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THE CHOW RING OF A CUBIC HYPERSURFACE

H. ANTHONY DIAZ

Abstract. We study the product structure on the Chow ring (with rational
coefficients) of a cubic hypersurface in projective space and prove that the
image of the product map is as small as possible.

1. Introduction

Let X be a smooth projective variety over C and let A∗(X) denote the Chow ring
of X with rational coefficients, graded by codimension. Describing the product
structure of A∗(X) is a difficult problem. When the total cycle class map is injective
(e.g., when X is homogeneous), the product structure on A∗(X) is determined by
that of the cohomology ring of X . On the other hand, it is sometimes possible to
describe the product structure in certain special cases where the cycle class map
is no longer injective. For instance, there are the two famous examples of Abelian
varieties and K3 surfaces. When X is an Abelian variety, Beauville [2] showed that
there is a natural multiplicative decomposition:

Ai(X) =
⊕

j

Ai
(j)(X)

for which it is expected that Ai
(j)(X) = 0 for j < 0 and that the cycle class map

Ai
(0)(X) → H2i(X,Q)

is injective (thus giving a splitting to the conjectural Bloch-Beilinson conjecture;
see, for instance, [3]). Another well-known case is when X is a complex projective
K3 surface which was studied by Beauville and Voisin [5]; in particular, they showed
that the image of the map

A1(X)⊗A1(X)
·
−→ A2(X)

has rank 1, a surprising discovery considering that A2(X) is not representable by
Mumford’s theorem [14].

Beyond these fundamental cases, it is natural to wonder to what extent one may
determine the structure of the Chow ring of (for instance) a hypersurface of degree
at least 3. For small degree hypersurfaces, it is expected that the Chow group
will be of rank 1 when the codimension is either very small or very large (see, for
instance, [13]). On the other hand, since hypersurfaces of degree at least 3 possess
transcendental cohomology in the middle degree, a generalization of Mumford’s
theorem ([20] Theorem 3.20) shows that the cycle class map is not injective in
every degree. Thus, the total Chow group is a mysterious invariant, even for a
cubic hypersurface. In this note, our aim will be to prove the following explicit
characterization of the product structure for the Chow ring of a cubic hypersurface:
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2 H. ANTHONY DIAZ

Theorem 1.1. Let X ⊂ Pn+1
C

be a smooth hypersurface of degree 3. Then, the
image of the product map

Ai(X)⊗Aj(X)
·
−→ Ai+j(X)

has rank 1 for i, j > 0.1

We give an overview of the method of proof for Theorem 1.1. In the spirit of [18]
and [7] we give a decomposition of the small diagonal on X3. Since A∗(X3) is
potentially vast, we work with the a priori finite rank subspace R∗(X3) genered by
A1(X3) and the pull-backs of the diagonal classes. Since the small diagonal admits
a decomposition cohomologically (by the Künneth theorem) for any hypersurface,
it will suffice to prove that the cycle class map

(1) R∗(X3) →֒ H∗(X3,Q)

We should note that a similarly defined ring R∗ was considered by Yin in [21] for
(arbitrarily many) products of K3 surfaces. He showed that, when X is a K3
surface, the injectivity of the cycle class map restricted to R∗(Xn) is equivalent
to the finite-dimensionality of the Chow motive of X [11]. On the other hand, for
hypersurfaces of general type, one cannot expect results analogous to (1) (see, for
instance, [15]).

As in [18] and [7], the proof will also involve the Fano variety of lines, which is
better understood for cubic hypersurfaces. A thorough study of the Fano variety
of lines F on an n-dimensional cubic hypersurface was completed by Altman and
Kleiman in [1], in which they show (among other things) that F is smooth and has
dimension 2(n − 2). In the case of n = 3, F is a surface of general type which
possesses a great many remarkable properties, used by Clemens and Griffiths (in
their well-known paper [6]) to establish that the smooth cubic threefold is not
rational. For n = 4, Beauville and Donagi showed in [4] that F has the structure
of a hyper-Kähler variety that is deformation equivalent to the second punctual
Hilbert scheme of a K3 surface. For n ≥ 5, F is rationally connected. Quite
recently, Galkin and Schinder in [10] were able to prove the following relation in
the Grothendieck ring of varieties:

[X [2]] = [X ][Pn+1] + L
2[F ] ∈ K0(V ar)

where X [2] denotes the second punctual Hilbert scheme of X . A motivic version of
their result was then obtained by Laterveer in [12]; we will use the motivic version of
this relation to reduce the problem of proving (1) to proving an analogous result for
F and eventually F×X , which it turns out are easier to prove. We should note that
with the exception of the Galkin-Shinder result, the techniques used here are quite
elementary and do not rely on the fact that the degree of X is 3. It is likely that
one could produce similar (albeit weaker) results for other rationally connected
hypersurfaces in projective space, providing that one can establish an analogous
motivic relation with the Chow motive of the corresponding Fano variety of lines.

Acknowledgements. The author would like to thank Lie Fu and Charles Vial for
their interest in this result.

