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STRANGE DUALITY ON P2 VIA QUIVER
REPRESENTATIONS.

YAO YUAN

Abstract. We study Le Potier’s strange duality conjecture on P2. We
focus on the strange duality map SDcr

n
,d which involves the moduli space

of rank r sheaves with trivial first Chern class and second Chern class n,
and the moduli space of 1-dimensional sheaves with determinant OP2(d)
and Euler characteristic 0. By using tools in quiver representation theory,
we show that SDcr

n
,d is an isomorphisms for r = n or r = n − 1 or d ≤ 3,

and in general SDcr
n
,d is injective for any n ≥ r > 0 and d > 0.

Keywords: Moduli spaces of semistable sheaves, projective plan, strange
duality, quiver representation.
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1. Introduction.

LetX be a smooth projective variety over C. LetK(X) be the Grothendieck
group of coherent sheaves over X . Define a quadratic form (u, c) 7→ χ(u ⊗ c)
on K(X), where χ(−) is the holomorphic Euler characteristic and χ(u⊗ c) =∑

i≥0

(−1)iχ(Tori(F ,G)) for any F of class u and G of class c.

Fix an ample divisor H on X . Let c, u ∈ K(X) be orthogonal to each
other with respect to χ(−⊗−). Let MH

X (c) and MH
X (u) be the moduli spaces

of H-semistable sheaves of classes c and u respectively. If there are no strictly
semistable sheaves of classes c (u, resp.), then over MH

X (c) (MH
X (u), resp.)

there is a well-defined line bundle λc(u) (λu(c), resp.) called determinant line
bundle associated to u (c, resp.). If there are strictly semistable sheaves of
class u, one needs more conditions on c to get λu(c) well-defined (see Ch 8 in
[16]).

Assume bothMX
H (c) andMX

H (u) are non-empty and both λc(u) and λu(c)
are well-defined over MX

H (c) and MX
H (u), respectively. The following subset of

MH
X (c)×MH

X (u)

(1.1) Dc,u :=
{
(G,F) ∈ MH

X (c)×MH
X (u)

∣∣ ⊕

i

H i(X,G ⊗ F) 6= 0
}
.

is a priori not always of codimension 1. According to [21] (see [21] p.9) or §2
in [8], Dc,u is a divisor of λc(u)⊠ λu(c) if the following (⋆) is satisfied.

(⋆) For all H-semistable sheaves F of class c and H-semistable sheaves
G of class u on X, Tori(F ,G) = 0, ∀ i ≥ 1; and Hj(X,F ⊗ G) = 0, ∀ j ≥ 2.
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Then up to scalars Dc,u induces a unique section σc,u and a canonical map

(1.2) SDc,u : H0(MH
X (c), λc(u))

∨ → H0(MH
X (u), λu(c)).

Le Potier’s strange duality conjecture asserts that SDc,u is an isomorphism.

In this paper, we letX = P2, let c = crn be the class of rank r sheaves with
trivial first Chern class and second Chern class n, and let u = ud be the class
of 1-dimensional sheaves with determinant OP2(d) and Euler characteristic 0.
Then we have the strange duality map as follows.

(1.3) SDcrn,d := SDcrn,ud
: H0(MH

P2(crn), λcrn(ud))
∨ → H0(MH

P2(ud), λud
(crn)).

We prove the following two main theorems.

Theorem 1.1 (Theorem 6.4). The strange duality map SDcrn,d in (1.3) is an
isomorphism for r = n > 0 and d > 0.

Theorem 1.2 (Theorem 6.5). The strange duality map SDcrn,d in (1.3) is
injective for all n ≥ r > 0 and d > 0.

Together with Proposition 4.1 and Theorem 4.16 (1) in [33], Theorem
1.1 imply the following corollary directly.

Corollary 1.3 (Corollary 6.6). The strange duality map SDcrn,d in (1.3) is an
isomorphism for r > 0, n = r + 1 and d > 0.

Together with Proposition 4.14 in [33], Theorem 1.2 imply the following
corollary directly.

Corollary 1.4 (Corollary 6.7). The strange duality map SDcrn,d in (1.3) is an
isomorphism for n ≥ r > 0 and d = 1, 2, 3.

We prove Theorem 1.1 by using a famous result due to Derksen-Weyman
in quiver representation theory (Theorem 2.1), which implies an analog of
strange duality between moduli spaces of quiver representations (Theorem
2.4). We want to relate our map SDcrn,d to the analogous map SD(Q) in
quiver representation theory. Theorem 2 in [11] already says that MH

P2(cnn)
is isomorphic to some moduli spaces of representations of some quiver. We
show that MH

P2(ud) is birational to some moduli spaces of representations of
the same quiver as MH

P2(cnn). Then we prove that the birational equivalences of
moduli spaces induce isomorphisms the global section spaces of determinant
line bundles.

After Theorem 1.1 is proved, we prove Theorem 1.2 by generalizing the
method in [33].
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In the main part of the paper, we usually write M(r, 0, n) (M(dH, 0),
λd(c

r
n), λcrn(d), resp.) instead of MH

P2(crn) (M
H
P2(ud), λud

(crn), λcrn(ud)), resp.).

The structure of the paper is arranged as follows. In §2 we give some
background materials on quiver representations and tilting theory. In §3 we
list the notations we will use in next sections. In §4 we mainly recall some
results of Drézet in [11] which provides an isomorphism between MH

P2(cnn) to a
moduli space M(Q, (n, 2n)) of representations with dimension vector (n, 2n)
of some quiver Q. In §5 we build the birational equivalence between MH

P2(ud)
with M(Q, (d, d)), i.e. a moduli space of representations with dimension vector
(d, d) of quiver Q. Finally in §6 we prove the main theorems.

Strange duality was at first conjectured for curves by Beaville ([4]) and
Dongai-Tu ([10]) in 1990s, and it has been proved true for ten years ([5],[6],[23]).
For smooth projective variety of higher dimension, the conjecture in general
can not be formulated. But for surfaces, besides Le Potier’s formulation for
rational surfaces which has been studied for instance in [1], [2], [8], [14], [29],
[31], [32] and [33] before, there is also a formulation due to Marian-Oprea (see
[24]) for K3 and abelian surfaces, in which a lot of results has obtained by the
Marian-Oprea team ([7], [25], [26], [27]).

2. Preliminaries.

2.1. Semi-invariants of quivers. Let k be the base field which is alge-
braically closed. A quiver Q is a pair Q = (Q0, Q1) consisting of the set
of vertices Q0 and the set of arrows Q1. Denote by ta and ha the tail and
the head respectively of each arrow a ∈ Q1. A representation V of Q is a
family of finite dimensional k-vector spaces {V (x)|x ∈ Q0} and of k-linear
maps V (a) : V (ta) → V (ha). Denote by Γ the space of integer-valued func-
tions on Q0. The dimension vector d(V ) of a representation V is defined by
d(V )(x) = dimk V (x). Then d(V ) ∈ Γ. The Euler product on Γ is defined as
follows.

(2.1) 〈α, β〉 =
∑

x∈Q0

α(x)β(x)−
∑

a∈Q1

α(ta)β(ha).

Notice that 〈−,−〉 is not symmetric.

We assume Q has no oriented cycles. Let Rep(Q) be the set of all repre-
sentations of Q, and Rep(Q,α) of those with dimension vector α. Then

Rep(Q,α) ∼=
⊕

a∈Q1

Hom(kα(ta), kα(ha)).
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The two groups

GL(Q,α) :=
∏

x∈Q0

GL(α(x), k) ⊃ SL(Q,α) :=
∏

x∈Q0

SL(α(x), k)

act on Rep(Q,α) such that ∀
∏

x∈Q0

g(x) ∈ GL(Q,α), V ∈ Rep(Q,α),

(
∏

x∈Q0

g(x))◦V = {V (x), x ∈ Q0; g(ha)◦V (a)◦g(ta)−1 : V (ta) → V (ha), a ∈ Q1}.

The above actions induce actions ofGL(Q,α) and SL(Q,α) on the ring k[Rep(Q,α)]
of regular functions on Rep(Q,α). The ring of semi-invariants SI(Q,α) :=
k[Rep(Q,α)]SL(Q,α) has a weight space decomposition

SI(Q,α) =
⊕

σ∈Γ∗

SI(Q,α)σ,

where Γ∗ := Hom(Γ,Z) and

SI(Q,α)σ := {f ∈ k[Rep(Q,α)]
∣∣(
∏

x∈Q0

g(x))(f) =
∏

x∈Q0

det(g(x))σ(ex) · f}

with Γ ∋ ex(y) =

{
1 if x = y,
0 otherwise.

.

For any V,W ∈ Rep(Q) we have the following exact sequence
(2.2)

0 // HomQ(V,W )
ı //

⊕
x∈Q0

Hom(V (x),W (x))

dVW //
⊕

a∈Q1
Hom(V (ta),W (ha))

p // ExtQ(V,W ) // 0.

The map dVW is given by

{f(x)}x∈Q0 7→ {f(ha)V (a)−W (a)f(ta)}a∈Q1.

If 〈d(V ), d(W )〉 = 0, then the map dVW in (2.2) will be a square matrix. Let
α, β be two dimension vectors such that 〈α, β〉 = 0. We then can define a
function c on Rep(Q,α) × Rep(Q, β) such that c(V,W ) = det(dVW ) for every
V ∈ Rep(Q,α) and W ∈ Rep(Q, β). For any fixed V ∈ Rep(Q,α), the
restriction of c to {V } × Rep(Q, β) defines an element cV ∈ SI(Q, β) with
weight 〈α,−〉. Also for any fixed W ∈ Rep(Q, β) we have cW ∈ SI(Q,α)−〈−,β〉

defined in analogous way. By the result in [9] (Theorem 1 and Corollary 1) we
have

Theorem 2.1 (Derksen-Weyman). SI(Q,α) is a k-linear span of semi-invariants
cW with 〈α, d(W )〉 = 0 and the analogous result is true for the semi-invariants
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cV . In particular dimk SI(Q,α)−〈−.β〉 = dimk SI(Q, β)〈α,−〉 for all dimension
vectors α, β such that 〈α, β〉 = 0.

2.2. Stability of quivers. Fix a weight σ ∈ Γ∗ and a dimension vector α such
that σ(α) = 0. Let V ∈ Rep(Q,α). A subrepresentation U ⊂ V of V consists
of k-vector subspaces {U(x) ⊂ V (x)|x ∈ Q0} such that V (a)(U(ta)) ⊂ U(ha)
for all a ∈ Q1, and of k-linear maps U(a) := V (a)|U(ta) : U(ta) → U(ha). We
say a representation V ∈ Rep(Q,α) is (semi)stable with respect to weight σ if
∀ U ⊂ V , σ(d(U)) < (≤)0.

