

| sin((m+ 1)θp)− sin δ| < 6π

m+ 1
.
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Hence, by (10),

|a(pm)− x| < Cf,x

m+ 1
with Cf,x = 6π/ sin θp.

�

Remark 2.3. In Theorem 2.2 one cannot improve the ‘for infinitely many
primes p’ statement to a ‘for all primes p’ statement. Indeed, when f is
associated to an elliptic curve E/Q, in which case k = 2, by the modularity
theorem, the primes p ≥ 5 such that p ∤ N and a(p) = 0 are primes for
which E has supersingular reduction. Elkies [9] proved that infinitely many
such primes exist. For such a prime p, it follows from the recursion (2) that
a(pm) = 0 for all odd m and a(pm) = ±a(pm+2) for all even m. Hence the
sequence a(pm) is not even dense.

3. Metrical theory with respect to Lebesgue measure

Throughout, we denote by m the Lebesgue measure. Given a real number
x and its positive continued fraction [a0, a1, a2, . . .] where a0 ∈ Z and ai ∈ N
for all i ≥ 1, we refer to the denominators of the rational approximations
[a0, a1, . . . , an] as the convergents qn of x.

Theorem 3.1. Let ϕ : N → (0,+∞) be a decreasing function. The inequality

|a(n)− x| < ϕ(n)

has infinitely many solutions n > 0 for almost no x if
∑∞

n=1 ϕ(n) < ∞.
If the angles θp/2π that are irrational and satisfy

(11)

∞
∑

r=0

q
(p)
r+1−1
∑

n=q
(p)
r

min
(

ϕ(n), ‖q(p)n θp‖
)

= ∞,

where q
(p)
n are the convergents of θp/2π, are dense in [0, 12 ], then there exists

a constant Cf,x depending only on f and x such that the inequality

|a(n)− x| < Cf,x ϕ(n)

has infinitely many solutions n > 0 for almost all x.

The proof of the theorem strongly relies on the following recent result
in metrical inhomogeneous Diophantine approximation due to Fuchs and
Kim [12]:

Theorem (FK). Let ϕ : N → (0,+∞) be a decreasing function and θ be an
irrational number with convergents sr/qr. Then, for almost all x ∈ R,

(12) ‖mθ − x‖ < ϕ(m) for infinitely many m ∈ N

if and only if
∞
∑

r=0

qr+1−1
∑

m=qr

min (ϕ(m), ‖qmθ‖) = ∞.
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Proof of Theorem 3.1. The first part of the theorem is a consequence of the
Borel-Cantelli Lemma. Indeed, let W denote the set of all real numbers x
such that

|a(n)− x| < ϕ(n)

for infinitely many n ∈ N. Define

En = {x ∈ R : |a(n)− x| < ϕ(n)} .
We can rewrite W as

W =

∞
⋂

M=1

∞
⋃

n=M

En.

Hence, for every integer M > 1,

W ⊆
∞
⋃

n=M

En,

and then

m(W) ≤
∞
∑

n=M

m(En) = 2

∞
∑

n=M

ϕ(n) → 0 as M → ∞

since
∑∞

n=1 ϕ(n) < ∞.

The second part is obtained as an application of Theorem (FK). We first
prove that the inequality

|a(pm)− x| < Cf,xϕ(m)

has infinitely many solutions m > 0 for almost all x in the interval (− 1
sin θp

, 1
sin θp

)

for any fixed prime p such that θp/2π is irrational and satisfies (11). Since we
assume that the set of such primes is dense, this will prove the second part
of the theorem. Let p be a prime such that θp/2π is irrational. We suppose
that θp/2π satisfies the condition (11). By Theorem (FK), for almost all
δ ∈ R,

(13)

∥

∥

∥

∥

(m+ 1)
θp
2π

− δ

∥

∥

∥

∥

< ϕ(m) for infinitely many m ∈ N.

Let δ ∈ R satisfy (13). For each m as above, we have

| sin((m+ 1)θp)− sin 2πδ| < 2πϕ(m).

Hence for x = sin δ/ sin θp we have

|a(pm)− x| < Cf,x ϕ(m)

with Cf,x = 2π/ sin θp. The set of such x has maximal Lebesgue measure in
the interval [−1/ sin θp, 1/ sin θp].

�



METRIC NUMBER THEORY OF FOURIER COEFFICIENTS OF MODULAR FORMS 7

Remark 3.2. The result of Fuchs and Kim contains several previous results
as special cases: the theorem of Kurzweil [16] as well as its extensions given
in the same paper, and the theorem of Tseng [25]. Hence one could change
the condition (11) by the respective conditions of Kurzweil and Tseng in
Theorem (3.1). In particular, if θp is badly approximable, then by definition
there exists a constant c > 0 such that ‖nθp‖ > c/n for all n ≥ 1. Thus, for

q
(p)
r ≤ n ≤ q

(p)
r+1,

‖q(p)r θp‖ >
c

n
,

so the condition (11) is satisfied provided that
∑

n≥1 min(ϕ(n), c/n) = ∞,

hence provided that
∑∞

n=1 ϕ(n) = ∞. (This is Kurzweil’s condition).

