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CLOSED POLYNOMIALS AND THEIR APPLICATIONS
FOR COMPUTATIONS OF KERNELS OF MONOMIAL

DERIVATIONS

CHIAKI KITAZAWA, HIDEO KOJIMA, AND TAKANORI NAGAMINE

Abstract. In this paper, we give some results on closed polynomi-

als and factorially closed polynomial in n variables which are gen-

eralizations of results in [7], [12] and [13]. In particular, we give a

characterization of factorially closed polynomials in n variables over

an algebraically closed field for any characteristic. Furthermore, as

an application of results on closed polynomials, we determine kernels

of non-zero monomial derivations on the polynomial ring in two vari-

ables over a UFD. Finally, by using this result and the argument in

[15, §5], for a field k, we determine the non-zero monomial deriva-

tions D on k[x, y] such that the quotient field of the kernel of D is

not equal to the kernel of D in k(x, y).

0. Introduction

Let k[X] be the polynomial ring in n variables over a field k of char-

acteristic zero and let k(X) be its quotient field. For a k-derivation D

on k[X], we denote its kernel by k[X]D. The k-derivation D is naturally

extended to a k-derivation on k(X), which is denoted by the same no-

tation D, and its kernel is denoted by k(X)D. The study of derivations

on polynomial rings and their kernels have been motivated in various

areas of mathematics. Kernels of k-derivations in k[X] and k(X) have

been studied by many mathematicians. See, e.g., [16], [4], [5] for recent

excellent accounts. It is well-known that the kernel of any k-derivation

on k[X] with n ≤ 3 is finitely generated as a k-algebra and that the ker-

nel of any non-zero k-derivation on k[X] with n = 2 can be expressed as

k[f ] for some f ∈ k[X]D, which are originally given in [14]. Note also,
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the fact holds true in the case where k is a UFD of characteristic zero

and n = 2 (see [3, Corollary 3.2]). However, it is difficult to determine

the generator of k[X]D of some k-derivation D on k[X] even if k[X]D is

finitely generated as a k-algebra.

On the other hand, the second and third authors studied closed polyno-

mials in [7], [12] and [13]. Here, a non-constant polynomial f ∈ k[X] \ k

is a closed polynomial if the ring k[f ] is integrally closed in k[X]. Of

cause, closed polynomials are define by the same way in the case where

k is an integral domain (see Section 1). It is well known that the kernel

of a derivation D on k[X] is integrally closed in k[X]. In particular, if

tr.deg kk[X]D = 1, then it is generated by a closed polynomial. Thus,

closed polynomials may be useful to determine the generator of k[X]D.

In section 1, we recall some kinds of derivations and some concepts; co-

ordinates, closed polynomials and factorially closed polynomials over an

integral domain. In section 2, we give some results on closed polynomials

and factorially closed polynomials which are generalizations of results in

[7], [12] and [13]. Moreover, in Example 2.7, we show that Danielewski

surface and Koras-Russell threefold are factorially closed polynomials,

but they are not coordinates. In section 3, as an application of results on

closed polynomials in section 2, we study kernels of monomial derivations

on the polynomial ring in two variables over a UFD. This is in Theorem

3.3. Also, in Lemma 3.1, we give a way to find polynomials which are

vanished by a given derivation. Finally, in section 4, by using the argu-

ment in [15, §5] and Theorem 3.3, we determine the non-zero monomial

derivations D on k[x, y] such that the quotient field of the kernel of D is

not equal to the kernel of D in k(x, y).

1. Preliminaries

Let R be an integral domain and let R[X] = R[x1, . . . , xn] be the

polynomial ring in n variables x1, . . . , xn over R. We denote Q(R) by the

quotient field of R. For w = (w1, . . . , wn) ∈ (Z≥0)
n, we define a degree

function on R[X] by the map

deg
w
: R[X] → Z≥0 ∪ {−∞}

defined by deg
w
xi = wi for 1 ≤ i ≤ n and deg

w
0 = −∞. For (1, . . . , 1) ∈

(Z≥0)
n, we denote simply deg f := deg(1,...,1) f . If deg

w
f ≥ 2, then we

denote by LD
w
(f) the smallest positive prime number dividing deg

w
f .

For example, if deg
w
f is a prime number, then LD

w
(f) = deg

w
f . A

non-constant polynomial f ∈ R[X] \ R is a closed polynomial if the ring

R[f ] is integrally closed in R[X]. For a polynomial f ∈ R[X], we define

f̂ := gcd(fx1
, . . . , fxn

),
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where fxi
is the partial derivative of f with respect to xi and we take the

greatest common divisor of fx1
, . . . , fxn

as a polynomial in Q(R)⊗RR[X].

A polynomial f ∈ R[X] is called a coordinate if there exist polynomials

f2, ..., fn ∈ R[X] such that k[f, f2, ..., fn] = R[X].

Let B be an R-algebra. For an R-derivation D on B, we say that D

is irreducible if the only principal ideal of B containing the image of D

is B itself. We say that D is locally nilpotent if for any f ∈ B, there

exists m ≥ 0 such that Dm(f) = 0. We denote also the kernel of an R

derivation by BD. An R-subalgebra A ⊂ B is factorially closed in B if

for all f, g ∈ B \ {0}, fg ∈ A implies that f and g belong to A. If R[f ]

is factorially closed in R[X], then we call f ∈ R[X] a factorially closed

polynomial. We can see easily that the following holds true.