Let Rep(Q,α)sσ (Rep(Q,α)ssσ ) be the subspace of Rep(Q,α) of (semi)stable
representations with respect to weight σ. By §3 in [17], we have the following
thoerem.

Theorem 2.2 (King). Rep(Q,α)ssσ is an open subvariety in Rep(Q,α) and
it admits a categorical (GIT) quotient M(Q,α)σ := Rep(Q,α)ssσ //GL(Q,α)
which is a projective variety. The quotient M(Q,α)σ contains a smooth open
subvariety M(Q,α)sσ which is a geometric quotient Rep(Q,α)sσ//GL(Q,α).

Hence we know that M(Q,α)σ ∼= Proj(⊕n∈N SI(Q,α)nσ).

Remark 2.3. M(Q,α)σ is irreducible because so is Rep(Q,α)ssσ as an open

subvariety of Rep(Q,α) ∼= kΣa∈Q1α(ta)α(ha)

2.3. Strange duality on quiver representations. Let α, β ∈ Γ be two
dimension vectors such that 〈α, β〉 = 0. We have defined the function c on
Rep(Q,α) × Rep(Q, β) in § 2.1. The restriction function cW (cV resp.) on
Rep(Q,α)ss−〈−,β〉 × {W} ({V } × Rep(Q, β)ss〈α,−〉, resp.) gives a section of de-

terminant line bundle λ̃(Q,α)−〈−,β〉 (λ̃(Q, β)〈α,−〉, resp.) over Rep(Q,α)ss−〈−,β〉

(Rep(Q, β)ss〈α,−〉, resp.), which descends to a line bundle λ(Q,α)−〈−,β〉 (λ(Q, β)〈α,−〉,

resp.) over M(Q,α)−〈−,β〉 (M(Q, β)〈α,−〉, resp.). Moreover c restricted to
Rep(Q,α)ss−〈−,β〉×Rep(Q, β)ss〈α,−〉 also descends to M(Q,α)−〈−,β〉×M(Q, β)〈α,−〉

and gives a section c̄ of λ(Q,α)−〈−,β〉⊠ λ(Q, β)〈α,−〉, which induces a map (the
analog of the strange duality map on quiver representations)
(2.3)
SD(Q) : H0(M(Q,α)−〈−,β〉, λ(Q,α)−〈−,β〉)

∨ → H0(M(Q, β)〈α,−〉, λ(Q, β)〈α,−〉).

Theorem 2.4. The map SD(Q) in (2.3) is an isomorphism.

Proof. By the construction of M(Q,α)σ, we know that

H0(M(Q,α)−〈−,β〉, λ(Q,α)−〈−,β〉) ∼= SI(Q,α)−〈−,β〉;

and
H0(M(Q, β)〈α,−〉, λ(Q, β)〈α,−〉) ∼= SI(Q, β)〈α,−〉.
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By Lemma 1 in [9] and Theorem 2.1, we see that SI(Q,α)−〈−,β〉 is a k-
linear span of semi-invariants cW with W ∈ Rep(Q, β) semistable with respect
to weight 〈α,−〉 and cW only depend on the S-equivalence classes of W ; and
also the analogous result is true for SI(Q, β)〈α,−〉. Hence the theorem follows
from the definition of SD(Q) and basic linear algebra. �

2.4. Some tilting theory. Tilting theory helps to relate semistable sheaves
to semistable quivers. In this subsection, we recall some definitions and results
in tilting theory, for more details we refer to [15], [3] and [18].

Definition 2.5. A coherent sheaf E on a smooth algebraic k-variety X is
called exceptional if Hom(E , E) ∼= k and Exti(E , E) = 0 for all i ≥ 1. An
ordered collection E1, · · · , En of exceptional sheaves is called an exceptional

sequence if Exti(Ej, El) = 0 for all i and j > l. If an exceptional sequence
generates the derived category Db(X) of bounded complexes of coherent sheaves,
then it is called full. A strongly exceptional sequence is an exceptional
sequence such that Exti(Ej, El) = 0 for all i ≥ 1 and all j, l.

Definition 2.6. A tilting sheaf is a coherent sheaf T on X such that

(i) Exti(T , T ) = 0 for i ≥ 1;
(ii) Hom(T , T ) has finite dimension;
(iii) T generates Db(X).

We have

Theorem 2.7 (Theorem 2.2 in [18]). Let T be a tilting sheaf, and let A :=
Hom(T , T ) and Db(A) be the derived category of bounded complexes of finite
dimensional A-right modules. Then we have the following two derived functors

R•Hom(T ,−) : Db(X) → Db(A),

and

−
L

⊗A T : Db(A) → Db(X),

which are mutually inverse equivalences between Db(X) and Db(A).

By Lemma 4.2 and Remark 4.4 in [18] we have

Lemma 2.8. If E1, · · · , En is a strongly exceptional sequence which is also full,
then E1 ⊕ · · · ⊕ En is a titling sheaf.

3. Notations.

(1) From now on we fix the base field k = C.
(2) LetX = P2 andH be the hyperplane class. LetK(P2) be the Grothendieck

group of coherent sheaves over P2.
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(3) Let F , G be two coherent sheaves. Then
• Denote by r(F), ci(F) and χ(F) the rank, the i-th Chern class
and the Euler characteristic of F respectively;

• For r(F) > 0, we define the slop of F

µ(F) :=
c1(F).H

r(F)

and its discriminant

∆(F) :=
1

r(F)
(c2(F)− (1−

1

r(F)
)
c1(F)2

2
).

We also denote ∆(F) by ∆(r(F), c1(F).H, c2(F)).
• hi(F) = dim H i(F) and hence χ(F) =

∑
i≥0(−1)ihi(F);

• exti(F ,G) = dim Exti(F ,G), hom(F ,G) = dim Hom(F ,G) and
χ(F ,G) =

∑
i≥0(−1)iexti(F ,G).

(4) We denote by ud the class of 1-dimensional sheaves of determinant dH
and Euler characteristic 0 in K(P2). Let M(dH, 0) be the moduli space
of semistable sheaves of class ud.

(5) We denote by crn the class of sheaves of rank r, first Chern class 0 and
second Chern class n in K(P2). Let M(r, 0, n) be the moduli space of
semistable sheaves of class crn.

(6) Let M be any moduli space of semistable sheaves. We write F ∈ M if
the S-equivalence class of F is in M .

4. Height zero moduli spaces of semistable sheaves on P2.

It is easy to see that ∆(E) = 1
2r(E)2

(−χ(E , E)) + 1
2
and by [12] E is ex-

ceptional iff E is a stable vector bundle with ∆(E) < 1
2
. Let E be the set of

all slops of exceptional bundles. For each element a ∈ E there is exactly
one exceptional bundle Ea up to isomorphisms such that µ(Ea) = a. We

define the interval Ia := (a − xa, a + xa) with xa = 3
2
−

√
9
4
− 1

r(Ea)2
. Let

P (y) = y2+3y+2
2

be a polynomial in y. Then xa is the smaller solution of the

equation P (−y)−∆(Ea) =
1
2
.

We define ra := r(Ea), ∆a := ∆(Ea) and a.b := a+b
2

+ ∆b−∆a

3+a−b
for a, b ∈ E.

There is a bijection ǫ : Z[1
2
] → E defined inductively by setting ǫ(n) = n for

n ∈ Z and

ǫ(
2p+ 1

2q
) = ǫ(

p

2q−1
).ǫ(

p + 1

2q−1
).

By [3] and [13], we have
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Theorem 4.1. E1, E2, E3 is a full strongly exceptional sequence if and only if
the slops (µ(E1), µ(E2), µ(E3)) are of the forms

(ǫ(
p− 1

2q
), ǫ(

p

2q
), ǫ(

p+ 1

2q
)), (ǫ(

p

2q
), ǫ(

p+ 1

2q
), ǫ(

p− 1

2q
+ 3)), (ǫ(

p+ 1

2q
− 3), ǫ(

p− 1

2q
), ǫ(

p

2q
)).

We recall some results from [11] as follows.

Theorem 4.2. (Theorem 1 in [11])

(1) Ia are all disjoint and Q = Q ∩
⋃

a∈E

Ia;

(2) There is a function δ : Q → Q defined by the formula

δ(µ) = P (−|µ− a|)− δ(a), if µ ∈ Ia.

(3) The moduli space M(r, c1, c2) of semi-stable sheaves with rank r ≥ 1,
1st Chern classes c1H and 2nd Chern class c2 has positive dimension
iff

δ(
c1
r
) ≤ ∆(r, c1, c2).

This property also characterizes the function δ.

For any µ ∈ Q, we call a the associated exceptional slope to µ if µ ∈ Ia.
Let a be the associated exceptional slope to c1

r
. Then the height h(M(r, c1, c2))

of the moduli space M(r, c1, c2) is defined as follows.

(4.1) h(M(r, c1, c2)) := rra(∆(r, c1, c2)− δ(
c1
r
)),

By a direct investigation, we see that

(4.2) h(M(r, c1, c2)) =

{
−χ(Ea,F) if µ ≤ a;
−χ(F , Ea) if µ ≥ a.

where F is any coherent sheaf of rank r, 1st Chern classes c1H and 2nd Chern
class c2.

Let h(M(r, c1, c2)) = 0, i.e. M(r, c1, c2) is of height zero. With no loss
of generality, we assume c1

r
∈ (a− xa, a]. We take a fully strongly exceptional

sequence (E1, E2, E3) such that µ(E3) = a. Then as discussed in [11], every
F ∈ M(r, c1, c2) has the following resolution

(4.3) 0 → E1 ⊗ Ext1(F , E1)
∨ → E2 ⊗ Ext1(S,F) → F → 0,

where S is the cokernel of the injective canonical evaluation map

ev∨ : E2 → E3 ⊗ Hom(E2, E3)
∨.

Let m1 := ext1(F , E1), m2 := ext1(S,F) and q := hom(E1, E2) (actually
q = 3ra, c.f. [11]). The resolution in (4.3) assigns to every semistable sheaf F
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a representation with dimension vector α := (m1, m2) of the following quiver

(4.4) Q(q) : x1

a1

��
a2

&&
aq−1 77

aq

CC

... x2,

i.e. Q(q) = (Q0, Q1) with Q0 = {x1, x2} and Q1 = {a1, a2, · · · , aq}.

