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A NOTE ON 1-MOTIVES.

YVES ANDRÉ

ABSTRACT. We prove that for 1-motives defined over an algebraically closed subfield

k of C, viewed as Nori motives, the motivic Galois group coincides with the Mumford-

Tate group. In particular, the Hodge realization of the tannakian category of Nori motives

generated by 1-motives is fully faithful.

This result extends an earlier result by the author, according to which Hodge cycles on

abelian k-varieties are motivated (a weak form of the Hodge conjecture).

1. INTRODUCTION

1.1. The study of points on semiabelian varieties (i.e. extensions of abelian varieties by

tori) is a very classical topic of diophantine geometry. In algebraic geometry, it also played

a crucial role in the guise of Deligne’s 1-motives [13]. Over an algebraically closed subfield

k of C, a 1-motive [L → G] is given by a morphism from a lattice L to a semiabelian

variety G (taking a basis of the lattice, this amounts to the data of a finite number of points

on G). This notion served as a double test ground:

i) for Deligne’s theory of mixed Hodge structures if k = C (1-motives form an easily

describable full subcategory of the category of mixed Hodge structures),

ii) for Grothendieck’s dream of mixed motives (1-motives are those coming from vari-

eties of dimension ≤ 1, whence the name “1-motive”).

Nowadays, a well-defined tannakian category MM(k) of mixed motives with rational

coefficients over a field k ⊂ C is available in full generality, in two different (independent,

but canonically equivalent) versions due to M. Nori [17] and J. Ayoub [5] respectively (see

[3] for a survey). Nori’s construction is more elementary and puts in light the universality

property of motives, while the geometric origin of morphisms is more apparent in Ayoub’s

version which is constructed out of Voevodsky’s triangulated category. Anyway, one knows

how to associate unconditionally a motivic Galois group to any motive over k.

One can attach an object of MM(k) not only to any k-variety, but also to 1-motives

over k. We denote by MM(k)1 (resp. MM(k)⊗
1

) the full subcategory (resp. tannakian

subcategory) of MM(k) generated by 1-motives: objects of MM(k)⊗
1

are constructed

from those of MM(k)1 by saturating under tensor products, duals, subquotients.

1.2. The tannakian category MM(k) admits a fiber functor (the Hodge realization) to-

ward the tannakian category MHS of mixed Hodge structures. By tannakian duality, this

provides an injective homomorphism between the Mumford-Tate group of any motive (i.e.

the tannakian group attached to its Hodge realization) and its motivic Galois group.
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Let us assume that k is algebraically closed. A version of the Hodge conjecture (the

Hodge-Nori conjecture [4]) then predicts that the Hodge realization is full; a slightly more

precise version, in terms of tannakian groups, predicts that the motivic Galois group equals

the Mumford-Tate group. This is what we prove in this paper in the special case of 1-

motives:

1.2.1. Theorem. The Hodge realization MM(k)⊗
1
→ MHS is fully faithful, and identi-

fies MM(k)⊗
1

with a tannakian subcategory1 of MHS.

A fortiori, the motivic Galois group of any 1-motive over k coincides with its Mumford-

Tate group.

This confers a genuine motivic content to the description of Mumford-Tate groups of 1-

motives presented in [9], and in particular to the notion of deficiency [10]. This could also

shed some light on P. Jossen’s work on the Mumford-Tate conjecture [16] and on several

recent works on periods of 1-motives (see e.g. [15]) in their relation to the Grothendieck

period conjecture (and to our generalization of Grothendieck’s conjecture to a non neces-

sarily algebraic ground field k [2, 23.4.1]).

1.3. In [1], we proved that the motivic Galois group of any abelian k-variety coincides

with its Mumford-Tate group. In that setting, motivic Galois groups were understood in

the context of the tannakian category of pure motives M(k) defined in terms of motivated

correspondences. According to [4], M(k) is canonically equivalent to the socle of MM(k)
(i.e. its full subcategory of semisimple objects), which allows to interpret our theorem in

[1] as a confirmation of the Hodge-Nori conjecture for abelian varieties, and Theorem 1.2.1

as an extension of it. In fact, Theorem 1.2.1 has the following consequence:

1.3.1. Corollary. The tannakian subcategory of MM(k)⊗
1

consisting of semisimple ob-

jects is canonically equivalent to the tannakian subcategory of M(k) generated by the

motives of abelian varieties.

