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INVARIANT RINGS OF SUMS OF FUNDAMENTAL

REPRESENTATIONS OF SLn AND COLORED HYPERGRAPHS

LUKAS BRAUN

Abstract. The fundamental representations of the special linear group SLn

over the complex numbers are the exterior powers of Cn. We consider the
invariant rings of sums of arbitrary many copies of these SLn-modules. The
symbolic method for antisymmetric tensors developed by Grosshans, Rota and
Stein is used, but instead of brackets, we associate colored hypergraphs to the
invariants. This approach allows us to use results and insights from graph
theory. In particular, we determine (minimal) generating sets of the invariant
rings in the case of SL4 and SL5, as well as syzygies for SL4. Since the invari-
ants constitute incidence geometry of linear subspaces of the projective space
Pn−1, the generating invariants provide (minimal) sets of geometric relations
that are able to describe all others.

1. Introduction

Classical invariant theory deals with invariants of linear reductive groups and
their syzygies. From its beginnings in the nineteenth century, it was not only a
forerunner for modern invariant theory but, for example through Hilberts Nullstel-
lensatz and Basissatz, for modern algebraic geometry and algebra in general. The
literature on the subject is vast, we refer to [9, 20, 24, 35] for an overview.

One of the most important fields of research in the nineteenth century was the
theory of invariants of binary forms, so to say of SL2(C)-invariants of symmetric
tensors. This is still an active area of research, see [2, 3, 8, 21]. Besides the case of
binary forms, among others, invariants and syzygies have been found for systems of
vectors and covectors of the classical groups, see [26, §9.3, 9.4]. At least the theory
of binary forms relies heavily on the symbolic method, using brackets to denote
complete contractions of tensors made up of the relevant symmetric ones and the
covariant tensor det.

Weitzenböck applied the symbolic method to antisymmetric tensors in [33, 34],
but it was not until 1987, when Grosshans, Rota, and Stein in [10], see also [28],
formulated a rigorous symbolic method for both symmetric and antisymmetric ten-
sors using superalgebras. Nevertheless, besides findings on invariants of (

∧2(Cn))1

and (
∧2(C4))n2 , see [10, §5.4], [11, Th. 34.9] and [5, 22, 29, 31, 32, 36] as well as

invariants of up to four linear subspaces of projective space [16, 17], and some state-

ments on invariants of
∧3(Cn) for small n, see [11, §35] and [4], the only progress

in finding generators for the ring of invariants has been made by Rosa Huang, a
student of Rota, in the case of (

∧2(C4))n2 , see [18]. But the system of generators
she found was by no means minimal. As vanishing of invariants describes the ge-
ometry of linear subspaces of projective space, see [30] and [7, §11] for a discussion,
determination of a minimal generating set in this context means nothing less than
finding a minimal set of geometric relations that are able to describe all the others.
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Gurevich [11, §35] as well as Sturmfels [30, p. 173] and Procesi [27, §6.8] consider
this a complicated and involved problem.

The aim of the present paper is first to develop a method for approaching this
problem and second, to demonstrate the power of this method by finding generators
of the ring of invariants for SL4 and SL5 as well as relations for SL4.

We fix some notation. Let n ≥ 2 be a fixed integer. We work over the field C of
complex numbers and denote by SLn the special linear group of degree n over C.
This group acts on V = Cn by multiplication from the left, which is the standard
representation. This induces an action of SLn on

∧iV for any i ∈ {1, . . . , n − 1},

the fundamental representations. Now set Vi,j :=
∧iV and

W :=
n−1
⊕

i=1

ni
⊕

j=1

Vi,j

for fixed n1, . . . , nn−1 ≥ 0. We call the induced action of SLn on W the action on
sums of fundamental representations. The special case ni = 0 for i 6= 1, n − 1 is
equivalent to the action on vectors and covectors.

We informally describe the symbolic method from [10] now, ignoring signs. Let
m, ni,j be nonnegative integers. A bracket monomial is a product of m brackets,
where every bracket contains n out of the following letters: to every Vi,j associate
letters ai,j,k, so that for every 1 ≤ k ≤ ni,j , the letter ai,j,k turns up i times in the
bracket monomial. Now consider the mapping of an element

∑

ti,j of W to




⊗

i,j

t
⊗ni,j

i,j



⊗ det⊗m,

followed by the complete contraction, where two indices of the k-th appearance of
ti,j and the l-th appearance of det in the tensor are contracted if and only if the
letter ai,j,k turns up in the l-th bracket. This is the invariant associated to the
bracket monomial.

We have two fundamental statements: first, all invariants come from bracket
polynomials and second, all relations between bracket polynomials come from the
Plücker relation

∑

(u1,u2)⊢(u)

[u1] [u2w] = 0,

where u is a word of length n + 1, w a word of length n − 1, and we sum over all
partitions of u in two subwords u1 of length n and u2 of length one. In the case
ni = 0 for i 6= 1, this gives the standard Plücker relations (without sign, which is
due to the nature of the involved superalgebras, see Section 2).

This sets the starting point for our method. We associate to each bracket mono-
mial a colored hypergraph defined as follows: for each bracket, we have a vertex,
and for each letter ai,j,k, we have an i-edge of color j and shading k. We ignore
the shading for a moment, as it just affects sign. Now if the letter ai,j,k turns up
in a bracket, the respective i-edge has a connection to the vertex associated to the
bracket. For a similar (somewhat dual) approach involving directed graphs in the
case of binary forms see [25] and also [23, 24, 26]. This approach has just recently
been applied to determine the ideal of relations of several points on the projective
line, see [12, 13, 14, 15, 19].

At first sight, the problem is much more involved in our case: excluding the
already settled cases n = 2, 3, we deal with vertices of degree n ≥ 4 and i-edges
with i ≤ n − 1. But it turns out that the Plücker relations from above can be
used to substantially simplify the involved hypergraphs, which in turn allows us
to effectively use combinatorial and graph theoretical results. We develop suitable
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techniques in Sections 3, 4, and 5. One of the greatest advantages of the approach is
the self-containedness, making it comprehensible for everyone with basic knowledge
on combinatorics.

In the case of SL4, we explicitly list a minimal set of generators of C[W ]SL4 in
the following theorem. Here and throughout the paper, for the colors of 1-edges
we use typewriter font, for those of 2-edges bold letters and for 3-edges Fraktur
letters. We denote the standard coordinate functions on V1,j by xj1, . . . , xj4, those
on V2,j by yj12, . . . , yj34, and on V3,j by zj123, . . . , zj234. Moreover, to ease notation,
colors 1, 2, . . . , N of i-edges stand representatively for arbitrary but ascending colors
1 ≤ k1, k2, . . . , kN ≤ ni.

Theorem 1.1. Let SL4 act on an arbitrary sum of fundamental representations W .
Then a minimal generating set of C[W ]SL4 is the following, where if the respective
invariant is too big, only the number of monomials is given. In these cases, consult
the appendix [1] for the actual invariant.

Graph Invariant Symbol

1

24

3

∣

∣

∣

∣

∣

∣

∣

x11 · · ·x41

...
. . .

...
x14 · · ·x44

∣

∣

∣

∣

∣

∣

∣

∣

∣

1234

∣

∣

4

1 2 3

∣

∣

∣

∣

∣

∣

∣

z1234 · · ·z4234

...
. . .