Since Q0 consists of two points, all 0 6= σ ∈ Γ∗ such that σ(α) = 0 are
proportional and hence there is only one stability condition σ (up to scalars)
such that Rep(Q(q), α)ssσ is not empty. Let M(Q(q), (m1, m2)) := M(Q(q), α)σ
be the unique non-empty moduli space of semistable representations of Q with
dimension vector α = (m1, m2). Then we have

Theorem 4.3. (Theorem 2 in [11])Let M(r, c1, c2) be a moduli space of height
zero. Then resolution in (4.3) gives an isomorphism

(4.5) f : M(r, c1, c2) → M(Q(q), (m1, m2))

inducing an isomorphism on the open subspaces consisting of stable objects.

Theorem 4.4. (Theorem 3 in [11])There is a natural isomorphism

(4.6) M(Q(q), (m1, m2))
g
−→
∼=

M(Q(q), (m2, qm2 −m1))

inducing an isomorphism on the open subspaces consisting of stable objects.

The proof of Theorem 4.4 can be found in Chapter III in [11]. For later
use, we want to explain explicitly how to define the map g in (4.6). We actually
define a map g̃ sending GL(Q(q), (m1, m2))-orbits in Rep(Q(q), (m1, m2))

ss to
GL(Q(q), (m2, qm2 −m1))-orbits in Rep(Q(q), (m2, qm2 −m1))

ss.

Let V ∈ Rep(Q(q), (m1, m2))
ss, then V can be viewed as an element

in Hom(Cm1 ,Cm2)⊕q ∼= Hom(Cq × Cm1 ,Cm2). Denote by fV the element in
Hom(Cm1 ,Cq×Cm2) corresponding to V . Since V is semistable, then fV must
be injective (Lemma 18 in [11]). Denote by C(V ) the cokernel of the map fV ,
then C(V ) ∼= Cqm2−m1 . The projection Cq×Cm2 → C(V ) can be viewed as an
element in Hom(Cm2 ,Cqm2−m1)⊕q hence an element V in Rep(Q(q), (m2, qm2−
m1)), with an ambiguity caused by choosing basis of C(V ). The semistability
of V is stated by Lemma 19 in [11].

To be more precise, let e1, · · · , eq be a basis of Cq, let V be represented

by m1×m2 matrices A1, · · · , Aq and let V be represented by m2× (qm2−m1)

matrices Ã1, · · · , Ãq. Then we have ∃ P ∈ GL(qm2) such that

(4.7)

(
A1, · · · , Aq

e1Im2 , · · · , eqIm2

)
· P =

(
Im1 , 0m1×(qm2−m1)

∗, Σq
i=1ei · Ãi

)
,
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where Im is the m × m identity matrix, 0m×l is the m × l zero matrix and
∗ stands for any matrix with compatible order. Easy to see relation in (4.7)
defines a map g̃ sending GL(Q(q), (m1, m2))-orbits in Rep(Q(q), (m1, m2))

ss to
GL(Q(q), (m2, qm2 −m1))-orbits in Rep(Q(q), (m2, qm2 −m1))

ss.

Analogously, for any V ∈ Rep(Q(q), (m2, qm2−m1))
ss, we get an element

in Hom(Cm2 ,Cqm2−m1)⊕q which can be viewed as a map fV : Cq × Cm2 →
Cqm2−m1 . fV has to be surjective by semistability of V . We define the inverse
image V = g−1(V ) to be the map ker(fV ) →֒ Cq × Cm2 . It is easy to see that
the relation inverse to (4.7) is as follows.

(4.8) P̃ ·



Ã1, e1Im2

...
...

Ãq, eqIm2


 =

(
I(qm2−m1), ∗

0m1×(qm2−m1), Σq
i=1ei · Ai

)
,

where P̃ ∈ GL(qm2).

In particular, if c1 = 0, then µ = 0 and the associated exceptional slope
to µ is also 0. Moreover the exceptional sequence associated to slop 0 can be
taken as (OP2(−2),OP2(−1),OP2). By direct computation we have M(r, 0, n)
is of height zero iff n = r, and for this case q = 3, m1 = r and m2 = 2r. We
have a quiver specified as follows

(4.9) Q := Q(3) : x−2
y //

x
%%

z 66
x−1,

By Theorem 4.3 the moduli space M(r, 0, r)
f
−→
∼=

M(Q, (r, 2r)). By Theorem

4.4 we have an isomorphism M(Q, (r, r))
g
−→
∼=

M(Q, (r, 2r)).

5. Moduli spaces of 1-dimensional semi-stable sheaves.

Recall that M(rH, 0) is the moduli space of 1-dimensional semistable
sheaves on P2 with determinant rH and Euler characteristic 0. We will see in
this section that there are two birational maps Ψ : M(rH, 0) 99K M(Q, (r, r))
and Φ : M(rH, 0) 99K M(r, 0, r) such that the following diagram commutes

(5.1) M(rH, 0)
Ψ //❴❴❴❴

Φ
��✤
✤

✤

M(Q, (r, r))

g∼=
��

M(r, 0, r)
f

∼= // M(Q, (r, 2r)),

where f, g are defined at the end of the previous section.
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5.1. The map Ψ in (5.1). We list some properties of M(rH, 0) as the fol-
lowing proposition, the proof of which can be found in [19], [8], [29], and [30].

Proposition 5.1. (1) M(rH, 0) is a good quotient of a smooth quasi-projective
variety, hence it is normal and Cohen-Macaulay. M(rH, 0) is irre-
ducible (Theorem 3.1 in [19]).

(2) There is a line bundle Θr over M(rH, 0) (the determinant line bundle
associated to [OP2 ] on M(rH, 0)), such that dim H0(Θr) = 1. For
r = 1, 2, Θr

∼= OM(rH,0). For r ≥ 3, the line bundle Θr admits a
unique divisor DΘr

which consists of sheaves with non trivial global
sections.(see [8] or Theorem 4.3.1 in [29])

(3) Let F be a 1-dimensional sheaf with determinant rH (r > 0) and
χ(F) = 0 on P2. If H0(F) = 0, then F is semistable and lies in
the following sequence

(5.2) 0 → OP2(−2)⊕r → OP2(−1)⊕r → F → 0.

Proof. We only prove the statement (3). Since H0(F) = 0, F contains no
subsheaf of dimension 0. By Lemma 2.2 in [30], every 1-dimensional pure
sheaf F lies in a sequence

0 → EF ⊗OP2(−1) → EF → F → 0,

where EF is a direct sum of line bundles. Write EF = ⊕k
i=1OP2(ai) with a1 ≤

· · · ≤ ak. If F is of determinant rH and Euler characteristic 0, then k = r
and Σk

i=1ak = −r. If moreover H0(F) = 0 then for every subsheaf F ′ ⊂ F ,
H0(F ′) = 0 and χ(F ′) = h0(F ′) − h1(F ′) ≤ 0. Hence F is semistable and
Σr

i=1ai = −r with ai ≤ −1 for all 1 ≤ i ≤ r. Therefore a1 = · · · = ar = −1
and EF ∼= OP2(−1)⊕r. �

Let U(rH, 0) := M(rH, 0) \DΘr
. Then by Proposition 5.1 (3) we have

a map Ψ : U(rH, 0) → M(Q, (r, r)). Easy to see that Ψ is injective and
Ψ(F) is stable iff F is. On the other hand, a point [V ] ∈ M(Q, (r, r)) which
can be represented by a representation V of Q lies in the image of Ψ if and
only if det(x · V (x) + y · V (y) + z · V (z)) 6= 0, in other words the map

OP2(−2)⊕r x·V (x)+y·V (y)+z·V (z)
−−−−−−−−−−−−−→ OP2(−1)⊕r induced by V is injective. Still a

priori we don’t know whether Ψ is dominant.

5.2. Fourier transform on P2 and the map Φ in (5.1). We recall the
Fourier transform on P2 (see also Section 4 in [19] or Section 3 in [31]). Let D
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be the universal curve in P2 × |H| as follows.

(5.3) P2 × |H|

p̃
��

q̃

""❊
❊
❊
❊
❊
❊
❊
❊

D? _oo

q

��

p // P2

P2 |H| ∼= P2

.

Let F be a pure 1-dimensional sheaf of class ud, then its Fourier trans-
form is defined to be GF := q∗(p

∗(F ⊗ OP2(2))) ⊗ O|H|(−1). Let G be a
torsion-free sheaf on |H| of class crn, then its Fourier transform is defined to be
FG := R1p∗(q

∗(G ⊗O|H|(−1)))⊗OP2(−1). We can identify |H| with P2. Then
although these two Fourier transforms in general need not be the inverse to
each other, they provide a birational map as follows.

(5.4) Φ : M(rH, 0) 99K M(r, 0, r).

By Lemma 4.2 and Corollary 4.3 in [19], Φ is well-defined over U(rH, 0)
and induces an isomorphism to its image V (r, 0, r) := Φ(U(rH, 0)). Since
both M(rH, 0) and M(r, 0, r) are normal and irreducible, by Zariski’s main
theorem Φ can be well-defined outside a subset of codimension at least 2. By
Lemma A.2 and Lemma A.3 in [31], the Fourier transform GF is semistable if

F is in the following subset Ũ(rH, 0) with complement of codimension ≥ 2 in
M(rH, 0)

Ũ(rH, 0) :=
{
F ∈ M(rH, 0)

∣∣ Supp(F) is integral, and
h0(F) = h1(F) ≤ 1.

}
.

For every pure 1-dimensional sheaf F of class ud, define its D-dual F
D :=

E xt1(F , KP2). Then FD is also a 1-dimensional pure sheaf of class ud. By
Corollary A.5 in [31], we have an isomorphism κ : M(dH, 0) → M(dH, 0) by
sending each F to FD.

Lemma 5.2. Let G be a torsion-free sheaf of class crn (r ≤ n) such that G|ℓ ∼=
O⊕r

ℓ for a generic line ℓ ∈ |O|H|(1)|. Then its Fourier transform FG is purely
1-dimensional of class un. If moreover G is locally free with G∨ its dual, then
FG∨ ∼= FD

G .

Proof. At first let n = r. By definition FG := R1p∗(q
∗(G ⊗ O|H|(−1))) ⊗

OP2(−1). Since G|ℓ ∼= O⊕r
ℓ for a generic line ℓ ∈ |O|H|(1)|, we know that G is

µ-semistable and p∗(q
∗(G ⊗ O|H|(−1))) = 0. We take a locally free resolution

of G as follows.

(5.5) 0 → K → OP2(−m)⊕h0(G(m)) → G → 0,
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with m ≫ 0. Then we have
(5.6)

0 → R1p∗(q
∗(K⊗O|H|(−1))) → R1p∗(q

∗O|H|(−m−1)⊕h0(G(m))) → FG⊗OP2(1) → 0,

where R1p∗(q
∗(K⊗O|H|(−1))) and R1p∗(q

∗O|H|(−m− 1)⊕h0(G(m))) are locally
free. Hence FG is of homological dimension 1 and hence pure. The class of FG

in K(P2) only depends on the class of G in K(|H|).