1Note this is only interesting in the case i+ j < n, since X is rationally connected.
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2. Preliminaries

Conventions and Notation. Unless otherwise specified, we will take our ground
field to be C. A∗ will denote the Chow ring with rational coefficients and H∗(−,Q)
will denote singular cohomology with Q coefficients. We will also fix the following
notation from now on:

• X , a smooth cubic hypersurface in Pn+1;
• X [2], the second punctual Hilbert scheme on X ;
• EX , the exceptional divisor on X [2];
• h := c1(OX(1));
• F := F (X), the Fano variety of lines on X ;
• Gn+1 := Gr(P1,Pn+1), the Grassmanian of lines in Pn+1;
• ci := ci(E) ∈ CHi(Gn+1), the ith Chern class of E (when there is no
ambiguity, we will also denote by ci the corresponding Chern class ci|F on
F );

• ι : F →֒ Gn+1, the canonical imbedding;
• E , the tautological rank 2 vector bundle on Gn+1 (by abuse, we also let E
denote the restriction ι∗E ;

• j : P := P(E) →֒ F ×X , the universal line over F ;
• pF : F ×X → F and pX : F ×X → F , the corresponding projections;
• p := pF |P , q := pX |P .

2.1. Tautological rings. We will consider the following tautological rings:

• R∗(X) ⊂ A∗(X), the subring generated by A1(X);
• R∗(F ) ⊂ A∗(F ), the subring generated by c1 and c2;
• R∗(X ×X) ⊂ A∗(X ×X), the subring generated by A1(X ×X) and ∆X

(or, equivalently, by π∗
1R

∗(X), π∗
2R

∗(X) and ∆X);
• R∗(F ×X) ⊂ A∗(F ×X), the subring generated by p∗FR(F ), p∗XR(X) and
Γ.

Moreover, if Y is any of the above varieties and PY
π
−→ Y is a projective bundle,

we take the tautological ring R∗(PY ) to be the subring of A∗(PY ) generated by
π∗A∗(Y ) and c1(OPY

(1)).
We would like to give a characterization of all of the above tautological rings.

To this end, we introduce some more set-up. Indeed, let P = P(H0(Pn+1,OPn+1(3))
be the projective space parametrizing cubic hypersurfaces in Pn+1 and let X → P
be the universal family of cubics over P. Let F → P be the corresponding family
of Fano varieties of lines. Furthermore, let η be the generic point of P and let Xη

and Fη be the corresponding generic fibers. It is easy to see (for instance) that

Rk(X) ⊂ Im{Ak(Xη) → Ak(X)}

Rk(F ) ⊂ Im{Ak(Fη) → Ak(Fη)}

Rk(X ×X) ⊂ Im{Ak(Xη ×η Xη) → Ak(X ×X)}

(2)

Lemma 2.1. The inclusions in (2) are all equalities.

Proof. We first prove the first two inclusions. To this end, note that there are
natural inclusions:

X ⊂ P× Pn+1

F ⊂ P×Gn+1
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and let πPn+1 : F → Pn+1 and πGn+1 : F → Gn+1 be the projections. Then,
we observe that both πPn+1 and πGn+1 are projective bundles. Indeed, given any
p ∈ Pn+1 (resp., ℓ ∈ Gn+1), the set of cubics in P containing p (resp., ℓ) is a
projective linear subspace, and the dimension of this subspace does not depend
on p (resp., ℓ), from which it follows that these are projective bundles. From the
projective bundle formula [9] Theorem 3.3, we have

Ak(X ) =
⊕

j≤k

π∗Aj(Pn+1) ·Hk−j

Ak(F) =
⊕

j≤k

π∗Aj(Gn+1) ·H
k−j

where H = c1(OP(1)). We would like to show that

Rk(X) = Im{Ak(X ) → Ak(X)}

Rk(F ) = Im{Ak(F) → Ak(F )}

for which it suffices to show that the subspaces

(3) π∗Aj(Pn+1) ·Hk−j , π∗Aj(Gn+1) ·H
k−j

vanish upon restriction to a fiber vanishes for j < k. Letting P′ ⊂ P be a divisor
whose class in A1(P) is H . By the projection formula, it follows that the subspaces
in (3) are supported over P′ for j < k. The desired vanishing then follows.

To prove that the final inclusion in (2) is an equality, we let S ⊂ P denote the
subspace of cubic hypersurfaces which are smooth and we would like to show that

(4) Rk(X ×X) = Im{Ak(X ×S X ) → Ak(X ×X)}

In this case, there is a natural inclusion:

X ×S X ⊂ P× Pn+1 × Pn+1

Set Y = Pn+1×Pn+1 and as in [19] Lemma 3.13 one can consider the corresponding
inclusion of blow-ups along the diagonal

X̃ ×S X ⊂ P× Ỹ

and it follows from the proof of loc. cit. that the corresponding projection X̃ ×S X
is an open subset of a projective bundle PỸ over Ỹ . As in the previous paragraph,
one shows that the pull-back

(5) Ak(Ỹ ) → Ak(X̃ ×S X )

is surjective. Indeed, the tautological line bundle on PỸ ⊂ P×Ỹ is pulled back from

P and hence vanishes on X̃ ×S X since A1(S) = 0. The same argument as in the
previous paragraph then applies to show that all the summands of A∗(PỸ ) except

A∗(Ỹ ) vanish on A∗(X̃ ×S X ). The surjectivity of (5) then follows. From [9] Prop.