...
z1123 · · ·z4123

∣

∣

∣

∣

∣

∣

∣

∣

∣
1234

∣

∣

1

1

2(y112y134 − y113y124 + y114y123)
∣

∣11
∣

∣

1

2

y112y234 − y113y224 + y114y223

+y134y212 − y124y213 + y123y214

∣

∣12
∣

∣

6

2 4

1 3 5

−

5

1 3

6 2 4

∣

∣

∣

∣

∣

∣

∣

y112 · · ·y612

...
. . .

...
y134 · · ·y634

∣

∣

∣

∣

∣

∣

∣

∣

∣123456
∣

∣

1

1

x11z1234 − x12z1134 + x13z1124 − x14z1123

∣

∣

1
1
∣

∣

1

1 2

y112(x13x24 −x14x23) + y113(x14x22−x12x24)
+y114(x12x23 −x13x22) + y123(x11x24−x14x21)
+y124(x13x21 −x11x23) + y134(x11x22−x12x21)

∣

∣

112

∣

∣

1

2

3

1 1

96
∣

∣

11231

∣

∣

1

2

3

1 2

108
∣

∣

11232

∣

∣

1

2

3

4

5

1 2

972
∣

∣

1123452

∣

∣
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1

1

2

12
∣

∣
112
∣

∣

1

1

2

3

1

96
∣

∣
11231

∣

∣

1

1

2

3

2

108
∣

∣
11232

∣

∣

1

1

2

3

4

5

2

972
∣

∣
1123452

∣

∣

1

2

1

1

36
∣

∣

1121
∣

∣

1

2

3

4

1

1

324
∣

∣

112341
∣

∣

Corollary 1.2. All geometric incidence relations between n1 points, n2 lines, and
n3 planes in P3(C) can be expressed by means of the invariants from Theorem 1.1.

It follows a generating set for the respective invariants of SL5. Here the number
of graphs coming into consideration turns out to be considerably larger as in the
case of SL4. Thus in the following theorem, we do not give all different colorings
of each graph. We did this exemplarily in the special case ni = 0 for i 6= 2 (for
graphs only with 2-edges in other words), see Proposition 5.1 at the beginning of
Section 5.

Moreover, by the duality of
∧iV and

∧n−iV , we have mirror invariants and also
mirror graphs, where i-edges of the one correspond to (n − i)-edges of the other.
For example, the first two graphs from Theorem 1.1 are mirrors, while graphs three
to six are their own mirror each. On the invariant side, it is straightforward to get
the mirror by replacing xja by zjbcd and vice versa, as well as yjab by yjcd - where
{a, b, c, d} = {1, 2, 3, 4} - in the case of SL4, and analogously for greater n. Thus
we consider only one graph of each mirror pair in the following theorem. Lastly,
there are the following types of ’building blocks’ that can be attached to some of
the graphs:

α =
,

ν ∈

{

, , ,
α

}

,
ν ∈

{

, , ,

}

,

τ =
,

τ ∈

{

τ

, ,
τ

}

,

κ ∈ { ν , τ ν }, κ ∈ { ν , τ ν }.

Theorem 1.3. The following graphs with all possible combinations of building
blocks attached and all possible colorings with respect to the conditions:

• the number of vertices with at least one looping 2-edge plus the number of
non-looping two edges is less than or equal to nine,

• the number of blocks α plus the number of 3-edges that are not part of a
block α is less than or equal to nine,

• the number of 3-edges is less than or equal to the number of 2-edges,

together with their mirrors constitute a generating set of C[W ]SL5 .
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τ

τ

τ

τ

τ
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Corollary 1.4. All geometric incidence relations between n1 points, n2 lines, n3

planes, and n4 hyperplanes in P4(C) can be expressed by means of the invariants
from Theorem 1.3.

Finally, we present relations that hold between the generators of C[W ]SL4 . Most
of them can be generalized to n ≥ 5. The notation

(u1, . . . , uM ) ⊢ (u)

means that we sum over all partitions of the word u in M subwords uk = lk,1 · · · lk,Nk

of the lengths Nk. If we have an ordering on the letters of u, then we require u and
all subwords to be ordered and for every summand define sgn(⊢) to be the sign of
the underlying permutation of letters u 7→ u1 · · · uM .

Theorem 1.5. The following sums of graphs correspond to polynomials in the ideal
of relations of C[W ]SL4 , where the not necessarily connected (sub-)graphs Γ and Γi

have to be chosen such that all involved graphs are out of the minimal generating
set from Theorem 1.1.

Υ1 =
∑

(ijkl,m)⊢(12345)

i

jl

k m

Γ

,
Υ2 =

1

24

3 2

1

−
∑

(ij,kl)⊢(1234)

1

i j

2

k l ,

Υ3 =

1

24

3

1

Γ

−
∑

(ij,k,l)⊢(1234)

1

i j

k l

Γ ,

Υ4 =

1

24

3

1

2

Γ

+
∑

(ij,k,l)⊢(1234)

1

i j k

l2

Γ ,

Υ5 =

1

24

3

1

1

Γ

−
∑

(i,jk,l)⊢(1234)

1

i

1

j k l

Γ

,

Υ6 =
∑

(i,j)⊢(12)

1

2 i

Γ1

j

Γ2

−
∑

(i,j)⊢(12)
sgn(⊢)

(

1

Γi
1

2

2

Γj

+

2

Γi
1

1

2

Γj

+

i

1 2

j

Γ1 Γ2

)

,

Υ7 =
∑

(i,j,k)⊢(123)
i

Γ1

j

Γ2
1

k

2

Γ3

+
∑

(i,jk)⊢(123)

(

i

Γ1
1

j k

2

Γ2 Γ3

+

i

Γ3
2

j k

1

Γ1 Γ2

+

i

Γ2
1

j k

2

Γ1 Γ3

)

,

Υ8 = 2

1

2

(

8

4 6

3 5 7

−

7

3 5

8 4 6
)

+
∑

(g,h)⊢(12)

∑

(i,jklmn)⊢(345678)
(−1)i

g

i

(

n

j l

h k m

−

m

h k

n j l )

−
∑

(i,jk,l)⊢(3456)
sgn(⊢)

(

1

8

2

i

j

k

l

7

+

2

8

1

i

j

k

l

7

)

,
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Υ9 =

i6

i2 i4

i1 i3 i5

j6

j2 j4

j1 j3 j5

+ det

( ir

js

)

1≤r,s≤6

Υ10 =
∑

(i1···i6,j1)⊢(k1...k7)
i6

i2 i4

i1 i3 i5

j6

j2 j4

j1 j3 j5

.

These relations emerge from somewhat natural principles that are discussed in
the proof of Theorem 1.5 in Section 6. This fact together with calculations of the
Hilbert series for small values of ni using [6, §4.6] and Xin’s algorithm [37] for
MacMahon partition analysis leads us to our final conjecture:

Conjecture 1.6. The graphsums from Theorem 1.5 generate the ideal of relations
of C[W ]SL4 .

The paper is organized as follows: in Section 2, we give the necessary background
on the symbolic method from [10], then in Section 3 we introduce (edge-)colored
hypergraphs and give some general statements on the behaviour of these under
relations, and restrictions concerning colorings. In Sections 4 and 5, we develop
techniques in order to find the generating sets of C[W ]SL4 and C[W ]SL5 of Theo-
rems 1.1 and 1.3 respectively. Most of these techniques are applicable for general
n. In Section 6, we prove Theorem 1.5. The relation-generating principles are ap-
plicable for n ≥ 5 as well. Finally, Section 7 gives an outlook on possible further
applications of the hypergraph method.