If n > r, then G ⊕ O⊕n−r
|H| is torsion free of class cnn and FG

∼= FG⊕O⊕n−r
|H|

since p∗(q
∗O|H|(−1)) = R1p∗(q

∗O|H|(−1)) = 0.

By Grothendieck duality (or Lemma 5.5 in [1]), for G locally free we have

R1p∗(H om(q∗(G ⊗O|H|(−1)), ωD/P2)) ∼= E xt1(R1p∗(q
∗(G ⊗ O|H|(−1))),OP2),

where ωD/P2 is the relative dualizing sheaf of the map p. Since ωD/P2
∼=

p∗OP2(1)⊗ q∗O|H|(−2), we have

FG∨ = R
1
p∗(q

∗(G∨
⊗O|H|(−1)))⊗OP2(−1) ∼= E xt

1(R1
p∗(q

∗(G⊗O|H|(−1)))⊗OP2(−1),KP2) = F
D
G .

�

Denote by M(r, 0, n)b the subset of M(r, 0, n) consisting of locally free
sheaves. It is easy to find that M(r, 0, n) \ M(r, 0, n)b is of codimension ≥
r − 1 in M(r, 0, n) (see Proposition 2.8 in [12]). There is a birational map
ζ : M(r, 0, n) 99K M(r, 0, n) sending each µ-stable bundle to its dual. Since
M(r, 0, n) is normal, by Zariski’s main theorem ζ can be well-defined outside
a subset of codimension ≥ 2. If r = 2, then ζ is just the identity. If n > r ≥ 3,
by Lemma 2.10 in [33] strictly µ-semistable sheaves form a closed subset of
codimension ≥ 2.

However if n = r ≥ 3, then by Proposition 3.1 in [33] there is a divisor
Sr consisting of strictly µ-semistable sheaves. For every G ∈ Sr ∩ M(r, 0, r),
the dual bundle G∨ can not be semistable since H0(G∨) ∼= Hom(G,OP2) 6= 0.
Define V (r, 0, r)b := V (r, 0, r) ∩ M(r, 0, r)b, then M(r, 0, r) \ V (r, 0, r)b is of
codimension ≥ 2 by Lemma A.3 in [31]. The following lemma is a direct
consequence of Lemma 5.2.

Lemma 5.3. ζ can be well-defined over V (r, 0, r)b and we have the following
commutative diagram

V (r, 0, r)b
ζ

∼=
// V (r, 0, r)b

U(rH, 0)b

Φ ∼=

OO

κ
∼=

// U(rH, 0)b

Φ∼=

OO
,

where U(rH, 0)b := Φ−1(V (r, 0, r)b).
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Remark 5.4. Let G be a stable bundle in Sr lying in the following exact
sequence

0 → G1 → G → OP2 → 0.

Then ζ(G) lies in the following exact sequence

0 → G∨
1 → ζ(G) → OP2 → 0.

5.3. Commutativity of the diagram in (5.1).

Proposition 5.5. The diagram in (5.1) commutes.

Proof. We can restrict ourselves to U(rH, 0) where both Ψ and Φ in (5.1) are
well-defined. So we want to show the following diagram commutes

(5.7) U(rH, 0)
Ψ //

Φ
��

M(Q, (r, r))

g∼=
��

M(r, 0, r)
f

∼= // M(Q, (r, 2r))

.

For any F ∈ U(rH, 0) we have the following exact sequence as in (5.2)

(5.8) 0 → OP2(−2)⊕r x·Ax+y·Ay+z·Az

−−−−−−−−−−→ OP2(−1)⊕r → F → 0.

So Ψ(F) = [ Cr
Ay //

Ax

&&

Az ::C
r ].

On P2 × |H|, we have

(5.9) 0 → p̃∗OP2(−1)⊗ q̃∗O|H|(−1) → OP2×|H| → OD → 0.

Do the Fourier transform to (5.8) and we have
(5.10)

0

��

0

��
0 //

��

H0(OP2)⊕r ⊗O|H|(−2)
∼= //

F2

��

O|H|(−2)⊕r //

x∗·Ãx+y∗·Ãy+z∗·Ãz

��

0

0 // H0(OP2)⊕r ⊗O|H|(−1)
F1//

∼=
��

H0(OP2(1))⊕r ⊗O|H|(−1) //

��

O|H|(−1)⊕2r //

��

0

0 // q∗(p
∗O⊕r

P2 )⊗O|H|(−1) //

��

q∗(p
∗OP2(1)⊕r)⊗O|H|(−1) //

��

GF
//

��

0

0 0 0
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where [x∗, y∗, z∗] are the homogenous coordinates on |H|. f(GF) = f ◦ Φ(F)

can be represented by three r × 2r matrices (Ãx, Ãy, Ãz). The map F1 :
O|H|(−1)⊕r → O|H|(−1)⊕3r in (5.10) is given by the matrix (Ax, Ay, Az) ⊗
idO|H|(−1). The map F2 : O|H|(−2)⊕r → O|H|(−1)⊕3r in (5.10) is given by the

matrix (x∗Ir, y
∗Ir, x

∗Ir). On the other hand, by the commutativity of (5.10),
the map 


F1

⊕
F2


 :

O|H|(−1)⊕r

⊕
O|H|(−2)⊕r

→ O|H|(−1)⊕3r

can also be represented by the matrix

(
Ir, 0r×2r

∗, x∗ · Ãx + y∗ · Ãy + z∗ · Ãz

)
. Hence

we know that ∃ P ∈ GL(3r,C) such that

(5.11)

(
Ax, Ay, Az

x∗Ir, y∗Ir, z∗Ir

)
· P =

(
Ir, 0r×2r

∗, x∗ · Ãx + y∗ · Ãy + z∗ · Ãz

)
.

Compare (5.11) with (4.7) and we see the commutativity of (5.7). Hence the
proposition. �

Remark 5.6. For F ∈ Ũ(rH, 0) such that h0(F) = 1, by Lemma A.2 in [31],
its Fourier transform GF is strictly semistable and S-equivalent to S2TP2(−1)⊕
GF ′, where TP2 is the tangent bundle of P2 and F ′ ∈ U((r − 3)H, 0) uniquely
determined by F . Hence by the Proposition 5.5, Ψ(F) = Λ3 ⊕ Ψ(F ′) where
Λ3 = g−1 ◦ f(S2TP2(−1)) ∈ M(Q, (3, 3)) and it can be represented by matrices

(AΛ
x , A

Λ
y , A

Λ
z ) such that x · AΛ

x + y · AΛ
y + z · AΛ

z =




y, −z, 0
−x, 0, z
0, x, −y


.

6. Strange duality on P2.

6.1. The problem. We have two moduli spacesM(dH, 0) (d > 0) andM(r, 0, n) (n ≥
r > 0) parametrizing semistable sheaves of class ud and crn respectively. We
have the so-called determinant line bundle λd(c

r
n) (λcrn(d), resp.) overM(dH, 0)

(M(r, 0, n), resp.) associated to crn (ud, resp.). We have a strange duality map
well-defined up to scalars as follows.

(6.1) SDcrn,d : H
0(M(r, 0, n), λcrn(d))

∨ → H0(M(dH, 0), λd(c
r
n)).

The map SDcrn,d in (6.1) is induced by the the section σcrn,d of the line
bundle λcrn(d)⊠ λd(c

r
n) over M(r, 0, n)×M(dH, 0), whose zero set is

(6.2)
Dcrn,d :=

{
(G,F) ∈ M(r, 0, n)×M(dH, 0)

∣∣ h0(P2,G⊗F) = h1(P2,G⊗F) 6= 0
}
.
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The strange duality conjecture on P2 due to Le Potier (Conjecture 2.2 in
[8]) is as follows.

Conjecture/Question 6.1. Is SDcrn,d an isomorphism?

For details of the setting up including the explicit definition of the deter-
minant line bundles, we omit here and refer to §1 and §2 in [8], or §2 and §3
in [29], or §2.4 in [14], or §2.3 in [32]. For more properties of the determinant
line bundle, we refer to Chapter 8 in [16] noting that the definition in [16] is
dual to us.

Recall in Proposition 5.1 (2), we have introduced the line bundle Θd

over M(dH, 0) which is the determinant line bundle associated to the class
[OP2] ∈ K(P2) and H0(Θd) = 1. Denote by θd the unique non-zero section up
to scalars, which vanishes at points corresponding to sheaves with non-trivial
global sections. By the basic property of the determinant line bundles (see e.g.

§2.1 in [14], or §3 in [29]), we have λd(c
r
n)⊗Θ

⊗(n−r)
d

∼= λd(c
n
n) for all n ≥ r. We

then have the inclusion map

(6.3) rn : H0(M(dH, 0), λd(c
r
n))

.θn−r
d−−−→ H0(M(dH, 0), λd(c

n
n)),

defined by multiplying n− r times of the section θd.

Remark 6.2. Actually by Proposition 2.8 in [20], we have λd(c
r
n)

∼= Θ⊗r
d ⊗

π∗O|dH|(n) for all r, n, where π : M(dH, 0) → |dH| sends every sheaf to its
support.

Remark 6.3. Recall we have two morphisms: κ : M(dH, 0) → M(dH, 0)
sending each F to FD, and ζ : V (r, 0, r)b → V (r, 0, r)b as defined in Lemma
5.3. By Corollary A.5 and Corollary 3.7, we have κ∗λd(c

r
n)

∼= λd(c
r
n) and

ζ∗λcrr(d)
∼= λcrr(d).

6.2. The results. Our main results are the following two theorems.

Theorem 6.4. The strange duality map SDcrn,d in (6.1) is an isomorphism
for r = n > 0 and d > 0.

Theorem 6.5. The strange duality map SDcrn,d in (6.1) is injective for all
n ≥ r > 0 and d > 0.

Together with Proposition 4.1 and Theorem 4.16 (1) in [33], Theorem
6.4 imply the following corollary directly.

Corollary 6.6. The strange duality map SDcrn,d in (6.1) is an isomorphism
for r > 0, n = r + 1 and d > 0.
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Together with Proposition 4.14 in [33], Theorem 6.5 imply the following
corollary directly.

Corollary 6.7. The strange duality map SDcrn,d in (6.1) is an isomorphism
for n ≥ r > 0 and d = 1, 2, 3.

6.3. A variation of the strange duality map. In order to relate the map
SDcrn,d in (6.1) to the map SD(Q) in (2.3), we define a variation of the strange
duality map SDc,u in the sheaf theory, which we will denote by V Dc,u.