6.7, A∗(Ỹ ) is generated as a ring by ǫ∗A∗(Y ) and the image of the push-forward

A∗−1(EY ) → A∗(Ỹ ), where ǫ : Ỹ → Y is the blow-up and EY is the exceptional
divisor. Since

A∗(Y ) = A∗(Pn+1)⊗A∗(Pn+1)
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it follows that A∗(X̃ ×S X ) is generated as a ring by ǫ∗iA
∗(X ) (where ǫi : X̃ ×S X →

X ×S X
πi−→ X are the natural projections) and the image of the push-forward

A∗−1(EX×SX ) → A∗(X̃ ×S X )

By the projection formula, it follows that

A∗(X ×S X ) = ǫ∗A
∗(X̃ ×S X )

is generated as a ring by π∗
iA

∗(X ) and the image of the push-forward

A∗−n(X )
∆X∗−−−→ A∗(X̃ ×S X )

(Recall that EX×SX lies over ∆X .) But since ∆∗
X is surjective, the image of ∆X∗

coincides with

A∗(X̃ ×S X ) ·∆X

This gives (4), as desired. �

In the case of R(X) and R(X ×X), there is also the following basic result, which
we will eventually prove for the other tautological rings.

Lemma 2.2. The cycle class maps

R2k(X) → H2k(X,Q(k)), R2k(X ×X) → H2k(X ×X,Q(k))

are injective for all k.

Proof. The injectivity of the first is trivial, as is the injectivity of the second for
k < n. In general, we note that an additive generating set for R∗(X ×X) is given
by:

(6) π∗
1h

r1 · π∗
2h

r2 , ∆X · π∗
1h

s1 · π∗
2h

s2 ,∆2
X

where 0 ≤ ri, si ≤ n. Now, it is easy to show using the Künneth theorem for
cohomology that modulo homological(= numerical) equivalence

∆ · π∗
1h

s1 · π∗
2h

s2

is a linear combination of cycles of the form π∗
1h

r1 · π∗
2h

r2 whenever s1, s2 6= 0.
However, this also holds on the level of rational equivalence; indeed, if s1 ≥ 1, we
let i : X →֒ Pn+1 be the inclusion and compute

∆X · π∗
1h

s1 = ∆X∗h
s1

=
1

3
·∆X∗(i

∗c1(OPn+1(1))s1−1 · 3h)

=
1

3
· (i × i)∗∆Pn+1∗c1(OPn+1(1))s1−1

(7)

where the final line follows from the excess intersection formula [9] §6.3. It is clear
that the final line of (7) is a linear combination of cycles of the form π∗

1h
r1 · π∗

2h
r2 .

The analogous statement is also true for ∆X · π∗
2h

s2 when s2 ≥ 1. Finally, we
observe that ∆2

X is rationally equivalent to a multiple of π∗
1h

n · π∗
2h

n, since X is
rationally connected. Thus, the generating set (6) truncates to a basis

(8) π∗
1h

r · π∗
2h

s, ∆X

(with 0 ≤ r, s ≤ n) for R∗(X ×X). This is also a basis for the image of the above
cycle class map; hence, the lemma. �
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2.2. Galkin-Shinder relation. We would like to derive some relationships among
the various tautological rings. To this end, we will need a result of Galkin and
Shinder [10], which relates a cubic hypersurface to its Fano variety of lines. To
introduce it, we observe that there is a rational map:

X [2]
99K P(TPn+1

∣∣
X
)

that sends a general x+ x′ to the third point x′′ on the line which passes through
x and x′ (along the exceptional divisor EX , this line is the tangent line through x
in a given direction). This map is in fact birational and induces an isomorphisms
between the open subsets U ⊂ X [2] and U ′ ⊂ P(TPn+1

∣∣
X
), whose respective com-

plements are given by

Z = {x+ y ∈ X [2] | ∃ℓ ∈ F such that x, y ∈ ℓ}

Z ′ = {(z ∈ ℓ) ∈ P(TPn+1
∣∣
X
) | ℓ ⊂ X}

It is not difficult to see that Z and Z ′ are projective bundles over F and, in fact, that
Z ∼= P(Sym2(E)) and Z ′ ∼= P(E). Using these observations, the authors of [10] ob-
tain the following relation in the Grothendieck ring of varieties over k, K0(V ar/k):

[X [2]] = [X ][Pn+1] + L
2[F ]

where L denotes the class of A1. By resolving the indeterminacy of this map,
Laterveer obtains the following motivic version of this:

Theorem 2.1 ([12] Theorem 5). With the notation above, there is an isomorphism
in Mk:

h(F )(−2)⊕
n⊕

i=0

h(X)(−i) ∼= h(X [2])

In particular, h(F ) is a summand of h(X [2])(2).