Contents

1. Introduction 1
2. Invariants and brackets 7
3. Brackets and graphs 10
4. Invariants of SL4 12
5. Invariants of SL5 16
6. Relations of SL4 21
7. An outlook 24
References 24

2. Invariants and brackets

This section is merely a summary of the parts of [10] that are relevant for anti-
symmetric tensors. All notation is as close as possible to the one from [10]. Fix a
natural number n, a complex vector space V of dimension n and a basis e1, . . . , en

of V . Now let the special linear group SLn act on V by multiplication from the left.
This induces an action of SLn on

∧iV for every 1 ≤ i ≤ n − 1. Fix some integer
ni ≥ 0 for every such i and set Vi,j :=

∧iV for every 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ ni.
Then the action of SLn on V finally induces an action on

W := W(n1,...,nn−1) =
n−1
⊕

i=1

ni
⊕

j=1

Vi,j =
n−1
⊕

i=1

(

∧i
V

)ni

.

We can identify the ring of polynomial functions on W with C [Ti,j,ι1···ιi
], where

1 ≤ j ≤ ni, {ι1 < . . . < ιi} ⊆ {1, . . . , n}. We do this by linearly mapping Ti,j,ι1···ιi
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onto a function f so that for an element

t =

n−1
∑

i=1

ni
∑

j=1

∑

ι1<...<ινi

ti,j,ι1···ιi
eι1

∧ . . . ∧ eιi

of W we have f(t) = ti,j···ιi
.

Now following [10] we introduce an ordered alphabet P = {1, . . . , n} with 1 <
. . . < n of so called places and the algebra Ext(P ), which is the exterior algebra
generated by the places. We denote multiplication in Ext(P ) by juxtaposition.
Moreover, for every Vi,j , we introduce an infinite number of so called letters ai,j,k

for all k ∈ N forming the alphabet L. We set ai1,j1,k1
< ai2,j2,k2

if either i1 < i2 or
i1 = i2 and j1 < j2 or i1 = i2 and j1 = j2 and k1 < k2.

Definition 2.1. Let A be an alphabet, then the divided powers algebra Div(A) is
the commutative algebra generated by symbols a(i), where a ∈ A and i ∈ N. We
denote multiplication in Div(A) by juxtaposition. Moreover, we set a(0) = 1 and
a(1) = a and impose the identity

a(i)a(j) =

(

i + j

j

)

a(i+j).

We define the length of the word a(i) to be |a(i)| = i.

Now we proceed with the divided powers algebra Div(L) generated by the alpha-
bet L of letters and define a third alphabet [L|P ], the letterplace alphabet having
as elements pairs (x|α), where x ∈ L, α ∈ P . The algebra Ext([L|P ]) is called the
fourfold algebra.

Definition 2.2. We define a bilinear form

(∗|∗) : Div(L) × Ext(P ) → Ext([L|P ]),

called the biproduct, by the following:

(1) (w|v) = 0 if w and v are words of different length.
(2) (w|v) = (x|α) if w = x is a letter and v = α is a place, thus the image is a

single letterplace.
(3) (1|1) = 1.
(4) (w|vu) =

∑

w1w2=w (w1|v) (w2|u), where the sum ranges over all pairs
w1, w2 of subwords of w such that w1w2 = w.

(5) (vu|w) =
∑

w1w2=±w(−1)δ(w1,w2) (v|w1) (u|w2), where δ(w1, w2) is the num-
ber of transpositions needed to obtain the word w from the word w1w2.

We give some examples to clarify these rules.

Example 2.3. Let a ∈ L. We have a look at the image of (a(2), 12) under the
biproduct. First we want to use Rule (iv) with v = 1, u = 2. Due to Rule (i) we
only have to consider pairs of subwords of length one. We have a(2) = 1

2 aa and we
have two pairs of possible subwords of length one, since we have to distinguish the
two a’s. Thus we get

(a(2)|12) =
1

2
(aa|12) =

1

2
((a|1)(a|2) + (a|1)(a|2)) = (a|1)(a|2).

Using Rule (v) instead, we compute

(a(2)|12) =
1

2
(aa|12) =

1

2
((a|1)(a|2) − (a|2)(a|1)) = (a|1)(a|2).

More generally, for arbitrary i, j, k, l, we get
(

a
(l)
i,j,k|i1 . . . il

)

= (ai,j,k|i1) · · · (ai,j,k|il) .
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For different letters a, b ∈ L, we compute

(ab|12) = (a|1)(b|2) + (b|1)(a|2) = (ba|12).

Now for letters a1, . . . , an, we define the bracket in a1, . . . , an to be the element

[a1 . . . an] := (a1 · · · an|1 · · · n)

of Ext([L|P ]). A bracket monomial is a product of brackets and a bracket polynomial
is a linear combination of bracket monomials. We denote the subalgebra of all
bracket polynomials of Ext([L|P ]) by Br(L).

Lemma 2.4 ([10], ’Exchange Lemma’, p. 60). Let u, v, w be words in Div(L).
Then

∑

u1u2=u

[u1v] [u2w] = (−1)n−|w|
∑

v1v2=v

[v1u] [v2w] .

Proposition 2.5. All identities among bracket polynomials can be deduced from
the identity of Lemma 2.4 with |u| = 2, |w| = n − 1.

Proof. The fact that all identities can be deduced from Lemma 2.4 follows directly
from Theorem 8 of [10]. Thus - as was stated in [10] on page xv - it can be used
for an abstract definition of (skew) brackets. The fact that all those identities stem
from the ones with Length(u) = 2 is clear. �

Remark 2.6. In Proposition 2.5, one can replace ’|u| = 2, |w| = n − 1’ with
’|u| = n + 1, |w| = 0’.

Finally, we bring together brackets and invariants of the action of SLn on W by
the following linear map.

Definition 2.7. Let the linear umbral operator

U : Ext([L|P ]) →C[W ]

f 7→ 〈U, f〉

be defined by the following:

(i)
〈

U,
(

a
(i)
i,j,k|ι1 . . . ιi

)〉

= Ti,j,ι1,...,ιi
,

(ii)
〈

U,
(

a
(l)
i,j,k|ι1 . . . ιl

)〉

= 0 if l 6= i,

(iii)

〈

U,
∏

i,j,k

(

a
(li,j,k)
i,j,k |ι1 . . . ιli,j,k

)

〉

=
∏

i,j,k

〈

U,
(

a
(li,j,k)
i,j,k |ι1 . . . ιli,j,k

)〉

,

where in (iii), the order of the letterplaces in the word
∏

i,j,k(a
(li,j,k)
i,j,k |ι1 . . . ιli,j,k

)
must be according to the order of the letters ai,j,k.

Example 2.8. For arbitrary n and any permutation σ ∈ Sn, we have

〈U, [a1,1,1 · · · a1,n,1]〉 =
〈

U,
[

a1,σ(1),1 · · · a1,σ(n),1

]〉

=

∣

∣

∣

∣

∣

∣

∣

T1,1,1 · · · T1,n,1

...
. . .

...
T1,1,n · · · T1,n,n

∣

∣

∣

∣

∣

∣

∣

as a1,1,1 < . . . < a1,n,1.

Theorem 2.9 ([10], Thm. 18). The umbral operator U : Ext([L|P ]) → C[W ] is
surjective and its restriction to the bracket polynomials Br(L) is onto C[W ]SLn .