Let Y be a projective smooth scheme of dimension dim(Y ) with canonical
line bundle KY . For every element u in the Grothendieck group K(Y ) of
coherent sheaves, we can find finitely many bundles E1, · · · , En such that u =
n∑

i=1

ki[Ei] with [Ei] the class of Ei in K(Y ). We define u∨ :=

n∑

i=1

ki[E
∨] where

E∨ := H om(Ei,OY ), and uD := u∨ ⊗ KY . Easy to see (uD)D = u and
(u∨)∨ = u. By Serre duality χ(c⊗u) = (−1)mχ(c∨⊗uD) for every c, u ∈ K(Y ).

Let S be a Noetherian scheme. Q : S × Y → Y and p : S × Y → S
are the projections. Let E be a sheaf over S × Y which is a S-flat family of
coherent sheaves on Y . Then analogous to the determinant line bundle map
(Definition 8.1.1 in [16]), we have the following two well-defined morphisms

Definition 6.8. Let νl
E
: K(Y ) → Pic(S) be the composition of the homomor-

phisms:

(6.4) K(Y ) = K0(Y )
q∗ // K0(Y × S)

R•H om(E ,−)
��

K0(Y × S)
R•p∗ // K0(S)

det−1
// Pic(S),

where K0(−) is the subgroup of K(−) generated by classes of locally free
sheaves.

Let νh
E
: K(Y ) → Pic(S) be the composition of the homomorphisms:

(6.5) K(Y ) = K0(Y )
q∗ // K0(Y × S)

R•H om(−,E )
��

K0(Y × S)
R•p∗ // K0(S)

det−1
// Pic(S),
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Recall that the determinant line bundle map λE : K(Y ) → Pic(S) (dual
to Definition 8.1.1 in [16]) is the composition of the homomorphisms:

(6.6) K(Y ) = K0(Y )
q∗ // K0(Y × S)

L
⊗ E

��

K0(Y × S)
R•p∗ // K0(S)

det−1
// Pic(S),

where
L
⊗ is the flat tensor, i.e. [F

L
⊗ E ] :=

∑

i≥0

(−1)i[Tori(F , E )].

Remark 6.9. If RiH om(E ,OS×Y ) = 0 for all i 6= i0, then by definition for
all u ∈ K(Y ) we have

λRi0H om(E ,OS×Y )(u)
⊗(−1)i0 ∼= νl

E (u).

Moreover by Grothendieck duality (or Lemma 5.5 in [1]), we have for all w ∈
K0(Y × S)

det ⊗(−1)dim(Y )+1

[R•p∗(q
∗KY ⊗ w∨)] ∼= det[R•p∗w].

Hence we have

(6.7) λE (u)
⊗(−1)dim(Y )+1+i0 ∼= λRi0H om(E ,q∗KY )(u

∨);

and

(6.8) λE (−uD)⊗(−1)dim(Y ) ∼= λRi0H om(E ,OS×Y )(u)
⊗(−1)i0 ∼= νl

E
(u).

Remark 6.10. By definition for all u ∈ K(Y ) we have

λE (u
∨) ∼= νh

E (u).

Analogously we can get well-defined line bundles νl
u(c) and νh

u(c) over the
moduli spaces MY (u) of semistable sheaves of class u for c in some subgroups
of K(Y ), even though there is no universal family over Y ×MY (u). The maps
νl
u, ν

h
u also satisfy some kind of universal properties analogous to Theorem 8.1.5

in [16]. For simplicity we now restrict ourselves to Y = P2. Then νl
u(c) (ν

h
u(c),

resp.) is well-defined if χ(u, c) = 0 (χ(c, u) = 0, resp.).

Lemma 6.11. Let S, T be two schemes of finite type. Let c, u ∈ K(P2) such
that χ(c, u) = 0. Let F ( G , resp.) be a flat family of sheaves of class u ( c,
resp.) over P2, parametrized by S ( T , resp.). Assume moreover the following
two conditions:

(1) E xti(Gt,Fs) = 0, ∀s ∈ S, t ∈ T, i > 0;
(2) H2(H om(Gt,Fs)) = 0, ∀s ∈ S, t ∈ T .
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Then there is a canonical section ςF ,G ∈ H0(S × T, νh
F
(c)⊠ νl

G
(u)), unique up

to scalars, whose zero set is

BF ,G :=
{
(s, t) ∈ S × T

∣∣ hom(Gt,Fs) = ext1(Gt,Fs) 6= 0
}
.

Proof. We have three projections: pS×T : P2×S×T → S×T , pS : S×T → S
and pT : S×T → T . By the condition (1), we have E xti((idP2 ×pT )

∗G , (idP2 ×
pS)

∗F ) = 0 for all i > 0, hence H om((idP2 × pT )
∗G , (idP2 × pS)

∗F ) is flat
over S × T . By Proposition 2.1.10 in [16], there is a locally free resolution

0 → F2 → F1 → F0 → H om((idP2 × pT )
∗
G , (idP2 × pS)

∗
F ) → 0

such that Rj(pS×T )∗Fi = 0 and R2(pS×T )∗Fi is locally free for i = 0, 1, 2 and
j = 0, 1. Moreover we have a complex

(6.9) F • := [R2(pS×T )∗F2 → R2(pS×T )∗F1
r0−→ R2(pS×T )∗F0]

with hi(F •) = R2−i(pS×T )∗H om((idP2 × pT )
∗G , (idP2 × pS)

∗F ).

By the condition (2), we have R2(pS×T )∗H om((idP2 × pT )
∗G , (idP2 ×

pS)
∗F ) = 0 and hence the map r0 in (6.9) is surjective. Therefore we have a

two-term complex of locally free sheaves on S × T as follows

(6.10) F •
1 := [R2(pS×T )∗F2

r1−→ ker(r0).]

By the see-saw lemma (c.f. Lemma 2.10 in [8]), it is easy to see ςF ,G := det(r1)
gives a section of the line bundle νh

F
(c)⊠ νl

G
(u) whose zero set is

BF ,G :=
{
(s, t) ∈ S × T

∣∣ hom(Gt,Fs) = ext1(Gt,Fs) 6= 0
}
.

�

Recall that M(r, 0, n)b is the subset of M(r, 0, n) consisting of locally
free sheaves. We have the following proposition which is a (νl, νh)-analog to
Theorem 2.1 in [8] or Proposition 2.5 in [32].

Proposition 6.12. (1) There is a canonical section ςcrn,ud
∈ H0(M(r, 0, n)b ×

M(dH, 0), νl
crn
(ud)⊠ νh

d (c
r
n)), unique up to scalars, whose zero set is

(6.11)
Bcrn,ud

:=
{
([G], [F ]) ∈ M(r, 0, n)b ×M(dH, 0)

∣∣ hom(G,F) = ext1(G,F) 6= 0
}
.

(2) The section ςcrn,ud
defines a linear map up to scalars

(6.12) V Dcrn,ud
: H0(M(r, 0, n)b, νl

crn
(ud))

∨ → H0(M(dH, 0), νh
d (c

r
n)).

(3) Denote by ςhG (ς lF , resp.) the restriction of ςcrn,ud
to {G} ×M(dH, 0)

(M(r, 0, n)b × {F}, resp.). Then ςhG (ς lF , resp.) only depends (up to scalars)
on the S-equivalence class of G (F , resp.).

Lemma 6.13. νl
crn
(ud) ∼= λcrn(ud) and νh

d (c
r
n)

∼= λd(c
r
n).
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Proof. Notice that −uD
d = ud and (crn)

∨ = crn. The lemma follows straightfor-
ward from (6.8) in Remark 6.9 and Remark 6.10. �

Now we have two maps as follows.

SDcrn,ud
: H0(M(r, 0, n)b, λcrn(ud))

∨ → H0(M(dH, 0), λd(c
r
n));

V Dcrn,ud
: H0(M(r, 0, n)b, λcrn(ud))

∨ → H0(M(dH, 0), λd(c
r
n)).

By switching crn and ud, we also have

SDud,crn : H0(M(dH, 0), λd(c
r
n))

∨ → H0(M(r, 0, n)b, λcrn(ud)).

It is easy to see that SDud,crn is dual to SDcrn,ud
. We will see later that

V Dcrr,ud
somehow equals to SDud,crr after Fourier transform. First we have the

following proposition.

Proposition 6.14. (1) The Fourier transform Φ : M(dH, 0) 99K M(d, 0, d)
is a birational map of normal projective schemes and Φ∗λcd

d
(ur) ∼=

Φ∗λcd
d
(−uD

r )
∼= λd((c

r
r)

∨) ∼= λd(c
r
r), ∀ d, r > 0.

Moreover Φ∗ : H0(M(d, 0, d), λcd
d
(ur))

∼=
−→ H0(M(rH, 0), λd(c

r
r)) is an

isomorphism.
(2) The restriction map H0(M(dH, 0), λd(c

r
r)) → H0(U(dH, 0)b, λd(c

r
r)) is

an isomorphism, for all d, r > 0.
(3) We have the following commutative diagram

(6.13) H0(U(dH, 0)b, λd(c
r
r))

∨
SDud,c

r
r
◦(κ∗)∨

// H0(V (r, 0, r), λcrr(ud))

H0(V (d, 0, d)b, λcd
d
(ur))

∨

(Φ∗)∨ ∼=

OO

V Dcrr,ud

// H0(U(rH, 0), λr(c
d
d))

Φ∗∼=

OO
.

Proof. The strategy of the proof is the same as Proposition A.9 in [31].

We have a map Φ : Ũ(dH, 0) → M(d, 0, d). Denote by M(dH, 0)
πud−−→

M(dH, 0) and M(r, 0, r)
πcrr−−→ M(r, 0, r) the two good quotients from which

one constructs the moduli spaces. Denote by Ũ(dH, 0),U(dH, 0),V(r, 0, r) and

V(r, 0, r)b the preimages of Ũ(dH, 0), U(dH, 0), V (r, 0, r) and V (r, 0, r)b respec-
tively.

To prove (1), it is enough to show that over Ũ(dH, 0) we have π∗
ud
Φ∗λcd

d
(−uD

r )
∼=

π∗
ud
λd((c

r
r)

∨). Let Fud
be the universal family over P2 × Ũ(dH, 0). Recall in



22 YAO YUAN

(5.3) we have the universal curve D in P2 × |H| and we have the following
commutative diagram.

Ũ(dH, 0)×D
p1

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

id
Ũ(dH,0)

×q

��

id
Ũ(dH,0)

×p
// Ũ(dH, 0)× P2

p0

��
p2

rr❡❡❡❡❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡

Ũ(dH, 0) Ũ(dH, 0)× |H|
p2oo p0 // |H| ∼= P2

.