Corollary 3.3. Let ϕ : N → (0,+∞) be a decreasing function. If the angles
θp/2π that are badly approximable are dense in [0, 12 ], then there exists a
constant Cf,x depending only on f and x such that the inequality

|a(n)− x| < Cf,x ϕ(n)

has infinitely many solutions n > 0 for almost all x if
∑∞

n=1 ϕ(n) = ∞.

4. On the optimality of Theorem 2.2

Let X ⊂ R. For s ≥ 0 and ρ > 0 define

Hs
ρ(X) = inf

{

∑

i

dsi : {Bi} is a ρ-cover of X

}

,

where a ρ-cover of X is any countable collection Bi of balls of diameter di < ρ
such that

X ⊂
⋃

i

Bi,

and the infimium is taken over all possible ρ-covers of X. The s-dimensional
Hausdorff measure of X is defined as the following (finite or infinite) limit

Hs(X) = lim
ρ→0+

Hs
ρ(X),

and the Hausdorff dimension of X is

dimH(X) = inf {s ≥ 0 : Hs(X) = 0} .

4.1. Schmidt Game. We present a simplified version of the game that
Wolfgang M. Schmidt introduced in [21]. Let I ⊆ R be an interval. The
game involve two players A and B and two real numbers α, β ∈ (0, 1). The
game starts with player B choosing at will a closed interval B0 ⊆ I. Next,
player A chooses a closed interval A0 ⊂ B0 of length α|B0|. Then, player
B chooses a closed interval B1 ⊂ A0 of length αβ|B0|. The two players
keep playing alternately in this way, generating a nested sequence of closed
intervals in I:

B0 ⊃ A0 ⊃ B1 ⊃ A1 ⊃ . . . ⊃ Bs ⊃ As ⊃ . . .
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with lengths

|As| = α|Bs| and |Bs| = β|As−1| = (αβ)s|B0|.
A subset X ⊆ I is called α-winning in I if player A can play so that the
unique point of intersection

∞
⋂

s=0

Bs =
∞
⋂

s=0

As

lies in X whatever the value of β is. A set is simply called winning in I if it
is α-winning in I for some α ∈ (0, 1). When I = R, we simply say that X
is winning or α-winning. Schmidt proved the following two theorems about
his game:

Theorem (S1). If X ⊆ I is winning in I, then dimH(X) = dimH(I).

Theorem (S2). The intersection of countably many α-winning sets in I is
α-winning in I.

Schmidt also proved that the winning property is invariant under local
isometries; this has been refined by Dani (see [7] Proposition 5.3) with the
following result:

Theorem (D). The image of a winning set in I under a bi-Lipschitz map
ϕ is winning in ϕ(I).

4.2. The set Bad(p, ϕ). Let p be a prime and ϕ : N → (0,+∞) be a
decreasing function. In view of Theorems 2.2 and 3.1, we define the set of
(p, ϕ) badly approximable numbers by

Bad(p, ϕ) =

{

x ∈ R : inf
m∈N

ϕ(m) · |a(pm)− x| > 0

}

.

Theorem 4.1. For any prime p the set Bad(p,m2) is winning in (0, 1
2 sin θp

).

In order to prove Theorem 4.1, we introduce the set of numbers usually
called twisted badly approximable numbers:

Bad∨θ :=

{

x ∈ R : inf
m∈N

m · ‖mθ − x‖ > 0

}

.

The following result is due to Tseng [24]:

Theorem (T). For any θ ∈ R, the set Bad∨θ is 1/8-winning.

Proof of Theorem 4.1. Let p be a prime. Let us consider the sets

T 1/2(−Bad∨θp/2π) :=

{

x ∈ R :
1

2
− x ∈ Bad∨θp/2π

}

,

T−1/2(−Bad∨θp/2π) :=

{

x ∈ R : −1

2
− x ∈ Bad∨θp/2π

}

.
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Define

X :=
(

0,
1

8

)

∩ Bad∨θp/2π ∩ T 1/2(−Bad∨θp/2π) ∩ T−1/2(−Bad∨θp/2π).

By Theorems (D) and (S2), X is winning in (0, 14). Then Theorem (D) again

implies that sin 2πX
sin θp

is winning in (0, 1
2 sin θp

). If we show that

(14)
sin(2πX)

sin θp
⊆ Bad(p,m2),

then Bad(p,m2) will also be winning in (0, 1
2 sin θp

). Indeed, from the defi-

nition of Schmidt’s Game, it is clear that a winning strategy for player A
consists in choosing respective sets A0, . . . , As, . . . that give a winning strat-
egy for the subset in the left hand side of (14).