We are only interested in bracket polynomials that are not in the kernel of U .
Thus in the following, we consider the subalgebra Bra(L) of appropriate bracket
polynomials, where if a letter ai,j,k turns up in an appropriate bracket monomial,
it does so exactly i times. Of course, the restriction of U to Bra(L) is still onto
C[W ]SLn .
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3. Brackets and graphs

In this section, we develop the basis of our method: bracket polynomials are
associated with formal sums of colored hypergraphs.

Definition 3.1. Let X be a set. Then we denote by M(X) the set of nonempty
multisets composed of elements of X .

Definition 3.2. Let m be a positive integer. An undirected n-regular colored
hypergraph Γ with m vertices is a pair Γ = (V , E), where V = {v1 < . . . < vm}
is the ordered set of vertices and E ∈ P (M(V) × N × N) is the set of colored
hyperedges e = (e1, e2, e3), and for all vertices v, we have

∑

e∈E

#v (e1) = n,

where #v (e1) is the number of connections of e to v, i.e. the number of occurences
of the element v in the multiset e1. By the virtual degree of a vertex v, we mean
the number

vdeg(v) = n −
∑

({v,...,v},e2,e3)∈E

|{v, . . . , v}| .

By the effective graph Γeff of Γ = (V , E), we denote the subgraph

Γeff = (V , E \ {e|e1 = {v, . . . , v}, v ∈ V}).

If e = (e1, e2, e3) is a hyperedge, then we call k = |e1| the size, e2 ∈ N the color
and e3 ∈ N the shading of e. We call e a k-edge. We say that e is connected to v,
if v ∈ e1. If e is connected to only one v, then we call it a looping edge.

Observe that multiple edges and loops are allowed in this definition of a hyper-
graph, so it is truly a pseudo-hypergraph.

Definition 3.3. Now let G be the C-vector space of formal sums of C-multiples of
n-regular colored hypergraphs. On G, we define a (non-abelian) multiplication as
follows. For Γ1 = ({v1 < . . . < vm}, E1) and Γ2 = ({w1 < . . . < wm}, E2) in G, we
set

Γ1Γ2 := Γ1 · Γ2 := ({v1 < . . . < vm < w1 < . . . < wm}, E1 ∪ E2)

and extend to formal sums of graphs in the obvious way. This makes G a C-algebra.
We call elements Υ =

∑

aiΓi ∈ G graphsums.

To a hypergraph Γ = ({v1 < . . . < vm}, E1), we associate a bracket monomial
pΓ = b1 · · · bm with brackets b1, . . . , bm defined by:

bi :=

[

∏

e∈E

a
(#vi

(e1))

|e1|,e2,e3

]

.

This gives a linear surjective map γ : G → Bra(L) by setting

γ :
∑

aiΓi 7→
∑

aipΓi
.

Now we set G := G/ker(γ) and by γ′ : G → Bra(L) denote the induced isomorphism.

Example 3.4. We associate the bracket monomial
[

a
(3)
3,1,1a3,4,1

][

a
(2)
2,2,3a3,4,1a2,1,1

][

a3,4,1a2,1,1a1,7,1a1,2,5

]

to the color-and-shading-labeled hypergraph

4, 1

1, 1 2, 3

1, 1

7, 1

2, 5

.
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Convention 3.5. We will often speak only of graphs, when we mean colored hy-
pergraphs. Moreover, we will not number vertices of graphs, but will assume that
they are ordered ascending from left to right. We also ignore shading of edges,
assuming that all k-edges of the same color have different shading.

Definition 3.6. We say that two graphsums Υ1 and Υ2 are equivalent, writing
Υ1 ≃ Υ2 , if Υ1 − Υ2 ∈ ker(U ◦ γ). We call a graphsum Υ reducible, if it is
equivalent to zero or to some

∑

aiΓi with all Γi disconnected. A graphsum is
irreducible if it is not reducible.

Several graphsums Υ1, . . . , ΥN are called reducibly independent, if the only re-
ducible linear combination

∑

aiΥi is the trivial one. If for two graphsums Υ1, Υ2

the linear combination Υ1 − Υ2 is reducible, we call them reducibly equivalent and
write Υ1 ≃r Υ2. We say that a set of reducibly independent irreducible graphs has
property (RI).

Remark 3.7. The Exchange Lemma 2.4 leads to equivalencies between graphsums.
If two graphsums are equivalent in this way, for any pair of graphs occuring in the
two graphsums, there is a color-preserving one-to-one-correspondence between the
edges.

Theorem 3.8. Let M be a maximal set with property (RI). Then M is in one-to-
one-correspondence to a minimal generating set of C[W ]SLn by Γ 7→ U ◦ γ(Γ).

Proof. Let M be a maximal set of reducibly independent irreducible graphs in G.
Let F := U ◦ γ(M). Since U ◦ γ is surjective, for any element f of C[W ]SLn , we
have a graphsum Γ with U ◦ γ(Γ) = f . If Γ is irreducible, then either Γ ∈ M and
thus f ∈ F , or if Γ /∈ M , due to maximality of M , there is a reducible nontrivial
linear combination

Γ +
∑

Γ′∈M

aΓ′Γ′.

Due to linearity of U ◦ γ, we can proceed with reducible Γ. Either Γ = 0, then
f = 0, or Γ is equivalent to a graphsum of disconnected graphs. We can assume all
connected subgraphs are irreducible and thus proceed with an irreducible graph,
where the number of vertices is strictly less than that of Γ. Since the number of
vertices of graphs is bounded from below, this procedure comes to an end. So
F generates C[W ]SLn . The minimality of F follows immediately from M being
reducibly independent. �

Lemma 3.9. Let the graph Γ = (V , E) have a hyperedge e′ = (e′
1, e′

2, e′
3) with v ∈ e′

1.
Then Γ is equivalent to a graphsum

∑

i(V , Ei) where Ei \{e|v ∈ e1} ⊆ E \{e|v ∈ e1}
and ({v, ..., v}, e′

2, e′
3) ∈ Ei for all i.

Proof. We can assume that v is the smallest element of V . If #v(e′
1) = |e′

1|, we are
done. Thus take #v(e′

1) = κ < |e′
1|. We can assume that for the second smallest

element v′ of V we have #′
v(e′

1) = ν ≥ 1. So

γ(Γ) =
[

a
(κ)
|e′

1
|,e′

2
,e′

3

w1

][

a
(ν)
|e′

1
|,e′

2
,e′

3

w2

]

m

for some w1, w2 ∈ L and m a bracket monomial. Now applying Lemma 2.4 with

u = a
(κ+ν)
|e′

1
|,e′

2
,e′

3

, we see that Γ is equivalent to a graphsum
∑

i(V , Ei) where Ei \{e|v ∈

e1} ⊆ E \ {e|v ∈ e1} and (e′′
1 , e′

2, e′
3) ∈ Ei with #v(e′′

1) = κ + ν. Iterating this gives
the desired result. �

Remark 3.10. When searching for a maximal set of reducibly independent irre-
ducible graphs, Lemma 3.9 can be used to simplify the respective effective graphs.
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Proposition 3.11. Let Γ be an irreducible graph with arbitrary coloring which is
not reducibly equivalent to cΥdet(J) for any J ⊆ {1, . . . , nk} and c ∈ C. Let M be

the set of graphs of the same form as Γ but with k-edges of only
(

n
k

)

− 1 different

colors. Then at least one element of M is irreducible. Moreover, if nk ≥
(

n
k

)

and

J ⊆ {1, . . . , nk} has cardinality
(

n
k

)

, then det : ⊕j∈JVk,j → C equals U ◦ γ(Υdet(J))
for some irreducible graphsum Υdet(J).