Let G ∈ V (r, 0, r)b and let G = GF = q∗(p
∗(F ⊗ OP2(2))) ⊗ O|H|(−1) with

F ∈ U(dH, 0). Then define a sheaf F̃ over Ũ(dH, 0)×D as follows.

F̃ := ((id
Ũ(dH,0) × p)∗p∗0(F

D ⊗OP2(−1))⊗ ((id
Ũ(dH,0) × q)∗(Fud

⊗ p∗0OP2(2))).

We have a locally free resolution for FD ⊗OP2(−1) as follows.

(6.14) 0 → A → B → FD ⊗OP2(−1) → 0.

We have for all j ≥ 2

Torj(id
Ũ(dH,0) × p)∗p∗0(F

D ⊗OP2(−1)), id
Ũ(dH,0) × q)∗(Fud

⊗ p∗0OP2(2))) = 0.

Since for a generic s ∈ Ũ(dH, 0) the intersection of the supports of F and
(Fud

)s is of dimension 0, we have

Tor1(id
Ũ(dH,0) × p)∗p∗0(F

D ⊗OP2(−1)), id
Ũ(dH,0) × q)∗(Fud

⊗ p∗0OP2(2)))

is a subsheaf of lower dimension of (id
Ũ(dH,0)×p)∗p∗0A⊗ ((id

Ũ(dH,0)× q)∗(Fud
⊗

p∗0OP2(2))), hence it has to be zero. Then by Lemma 3.4 and Lemma A.7 (1)

in [31], we have over Ũ(dH, 0)× P2

Ri(id
Ũ(dH,0) × p)∗F̃ = 0, ∀ i > 0, (id

Ũ(dH,0) × p)∗F̃ ∼= p∗0F
D ⊗ GFud

,

and

Ri(id
Ũ(dH,0) × q)∗F̃ = 0, ∀ i > 0, (id

Ũ(dH,0) × q)∗F̃ ∼= p∗0G
∨ ⊗ Fud

,

where GFud
is the fiber-wise Fourier transform of Fud

, in other words, GFud

induces the classifying map Ũ(dH, 0)
Φ◦πud−−−→ M(d, 0, d). Therefore

π∗
ud
Φ∗λcd

d
(−uD

r )
∼= det −1(R•(p1)∗F̃ ) ∼= π∗

ud
λd((c

r
r)

∨).

Hence we proved (1).

By Lemma A.3 in [31], we have that the restriction map

H0(M(d, 0, d), λcd
d
(ur))

restr.
−−−→ H0(V (d, 0, d), λcd

d
(ur))
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is an isomorphism, for all d, r > 0. On the other hand by (1), we have the

isomorphism H0(U(dH, 0), λd(c
r
r))

Φ∗

−→
∼=

H0(V (d, 0, d), λcd
d
(ur)). Hence (2) is

proved.

To prove (3), we restrict ourselves to V(r, 0, r)b × U(dH, 0). Let S =
V(r, 0, r)b and T = U(dH, 0). Let GS (FT , resp.) be a S-flat (T -flat, resp.)
family of sheaves in V (r, 0, r)b (U(dH, 0), resp.) over P2×S (P2×T , resp.).Let
FS (GT , resp.) be the fiber-wise Fourier transform of GS (FT , resp.). Let
FD

S = (idP2 × κ)∗FS be the fiber-wise D-dual of FS. Let G ∨
S be the fiber-

wise dual of GS which is a S-flat family. We have the following commutative
diagram.

S ×D

idS×q
��

idS×p
��

S × T ×D
αD
Soo

idS×T×q
��

idS×T×p
��

αD
T // T ×D

idT×q
��

idT×p
��

S × P2

τS
��

S × T × P2
αS

oo

τS×T

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

αT

//

h
�� τS×T

''PP
PP

PP
PP

PP
PP

PP
T × P2

τT
��

P2 S × T P2.

Define

F̃S,T := ((idS×T×p)∗α∗
S(F

D
S ⊗τ ∗SOP2(−1)))⊗((idS×T×q)∗α∗

T (FT⊗τ ∗TOP2(2))).

Since for a generic (s, t) ∈ S × T , the intersection of the supports of FS
s and

FT
t is of dimension 0, we have for all j ≥ 1

Torj((idS×T×p)∗α∗
S((F

S)D⊗τ ∗SOP2(−1)), (idS×T×q)∗α∗
T (F

T⊗τ ∗TOP2(2))) = 0.

Then by Lemma 3.4 and Lemma A.7 (1) in [31], we have over S × T × P2

Ri(idS×T × p)∗F̃S,T = 0, ∀ i > 0, (idS×T × p)∗F̃S,T
∼= α∗

SF
D
S ⊗ α∗

TGT ,

and

Ri(idS×T × q)∗F̃S,T = 0, ∀ i > 0, (idS×T × q)∗F̃S,T
∼= α∗

SG
∨
S ⊗ α∗

TFT .

Hence we have

(πcrr × πud
)∗Bcrr ,ud

= ((πcrr ◦ Φ ◦ κ)× (πud
◦ Φ))∗Dcd

d
,ur

= {(s, t)
∣∣H0(D, p∗FD

S,s(−1)⊗ q∗FT,t(2)) 6= 0, }(6.15)

where Bcrr ,ud
and Dcd

d
,ur

are as defined in (6.11) and (6.2) respectively.

Therefore we have Bcrr,ud
= ((Φ ◦ κ)× (Φ))∗Dcd

d
,ur

and hence the diagram

(6.13) commutes. �
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6.4. The proof of Theorem 6.4. As r = n, M(r, 0, n) ∼= M(Q, (2r, r)).
Theorem 6.4 is essentially a corollary to Theorem 2.4. The case r = n = 2 has
been proved in [31], hence without loss of generality, we assume r ≥ 3.

Recall that we have the following commutative diagram as in (5.7)

(6.16) U(rH, 0)
Ψ //

Φ
��

M(Q, (r, r))

g∼=
��

M(r, 0, r)
f

∼= // M(Q, (r, 2r))

.

The two dimension vectors (r, 2r), (d, d) of quiver Q satisfy 〈(r, 2r), (d, d)〉 =
0 (def. see (2.1)). Recall that there is a section c̄ over M(Q, (r, 2r)) ×
M(Q, (d, d)) defined in §2.3.

Define U(Q, (d, d)) := Ψ(U(dH, 0)) and V (Q, (r, 2r))b := f(V (r, 0, r)b).
We then have the following isomorphism

(6.17) U(dH, 0)× V (r, 0, r)b
(Ψ,f)
−−−→

∼=
U(Q, (d, d))× V (Q, (2r, r))b.

Lemma 6.15. Up to scalars, (Ψ, f)∗c̄ = ςcrr,ud
, where ςcrr ,ud

is as defined in
Proposition 6.12.

Proof. The proof is analogous to Claim 3.0.2 in [2] or Lemma 2.4 in [22].
Denote by RU (RV , resp.) the preimage of U(Q, (d, d)) (V (Q, (2r, r))b, resp.)
inside Rep(Q, (d, d)) (Rep(Q, (2r, r)), resp.). On RU and RV we have the
universal representations as follows

(6.18) AU
YU //

XU

&&

ZU

88 BU ,

(6.19) AV
YV //

XV

&&

ZV

88 BU ;

where AU ,BU are rank d bundles on RU , AV is a rank r bundle and BV is a
rank 2r bundle on RV .

On the other hand, on P2 × RU and P2 × RV we have the following two
exact sequences of bundles.

(6.20) 0 → AU ⊠OP2(−2)
x·XU+y·YU+z·ZU−−−−−−−−−−→ BU ⊠OP2(−1) → F → 0,

(6.21) 0 → AV ⊠OP2(−2)
x·XV +y·YV +z·ZV
−−−−−−−−−−→ BV ⊠OP2(−1) → G → 0, ;
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where F (G resp.) induces the map RU
πU−→ U(Q, (d, d))

Ψ−1

−−→ U(dH, 0)

(RV
πV−→ V (Q, (2r, r))b

f−1

−−→ V (r, 0, r)b resp.). Notice that G is locally free.
On P2 ×RU ×RV we have

0 → H om(G ,F ) →
H om(BV ⊠O

P2
(−1),BU ⊠O

P2
(−1))

⊕
H om(AV ⊠O

P2
(−2),AU ⊠O

P2
(−2))

→ H om(AV ⊠O
P2
(−2),BU⊠O

P2
(−1)) → 0,

where by abuse of notation, we use the same letter to denote both the sheaf on
P2×RU or P2×RV and its pull back to P2×RU ×RV . Define three projections
pR : P2 ×RU ×RV → RU ×RV and pV (pU) : RU ×RV → RU (RV ). Then on
RU × RV we have

(pR)∗




H om(BV ⊠O

P2
(−1),BU ⊠O

P2
(−1))

⊕
H om(AV ⊠O

P2
(−2),AU ⊠O

P2
(−2))



 dV
U−−→ (pR)∗H om(AV ⊠O

P2
(−2),BU ⊠O

P2
(−1))

=⇒
H om(p∗

V
BV , p∗

U
BU )

⊕
H om(p∗

V
AV , p∗

U
AU )

dV
U−−→ H om(p∗V AV , p∗UBU )⊕3.

The map dVU above can be represented by a square matrix of order 3rd. The
function c on RU×RV equals to det(dVU ) by §2.1. On the other hand by Lemma
6.11 and Proposition 6.12, det(dVU ) is (up to scalars) the pull back of ςcrr ,d to
RU × RV via the map (Ψ−1 ◦ πU , f

−1 ◦ πV ). Hence the lemma. �

Proof of Theorem 6.4. As we have seen in Theorem 2.4 in §2.3, the section c̄
induces the following isomorphism

SD(Q) : H0(M(Q, (r, 2r)), λ(Q, (r, 2r))−〈−,(d,d)〉)
∨ → H0(M(Q, (d, d)), λ(Q, (d, d))〈(r,2r),−〉),

Since f and g in (6.16) are isomorphisms, M(Q, (r, 2r)) \ V (Q, (r, 2r))b

(M(Q, (d, d)) \ U(Q, (d, d)) resp.) is of codimension ≥ 2 inside the irreducible
normal scheme M(Q, (r, 2r)) (M(Q, (d, d)) resp.). Hence by Proposition 6.14
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and Lemma 6.15, we have the following commutative diagram
(6.22)

H0(M(Q, (r, 2r)), λ(Q, (r, 2r))−〈−,(d,d)〉)
∨

SD(Q)

∼=
// H0(M(Q, (d, d)), λ(Q, (d, d))〈(r,2r),−〉)

∼= restr.
��

H0(V (Q, (r, 2r))b, λ(Q, (r, 2r))−〈−,(d,d)〉)
∨

∼=(restr.)∨

OO

SD(Q)
// H0(U(Q, (d, d)), λ(Q, (d, d))〈(r,2r),−〉)

∼= Φ∗

��

H0(V (r, 0, r)b, λcrr(ud))
∨

∼=(f∗)∨

OO

∼=(Φ∗)∨

��

V Dcrr,d // H0(U(dH, 0), λd(c
r
r))

Φ∗∼=
��

H0(U(rH, 0)b, λr(c
d
d))

∨

(restr.)∨∼=

��

SDud,c
r
r
◦(κ∗)∨

// H0(V (d, 0, d), λcd
d
(ud))

H0(M(rH, 0), λr(c
d
d))

∨
SDud,c

r
r
◦(κ∗)∨

// H0(M(d, 0, d), λcd
d
(ur))

∼= restr.