Lemma 1.1. (cf. [13, Proposition 2.4]) Let f ∈ R[X] \ R. Then the

following assertions hold true.

(1) If f is a coordinate, then it is a factorially closed polynomial.

(2) If f is a factorially closed polynomial, then it is a closed polyno-

mial.

Later, in Examples 2.3 and 2.7, we give some examples of such polyno-

mials.

A polynomial f ∈ R[X] is called an integral element or a Darboux

polynomial for an R-derivation D if D(f) ∈ fR[X], that is, D(f) = hf

for some h ∈ R[X]. We define an abelian monoid XD by

XD = {h ∈ R[X] | D(f) = hf for some f ∈ R[X] \ {0}}.

We often use the following result to verify whether a given polynomial

is closed or not.

Theorem 1.2. (cf. [12, Proposition 3.11]) Let R be an integral domain of

characteristic zero and let R[X] = R[x1, . . . , xn] be the polynomial ring in

n variables over R. Let f ∈ R[X] \ R such that Q(R)[f ] ∩ R[X] = R[f ].

Assume that there exists an element w ∈ (Z≥0)
n satisfying one of the

following two conditions:

(a) deg
w
f = 1,

(b) deg
w
f ≥ 2 and deg

w
f̂ <

LD
w
(f)− 1

LD
w
(f)

deg
w
f .

Then f is a closed polynomial.

For a non-constant polynomial f ∈ R[X] \ R, we can verify whether

the condition “Q(R)[f ] ∩ R[X] = R[f ]” is satisfied or not by using the

following lemma.
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Lemma 1.3. Let R be a UFD. For a non-constant polynomial f ∈ R[X]\

R, we denote c(f) ∈ R by the greatest common divisor of the coefficients

of f . Then the following two conditions are equivalent to each other:

(1) c(f − f(0, . . . , 0)) ∈ R∗.

(2) Q(R)[f ] ∩R[X] = R[f ].

Proof. Let K := Q(R) and B := R[X]. Without loss of generality, we

may assume that f(0, . . . , 0) = 0. Then c(f − f(0, . . . , 0)) = c(f). We

note also c(gh) = c(g)c(h) for g, h ∈ B.

(1) ⇒ (2) Suppose that c(f) ∈ R∗. Let g ∈ K[f ] ∩ B. Then there

exist u0, u1, ..., um ∈ K such that

g = u0f
m + u1f

m−1 + · · ·+ um−1f + um.

Since f(0, . . . , 0) = 0 and g ∈ B, we see that g(0, . . . , 0) = um and

um ∈ R. Now, we choose r ∈ R \ {0} with rui ∈ R for 0 ≤ i ≤ m. Let

g1 := r(g − um)/f ∈ B, namely, g1 =
∑m−1

i=0 rum−1−if
i. Then c(g1) =

rc(f)−1c(g−um) ∈ rR. Hence g1 ∈ rB, especially, rum−1 = g1(0, ..., 0) ∈

rR. This implies um−1 ∈ R. Next, let g2 := r(g − um−1f − um)/f
2 ∈ B.

By the same augment, we have um−2 ∈ R. Using the same augment

inductively, we have ui ∈ R for 0 ≤ i ≤ m, so g ∈ R[f ].

(2) ⇒ (1) Suppose that c(f) /∈ R∗. Let f ∗ := f/c(f) ∈ B. Then

R[f ] $ R[f ∗] and K[f ] = K[f ∗]. Since c(f ∗) ∈ R∗, by the consequence

of “(1) ⇒ (2)”, K[f ∗] ∩B = R[f ∗]. Therefore

R[f ] $ R[f ∗] = K[f ∗] ∩ B = K[f ] ∩ B = R[f ].

This is a contradiction. �

2. Closed polynomials and related topics

In this section, we study closed polynomials and related topics. Some

results in this section are generalizations for some results of papers writ-

ten by the second and third authors [7], [12] and [13]. Let R be an

integral domain and let R[X] = R[x1, . . . , xn] be the polynomial ring in

n variables x1, . . . , xn over R.

Example 2.1. (cf. [12, Example 4.2]) Let R be an integral domain and

uxm1

1 · · ·xmn
n be a monomial of R[X] = R[x1, . . . , xn]. Then the following

two conditions are equivalent to each other:

(1) uxm1

1 · · ·xmn
n is a closed polynomial.

(2) u ∈ R∗ and gcd(m1, . . . , mn) = 1.

Proof. (1) ⇒ (2) Let f = uxm1

1 · · ·xmn
n . If u /∈ R∗, then xm1

1 · · ·xmn
n /∈

R[f ], but it is integral over R[f ]. Thus, R[f ] is not integrally closed in
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R[X]. Now, we suppose that u ∈ R∗ and d := gcd(m1, . . . , mn) ≥ 2.