Proof. This follows directly from Theorem 9.2 of [26]. �

4. Invariants of SL4

In the case of SL4, it turns out that elementary graph theoretical and combi-
natorial considerations suffice to determine a minimal generating set of C[W ]SL4 .
This means that the present section is almost totally self-contained.

Proposition 4.1. The following graphs constitute a maximal set of reducibly in-
dependent irreducible graphs for the action of SL4 on W .

1

1

24

3

2
4

1 2 3

3a

1

1

3b

1

2

4

6

2 4

1 3 5

5

1

1

6

1

1 2

7a

1

2

3

1 1

7b

1

2

3

1 2

7c

1

2

3

4

5

1 2

8a

1

1

2

8b

1

1

2

3

1

8c

1

1

2

3

2

8d

1

1

2

3

4

5

2

9a

1

2

1

1

9b

1

2

3

4

1

1

Remark 4.2. According to Proposition 3.11, some multiple of graph no. 4 must
be reducibly equivalent to some graphsum Υ with U ◦ γ(Υ) = det. In fact,

Υ =

6

2 4

1 3 5

−

5

1 3

6 2 4

≃r 2

6

2 4

1 3 5

has this property, as it is alternating in the colors, i.e. Υ is not only reducibly, but
truly equivalent to sgn(σ)Υσ. The more pleasant display has of course graph no.
4, while for some purposes like for example finding relations, Υ will do better. The
corresponding bracket polynomial, as well as those of graphs no. 3a and 3b, turns
also up in [22, 29, 36], while no attempt is made there to show that these give a
minimal generating set of C[W(0,n2,0,0)]

SL4 .

Lemma 4.3. Every irreducible graph for the action of SL4 on W is reducibly
equivalent to a graphsum

∑

aiΓi, where all Γi are of the same form. This form is
one of the following:

1. 2. 3. 4. 5.

6. 7. 8. 9.
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Proof. Let Γ be an irreducible graph. First assume Γ has only 1-edges. Then Γ is
connected and thus irreducible only if it has one vertex. We are in Case 1.

Now assume Γ has only 3-edges. Then with Lemma 3.9, it is reducibly equivalent
to a sum of graphs Γi having only vertices of virtual degree one. Now take one vertex
v1 of an arbitrary Γi. There must be a non-looping 3-edge e with one connection
to v1. Since all vertices have virtual degree one, there must be two vertices v2 and
v3 with e = {v1, v2, v3}. Thus v1, v2 and v3 together with e and their respective
looping 3-edge are a connected component of Γi and since Γi is connected, we are
in Case 2.

If now Γ has only 2-edges and it has only one vertex, we are in Case 3. Assume
it has more than one vertex. Again by Lemma 3.9, Γ is reducibly equivalent to
a sum of connected graphs Γi where for each of them every vertex has one (and
only one) looping edge and is thus of virtual degree two. The effective graph of an
arbitrary Γi must be a connected simple 2-regular graph, i.e. a cycle, and we are in
Case 4.

We come to the cases where Γ has hyperedges of two different sizes. Let us
begin assuming there are 1- and 3-edges. Again using Lemma 3.9, we can move
on to some Γi with vertices v1, . . . , vN each with a looping 3-edge. If there is an
additional vertex vN+1 with a connection to a 3-edge, we can move on to a graph
having N +1 vertices with a looping 3-edge. If there is an additional vertex with no
connection to a 3-edge, it constitutes a connected component like in Case 1. Thus
we can assume all vertices of Γi have a looping 3-edge. Now if any vertex despite
for its looping 3-edge has a connection to another 3-edge, we have a connected
component like in Case 2. Thus each vertex must have a connection to a 1-edge.
Since Γi is connected we are in Case 5.

Now let Γ have 1- and 2-edges. We use Lemma 3.9, move on to some Γi and can
with the same argumentation as in the previous case assume that every vertex has
a looping 2-edge. If there is a vertex connected to two 1-edges, we are in Case 6.
If not, there are vertices of virtual degree one and two. Thus the effective graph of
Γi must be a chain and we are in Case 7.

The same argumentation goes through if Γ has 2- and 3-edges. By Lemma 3.9,
we have vertices of virtual degree one and two and the effective graph of Γi must
be a chain, giving Case 8.

Finally let Γ have 1-, 2-, and 3-edges. Once more, we have vertices of virtual
degree one and two by Lemma 3.9 and the effective graph of Γi must be a chain,
leading to Case 9. �

When we say ’Γ is of the form n’ in the following, we mean that the graph Γ falls
under Case n of Lemma 4.3, while we use the term ’graph no. n’ for the colored
graphs from Proposition 4.1.

Lemma 4.4. Let Γ be one of the graphs from Lemma 4.3 with two or more vertices
and arbitrary coloring, let σ be a permutation of the colors of the 2-edges and Γσ

be the graph with permuted colors. Then Γ ≃r sgn(σ)Γσ.

Proof. We show that Γ ≃r −Γσ, where σ swaps the colors of a looping and a non-
looping 2-edge connected with the same vertex. From this the assertion follows
immediately.

So let v 6= v′ be vertices of Γ and ({v, v}, j1, k1), ({v, v′}, j2, k2) the respective

two edges. We use Lemma 2.4 with u = a
(2)
2,j1,k1

a
(2)
2,j2,k2

and get Γ+Γσ ≃ −Γ′, where

Γ′ has the looping 2-edges ({v, v}, j1, k1), ({v, v}, j2, k2) and is thus reducible. So
Γ ≃r −Γσ. �
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Proof of Proposition 4.1. For graphs Γ of the forms 1, 2 and 5, the corresponding
invariants are ’determinants’ and ’dot products’, in classical terms ’invariants of
systems of vectors and linear forms’, see for example [26, p. 254]. Graphs of the
form 3 either give the ’Pfaffian’ if both edges have the same color, or a variation of
it. Graphs Γ of the form 6 neither are disconnected nor U ◦ γ(Γ) = 0 unless both
1-edges have the same color.

The remaining types to check for irreducibility are 4, 7, 8, 9. By the duality of V
and

∧n−1V , we can reduce form 8 to form 7. Thus 4, 7, 9 remain. In all these cases
we require all 2-edges to be of pairwise different color, otherwise Lemma 4.4 with
σ swapping two edges of the same color would result in Γ ≃r (Γ + Γσ)/2, which is
reducible.

Now first we show that if a graph of one of these types has four or more vertices,
it is reducible. We observe graphs Γi of the forms:

Γ4 =

3 5 7 n − 1

2 n

4 1 6 Γ7 =

3 5 7 n − 1

2 1 2

4 1 6 Γ9 =

3 5 7 1

2 1

4 1 6

We proceed exemplarily with Γ4. Applying Lemma 2.4 with u the word correspond-
ing to the 2-edge of color 1, we get that

Γ4 +

3 5 7 n − 1

2 n

4

1

6

+

3 5

7 n − 1
2

n

4

1

6

is reducible. Let us call the second and third graph in this sum Γ4,1 and Γ4,2

respectively. Since graphs with permuted vertices are equivalent, by swapping
colors 1 and 5 as well as 2 and 4, we get Γ4,2 ≃r Γ4,1, so Γ4 ≃r −2Γ4,1. Applying
Lemma 2.4 again, now with u the word corresponding to the 2-edge of color 6, we
get that

Γ4 +

3 5 7 n − 1

2 n

4

6

1

+

3 5

7 n − 1

n

2

4

6

1

is reducible. Calling the second and third graph in this sum Γ4,3 and Γ4,4 respec-
tively, by symmetry reasons, we have Γ4,3 ≃r Γ4,4 and by swapping the edges of
colors 1 and 6 in Γ4,3 we get Γ4,3 ≃r −Γ4,1, thus 2Γ4,1 ≃r −2Γ4,1 and Γ4,1 must
be reducible. Exactly the same procedure, namely two times applying Lemma 2.4,
one time on the edge of color 1, one time on that of color 6, leads to reducibility of
graphs of the forms 4, 7, and 9 with four or more vertices. We observe these with
three or less vertices in the following.