Corollary 2.1. The cycle class map

Rk(F ) → H2k(F,Q(k)

is injective for all k.

Proof. By Lemma 2.1, it suffices to show that rational equivalence and numerical
equivalence agree for cycles on Fη. (A specialization argument then gives the
statement of the corollary.) By the previous theorem, we are reduced to proving

the corresponding statement for Xη and X
[2]
η , but this follows from Lemma 2.2. �

Corollary 2.2. The intersection product

Rk(F )⊗R2(n−2)−k(F ) → Q

is non-degenerate.

Proof. This follows from the proof of Corollary 2.1, which in fact shows that rational
equivalence and numerical equivalence coincide for cycles in R∗(F ). �

Remark 2.1. The proof of Corollary 2.1 shows that any numerically trivial poly-
nomial in c1 and c2 is also rationally trivial. We should note that Theorem 2.1 is
not really needed; all one essentially needs is the statement that the pull-back map

Ak(X [2]
η ) → Ak(Zη)
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is surjective, where Zη → Fη is the P2-bundle described above. This is rather
straightforward, given the above characterization of A∗(Fη).

Corollary 2.3. The push-forward

ι∗ : Rk(F ) → Ak+4(Gn+1)

is injective for all k.

Proof. By definition Rk(F ) = ι∗Ak(Gn+1), so this follows from Corollary 2.2. �

The following result gives an “extra” relation among the Chern classes restricted
to F ; i.e., a relation which does not hold on the level of A∗(Gn+1).

Proposition 2.1. There exists P (x, y) ∈ Q[x, y] weighted of degree n−1 for which

P (c1, c2) = 0 ∈ Rn−1(F )

and for which the coefficient of cn−1
1 is non-zero.

Proof. The class [F ] ∈ A4(Gn+1) is of the form Q(c1, c2), where Q(x, y) is a
weighted degree 4 polynomial; in fact, by [9] Example 14.7.13 Q(x, y) is a linear
combination of x2y and y2. Now, for dimension reasons the map

An−1(Gn+1)
·[F ]
−−→ An+3(Gn+1)

is not injective (note Gn+1 has dimension 2n). It follows that there exists a non-zero
weighted degree n− 1 polynomial P (x, y) ∈ Q[x, y] for which

P (c1, c2) · [F ] = 0 ∈ An+3(Gn+1)

By Corollary 2.3 this means that

ι∗P (c1, c2) = 0 ∈ An−1(F )

We would like to show that the xn−1 coefficient of P (x, y) is non-zero. Assume by
way of contradiction that instead

P (x, y) = a0x
n−3y + a1x

n−5y2 + . . . ∈ Q[x, y]

for ak ∈ Q. Then, by the above characterization of Q, we have

(9) R(x, y) = P (x, y)Q(x, y) = b0x
n−1y2 + b1x

n−3y3 + . . . ∈ Q[x, y]

for bk ∈ Q. Now, the intersection product structure on A∗(Gn+1) is well-known (see,
for instance, [9] p. 270). As a ring A∗(Gn+1) is the quotient of the ring of symmetric
polynomials in 2 variables modulo the ideal I = (Rn(s1, s2), Rn+1(s1, s2)), where
s1 and s2 are the elementary symmetric polynomials in two variables and Rk(x, y)
is a weighted degree k polynomial such that Rk(s1, s2) is the complete symmetric
polynomial of degree k. Since R(c1, c2) = 0, R(s1, s2) ∈ I. This implies that there
exist m1,m2,m3,m4 ∈ Q such that

R(x, y) = (m1x
2 +m2y)Rn+1(x, y) + (m3xy +m4x

3)Rn(x, y)

But given (9), this implies that m1 = m2 = m3 = m4 = 0, which contradicts the
fact that P (x, y) 6= 0. The result now follows. �
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2.3. Tautological ring of F ×X. Now, we would like to give a characterization
of R∗(F ×X). To this end, we let DR∗(F × X) denote the subring of externally
decomposable cycles; i.e., the subring generated by p∗FR

∗(F ) and p∗XR∗(X). We
begin with the following observation that follows directly from Corollary 2.1 and
the Künneth theorem in cohomology:

Lemma 2.3. The cycle class map

DRk(F ×X) → H2k(F ×X,Q(k))

is injective for all k.

Now, let DR∗(F ×X)′ be the subspace of R∗(F ×X) having as a basis:

(10) {Γ,Γ · p∗F c1, . . .Γ · p∗F c
n−2
1 }

(that this is linearly independent follows because of degree reasons).

Theorem 2.2. R∗(F ×X) = DR∗(F ×X)⊕DR∗(F ×X)′.