OO

κ∗ is an isomorphism by Corollary A.5 in [31]. By (6.22) we get directly that
SDcrr,d is an isomorphism and hence the theorem. �

6.5. Some useful lemmas. In this subsection, we want to study the function
c on Rep(Q, (r, 2r))×Rep(Q, (d, d)) and c̄ on M(Q, (r, 2r))×M(Q, (d, d)), as
defined in §2.1 and §2.3.

Let Mat(m × n,C) be the set of all m × n matrices with entries in C.
For any two matrices Γ = {γij} ∈ Mat(m× n,C), Ω = {ωst} ∈ Mat(k × l,C),
we define

(6.23) Mat(mk × nl,C) ∋ Γ ∗ Ω :=




ω11 · Γ, ω12 · Γ, · · · , ω1l · Γ
ω21 · Γ, ω22 · Γ, · · · , ω1lΓ

...
. . .

. . .
...

ωk1 · Γ, ωk2 · Γ, · · · , ω1l · Γ




The following lemma is easy to see.

Lemma 6.16. Let Γ,Γi ∈ Mat(m×n,C), Ω,Ωi ∈ Mat(k×l,C) (i = 1, 2, · · · , p).
Let Π ∈ Mat(l × h,C) and ∆ ∈ Mat(n × b,C) for any h, b ∈ Z>0. Then for
the operator ∗ we have the following three properties:

(1) If m = n, k = l, and Γ,Ω are invertible, then Γ ∗ Ω is invertible and
(Γ ∗ Ω)−1 = (Γ)−1 ∗ (Ω)−1;

(2) (Γ ·∆) ∗ (Ω · Λ) = (Γ ∗ Ω) · (∆ ∗ Λ);
(3) If mk = nl, then

det(Σp
i=1Γi ∗ Ωi) = (−1)

mk((m−1)(k−1)+(n−1)(l−1))
4 det(Σp

i=1Ωi ∗ Γi).
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Let (V,W ) ∈ Rep(Q, (r, 2r))ss×Rep(Q, (d, d))ss, and let V (W , resp.) be

represented by three r× 2r (d× d, resp.) matrices (Ãr
x, Ã

r
y, Ã

r
z) ((B

d
x, B

d
y , B

d
z ),

resp.). Let g−1(V ) be represented by three r × r matrices (Ar
x, A

r
y, A

r
z) well-

defined up to the action of GL(Q, (r, r)). Define

(6.24) Mat(dr × dr,C) ∋ C(V,W ) := Bd
x ∗ A

r
x +Bd

y ∗ A
r
y +Bd

z ∗ A
r
z.

Lemma 6.17. (1) c(V,W ) = det



Bd

x ∗ Ir, −Id ∗ Ã
r
x

Bd
y ∗ Ir, −Id ∗ Ã

r
y

Bd
z ∗ Ir, −Id ∗ Ã

r
z


;

(2) Up to scalars, for any (V,W ) ∈ M(Q, (r, 2r))×M(Q, (d, d)), c̄(V,W ) =
det(C(V,W )) with C(V,W ) defined in (6.24).

Proof. (1) is obtained by the definition of c.

By (4.8), we have

(6.25) P̃ ·



Ãr

x, xIr
Ãr

y, yIr
Ãr

z, zIr


 =

(
I2r, ∗

0r×2r, xAr
x + yAr

y + zAr
z

)
,

where P̃ ∈ GL(3r). Hence

(6.26)



Ãr

x

Ãr
y

Ãr
z


 = P̃−1 ·

(
I2r

0r×2r

)
, and



xIr
yIr
zIr


 = P̃−1 ·

(
∗

xAr
x + yAr

y + zAr
z

)
,

By Lemma 6.16 (2), we have



Id ∗ Ã

r
x

Id ∗ Ã
r
y

Id ∗ Ã
r
z


 = Id ∗



Ãr

x

Ãr
y

Ãr
z


 = Id ∗ (P̃

−1 ·

(
I2r

0r×2r

)
)

= (Id ∗ P̃
−1) · (Id ∗

(
I2r

0r×2r

)
) = (Id ∗ P̃

−1) ·

(
I2rd

0rd×2rd

)
.(6.27)
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By (6.26) we have ∃ P̃1 ∈ Mat(2r× 3r,C), such that P̃ =

(
P̃1

Ar
x, A

r
y, A

r
z

)
.

Hence

(Id ∗ P̃ ) ·



Bd

x ∗ Ir
Bd

y ∗ Ir
Bd

z ∗ Ir


 =

(
Id ∗ P̃1

Id ∗ A
r
x, Id ∗ A

r
y, Id ∗ A

r
z

)
·



Bd

x ∗ Ir
Bd

y ∗ Ir
Bd

z ∗ Ir




=




(Id ∗ P̃1) ·



Bd

x ∗ Ir
Bd

y ∗ Ir
Bd

z ∗ Ir




Bd
x ∗ A

r
x +Bd

y ∗ A
r
y +Bd

z ∗A
r
z


(6.28)

Therefore we have

det



Bd

x ∗ Ir, −Id ∗ Ãr
x

Bd
y ∗ Ir, −Id ∗ Ãr

y

Bd
z ∗ Ir, −Id ∗ Ãr

z


 = det(Id ∗ P̃

−1) · det




(Id ∗ P̃1) ·




Bd

x ∗ Ir

Bd
y ∗ Ir

Bd
z ∗ Ir



 , −I2rd

Bd
x ∗Ar

x +Bd
y ∗Ar

y +Bd
z ∗ Ar

z, 0rd×2rd




∼ det(Bd
x ∗A

r
x +B

d
y ∗ A

r
y +B

d
z ∗A

r
z).(6.29)

Hence we have proved (2).

�

6.6. The proof of Theorem 6.5. From now on let n > r ≥ 2. We at first
define closed subsets Si

n ⊂ M(Q, (n, 2n)) ∼= M(n, 0, n) as follows.
(6.30)

Rep(Q, (n, 2n))ss ⊃ S̃
i

n := {V
∣∣rank(C(V,Λ3)) ≤ 3n−i}; Si

n := S̃
i

n//GL(Q, (n, 2n));

where Λ3 ∈ Rep(Q, (3, 3)) is defined in Remark 5.6 and C(V,Λ3) is defined in

(6.24). East to see that S̃
i

n is a GL(Q, (n, 2n))-invariant closed subscheme of
Rep(Q, (n, 2n))ss and hence Si

n is a well-defined closed subscheme ofM(Q, (n, 2n)).

Let V ∈ Rep(Q, (n, 2n))ss be represented by n×2nmatrices (ÃV
x , Ã

V
y , Ã

V
z ),

then we have the following exact sequence

(6.31) 0 → OP2(−2)⊕n x·ÃV
x +y·ÃV

y +z·ÃV
z

−−−−−−−−−−−→ OP2(−1)⊕2n → Gn
n(V ) → 0,

where Gn
n(V ) is semistable.

Lemma 6.18. For any V ∈ Rep(Q, (n, 2n))ss, let Gn
n(V ) be the same as in

(6.31). Then we have

V ∈ S̃
i

n ⇔ hom(Gn
n(V ),OP2) ≥ i.

In particular, we identify M(n, 0, n) with M(Q, (n, 2n)) and have

G ∈ Si
n ⇔ hom(G,OP2) ≥ i.
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Proof. By (6.31) we have

hom(Gn
n(V ),OP2) = 6n− rank




ÃV
x , 0, 0

ÃV
y , ÃV

x , 0

ÃV
z , 0, ÃV

x

0, ÃV
y , 0

0, ÃV
z , ÃV

y

0, 0, ÃV
z




Recall that Λ3 can be represented by matrices (AΛ
x , A

Λ
y , A

Λ
z ) such that

x · AΛ
x + y ·AΛ

y + z · AΛ
z =




y, −z, 0
−x, 0, z
0, x, −y


.

We then have



AΛ

x ∗ In, −I3 ∗ Ã
V
x

AΛ
y ∗ In, −I3 ∗ Ã

V
y

AΛ
z ∗ In, −I3 ∗ Ã

V
z


 =




0, 0, 0, −ÃV
x , 0, 0

−In, 0, 0, 0, −ÃV
x , 0

0, In, 0, 0, 0, −ÃV
x

In, 0, 0, −ÃV
y , 0, 0

0, 0, 0, 0, −ÃV
y , 0

0, 0, −In, 0, 0, −ÃV
y

0, −In, 0, −ÃV
z , 0, 0

0, 0, In, 0, −ÃV
z , 0

0, 0, 0, 0, 0, −ÃV
z




≃




I3n, 0

0, −




ÃV
x , 0, 0

ÃV
y , ÃV

x , 0

ÃV
z , 0, ÃV

x

0, ÃV
y , 0

0, ÃV
z , ÃV

y

0, 0, ÃV
z







(6.32)

On the other hand, by (6.27) and (6.28) we have



AΛ

x ∗ In, −I3 ∗ Ã
V
x

AΛ
y ∗ In, −I3 ∗ Ã

V
y

AΛ
z ∗ In, −I3 ∗ Ã

V
z


 ≃



(I3 ∗ P̃1) ·



AΛ

x ∗ In
AΛ

y ∗ In
AΛ

z ∗ In


 , −I6n

C(V,Λ3), 03n×6n


 .



30 YAO YUAN

Hence we have

rank




ÃV
x , 0, 0

ÃV
y , ÃV

x , 0

ÃV
z , 0, ÃV

x

0, ÃV
y , 0

0, ÃV
z , ÃV

y

0, 0, ÃV
z




+3n = rank



AΛ

x ∗ In, −I3 ∗ Ã
V
x

AΛ
y ∗ In, −I3 ∗ Ã

V
y

AΛ
z ∗ In, −I3 ∗ Ã

V
z


 = rank(C(V,Λ3))+6n,

which is equivalent to hom(Gn
n(V ),OP2) + rank(C(V,Λ3)) = 3n. Therefore we

proved the lemma. �

We want to construct a birational map δi : M(n − i, 0, n) → Si
n which

generalizes the map δ in Proposition 3.1 in [33]. Firstly we have the following
lemma which generalizes Lemma 2.12 in [33].