Case 1: Γ is of the form 7. Here Γ has either two or three vertices. We first check
these with two vertices. All of the graphs with 2-edges of pairwise different colors
1, 2, 3, and 1-edges of possibly non-different colors 1 and 2 are either reducible or
of the form Γσ, where σ permutes colors of 2-edges and

Γ =

1

2

3

1 2 .

We define a map φ : G → C by setting φ(cΓσ) = sgn(σ)c and φ(Γ′) = 0 for graphs
Γ′ of other forms. Since Γ /∈ ker(U ◦ γ) and all relations from Lemma 2.4 with
|u| = 2 involving Γ are compatible with φ in the sense that φ(Υ1) = φ(Υ2) if
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γ(Υ1) = γ(Υ2) for two graphsums Υ1 = Γ + Υ′
1 and Υ2, φ induces a well-defined

map φ′ : G/ ker(U ◦ γ) → C and Γ is irreducible.
Now if Γ is of type 7 with three vertices and the two 1-edges are of the same

color, we have U ◦ γ(Γ) = −U ◦ γ(Γτ ), where τ interchanges the two 1-edges. On
the other hand, we have

1

2

3

4

5

1 1

≃r

5

4

3

2

1

1 1

by swapping colors 1 and 5 as well as 2 and 4 of 2-edges and see that Γ is reducible.
Now all graphs with three vertices and with 2-edges of pairwise different colors 1-5
and 1-edges of different colors 1 and 2 are either reducible or of the form Γσ, Γ′

σ,
where σ permutes 2-edges and

Γ =

1

2

3

4

5

1 2 ,
Γ′ =

1

2 4

1

2

3 5

.

By applying Lemma 2.4 on the 2-edge of Γ′ of color 1, we see that Γ′ ≃r −2Γ.
Similar as we did before, we define a map φ : G → C by setting φ(cΓσ) = sgn(σ)c,
φ(cΓ′

σ) = −sgn(σ)2c and φ(Γ∗) = 0 for graphs Γ∗ of other forms. As before, φ
induces a well-defined map φ′ : G/ ker(U ◦ γ) → C and Γ thus is irreducible.

Case 2: Γ is of the form 4. If such a graph has two vertices, it has two edges

({v1, v2}, j1, k1) and ({v1, v2}, j2, k2). Then by Lemma 2.4 with u = a
(2)
2,j1,k1

a
(2)
2,j2,k2

,
it is reducible. The case of three vertices remains. All graphs with three vertices
and six 2-edges of different colors 1-6 are either reducible or of the form Γσ, where

Γ =

6

2 4

1 3 5

.

Again the map φ : G → C defined by φ(cΓσ) = sgn(σ)c and φ(Γ∗) = 0 for graphs
Γ∗ of other forms induces a well-defined map φ′ : G/ ker(U ◦ γ) → C and Γ thus is
irreducible.

Case 3: Γ is of the form 9. Here Γ can have two or three vertices. We begin
with the case of two. All graphs with one 1-edge of color 1, two 2-edges of colors 1
and 2, and one 3-edge of color 1 are either reducible or of the form (Γi)σ with

Γ1 =

1

2

1

1 ,
Γ2 =

1 2

1 1 ,
Γ3 =

1

2

1

1 .

Applying Lemma 2.4 with u the word corresponding to the 3-edge, we see Γ3 ≃r

Γ2 ≃r Γ1. The map φ : G → C defined by φ(c(Γi)σ) = sgn(σ)c and φ(Γ∗) = 0 for
graphs Γ′ of other forms induces a well-defined map φ′ : G/ ker(U ◦ γ) → C and Γ1

thus is irreducible.
We come to those graphs with three vertices. All graphs with one 1-edge of color

1, four 2-edges of pairwise different colors 1-4, and one 3-edge of color 1 are either
reducible or of the form (Γi)σ with

Γ1 =

1

2

3

4

1

1 ,
Γ2 =

1

2

3 4

1 1 ,
Γ3 =

1

2 3

4

1 1 ,
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Γ4 =

1

2 3

4

1 1 ,
Γ5 =

1

2 4

3 1

1 ,
Γ6 =

1

2 3

41

1 .

We apply Lemma 2.4 with u the word corresponding to the 3-edge (to two
ends of the 3-edge in the case of Γ6) and get Γ1 ≃r Γ3 ≃r −Γ2 ≃r −Γ5 and
Γ6 ≃r Γ4 ≃r −2Γ1. The map φ : G → C defined in the usual form induces a
well-defined map φ′ : G/ ker(U ◦ γ) → C and Γ1 thus is irreducible. The proof is
complete.

�

Remark 4.5. To show that the graphs with four (five in the case of those of form
8 respectively) or more vertices are reducible, we also could use Proposition 3.11
together with the fact that graphs with two 2-edges of the same color are reducible.
We preferred the more self contained version here, because it provides more insight
why this is so from our combinatorial viewpoint. We want to stress that in our
opinion, this reducibility is almost impossible to see without the graph notation,
which might explain why Huang in [18] could not reduce her generating set of cycles
to a minimal one.

Moreover, to show the irreducibility of the remaining graphs, one can also com-
pute the Hilbert series for small but sufficiently large values of respective ni’s us-
ing [6, §4.6] and Xin’s algorithm [37] for MacMahon partition analysis. In fact,
Xin’s algorithm performs very good for such small values in our case.

Proof of Theorem 1.1. Proposition 4.1 provides us with a maximal set of reducibly
independent irreducible graphs. The corresponding invariants can be computed
according to the rules from Definition 2.7 or by computing the complete contractions
given in the introduction. The author used the DifferentialGeometry package of
Maple for these computations. �

5. Invariants of SL5

In order to prove Theorem 1.3, we need some more techniques than the ones we

developed for SL4. The duality of
∧kV and

∧n−kV becomes very important and
we introduce a new reducibility notion that is essential (and will be even more in
higher dimensions). As Theorem 1.3 does not provide any colorings, we give these
exemplarily for W(0,n2,0,0) in the following.

Proposition 5.1. The following graphs constitute a maximal set of reducibly inde-
pendent irreducible graphs for the action of SL5 on W(0,n2,0,0), where in each case
1 ≤ iiE1 < 2 < . . . ≤ n2 are pairwise different colors of the 2-edges. Moreover,

1a

1

1

2

1

3

1b

1

1

2

3

3

1c

1

2

3

1

4

1d

1

2

3

4

5

2

2

79

46

8

1 3

5

10

3a 1 3

4

65

5

5

2 7

5

3b 1 3

4

75

5

5

2 6

6

3c 1 3

4

66

5

5

2 7

7
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3d 1 3

4

75

5

6

2 8

5

3e 1 3

4

86

5

6

2 5

7

3f 1 3

4

75

5

6

2 9

8

3g 1 3

4

87

5

6

2 10

9

Definition 5.2. We say that a vertex is of type V l1···ls

k1···kr
, if it has a looping ki-edge

for every 1 ≤ i ≤ r and has one connection to a lj-edge for every 1 ≤ j ≤ s.