Proof. We first show that

R∗(F ×X) = DR∗(F ×X) +DR∗(F ×X)′

To this end, we note that the tautological ring R∗(F × X) is generated as a ring
by DR(F ×X) and Γ. Thus, it suffices to show that

Γ · R(F ×X) ⊂ DR∗(F ×X) +DR∗(F ×X)′

This is accomplished in the three results below.

Lemma 2.4. Γ · p∗Xh,Γ · p∗F c2,Γ · p∗F c
n−1
1 ∈ DR∗(F ×X).

Proof. We first prove this for Γ · p∗Xh. By the proof of [17] Prop. 3.3 (see also [16]
Prop. A.6), there is a decomposition:

∆X = ∆0 +∆1 ∈ An(X ×X)

where

∆0 =
∑

j

ajπ
∗
1h

jπ∗
2h

n−j

and where ∆0 · π∗
2h = 0. Now, we have

Γ · p∗Fh = (pF × idX)∗(pX × idX)∗(∆X · π∗
2h)

= (pF × idX)∗(pX × idX)∗(∆0 · π
∗
2h)

=
∑

j

aj · p
∗
F (Γ

∗(hj)) · p∗Xhn−j+1

which lies in DR∗(F ×X).
For Γ · p∗F c2, we observe that

p∗Xh2 = p∗F c1 · p
∗
Xh− p∗F c2 ∈ A2(P )

Intersecting with Γ then gives the desired result, by the previous verification. Fi-
nally, the statement for Γ · p∗F c

n−1
1 follows from Proposition 2.1 and the previous

two verifications. �

Corollary 2.4. Γ · DR∗(F ×X) ⊂ DR∗(F ×X) +DR∗(F ×X)′

Lemma 2.5. Γ2 ∈ DR∗(F ×X) +DR∗(F ×X)′
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Proof. We begin by noting that

Γ2 = j∗(cn−1(N )) ∈ A2n−2(F ×X)

where N is the vector bundle on F ×X fitting into the adjunction exact sequence:

0 → TP → j∗(TF ⊕ TX) → N → 0

We retain the notation of the previous proof and there are exact sequences:

0 → p∗TF → TP → Q → 0

0 → OP → p∗E ⊗ OP (1) → Q → 0
(11)

Since c1(OP (1)) = q∗h, it follows from Cartan’s formula and induction that ci(TP )
is in the Q-algebra generated by

{p∗c1, p
∗c2, q

∗h} ⊂ j∗DR∗(F ×X)

Again, using Cartan’s formula and induction, it follows that ci(N ) is also. It follows
that

Γ2 ∈ Γ · DR∗(F ×X)

By Corollary 2.4, this gives the desired result. �

What remains now is to show that DR∗(F ×X)∩DR∗(F ×X)′ = 0, which can be
verified cohomologically. Indeed, we let

Hn
prim(X,Q) := ker{∪h : Hn(X,Q) → Hn+2(X,Q(1))}

Then, we have the following lemma:

Lemma 2.6. Γ∗ : Hn
prim(X,Q) → Hn−2(F,Q(−1)) is injective.

Proof. This is likely well-known; however, since a reference for arbitrary n was not
found, we proceed as in [4]. We drop the weights for ease of notation. Then, we
consider the projections p : P → F , q : P → X and note there is a decomposition:

Hn(P(E)) = p∗Hn(F )⊕ p∗Hn−2(F ) · q∗h

From [9] Chapter 3 (or otherwise), we have

p∗(p
∗γn) = 0, p∗(p

∗γn−2 ∪ q∗h) = γn−2

for γj ∈ Hj(F ). Since q∗ is injective, it suffices to show that

p∗Hn(F ) ∩ q∗Hn
prim(X) = 0

So, suppose there is some γ ∈ Hn
prim(X) and some γn ∈ Hn(F ) such that

p∗γn = q∗γ ∈ Hn(P(E))

Then we have

p∗γn−2 · q
∗h = q∗(γ ∪ h) = 0

since γ ∈ Hn
prim(X). Pushing forward, it follows that

γn−2 = p∗(p
∗γn−2 ∪ q∗h) = p∗(q

∗(γ ∪ h)) = 0

as was to be shown. �
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In particular, this means that there exists some transcendental class

ω ∈ Γ∗Hn
prim(X,Q) ⊂ Hn−2(F,Q(−1))

Thus, (dropping weights) the class

[tΓ] ∈ H2(n−1)(X × F,Q)

is not decomposable since its Künneth component in

Hn
prim(X,Q)⊗Hn−2(F,Q)

is non-zero. It follows that Γ 6∈ DR∗(F ×X). To show that this is the case for all
non-zero cycles in DR∗(F ×X)′, we begin with the following decomposition of the
cohomology of F . Let

H := Hn
prim(X,Q(1))

Theorem 2.3 (Galkin-Shinder, [10] Theorem 6.1). There is an isomorphism of
Hodge structures:

H∗(F,Q) ∼= Sym2(H)⊕
n−2⊕

k=0

H(−k)⊕

2(n−2)⊕

k=0

Q(−k)ak

for some positive integers ak.