For 1 ≤ i ≤ n, let li = mi/d ∈ Z≥0. Then u−1f = (xl1
1 · · ·xln

n )
d, so

xl1
1 · · ·xln

n /∈ R[f ], but it is integral over R[f ].

(2) ⇒ (1) Let f = uxm1

1 · · ·xmn
n and let w = (1, . . . , 1). Then f is

w-homogeneous. Since u ∈ R∗, we have Q(R)[f ] ∩ R[X] = R[f ]. Also,

gcd(m1, . . . , mn) = 1 means that f is primitive in Q(R) ⊗R R[X], that

is, there are no w-homogeneous polynomials g ∈ Q(R) ⊗R R[X] with

f = rgm for some r ∈ Q(R) \ {0} and some m ≥ 2. By [12, Proposition

3.10], f is a closed polynomial. �

For polynomials f1, . . . , fn ∈ R[X], let F := (f1, . . . , fn). We denote

J(F ) by the Jacobian matrix of F with respect to variables x1, . . . , xn,

namely, J(F ) = (∂fi/∂xj)1≤i, j≤n. The following proposition is a gener-

alization of [7, Proposition 3.6] to the case where the coefficient ring is

an integral domain of characteristic zero and n ≥ 1.

Proposition 2.2. Let R be an integral domain of characteristic zero. Let

F := (f1, . . . , fn) for polynomials f1, . . . , fn ∈ R[X]. If detJ(F ) ∈ R\{0}

and Q(R)[fi] ∩ R[X] = R[fi] for 1 ≤ i ≤ n, then these polynomials

f1, . . . , fn are closed polynomials. In particular, for g ∈ R[X] \R satisfy-

ing Q(R)[g] ∩ R[X] = R[g], if ĝ = gcd(gx1
, . . . , gxn

) ∈ R \ {0}, then it is

a closed polynomial.

Proof. Suppose that detJ(F ) ∈ R \ {0}, where F = (f1, . . . , fn) for

fi ∈ R[X] = R[x1, . . . , xn]. Then there exist gij ∈ Q(R) ⊗R R[X] such

that

∂fi
∂xj

= gij f̂i

for 1 ≤ i, j ≤ n, here, we note that f̂i is the polynomial defined over

Q(R). Then we have

detJ(F ) =
∑

σ∈Sn

sgn(σ)
∂f1

∂xσ(1)
· · ·

∂fn
∂xσ(n)

=
∑

σ∈Sn

sgn(σ)g1σ(1)f̂1 · · · gnσ(n)f̂n

= (f̂1 · · · f̂n) ·
∑

σ∈Sn

sgn(σ)g1σ(1) · · · gnσ(n),

where Sn is the symmetric group on n elements. Since detJ(F ) ∈ R\{0},

f̂i ∈ Q(R) \ {0}, so deg f̂i = 0 for 1 ≤ i ≤ n. Therefore f̂i satisfies the

inequality of Theorem 1.2 (b) for w = (1, . . . , 1) if deg fi ≥ 2. Otherwise

deg fi = 1. By Theorem 1.2, fi is a closed polynomial for 1 ≤ i ≤ n. �
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Example 2.3. Let R := C[x] and B := R[y, z, t] = C[x, y, z, t] be the

polynomial rings over C. For n ≥ 1, let vn := y+xn(xz+y(yt+z2)) ∈ B.

This is often called an n-th Vénéreau polynomial. If n ≥ 2, then it is

known to be a coordinate over R, however, we do not know whether v1 is

a coordinate over R or not (see [5, Example 3.18] and [8, Corollary 14]).

Here, we can show that v1 is a closed polynomial over R (of course, vn is

a closed polynomial for n ≥ 2).

Proof. Since c(v1 − v1(0, 0, 0)) = gcd(1, x2, x1) = 1, by Lemma 1.3,

Q(R)[v1] ∩ B = R[v1]. Furthermore, v̂1 = gcd((v1)y, (v1)z, (v1)t) = 1,

so this is a closed polynomial over R. In other words, C[x, v1] is inte-

grally closed in B = C[x, y, z, t]. �

The following lemma is a generalization of [13, Proposition 4.1] to the

case where the coefficient ring is an integral domain of characteristic zero

and n ≥ 1.

Lemma 2.4. Let R be an integral domain of characteristic zero. For

a non-constant polynomial f ∈ R[X] \ R, the following conditions are

equivalent to each other:

(1) deg f̂ = deg f − 1.

(2) There exist r1, . . . , rn ∈ Q(R) with (r1, . . . , rn) 6= (0, . . . , 0) such

that f ∈ Q(R)[r1x1 + · · ·+ rnxn].

Proof. (1) ⇒ (2) Let d = deg f . There exist r1, . . . , rn ∈ Q(R)⊗R R[X]

such that fxi
= rif̂ for 1 ≤ i ≤ n. We may assume that fx1

6= 0. Then

d− 1 = deg f̂ ≤ deg fx1
≤ d− 1,

so we have deg fx1
= d− 1 = deg f̂ and r1 ∈ R \ {0}. For 1 ≤ i ≤ n with

fxi
6= 0, using the same argument, we have ri ∈ Q(R)\{0}. On the other

hand, for 1 ≤ i ≤ n with fxi
= 0, we have ri = 0. So ri is either a non-zero

constant polynomial or 0 for 1 ≤ i ≤ n. Set g := r1x1+ · · ·+ rnxn. Since

deg g = 1, we see easily that g is a closed polynomial in Q(R) ⊗R R[X].