Next we show (14). Let δ ∈ X. By definition, there exists a positive
constant γ depending on δ and θp such that the following inequalities hold
for all positive integers m:

∣

∣

∣

∣

(m+ 1)
θp
2π

−
[

(m+ 1)
θp
2π

]

− δ

∣

∣

∣

∣

≥
∥

∥

∥

∥

(m+ 1)
θp
2π

− δ

∥

∥

∥

∥

>
γ

m+ 1
,

(15)

∣

∣

∣

∣

(m+ 1)
θp
2π

−
[

(m+ 1)
θp
2π

]

− 1

2
+ δ

∣

∣

∣

∣

≥
∥

∥

∥

∥

(m+ 1)
θp
2π

− 1

2
+ δ

∥

∥

∥

∥

>
γ

m+ 1
,

(16)

∣

∣

∣

∣

(m+ 1)
θp
2π

−
[

(m+ 1)
θp
2π

]

+
1

2
+ δ

∣

∣

∣

∣

≥
∥

∥

∥

∥

(m+ 1)
θp
2π

+
1

2
+ δ

∥

∥

∥

∥

>
γ

m+ 1
,

(17)

where [x] denotes a nearest integer to x. For convenience later, we choose

(18) γ <
1

4
.

Set

α = (m+ 1)
θp
2π

−
[

(m+ 1)
θp
2π

]

.

Clearly −1
2 ≤ α ≤ 1

2 and

sin 2πα = sin((m+ 1)θp).

By (15), we have that
γπ

m+ 1
< |π(α− δ)| ≤ π

2
+

π

8
,

so (using also (18))

(19) |sinπ(α− δ)| >
∣

∣

∣

∣

sin

(

γπ

m+ 1

)
∣

∣

∣

∣

.

On another hand, by (16) either
γπ

m+ 1
+

π

2
< π(α + δ) <

π

2
+

π

8
,



10 PALOMA BENGOECHEA

or

π(α+ δ) <
π

2
− γπ

m+ 1
.

By (17) we have also that either

π(α+ δ) > −π

2
+

γπ

m+ 1
,

or

−π

2
− π

8
< π(α+ δ) < − γπ

m+ 1
− π

2
.

Therefore (using also (18))

(20) |cos π(α+ δ)| >
∣

∣

∣

∣

cos

(

π

2
− γπ

m+ 1

)
∣

∣

∣

∣

=

∣

∣

∣

∣

sin

(

γπ

m+ 1

)
∣

∣

∣

∣

.

The inequalities (19) and (20) imply that

| sin((m+ 1)θp)− sin 2πδ| = 2 |sinπ(α− δ) cos π(α + δ)|

> 2 sin

(

γπ

m+ 1

)2

>
2γ2π2

(m+ 1)2

(

1− γ2π2

6(m+ 1)2

)2

.

Hence, by using (10) and (18), there exists a positive constant c depending
only on δ, p and f such that

∣

∣

∣

∣

a(pm)− sin 2πδ

sin θp

∣

∣

∣

∣

>
c

(m+ 1)2
.

This proves (14). �

5. Further questions/remarks

Theorem 4.1 seems to indicate that Theorem 2.2 is optimal, i.e. that log
is the best possible rate of approximation on a sequence {n = pm}m∈N for p
a fixed prime. But we have no evidence that supports that log remains the
best rate for the sequence {n ∈ N}. From a metrical point of view, it follows
from Corollary 3.3 that log is not the best rate if the angles θp/2π that are
badly approximable are dense in [0, 12 ]. In this case, the rate of approxima-
tion can be made any power of log. Hence an interesting question would be
to investigate the distribution of the θp that are badly approximable. In fact,
do all the θp/2π that are irrational have the same rate of approximation by
the rationals?

Changing perspective slightly, one could fix p and try to approximate a
real number x by the Fourier coefficients af (p) as f(z) varies. In this context,
Conrey, Duke and Farmer and simultaneously Serre obtained equidistribu-
tion results for the θp or equivalently the normalized a(p). The first three
authors show in [6] via the Selberg trace formula that, as k → ∞, the set
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{θf (p) : f ∈ Sk(1)} becomes uniformly distributed with respect to the mea-
sure

(21)
2

π

(

1 +
1

p

)

sin2 θ
(

1 + 1
p

)2
+ 4

p sin
2 θ

dθ.

The above measure is the p-adic Plancherel measure, and it is also the
spectral measure of the nearest-neighbor Laplacian on a p + 1 regular tree
(see [17]). Serre [22] showed that, as f(z) varies on Sk(N) for any sequence
(k,N) → ∞, the normalized a(p) are equidistributed with respect to the
measure corresponding to (21) in [−1, 1].
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