1.4. In the prehistory of the theory of motives, one was limited to morphisms of systems

of realizations (a.k.a. absolute Hodge correspondences) instead of morphisms of “geomet-

ric origin” as should be genuine motivic morphisms, in some way. In that weaker context,

Deligne proved that the absolute Hodge tannakian group attached to any complex abelian

variety coincides with its Mumford-Tate group, and J.-L. Brylinski extended this result to

1-motives. Our result enhances Brylinski’s result to the genuine motivic context, with a

completely parallel argument, namely:

i) we replace Deligne’s result by the stronger result that any Hodge cycle on a complex

abelian variety is motivated [1], translated in terms of Nori motives via [4],

ii) we mimick Brylinski’s deformation argument, using to a motivic version of the

“theorem of the fixed part” due to Nori, Jossen and Ayoub (independently; since Nori’s

and Jossen’s notes do not seem easily accessible, we rely on Ayoub’s published version [5]

and the compatibility with Nori’s framework [12]).

The progress between Brylinski’s theorem and the theorem of this paper is thus a

shadow of the progress of the theory of motives in the last 35 years, and can be restated

as follows: for 1-motives, tensor Hodge classes do not only satisfy the expected compat-

ibilities between various realizations, they indeed “come from geometry” (in a non-naive

sense, more apparent in Ayoub’s setting).

1in particular, it is stable under subobjects taken in MHS.
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2.

Let us begin with some preliminaries about 1-motives and Nori motives. As above, let k
be an algebraically closed subfield of C andMM(k) denote the tannakian category of Nori

motives over k with rational coefficients [17][14] (see also [8] for a new viewpoint on the

tensor structure). The Betti realization provides a fiber functor RB : MM(k) → V ecQ,

which is canonically enriched as a fiber functor RH : MM(k) → MHS toward the

tannakian category of rational mixed Hodge structures.

There is also a category of effective (Nori) mixed motives MM eff(k), from which

MM(k) is constructed by formally inverting the Lefschetz motive. It is not known whether

the faithful functor MM eff(k) → MM(k) is full.

Let DM(k)1 be the abelian category of Deligne 1-motives up to isogeny. In [7, 6.1], it is

shown that DM(k)1 is canonically equivalent to a full abelian subcategory of MM eff (k):
this is the thick abelian subcategory generated by motives of the form h1(X,Y ) and the

unit motive Q(0). We denote by MM(k)1 its essential image in MM(k). According to

[7, 6.9], the composed functor

DM(k)1 → MM eff(k) → MM(k) → MHS

coincides with the (rational) Hodge realization of 1-motives constructed by Deligne [13].

2.0.1. Proposition. This composed functor is fully faithful. A fortiori DM(k)1 →
MM(k)1 is an equivalence.

Proof. Deligne actually proved that DM(k)1 → MHS is fully faithful in the case k = C.

The case of an algebraically closed subfield k follows. Indeed let Mi = [Li → Gi], i =
1, 2, be 1-motives over k, each given by a lattice Li and a morphism from Li to a semi-

abelian variety Gi, extension of an abelian variety Ai by a torus Ti. It suffices to show that

any morphism M1C → M2C descends to k, i.e. that the morphism G1C→G2C descends

to k. By Cartier duality, this amounts to the well-known fact that the induced morphism of

abelian varieties A∨
2C

f
→ A∨

1C descends to k.

The second statement follows from the first since all involved functors are faithful. �

In particular MM(k)1 is abelian. Reminding that the socle of MM(k) is canonically

equivalent to the category M(k) of pure motives constructed in [1] ([4, 6.4], see also [14,

10.2]), we also deduce that any semisimple object of MM(k)1 is isomorphic to a direct

sum in M(k) of the motive h1(A) of an abelian variety and copies of Q(0),Q(1).

3.

Let M = [L → G] be a 1-motive over k, given by a morphism from a lattice L to a

semi-abelian variety G, extension of an abelian variety A by a torus T . Up to replacing

M by the direct sum of M and its Cartier dual, which changes neither the motivic Galois

group, nor the Mumford-Tate group, we may assume that M is symmetric (= polarizable)

in the sense of [11].