Definition 5.3. The virtual degree type d(Γ) of a graph Γ with k vertices is the
descending sequence (d1, . . . , dk) of virtual degrees of vertices of Γ. We define a
partial order on the set of graphs for the action of SLn with k vertices by setting

Γ < Γ′ :⇔ (d1, . . . , dk) = d(Γ) < d(Γ′) = (d′
1, . . . , d′

k)

:⇔ d1 ≤ d′
1, . . . , dk−1 ≤ d′

k−1, dk < d′
k.

We call a graphsum
∑

Γi degree-reducible, if it is reducibly equivalent either to 0
or to a graphsum

∑

Γ′
j with d(Γ′

j) < d(Γi) for all i, j. Moreover, in analogy to
Definition 3.6, we say that graphsums Υ1, . . . , ΥN are degree-reducibly independent,
if a linear combination

∑

aiΥi is degree-reducible only if all ai are equal to zero.
If for two graphsums Υ1, Υ2 the linear combination Υ1 − Υ2 is degree-reducible,
we call them degree-reducibly equivalent and write Υ1 ≃d Υ2. We say that a set of
degree-reducibly independent degree-irreducible graphs has property (DI).

Lemma 5.4. A maximal set with property (DI) is also a maximal set with property
(RI), i.e. a set of reducibly independent irreducible graphs.

Proof. Let M be a maximal set with property (DI). Of course, M has property
(RI). Assume M is not maximal with that property. Then there is a graph Γ,
so that M ′ = M ∪ {Γ} still has property (RI), but not (DI). Thus Γ +

∑

aiΓi

is degree-reducible for some Γi ∈ M . So Γ +
∑

aiΓi ≃r

∑

bjΓ′
j with reducibly

independent irreducible Γ′
j so that d(Γ′

j) < d(Γ) for all j. Since M ′ has property

(RI), not all Γ′
j can be elements of M ′. Take Γ′

k /∈ M ′ and assume M ∪ {Γ′
k} does

not have property (RI). Since Γ′
k is irreducible, there must be a reducible sum

∑

ciΓi + Γ′
k with not all ci equal to zero. So we find

Γ +
∑

(ai + bici)Γi ≃r

∑

j 6=k

bjΓ′
j

Thus there must be some Γ′
l so that M ′′ = M ∪ {Γ′

k} has property (RI) and
d(Γ′

k) < d(Γ). Since (0, . . . , 0) is a lower bound for the virtual degree type, iterating
this procedure gives a contradiction. �

Proof of Proposition 5.1. Due to Lemma 5.4, we only have to consider degree-
irreducible graphs. Due to Lemma 3.9, such a graph can be assumed to have
two types of vertices: such with one - type V2 - and such with two looping 2-edges
- type V22 - , being of virtual degree three and one respectively. A graph with a
multiple edge is not necessarily reducible but degree-reducible, due to

41

2

3

≃

4

3

1

2

+

4

2

1

3

+

4

1

2

3

+

42

3

1

.

So we can exclude such graphs as well. We call vertices with two looping edges
black holes, because they ’absorb colors’ in the sense that we can not interchange
the colors of the two looping edges with other edges’ colors in the way we are used
to from the SL4-case. Colors can only be extracted if two of the adjacent edges
have the same color:
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1

1

2 + 2

1

2

1 ≃ 0

On the other hand, if all three adjacent edges have the same color, the graph
evaluates to zero under U ◦ γ. So we exclude this case as well and first let Γ have
two vertices, then it clearly is of the form 1 from the proposition and we get the
relevant colorings by evaluating all other non-equivalent colorings to zero.

Let now Γ have four or more vertices and Γ2 be the subgraph consisting of
vertices of type V2 and all edges with a connection to one of these vertices. Let
Γσ,2 be the graph Γ with the colors inside Γ2 permuted by σ. Then similar as in
the SL4-case, but now with degree-reducibly equivalence, we get Γ ≃d sgn(σ)Γσ,2,
due to

1

2 +

2

1 +
∑

1

2

≃ 0
.

Thus we can use Proposition 3.11 to conclude that either Γ has four vertices and
Γ2 ten edges or Γ2 has at most 9 =

(

5
2

)

−1 edges. In the first case, Γeff is the simple
cubic connected graph K4 and we find Graph 2 from the proposition. In the second
case, we distinguish between the number of vertices of Γ2:

Case 1: Γ2 has one vertex. Here Γ must be of the form:

1 3

4

2

If this graph is reducible for any coloring, it must be reducible for a coloring where
the remaining looping edges are of colors 1, . . . , 9. If the two looping edges of one
black hole are 1, . . . , 4-colored, the graph is reducible. If one looping edge of a
black hole is 1, . . . , 4-colored, say 1, and the other 5, . . . , 9-colored, by moving the
1-colored edge of Γ2 to the black hole, this graph is reducibly equivalent to the
respective one with two looping edges of color 1 at the black hole and one edge of
color 5 in Γ2. So by swapping colors 1 and 5, we can assume that the looping edges
of black holes are 5, . . . , 9-colored. If the four looping edges of two black holes are
colored with only one color, the graph is reducible by moving one of the colored
edges of the first to the second black hole. If two black holes each have colored
their looping edges with the same two colors, say 5 and 6, then we get

5

6

2

4

56

1 ≃r −

1

6

2

4

56

5 −

1

5

2

4

56

6 ≃r
1
2

1

6

4

6

55

2 + 1
2

1

5

4

5

66

2

≃r
1
4

6

6

2

4

55

1 + 1
4

5

5

2

4

66

1

,

and any such graph is reducible. The only remaining possible form for a 1, . . . , 6-
colored graph is reducible as well:

1 3

4

56

5

5

2 6

6

≃ − 1 3

5

46

5

5

2 6

6

− 1 3

6

45

5

5

2 6

6
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For graphs with more than six colors, we get the reducibly independent possibilities
3a-3g.

Case 2: Γ2 has two vertices. Then Γ must have six and is of the form

2 4

6 7

31 5

Due to the considerations from the previous case, this graph must be irreducible
for some coloring of the remaining edges with colors 8, 9. But any such graph is
reducible.

Case 3: Γ2 has three vertices. It either contains more than nine edges, or Γ
must be of the form

2

1 3

4

6

5 7

8

9 .

But this graph is reducible for all the remaining edges colored with colors 1, . . . , 9.
So it is reducible for any coloring.

Case 4: Γ2 has four or more vertices. Then it contains more than nine edges,
which is a contradiction. The proof is complete. �

Proof of Theorem 1.3. We only consider degree-irreducible graphs and do not list
explicit colorings. We also can assume that the number of 2-edges is greater or

equal to the number of 3-edges due to the duality of
∧kV and

∧n−kV . First of
all, we have vertices of the type V11111, these are a connected component. Besides,
there are vertices of virtual degree one of the types V4, V22, V13, and V112. We have
vertices of virtual degree two of the types V3 and V21. Lastly, we have vertices of
virtual degree three of the type V2. We have no multiple 2-edges due to degree-
irreducibility.

All possible graphs with one vertex are irreducible for a suitable choice of colors.
Those with two either have a non-looping 2-edge and any combination of the types
V4, V22, V13, and V112, or they have two 2-edges and two 3-edges and due to degree-
irreducibility, the form of such graph is unique.