It follows that the transcendental cohomology (not in the middle degree) of F is
concentrated in degrees n− 2+ 2k for which 0 ≤ k ≤ n− 2. By the hard Lefschetz
theorem, it follows that the Künneth component of tΓ · p∗cm1 in

Hn
prim(X,Q)⊗Hn−2+2k(F,Q)

is non-zero (again, dropping weights). We deduce that

DR∗(F ×X) ∩DR∗(F ×X)′ = 0

�

Corollary 2.5. The cycle class map

Rk(F ×X) → H2k(F ×X,Q(k))

is injective for all k.

Proof. This follows directly from Lemma 2.3 and the proof of Theorem 2.2, which
shows that the cycle class map

DR∗(F ×X)′ → H2∗(F ×X,Q(∗))

is injective and that DR∗(F ×X) ∩ DR∗(F ×X)′ = 0 cohomologically. �

3. More Tautological rings

We introduce two final tautological rings. Indeed, we let Xn denote the n-fold
product of X and let

πi : X
n → X, πij : X

n → X2

denote the projections onto the ith and (i, j)th factors. For n = 3 let

∆ij = π∗
ij∆X

and let ∆3 = ∆12 ·∆23 denote the small diagonal. We also retain the notation of

X [2] for the Hilbert scheme. Moreover, let ǫ : X̃2 → X2 denote the blow-up of X2

along the diagonal and π : X̃2 → X [2] be the natural projection.
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• R∗(X3), the subring generated by π∗
iR

∗(X) and the diagonals ∆12, ∆23,
and ∆13 (or, equivalently, the subring generated by A1(X3) and the diag-
onals);

• R∗(X [2] ×X) = (π × idX)∗(ǫ × idX)∗R∗(X3).

Note that by definition we have

π∗
ijR

∗(X2) ⊂ R∗(X3)

Now, we will consider the correspondence from Theorem 2.1 (or rather its trans-
pose). Explicitly, this is given as follows. Let

i : P [2] := P(Sym2(E)) → X [2]

be the inclusion of

Z = {x+ y ∈ X [2] | ∃ℓ ∈ F such that x, y ∈ ℓ}

and let p[2] : P [2] → F be the projection. Then,

Φ := Γp[2] ◦ tΓi ∈ CH2n−2(X [2] × F )

induces (the transpose of) the map h(X [2]) → h(F )(−2) in Theorem 2.1. There is
also the fiber diagram:

P 2 X̃2

P [2] X [2]

i′

π′ π

i

where i′ : P 2 = P ×F P → X̃2 is induced by the universal property of blow-up from
the natural map

ρ : P 2 →֒ P × P
q×q
−−→ X ×X

Also, let p2 : P 2 → F be the projection.

Lemma 3.1. (Φ× idX)∗(π × idX)∗(ǫ× idX)∗ = (p2 × idX)∗(ρ× idX)∗

Proof. This follows from the excess intersection formula [9] §6.3. Indeed, by the
above fiber diagram, we have

(i × idX)∗(π × idX)∗ = (π′ × idX)∗(i
′ × idX)∗

Since ǫ ◦ i′ = ρ and p[2] ◦ π′ = p2, the result now follows. �

Proposition 3.1. (Φ× idX)∗R
∗(X [2] ×X) ⊂ R∗−2(F ×X)

Proof. By the previous lemma, it suffices to show that

(p2 × idX)∗(ρ× idX)∗R∗(X3) ⊂ R∗(F ×X)

For this we first show that

(12) (ρ× idX)∗R∗(X3) ⊂ R∗(P 2 ×X)

We recall from the beginning of the previous section that R∗(P 2×X) is the subring
of A∗(P 2 ×X) generated by (p2 × idX)∗R∗(F ×X) and

h1, h2 ∈ A1(P 2 ×X)

are the two tautological bundles for the P1 × P1-bundle

p2 × idX : P 2 ×X → F ×X
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In fact, if (12) holds, it is easy to see from the projective bundle formula that the
statement will immediately follow. Now, we can reduce verifying (12) to verifying

(13) (ρ× idX)∗∆ij ∈ R∗(P 2 ×X)

since (ρ× idX)∗ commutes with · and since

(ρ× idX)∗A1(X3) ⊂ A1(P 2 ×X) = R1(P 2 ×X)

We first verify (13) for i = 1, j = 2. In this case, there is a commutative diagram:

P 2 ×X X3

P 2 X2

ρ×idX

π12

ρ

so that

(ρ× idX)∗∆12 ∈ R∗(P 2 ×X)

since R∗(P 2 ×X) contains the pull-back of R∗(P 2) by construction (and the pro-
jective bundle formula). For i = 1, 2, j = 3, we consider the composition

ρi : P
2 ρ
−→ X2 πi−→ X

Then, there is a commutative diagram:

P 2 ×X X3

X2
ρi×idX

ρ×idX

πi3

from which it follows that

(14) (ρ× idX)∗∆i3 = (ρi × idX)∗∆X = Γρi
∈ An(P 2 ×X)