By [7, Theorem 3.1], there exists a Q(R)-derivation D on Q(R)⊗R R[X]

such that KerD = Q(R)[g]. Then

D(f) = D(x1)fx1
+ · · ·+D(xn)fxn

= D(x1)r1f̂ + · · ·+D(xn)rnf̂

= D(g)f̂

= 0.

Therefore f ∈ KerD = Q(R)[g].
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(2) ⇒ (1) Let d = deg f and g := r1x1+· · ·+rnxn. Since f ∈ Q(R)[g],

there exists u(t) ∈ Q(R)[t] of degree d with f = u(g). Then fxi
= riu

′(g)

for 1 ≤ i ≤ n, where u′(t) = du(t)/dt. Then deg u′(g) = d− 1 and u′(g)

divides f̂ . So we have

deg u′(g) ≤ deg f̂ ≤ d− 1.

Therefore deg f̂ = d− 1. �

By using this lemma, we get the following result. This is also a gen-

eralization of [13, Corollary 4.2] to the case where the coefficient ring is

an integral domain of characteristic zero and n ≥ 1.

Theorem 2.5. Let R be an integral domain of characteristic zero. For a

non-constant polynomial f ∈ R[X]\R of prime degree such that Q(R)[f ]∩

R[X] = R[f ], the following conditions are equivalent to each other:

(1) f is a closed polynomial.

(2) deg f̂ < deg f − 1.

Proof. (1) ⇒ (2) Suppose that deg f̂ = deg f − 1. By Lemma 2.4,

there exist r1, . . . , rn ∈ Q(R) with (r1, . . . , rn) 6= (0, . . . , 0) satisfying

f ∈ Q(R)[g], where g := r1x1+· · ·+rnxn. Since deg f is prime, especially

deg f ≥ 2, we have Q(R)[f ] ( Q(R)[g]. By [7, Theorem 3.1], f is not a

closed polynomial.

(2) ⇒ (1) Suppose that deg f̂ < deg f − 1. Since deg f is prime,

LD
w
(f) = deg f ≥ 2, where w = (1, . . . , 1). Then

LD
w
(f)− 1

LD
w
(f)

deg f =
deg f − 1

deg f
deg f = deg f − 1.

Therefore we have

deg f̂ < deg f − 1 =
LD

w
(f)− 1

LD
w
(f)

deg f .

By Theorem 1.2, f is a closed polynomial.

�

The following result give a characterization of factorially closed poly-

nomials in the case where the coefficient ring is an algebraically closed

field of any characteristic and n ≥ 1. This is a generalization of [13,

Theorem 2.5 (2)].

Theorem 2.6. Let k be an algebraically closed field. For a non-constant

polynomial f ∈ k[X] \ k, the following conditions are equivalent to each

other:

(1) f is a factorially closed polynomial.
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(2) For any λ ∈ k, f − λ is irreducible.

Proof. (1) ⇒ (2) Suppose that k[f ] is a factorially closed in k[X]. If

there exists λ ∈ k such that f − λ is reducible, then f − λ = gh for some

g, h ∈ k[X] \ k. Then gh ∈ k[f − λ] = k[f ], however, since deg g and

deg h are less than deg(f − λ), g and h do not belong to k[f ]. This is a

contradiction.

(2) ⇒ (1) Let g, h ∈ k[X] \ {0} such that gh ∈ k[f ]. Since k is an

algebraically closed field, there exist λ1, . . . , λs ∈ k and ε ∈ k∗ such that

gh = ε

s∏

i=1

(f − λi).

By reordering λ1, . . . , λs ∈ k if necessary, we have g = ε1
∏r

i=1(f − λi)

and h = ε2
∏s

j=r+1(f − λj), for ε1, ε2 ∈ k∗. Hence g, h ∈ k[f ], so k[f ] is

factorially closed in k[X]. �

By Theorem 2.6, we can give examples of factorially closed polynomi-

als. In particular, Example 2.1 gives us examples which are (integrally)

closed but not factorially closed polynomials. By using Theorem 2.6, we

get the following examples.

Example 2.7. (a) Let C[x, y, z] be the polynomial rings in tree variables

over C. We define the polynomial in C[x, y, z] by

f := xnz − y2 − y,

where n ≥ 2. Then f is a factorially closed polynomial, but is not a

coordinate (see [10, Proposition (ii)]). This is often called a Danielewski

surface.

(b) Let C[x, y, z, t] be the polynomial rings in four variables over C.
We define the polynomial in C[x, y, z, t] by

g := x+ x2y + z2 + t3.

Then g is a factorially closed polynomial, but is not a coordinate (see [9,

§1]). This is often called a Koras-Russell threefold.