By [1, 0.6.2] and by the identifications indicated above, the theorem holds for the tan-

nakian subcategory of semisimple 1-motives (up to isogeny), in particular for the tannakian

subcategory generated by the 1-motive M0 := GrWM = [L
0
→ A × T ]. Note that the

image of M0 in MM(k)1 is the semisimplification of the image of M . Let P be the

Mumford-Tate group of M , and let us fix a polarization of M (hence of A).
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3.0.1. Lemma. Polarized 1-motives N with GrWN = M0 and Mumford-Tate group con-

tained in P fit into an algebraic family M parametrized by a smooth connected k-variety

X .

See [11, 2.2.8.6] (and also [16, 1.8]). The 1-motive M (resp. M0) is a fiber of M at a

k-point x (resp. x0) of X . The “mixed Shimura variety” X is just a torus bundle over an

abelian variety, analytically isomorphic to W−1P (Z)\W−1P (C)/(F 0 ∩W−1P (C)). In

particular the monodromy of the family at x1 is given by the natural action of W−1P (Z)
on H(M) and its Zariski hull is the connected group W−1P . Any Hodge (i.e. P -invariant)

tensor is thus invariant under monodromy. The point x is “Hodge-generic” in the family in

the sense that the Mumford-Tate group of Mx = M is maximal, equal to P .

Let L be a P -stable line in some mixed tensor construction T •RB(M) over RB(M)
(with Tate twists). By (Tate) twisting, one reduces to the case where L is P -invariant, i.e.

generated by a Hodge tensor. We have to show that L is the realization of unit submotive

in T •M , knowing that its parallel transport to x0 is the realization of a unit submotive in

T •M0.

4.

Let Y be a smooth connected k-variety. Let N ∈ MM(Y ) be a motivic local system,

viewed as a mixed motive over k(Y ) unramified over Y . Its Betti realization is a local

system RB(N ) of Q-vector spaces on Y (C). Taking the fiber at a point y ∈ Y (k), one

gets in this way a fiber functor RB,y : MM(Y ) → V ecQ, which is then enriched as a

fiber functor Rmon,y : MM(Y ) → RepQ π1(Y (C), y) (monodromy realization). Taking

tannakian duals, one gets a morphism Gmon(N , y) → Gmot(N , y) (in fact an embedding

of closed subgroups of GL(RB,y(N )), where Gmon(N , y) is the algebraic monodromy

group attached to Rmon,y(N ).

4.0.1. Proposition. Gmon(N , y) is a normal subgroup of Gmot(N , y). If RB(N ) is con-

stant, then N is constant, i.e. is the pull-back of a motive in MM(k).

Proof. See [6, th. 40, rem. 41]2; the proof is given in [5, 2.57] in the context of Ayoub’s

category of mixed motives, which by [12] is equivalent to the category of Nori motives.

The result also appears in unpublished works by Nori and by Jossen (in the context of Nori

motives properly). �

Application: let M ∈ MM(X) be the motivic local system attached to the family of 1-

motives of the lemma. Let N ∈ MM(X) correspond to the representation of Gmot(M, x)
generated by L inside T •RB,x(M) = T •RB(M). Because L is fixed by Gmon(N , x), it

follows from the first part of the proposition that RB(N ) is a constant local system. By

the second part, N itself is constant. Since RB,x0
(N ) contains the parallel transport of L

at x0 which is the realization of a unit submotive in Nx0
⊂ T •M0, we conclude that L is

the Betti realization of a unit submotive in Nx ⊂ T •M (which coincides a posteriori with

Nx itself). This proves Theorem 1.2.1. �

One may wonder3 whether there is a more direct alternative argument by devissage

(with respect to the weight) rather than by deformation, in order to perform the reduction

to the case of abelian varieties.

2in this reference, Ayoub uses a complex geometric generic point of Y rather than y, but functor fibers become

isomorphic as usual.
3as Brylinski already did in his absolute Hodge context [11, end of 2.2].
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[3] −, Groupes de Galois motiviques et périodes, Séminaire Bourbaki, Novembre 2015, S. F. M. Astérisque
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