Now, we can view Γρi
as a divisor on

iP ′ : P ′ := (p2 × idX)−1(P ) →֒ P 2 ×X,

and we can view P ′ as a P1-bundle over P 2 for which c1(OP (1)) = (q′)∗(h), where

q′ : P ′
i
P ′

−֒−→ P 2 ×X
πX−−→ X denotes the projection. We also consider

p′ : P ′
i
P ′

−֒−→ P 2 ×X
π
P2

−−→ P 2

the projections onto P 2 and F , resp. Then, we have the lemma below:

Lemma 3.2. Γpi
= (p′)∗ρ∗i h+ (q′)∗h ∈ A1(P ′).

Proof. We have the projective bundle formula:

A1(P ′) = (p′)∗A1(P 2)⊕Q · (q′)∗h

which means that

Γpi
= (p′)∗α+ c · (q′)∗h

for c ∈ Q and α ∈ A1(P 2). Explicitly, we have

α = p′∗(Γρi
· (q′)∗h) = πP 2∗iP ′∗(Γρi

· i∗P ′π∗
Xh)

= πP 2∗(Γρi
· π∗

Xh)

= ρ∗i h
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Moreover, we see that πP 2∗Γpi
= [P 2] ∈ CH0(P 2), from which we deduce that

c = 1. This gives the lemma. �

Using this lemma, (14) becomes

(ρ× idX)∗∆i3 = iP ′∗((p
′)∗ρ∗i h+ (q′)∗h) = (π∗

P 2ρ∗i h+ π∗
Xh) · [P ′]

= (π∗
P 2ρ∗i h+ π∗

Xh) · (p2 × idX)∗(Γ)

∈ Rn(P 2 ×X)

which is the desired result. �

Corollary 3.1. The cycle class map

Rk(X [2] ×X) → H2k(X [2] ×X,Q(k))

is injective for all k.

Proof. By Theorem 2.1 there is an isomorphism of Chow motives:

h(X [2])
Φ∗⊕Ψ∗−−−−−→ h(F )(−2)⊕

n⊕

i=0

h(X)(−i)

for which (Ψ × idX)∗R
∗(X [2] × X) ⊂ R∗(F × X) by Proposition 3.1. Now, by

Corollary 2.5 and Lemma 2.2 the cycle class map restricted to R∗(F × X) and
R∗(X2) is injective. Thus, by Lemma 2.2 what remains is to show that

(15) Ψ∗R
∗(X [2] ×X) ⊂

n⊕

i=0

R∗−i(X ×X)

In the notation from earlier, let Xη be the generic fiber of the universal family of
cubic hypersurfaces and let Fη be the corresponding Fano variety of lines. Theorem
2.1 applies to give an isomorphism for the Chow motives of the generic fibers:

h(X [2]
η )

Φ∗⊕Ψ∗−−−−−→ h(Fη)(−2)⊕
n⊕

i=0

h(Xη)(−i)

By definition, it is easy to see that

R∗(X3) ⊂ Im{A∗(X 3
η ) → A∗(X3)}

and hence that

R∗(X [2] ×X) ⊂ Im{A∗(X [2]
η ×η Xη) → R∗(X [2] ×X)}

Certainly, we have

Ψ∗A
∗(X [2]

η ×η Xη) ⊂
n⊕

i=0

A∗−i(Xη ×η Xη)

By specialization, (15) then follows from Lemma 2.1. �
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4. Proof of Theorem 1.1

With the notation from the previous section, consider the following truncated mod-
ified diagonal diagonal cycle

γ3 = ∆3 −
1

3
(∆12 · π

∗
3h

n + perm.) ∈ R2n(X3)

Lemma 4.1. There exist aijk ∈ Q for which

[γ3] =
∑

i+j+k=2n

aijkπ
∗
1h

i · π∗
2h

j · π∗
3h

k ∈ H4n(X3,Q(n))

i.e., γ3 is decomposable cohomologically.

Proof. Since Γ3 ∈ Rn(X3) it suffices to verify this for the very general cubic hyper-
surface. To this end, note that the Künneth components of H2n(X3,Q) are all of
the form

Hi(X,Q)⊗Hj(X,Q)⊗Hk(X,Q)

for i + j + k = 4n (where we drop the weights for ease of notation). Since X is
very general, Hn

prim(X,Q) is an irreducible Hodge structure. So, such summands
contain non-trivial Hodge classes only in the following three instances:

(i, j, k) = (n, n, 2n), (n, 2n, n), (2n, n, n)

Since the only Hodge class in

Hn
prim(X)⊗Hn

prim(X) ∼= End(Hn
prim(X))

comes from the diagonal, it follows that the only Hodge classes in H4n(X3,Q) are
of the form

∆12 · π
∗
3h

n, ∆23 · π
∗
1h

n, ∆13 · π
∗
2h

n, π∗
1h

iπ∗
2h

jπ∗
3h

2n−i−j

from which it follows that ∆3 is a linear combination of these Hodge classes. It is an
exercise to the reader to verify that the coefficient of ∆12 ·π

∗
3h

n (and permutations)
is 1

3 . �

Now, let aijk ∈ Q be as in Lemma 4.1 and consider the corresponding augmented
modified diagonal cycle:

Γ3 = γ3 −
∑

i+j+k=2n

aijkπ
∗
1h

i · π∗
2h

j · π∗
3h

k ∈ R2n(X3)

Corollary 4.1. Γ3 = 0 ∈ R2n(X3).