Proof. (a) For λ ∈ C, let fλ := f − λ. We assume that fλ = gh for

some g, h ∈ C[x, y, z] \ {0}. Computing the z-degree of fλ = gh, we may

assume that degz g = 1 and degz h = 0. Here, we write g = g1z + g2 for

g1, g2 ∈ C[x, y]. Then we have xn = g1h and −y2 − y − λ = g2h. Hence

degy h = degx h = 0, which means h ∈ C∗. Therefore fλ is irreducible for

any λ ∈ C. By Theorem 2.6, f is a factorially closed polynomial.

(b) For λ ∈ C, let gλ := g − λ. We assume that gλ = pq for some

p, q ∈ C[x, y, z, t] \ {0}. Computing the y-degree of gλ = pq, we may

assume that degy p = 1 and degy q = 0. Here, we write p = p1y + p2 for
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p1, p2 ∈ C[x, z, t]. Then we have x2 = p1q and x+z2+t3−λ = p2q. By the

first equation, we have degz q = degt q = 0 and q is a component of x2. If

x divides q, then this contradicts the second equation. Thus degx q = 0,

so q ∈ C∗. By Theorem 2.6, g is a factorially closed polynomial. �

As the end of this section, we show a relation between factorially closed

polynomials and Darboux polynomials. Suppose that n = 2. For f ∈

R[X] = R[x, y], we define an R-derivation ∆f by

∆f := −fy
∂

∂x
+ fy

∂

∂y
.

Proposition 2.8. Let k be an algebraically closed field of characteristic

zero and let f ∈ k[x, y] \ k be a non-constant polynomial. If f is a

factorially closed polynomial, then ∆f has no Darboux polynomials any

other than elements of the kernel of ∆f .

Proof. We define a morphism Φf : Spec k[x, y] → Spec k[f ] by the inclu-

sion k[f ] ⊂ k[x, y]. By Proposition 2.6, every fiber of Φf is irreducible and

reduced, in particular it is a fibration. By [2, Corollary 2.4], gcd(fx, fy)

= 1, so ∆f is irreducible. Moreover k(x, y)∆f contains k(f). Therefore

f and ∆f satisfy the assumptions of [11, Lemma 2.4]. By [11, Lemma

2.4 (2)], X∆f
= 0, which means that if g is a Darboux polynomial of D,

then g ∈ k[x, y]D. �

3. The kernel of a monomial derivation on R[x, y]

Let R be an integral domain containing Q. In this section, we study the

kernels of R-derivations on the polynomial ring R[x, y] in two variables

x and y over R. Let D be an R-derivation on R[x, y]. We denote the

divergence of D by div(D), namely, div(D) := ∂D(x)/∂x + ∂D(y)/∂y.

A non-zero R-derivation D on R[x, y] is said to be monomial if D(x)

and D(y) are monomials, here we assume that a monomial may not be

monic. By using results on closed polynomials in the previous section,

we determine generators of the kernel of monomial derivations on R[x, y].

Lemma 3.1. Let R be an integral domain containing Q and let D be an

R-derivation on R[x, y]. If div(D) = 0, then there exists f ∈ R[x, y] \ R

such that D(f) = 0.

Proof. Let p := D(x) and q := D(y). Then we can write p, q as below:

p =
∑

m,n≥0

[m,n]px
myn and q =

∑

m,n≥0

[m,n]qx
myn,

where [m,n]p, [m,n]q ∈ R. Then
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∂p

∂x
=

∑

m≥1,n≥0

m[m,n]px
m−1yn =

∑

m,n≥1

m[m,n− 1]px
m−1yn−1,

∂q

∂y
=

∑

m≥0,n≥1

n[m,n]qx
myn−1 =

∑

m,n≥1

n[m− 1, n]qx
m−1yn−1.

Since 0 = div(D) = ∂p/∂x+∂q/∂y, we have −n−1[m,n−1]p = m−1[m−

1, n]q for m,n ≥ 1. Here, we define a polynomial f ∈ R[x, y] by f :=∑
m,n≥0[m,n]fx

myn, where [0, 0]f := 0, [m + 1, 0]f := (m − 1)−1[m, 0]q
for m ≥ 0 and [m,n + 1]f := −(n + 1)−1[m,n]p for m,n ≥ 0. Then

f =
∑

m≥0

1

m+ 1
[m, 0]qx

m+1 +
∑

m,n≥0

−
1

n + 1
[m,n]px

myn+1.

Thus fx = q, fy = −p, so D(f) = fxp+ fyq = 0. �

In the case where R is a UFD, the kernel of a non-zero derivation on

R[x, y] is generated by one polynomial (see [3, Corollary 3.2]) and it is

integrally closed in R[x, y]. Thus, if R[x, y]D 6= R, then it is generated

by a closed polynomial. So, to determine a generator of the kernel of

a derivation on R[x, y], it is sufficient that we find a closed polynomial

which is vanished by the derivation. Indeed, the following holds true.

Lemma 3.2. Let R be a UFD of characteristic zero and let D be a

non-zero R-derivation on R[x, y]. If there exist a closed polynomial f ∈

R[x, y] \ R such that D(f) = 0 and Q(R)[f ] ∩ R[x, y] = R[f ], then

R[x, y]D = R[f ].