Lemma 6.19. Let Gr
n be of class crn and we have the following exact sequence

(6.33) 0 → Gr
n → Gn

n → O
⊕(n−r)
P2 → 0.

Then we have

(1) If Gr
n is µ-semistable with H0(Gr

n) = 0, then up to isomorphism there is
a unique Gn

n such that the sequence (6.33) does not partially split; and
in this case the extension Gn

n is semistable and lies in Sn−r
n . If moreover

Gr
n is µ-stable, then Gn

n is stable.
(2) For every ′Gn

n ∈ Sn−r
n , we can find a semistable sheaf Gn

n S-equivalent to
′Gn

n which lies in the sequence (6.33) with Gr
n µ-semistable andH0(Gr

n) =
0.

Proof. If Gr
n is µ-semistable, then H2(Gr

n) = 0 and Gn
n is also µ-semistable.

Hence Gn
n is semistable iff H0(Gn

n) = 0. We have Ext1(OP2 ,Gr
n)

∼= H1(Gr
n) is of

dimension n − r since H0(Gr
n) = H2(Gr

n) = 0, hence there is a unique up to
isomorphisms extension Gn

n such that (6.33) does not partially split. Easy to
see that in this case H0(Gn

n) = 0.

Assume Gr
n is µ-stable. Then for every non-trivial quotient Gn

n ։ Q,
either H0(Q) 6= 0 or c1(Q).H > 0. Hence Gn

n can not be strictly semistable.
Hence Statement (1).

On the other hand let Gn
n ∈ M(n, 0, n)s ∩ Si

r, define the map h : Gn
n →

Oi
P2 whose restriction to any direct summand is not zero (h is given by an

i-dimensional subspace of Hom(Gn
n ,OP2)). Denote by Im(h) the image of h.

Then Im(h) is µ-semistable. By stability of Gn
n we have χ(Im(h)) > 0 and

hence H0(Im(h)) 6= 0. Therefore we have an injection OP2 →֒ Im(h). However
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Im(h)/OP2 is also a quotient of Gn
n and hence χ(Im(h)/OP2) > 0. By induction

we have Im(h) ∼= O⊕i
P2 and h is surjective.

In general for ′Gn
n semistable, we choose Gn

n =
⊕l

k=1 G
nk
nk

with Gnk
nk

stable
which is S-equivalent to ′Gn

n and then we can get a sequence (6.33). �

Remark 6.20. Combine Lemma 6.18 and Lemma 6.19, we have S̃
i

n is empty
for i ≥ n.

Denote by M(r, 0, n) (M(r, 0, n)s, M(r, 0, n)µ, M(r, 0, n)µs, resp.) the
stack of semistable (stable, µ-semistable, µ-stable, resp.) sheaves of class
crn. Denote by Si

n the preimage of Si
n inside M(r, 0, n). By Lemma 6.19,

we have a rational map δ̃n−r : M(r, 0, n)µ → S
n−r
n inducing a surjective

map M(r, 0, n)µ → Sn−r
n → Sn−r

n . Easy to see that δ̃n−r(M(r, 0, n)µs) ⊂

M(n, 0, n)s ∩ (Sn−r
n \Sn−r+1

n ) and δ̃n−r restricted to M(r, 0, n)µs is an isomor-
phism to its image.

Lemma 6.21. Let 0 ≤ i ≤ n − 1. Then S̃
i

n \ S̃
i+1

n is a locally complete
intersection in Rep(Q, (n, 2n))ss with codimension i2.

Proof. By definition S̃
i

n\S̃
i+1

n can be defined by i2 equations inside Rep(Q, (n, 2n))ss.
Since Rep(Q, (n, 2n))ss is open in Rep(Q, (n, 2n)) by Theorem 2.2, we have
dim(Rep(Q, (n, 2n))ss) = 6n2. We only need to show that

dim(S̃
i

n \ S̃
i+1

n ) ≤ 6n2 − i2.

By Lemma 6.19, we have

dim(Rep(Q, (n, 2n))s ∩ (S̃
i

n \ S̃
i+1

n )) ≤ dim(M(n− i, 0, n)µ) + dim(GL(Q, (n, 2n)))

= (n− i)(n+ i) + 5n2 = 6n2 − i2.(6.34)

On the other hand, for any Vk ∈ Rep(Q, (nk, 2nk)) with k = 1, 2, we have
ext1Q(V1, V2) ≤ 6n1n2 by (2.2). Hence by induction assumption on n, strictly

semistable points in S̃
i

n \ S̃
i+1

n form a closed subset of dimension no more than
max

0≤ik≤nk,k=1,2
n1+n2=n
i1+i2=i

{6n2
1 + 6n2

2 − i21 − i22 + 6n1n2} ≤ 6n2 − i2 − 4(n− 1).

Therefore we proved the lemma. �

Lemma 6.22. Both S̃
i

n and Si
n are normal, for 0 ≤ i ≤ n− 1.

Proof. It is enough to show S̃
i

n is normal since Si
n is a good quotient of S̃

i

n.
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By Lemma 6.21, we see that S̃
i

n is Cohen-Macaulay with an open dense

subset Rep(Q, (n, 2n))s ∩ (S̃
i

n \ S̃
i+1

n ). The complement of Rep(Q, (n, 2n))s ∩

(S̃
i

n \ S̃
i+1

n ) inside S̃
i

n is of codimension ≥ 2.

The scheme Rep(Q, (n, 2n))s∩(S̃
i

n\ S̃
i+1

n ) is a GL(Q, (n, 2n))-bundle over

M(n, 0, n)s∩(Sn−r
n \Sn−r+1

n ). By Lemma 2.10 in [33], we have δ̃(M(r, 0, n)µs) ∼=
M(r, 0, n)µs is a smooth irreducible dense open substack ofM(n, 0, n)s∩(Sn−r

n \
Sn−r+1

n ) whose complement is of codimension ≥ 2. Hence Rep(Q, (n, 2n))s ∩

(S̃
i

n \ S̃
i+1

n ) is irreducible and regular in codimension 1, hence so is S̃
i

n. �

Proposition 6.23. We have a birational morphism δn−r : M(r, 0, n) → Si
n.

This morphism δn−r induces an isomorphism from M(r, 0, n)µs to its image
which is contained in M(n, 0, n)s ∩ (Sn−r

n \Sn−r+1
n ). Here M(r, 0, n)µs consists

of all µ-stable sheaves in M(r, 0, n).

Moreover δ∗n−rλcnn(d)
∼= λcrn(d) for all d ∈ Z and hence we have the fol-

lowing isomorphism

(6.35) δ∗n−r : H
0(Sn−r

n , λcnn(d))
∼=
−→ H0(M(r, 0, n), λcrn(d)).

Proof. Given Lemma 6.22, the statement δ∗n−rλcnn(d)
∼= λcrn(d) is the only thing

left to prove, which can be deduced from analogous argument to Proposition
3.1 in [33]. �

Lemma 6.24. The restriction map

(6.36) γn−r
n : H0(M(n, 0, n), λcnn(d)) → H0(Sn−r

n , λcnn(d))

is surjective.

Proof. Since GL(Q, (n, 2n)) is reductive and the ideal sheaf I
S̃
n−r

n

of S̃
n−r

n is

GL(Q, (n, 2n))-invariant, the restriction map

C[Rep(Q, (n, 2n))]GL(Q,(n,2n)),−〈−,(d,d)〉 → (C[Rep(Q, (n, 2n))]/I
S̃
n−r

n

)GL(Q,(n,2n)),−〈−,(d,d)〉

is surjective by the basic fact of the reductive group over C (see e.g. Fact (3)
pp.29 in [28]).

We have the following commutative diagram

C[Rep(Q, (n, 2n))]GL(Q,(n,2n)),−〈−,(d,d)〉

∼=

��

// (C[Rep(Q, (n, 2n))]/I
S̃
n−r

n

)GL(Q,(n,2n)),−〈−,(d,d)〉

∼=

��

H0(M(n, 0, n), λcnn(d))
γn−r
n // H0(Sn−r

n , λcnn(d)).

Hence γn−r
n in (6.36) is surjective. �



STRANGE DUALITY ON P2 VIA QUIVER REPRESENTATIONS. 33

Proposition 6.25. We have the following commutative diagram
(6.37)

H0(M(r, 0, n), λcrn(d))
∨

∼=

(δ∗n−r)
∨

//

SDcrn,d

��

H0(Sn−r
n , λcnn(d))

∨

α
S
n−r
n

��

� �
(γn−r

n )∨
// H0(M(n, 0, n), λcnn(d))

∨

∼= SDcnn,d

��

H0(M(dH, 0), λd(c
r
n)) Id

∼= // H0(M(dH, 0), λd(c
r
n))

� �

rn

.θn−r
d // H0(M(dH, 0), λd(c

n
n)),

where rn is as defined in (6.3).

Proof. The proof is analogous to that of Proposition 4.1 in [33] and hence is
omitted here. �

Proof of Theorem 6.5. The theorem follows straightforward from Proposition
6.25 and Theorem 6.4. �

Remark 6.26. For every sheaf G of class crn, we can define a divisor DG :=
{F ∈ M(dH, 0)

∣∣H0(G ⊗ F) 6= 0}. If DG 6= M(dH, 0), then up to scalars it
gives a section sG of line bundle λd(c

r
n). Theorem 2.1 actually implies that

{sG}G∈M(n,0,n) spans H
0(M(dH, 0), λd(c

n
n)), i.e. SDcnn,d is effectively surjective

(see Definition 4.12 in [33]). However, we don’t know at now whether SDcrn,d

is surjective or not for r ≤ n − 2. If one could show that every section s of
the form s′ · θn−r

d can be written as a linear combination of sG with G ∈ Sn−r
n ,

then it would follow that SDcrn,d were also effectively surjective and hence an
isomorphism.

Remark 6.27. One may try to extend the strategy in this paper to other
rational surfaces, such as Hirzebruch surfaces. But it is not easy. The tilting
theory is in general much more complicated on other rational surfaces. As a
result it is difficult to get analogs of Theorem 6.4 from the result of Derksen
and Weyman (Theorem 2.1). However, once we got an analog of Theorem 6.4,
we would also get an analog of Theorem 6.5 by the same routine.
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