Proof. By definition, γ3 is invariant under the natural action of the symmetric
group S3 on Rn(X3). Since Γ3 is cohomologically trivial by assumption, it is a
straightforward exercise to check that there is also an S3 symmetry for the coeffi-
cients aijk so that

Γ3 ∈ R2n(X3)

is also S3-invariant. Thus, Γ
3 vanishes if and only if

(π × idX)∗(ǫ× idX)∗(Γ3) ∈ R2n(X [2] ×X)

vanishes. But since Γ3 is cohomologically trivial, so is (π × idX)∗(ǫ × idX)∗(Γ3).
Finally, by Corollary 2.5, (π × idX)∗(ǫ × idX)∗(Γ3) vanishes, which is the desired
result. �
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To complete the proof, let α ∈ Ai(X), β ∈ Aj(X) with i, j > 0 and since X is
rationally connected, we will also assume that i + j < n. We would like to show
that

(16) α · β ∈ Q · hi+j ∈ Ai+j(X)

To this end, we begin with the following lemma:

Lemma 4.2. α · β = π3∗(π
∗
1α · π∗

2β · γ3)

Proof. We compute

π3∗(π
∗
1α · π∗

2β ·∆3) = ∆∗
X(π∗

1α · π∗
2β) = α · β ∈ Ai+j(X)

On the other hand, by the projection formula

π3∗(π
∗
1α · π∗

2β ·∆12 · π
∗
3h

n) = π3∗(π
∗
12∆X∗(α · β) · π∗

3h
n)

= π3∗(π
∗
12∆X∗(α · β)) · hn = 0 ∈ Ai+j(X)

(note i+ j < n by assumption). Finally, one has

π∗
1α · π∗

2β ·∆23 · π
∗
1h

n, π∗
1α · π∗

2β ·∆13 · π
∗
2h

n = 0

(note i, j > 0 by assumption). The lemma now follows. �

To obtain (16), note that by the previous lemma and Corollary 4.1 we have

α · β = π3∗(π
∗
1α · π∗

2β · γ3)

=
∑

r+s+t=2n

arstπ3∗(π
∗
1(h

r · α) · π∗
2(h

s · β) · π∗
3h

t)

= aπ3∗(π
∗
1(h

n−i · α) · π∗
2(h

n−j · β) · π∗
3h

i+j)

= amαmβ · hi+j

where a = arst ∈ Q is the coefficient in the case that r = n − i, s = n − j and
t = i + j, mα,mβ ∈ Q are the degrees of the zero-cycles α · hn−i and β · hn−j.
Note that the penultimate line follows from the fact for all other summands in the
preceding line, either r > n− i or s > n− j or t 6= i+ j.
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Québec 41 (1) (2017), 141-154.

[13] R. Mboro. Remarks on the CH2 of cubic hypersurfaces, arxiv:1701.04488.
[14] D. Mumford. Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968),

195-204.
[15] K. G. OGrady. Decomposable cycles and Noether-Lefschetz loci, Documenta Math. 21 (2016),

661-687.
[16] M. Shen, C. Vial. The The Fourier transform for certain hyperKähler fourfolds, Memoirs of

the AMS 240 (1139) (2016).
[17] C. Voisin. On the Chow Ring of Certain Algebraic Hyper-Kähler Manifolds, Pure and Applied

Math. Quart. 4 (3) (Special Issue: In honor of Fedor Bogomolov, Part 2 of 2) (2008), 613-649.
[18] C. Voisin. Chow rings and decomposition theorems for K3 surfaces and Calabi-Yau hyper-

surfaces, Geom. Topol. 16(1) (2012), 433-473.
[19] C. Voisin. The generalized Hodge and Bloch conjectures are equivalent for general complete

intersections, Annales scientifiques de l’ENS 46 (3) (2013), 449-475.
[20] C. Voisin. Chow rings, decomposition of the diagonal, and the topology of families, Ann. of

Math. Studies 187, Princeton University Press, Princeton, NJ, (2014).

[21] Q. Yin. Finitedimensionality and cycles on powers of K3 surfaces, Comment. Math. Helv.
90 (2015), 503-511.

arxiv:1701.04488

	1. Introduction
	Acknowledgements

	2. Preliminaries
	Conventions and Notation
	2.1. Tautological rings
	2.2. Galkin-Shinder relation
	2.3. Tautological ring of F X

	3. More Tautological rings
	4. Proof of Theorem ??
	References