Proof. Suppose that R[x, y]D = R[g] and D(f) = 0, where f is a closed

polynomial satisfying Q(R)[f ] ∩ R[x, y] = R[f ]. Here, we note that

Q(R)[f ] is also integrally closed in Q(R)[x, y]. Since D(f) = 0, we have

R[f ] ⊂ R[x, y]D = R[g], so we can write f as a polynomial in g by below.

f = u0g
m + u1g

m−1 + · · ·+ um−1g + um,

where ui ∈ R and u0 6= 0. By multiplying u−1
0 on the both sides, g is

integral over Q(R)[f ], so g ∈ Q(R)[f ]. Therefore Q(R)[f ] = Q(R)[g],

hence g = u−1
0 f . This means that g ∈ Q(R)[f ] ∩ R[x, y] = R[f ], so

R[f ] = R[g] = R[x, y]D. �

The following is the main result in this section, which gives the classi-

fication of kernels of monomial derivations on R[x, y], where R is a UFD

containing Q. For the following discussions, we denote ∂/∂x (resp. ∂/∂y)

by ∂x (resp. ∂y).

Theorem 3.3. Let D be a non-zero R-derivation on the polynomial ring

R[x, y] in two variables over a UFD R containing Q. Assume that D(x)
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and D(y) are monomial, gcd(D(x), D(y)) = 1 and D is none of the

following (1)–(3):

(1) ∂x or ∂y,

(2) aym∂x + bxn∂y, where m,n ∈ Z≥0 and a, b ∈ R \ {0},

(3) nx∂x −my∂y, where m and n are positive integers.

Then R[x, y]D = R.

To prove Theorem 3.3 we show the following two lemmas. First of all,

by the following lemma, we see that for derivations as in Theorem 3.3

(1)–(3), their kernels are generated by a closed polynomial, that is, they

contained non-constant polynomials as kernels.

Lemma 3.4. For the derivations as in Theorem 3.3 (1), (2) and (3), the

following assertions holds true.

(a) D1 := ∂x. Then R[x, y]D1 = R[y].

(b) D2 := aym∂x + bxn∂y, where m,n ∈ Z≥0 and a, b ∈ R \ {0} with

gcd(a, b) = 1. Then R[x, y]D2 = R[b(m+1)xn+1 − a(n+1)ym+1].

(c) D3 := nx∂x −my∂y, where m and n are relatively prime positive

integers. Then R[x, y]D3 = R[xmyn].

Proof. (a) Obvious.

(b) Since div(D2) = 0, by Lemma 3.1, there exists f ∈ R[x, y]\R such

that D2(f) = 0. By the proof of Lemma 3.1, we can write f as

f =
1

n+ 1
bxn+1 −

1

m+ 1
aym+1.

By Lemma 1.3, we see that Q(R)[f ] ∩ R[x, y] = R[f ]. Moreover, we

can check easily that gcd(fx, fy) = 1. By Proposition 2.2, f is a closed

polynomial, also (m+1)(n+1)f is a closed polynomial. Thus R[x, y]D2 =

R[(m+ 1)(n+ 1)f ].

(c) Let g = xm−1yn−1 ∈ R[x, y]. Then div(gD3) = 0. By Lemma

3.1, we can construct a polynomial h ∈ R[x, y] by h = −xmyn. Then

gD3(h) = 0 and Q(R)[h] ∩ R[x, y] = R[h]. Since m and n are relatively

prime, by Example 2.1, h is a closed polynomial. Thus R[x, y]D3 =

R[x, y]gD3 = R[h] = R[xmyn]. �

Next, we show the following lemma. This gives some types of deriva-

tions whose kernel has only constant polynomials.

Lemma 3.5. For g ∈ R[x, y]\{0}, let D = ∂x+ g∂y. If degy g ≥ 1, then

R[x, y]D = R.

Proof. Let g = b0y
degy g+ (the lower y-degree terms), for b0 ∈ R[x] \ {0}.

We take any element h ∈ R[x, y] \ {0} and put
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h = a0y
s + a1y

s + · · ·+ as−1y + as,

where s = degy h(≥ 0), a0, . . . , as ∈ R[x] and a0 6= 0. Then

D(h) = (D(a0)y
s + · · ·+D(as)) + g(sa0y

s−1 + · · ·+ as−1)

Since degy g ≥ 1, we have s ≤ s− 1 + degy g.

Now, we suppose that D(h) = 0. If s < s − 1 + degy g, then by

comparing the coefficients of ys in the equation D(h) = 0, we obtain the

equality a0b0s = 0, so s = 0. Then 0 = D(h) = D(a0) = ∂x(a0), hence

h = a0 ∈ R. On the other hand, if s = s − 1 + degy g, then we obtain

the equality D(a0) + a0b0s = 0. Since degx D(a0) < degx a0 ≤ degx a0b0,

we have s = 0. Hence h = a0 ∈ R. �

Now, we shall prove Theorem 3.3.

Proof of Theorem 3.3. From now on, we assume thatD is none of (1)–(3)

of Theorem 3.3 and prove that R[x, y]D = R. Let K := Q(R). We denote

DK by the K-derivation on K[x, y] which is the extension of D. To prove

R[x, y]D = R, it is sufficient to show that K[x, y]DK = K. Therefore we

enough to show that for the following K-derivation D, the kernel of that

is equal to K:

D = xm∂x + ayn∂y,

where a ∈ k∗, m,n ∈ Z≥0. If m = 0 and n ≥ 1, then D is the form in

Lemma 3.5. So we already know that the kernel of it is K. Therefore we

may assume that n ≥ m ≥ 1. Let d be the greatest common divisor of

m− 1 and n− 1 as integers, m′ := (m− 1)/d and n′ := (n− 1)/d, here

we assume m′ = n′ = 1 if m = n = 1. We set w := (n′, m′) and consider

the w-grading on K[x, y]. Then we can easily check that if f ∈ K[x, y]

is w-homogeneous then so is D(f).

Let f be any non-zero element ofK[x, y]D. In order to proveK[x, y]D =

K, we may assume that f is w-homogeneous. Then we have (α0, β0) ∈

(Z≥0)
2 such that

f =
∑

i≥0
β0−in′≥0

cix
α0+im′

yβ0−in′

, (∗)

where ci ∈ K. Since f ∈ K[x, y]D, we have

0 = D(f)

=
∑

i≥0
β0−in′≥0

ci

(
(α0 + im′)xαiyβ0−in′

+ (β0 − in′)axα0+im′

yβi

)
, (∗∗)
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where αi = α0 + im′ +m− 1 and βi = β0 − jn′ + n− 1. Here we set the

following subsets A and B of (Z≥0)
2:

A := {(α0 + im′ +m− 1, β0 − in′) | i ≥ 0, β0 − in′ ≥ 0},

B := {(α0 + jm′, β0 − jn′ + n− 1) | j ≥ 0, β0 − jn′ ≥ 0}.

Suppose that A ∩ B = ∅. Then, by taking i = 0 in A, we see from

(∗∗) that c0α0 = 0. So, α0 = 0. Similarly, we have β0 = 0. Hence

f = c0x
α0 = c0 ∈ K.

Suppose that A ∩B 6= ∅. Then there exist i, j ∈ Z≥0 such that

α0 + im′ +m− 1 = α0 + jm′,

β0 − in′ = β0 − jn′ + n− 1,

β0 − in′ ≥ 0,

β0 − jn′ ≥ 0.

Then (j− i)m′ = m− 1 and (j− i)n′ = n− 1. Here we may assume that

j ≥ i. Then j− i = d. We consider the cases n ≥ 2 and n = 1 separately.

Case: n ≥ 2. Then j > i. By considering the term i = 0 in (∗∗), we

have c0β0a = 0. So β0 = 0. Since f = c0x
α0 ∈ K[x, y]D, we have α0 = 0.

Therefore, f = c0 ∈ K.

Case: n = 1. Then m′ = n′ = 1 and so i = j. By (∗∗), we have

c0α0 + c0β0a = 0,

c1(α0 + 1) + c1(β0 − 1)a = 0,
...

cβ0−1(α0 + β0 − 1) + cβ0−1a = 0,

cβ0
(α0 + β0) + cβ0

a = 0.

Since c0 6= 0, we have α0 + β0a = 0. If β0 > 0, then a = −α0/β0 ∈ Q<0.

So D is (3) of Theorem 3.3. If β0 = 0, then α0 = 0 and hence f ∈ K. �

We note here that the condition “R is a UFD” is necessary. Even if D

is a monomial derivation, the kernel may not be finitely generated over

R in the case where R is not a UFD. We give an example below:

Example 3.6. (cf. [5, Example 4.4]) Let k be a field of characteristic

zero and let k[t] be the polynomial ring in one variable. Let R = k[t2, t3].

Here, we define an R-derivation D on R[x, y] by

D = t2
∂

∂x
+ t3

∂

∂y
.

Then D is a monomial derivation, but R[x, y]D = R[fmt2 | m ≥ 1], where

f = tx − y /∈ R[x, y]. Therefore the kernel of this derivations is not

generated by one polynomial, in particular, it needs infinite generators.
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4. The kernel of a monomial derivation on k(x, y)

Let k[x, y] be the polynomial ring in two variables over a field k of char-

acteristic zero and k(x, y) its quotient field. Recall that for a k-derivation

D on k[x, y], we denote the same notation D by the k-derivation on

k(x, y) which is the natural extension of the original D, and its kernel

is denoted by k(X)D. In this section, by using the argument in [15, §5]

and Theorem 3.3, we determine the non-zero monomial derivations D on

k[x, y] such that Q(k[x, y]D) 6= k(x, y)D.

LetD be a monomial k-derivation on k[x, y]. In order to study k(x, y)D,

by switching the role of x and y, we may assume that the following con-

ditions are satisfied:

(i) D(x) is monic.

(ii) gcd(D(x), D(y)) = 1.

(iii) degD(x) ≤ degD(y) provided D(y) 6= 0.

For the following discussions, we denote also ∂/∂x (resp. ∂/∂y) by ∂x
(resp. ∂y). The following is the main result in this section.

Theorem 4.1. Let D be a non-zero monomial k-derivation on the poly-

nomial ring k[x, y] in two variables over a field k of characteristic zero.

Assume that D satisfies the above three conditions (i)–(iii), k[x, y]D = k

and k(x, y)D 6= k. Then D is one of the following (1)–(3).

(1) D = ∂x + axmyn+1∂y, where m ∈ Z≥0, n ∈ Z>0 and a ∈ k∗.

(2) D = xm+1∂x+ayn+1∂y, where m,n ∈ Z>0 with m ≤ n and a ∈ k∗.

(3) D = x∂x + ay∂y, where a is a positive rational number.

Let D be a k-derivation on k[x, y]. If k[x, y]D 6= k, then Q(k[x, y]D) =

k(x, y)D. See [17, Theorem], which is generalized in [1] and [6]. So

Theorem 4.1 also gives the classification of the monomial k-derivations

D on k[x, y] such that Q(k[x, y]D) 6= k(x, y)D.

To prove Theorem 4.1 we show the following two lemmas.

Lemma 4.2. Let D = ∂x + axmyn+1∂y, where m,n ∈ Z≥0 and a ∈ k∗.

Then k(x, y)D = k if and only if n = 0.

Proof. If n ≥ 1, then nxm+1 + (m+ 1)a−1y−n ∈ k(x, y)D \ k. We assume

that n = 0. By Lemma 3.5, k[x, y]D = k. Let f ∈ k[x, y] \ k be a

non-constant polynomial and put

f = asy
s + as−1y

s + · · ·+ a1y + a0,

where s = degy f(≥ 0), a0, . . . , as ∈ k[x] and as 6= 0. Assume that

g := D(f)/f ∈ k[x, y], namely, f is a Darboux polynomial of D.

Assume further that a0 6= 0, i.e., y 6 |f . Since f is non-constant and

D(f) = gf , g 6= 0. We have
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s ≥ degy D(f) = degy g + degy f = degy g + s.

This implies g ∈ k[x]. Comparing the constant terms with respect to y

in the equation D(f) = gf , we have a′0 = ga0, where a′0 is the derivative

of a0 with respect to x, which is a contradiction. Hence a0 = 0.

The argument in the previous paragraph implies that f can be ex-

pressed as f = f1y
t, where t ∈ Z>0, f1 ∈ k[x, y] and y 6 |f1. By [15,

Proposition 2.4], f1 is also a Darboux polynomial of D and so f1 ∈ k∗.

Therefore, f can be expressed as f = asy
s, where as ∈ k∗. We infer from

[15, Proposition 2.5] that k(x, y)D = k. �

Lemma 4.3. Assume that D = xm+1∂x+ ayn+1∂y, where a ∈ k∗, m,n ∈

Z≥0 and m ≤ n, and that k(x, y)D 6= k. Then one of the following

conditions (1) and (2) holds true.

(1) m,n > 0.

(2) m = n = 0 and a ∈ Q \ {0}.

Proof. IfD satisfies the condition (1) (resp. (2)), thenma−1y−n−nx−m ∈

k(x, y)D \k (resp. xpy−q ∈ k(x, y)D \k, where p and q are relatively prime

integers such that a = p/q). We consider the following cases separately.

Case: m = n = 0 and a 6∈ Q. By Theorem 3.3, BD = k. Let f ∈ R \ k

be a non-constant polynomial and put

f = asy
s + as−1y

s + · · ·+ a1y + a0,

where s = degy f(≥ 0), a0, . . . , as ∈ k[x] and as 6= 0. Assume that f is a

Darboux polynomial and set g = D(f)/f .

Assume further that a0 6= 0, i.e., y 6 |f . Since f is non-constant and

D(f) = gf , g 6= 0. We have degy D(f) = degy g+s. Since degy D(f) ≤ s,

g ∈ k[x] and xa′0 = ga0. So, n0 := g = degx a0 ∈ Z>0 and a0 = bxn0 for

some b ∈ k∗. Assume further that s > 0. Comparing the highest terms

with respect to y in the equation D(f) = gf , we have xa′s = (n0− sa)as.

Then n0−sa = degx as and so a ∈ Q. This is a contradiction. Therefore,

s = 0, i.e., f = bxn0 .

Assume next that a0 = 0. We set as f = f1y
t, where t ∈ Z>0, f1 ∈ B

and y 6 |f1. Then f1 is also a Darboux polynomial of D. So the argument

in the previous paragraph implies that f1 = bxdegx f1 for some b ∈ k∗.

Therefore, f can be expressed as bxiyj for some i, j ∈ Z≥0 and b ∈ k∗.

Since a 6∈ Q, we infer from [15, Proposition 2.5] that k(x, y)D = k.

Case: n = 0, m ≥ 1. Set D1 = ∂x + axm+1y∂y, where m and a are the

same as in D. By Lemma 4.2, k(x, y)D1 = k. Let σ : k(x, y) → k(x, y)

be the k-automorphism defined by σ(x) = x−1 and σ(y) = y−1. Then

D = −xm−1σD1σ
−1. Hence k(x, y)D = k.
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Case: m = 0, n ≥ 1. By using the same argument as in the previous

case, we have k(x, y)D = k. The proof of Lemma 4.3 is thus verified. �

Theorem 4.1 is a consequence of Theorem 3.3, Lemmas 4.2 and 4.3.
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