So let Γ have three or more vertices. We can assume that there is no non-looping
4-edge, since if there is one and it is only connected to vertices with looping 4-edges,
this constitues a connected component with mirror the graph with one vertex of
the type V11111, on the other hand, if it is connected to a vertex without a looping
4-edge, we can pull it over to this vertex.

If there is a vertex of type V2, V12 or V112, then there is no non-looping 3-edge
due to degree-irreducibility. All 2-edges but the looping ones of black holes V22 can
be permuted and we have Γσ ≃d sgn(σ)Γ as usual.

Case 1: Γ has a vertex of type V2. Here in principle, all graphs stem from
those from the proof of Proposition 5.1, with three possible modifications. Firstly,
vertices of type V22 can be replaced by such of types V4, V13 or V112. Secondly,
arms or cycles can be prolonged by inserting vertices of type V3 and V12, and lastly,
two arms can be connected to a cycle by replacing the two ’end-vertices’ with one
vertex of type V3 or V12. The number of 2-vertices here is always bounded by
Proposition 3.11. We can assume that vertices of types V3 and V12 only are on two
of three sides of a vertex of type V2 by the following:
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1 3 4

2 1

5

≃r − 1 4

2

1

3

5

≃d − 1 4

1

2

3

5

− 4

3

2

3
5

1

,

1 3 5

2 4

1
6

≃d − 1 3 5

2 4

1
6

− 1 3

5

2 4

1
6 .

Moreover, a graph with two vertices of types V3 and V12 joined by a 2-edge and the
graph with these two vertices swapped differ degree-reducibly by a graph with an
additional vertex of type V2:

1 3 4

2

1

1

≃r − 1 4

2

1

1

3

≃d − 1 4

1

2

3

1

− 4

3

2

31

1

.

This graph is either reducible or is considered in the list of generators as well, so
we can in fact swap two such vertices. This directly leads to the graphs from the
Theorem.

Case 2: Γ has no vertex of type V2 and no non-looping 3-edge. In this
case, the only non-looping edges are still those of size two. But now, we only have
vertices of virtual degree one and two. Thus we have two types: chains and cycles.

Case 3: Γ has a non-looping 3-edge. We have no vertices of types V2, V12 or
V112. Assume a non-looping 3-edge of Γ has two connections to one vertex, then
at this vertex due to degree-irreducibility, there is a looping 3-edge. At the second
vertex connected to the non-looping 3-edge, there must be a looping 3-edge as well.
Thus this part of the graph must have the looks

.

If Γ has more than one cycle, the number of 3-edges exceeds the number of 2-edges.
So first assume Γ has no cycle. By

2

1

≃r −
21

≃r

1

2 ,

we can swap 3-edges adjacent to a vertex. In fact, we see that if both have the
same color, the graph evaluates to zero since changing shadings of two k-edges for
odd k results in reversed sign. Moreover, we can assume 2-edges to be only on two
sides of a non-looping 3-edge due to

1

1

2

≃r −

1

1

2

≃r
11

2
+

1

1 2

≃r −

1

1

2

−

2

1

1

≃r −

1

1

2

−

1

2

1 .
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This is the mirrored version of the first equation from Case 1. The mirrored version
of vertices V22 are the blocks α from Theorem 1.3. We conclude that the number
of blocks α plus the number of 3-edges that are not part of a block α is less
than or equal to nine. Only for one non-looping 3-edge of such graph there can
be non-looping 3-edges on three sides, i.e. we have a ’star’. Here only three or
four non-looping 3-edges are possible. If we have a ’chain’, up to five non-looping
3-edges are possible.

Now assume Γ has a cycle (of non-looping 3-edges). Then all vertices of virtual
degree one must be of type V22, otherwise the number of 3-edges would exceed the
number of 2-edges. The cycle can be made up by two, three, or four 3-edges, where
the total number of non-looping 3-edges is smaller or equal to four. We get the
remaining graphs from the theorem.

Finally consider the restrictions on numbers of edges. The last one - number of
3-edges less than or equal number of 2-edges - can be made since we are considering
the mirror graphs as well. For all graphs with no non-looping 3-edges the first two
restrictions are due to the previous observations in Cases 1 and 2, and due to the
last restriction as well as the form of the graphs. For graphs with looping 3-edges,
the same arguments hold with 2- and 3-edges interchanged. �

6. Relations of SL4

Example 6.1. Consider graphs no. 1 and 2 from Proposition 4.1. By applying
the Plücker relation from Lemma 2.4 three times, we can pull over the 3-edge of
color 4 and get the well known - see [26, p. 255] - relation:

1

24

3 4

1 2 3

≃ −
∑

(ijk,l)⊢(1234)
4

1 2 3i

j

k l

≃
∑

(ij,k,l)⊢(1234)
4

1 2 3i

j

k l

≃ −
∑

(i,j,k,l)⊢(1234)

1

i

2

j

3

k

4

l

Proof of Theorem 1.5. We identify four somewhat natural principles generating re-
lations between invariants. All relations from Theorem 1.5 stem from these princi-
ples.

Principle 1a: permuting five 1-edges. This comes from applying the Plücker
relation from Lemma 2.4 on five 1-edges once. Let Γ be an arbitrary graph, con-
nected to a 1-edge, then

∑

(ijkl,m)⊢(12345)

i

jl

k m

Γ

≃ 0
.

Principle 1b: pulling over a k-edge. If we have a product of graph no. 1 and
a second graph with a 2- or 3-edge, we can pull this k-edge over to graph no. 1 and
distribute a total of k 1-edges to the second graph. There are at most k applications
of Lemma 2.4 necessary. In the case of a non-looping 2-edge, we get

1

24

3

1

Γ

≃ −
∑

(ijk,l)⊢(1234)

i

k

l

1

j Γ

≃
∑

(ij,k,l)⊢(1234)

1

i j

k l

Γ ,

where Γ must not be connected. In the case of a looping 2-edge, we have
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1

24

3 1

Γ

≃ − 1
2

∑

(ijk,l)⊢(1234)

i

k

l

1

j

Γ

≃
∑

(ij,kl)⊢(1234)

1

i j k l

Γ

,

which is fine if Γ is a looping 2-edge. If not, then the vertex connected to the 2-edge
of color 1 is connected to another, but non-looping, 2-edge - say of color 2 - and

1

24

3

1

2

Γ

≃
∑

(ij,kl)⊢(1234)

1

i j k

l

2

Γ

≃ −
∑

(ij,k,l)⊢(1234)

1

i j k

l2

Γ

holds. Now in the case of a 3-edge pulled over to graph no. 1, Example 6.1 shows
what happens for the non-looping 3-edge of graph no. 2. Since we can interchange
the edges of graph no. 2 as we want by a simple application of Lemma 2.4, we get
the same relation for one of the looping 3-edges. Thus we can exclude graph no. 2
in the following, which means that we only have to consider graphs with a looping
3-edge on a vertex connected to a 2-edge (of color 1). Here we get

1

24

3

1

1

Γ

≃ − 1
3

∑

(ijk,l)⊢(1234)

i

k

lj

1

Γ
1

≃ −
∑

(i,jkl)⊢(1234)

1

i l

k

1

Γ

j ≃
∑

(i,jk,l)⊢(1234)

1

i

1

j k l

Γ

.

Observe that Principle 1a can be seen as a special case of Principle 1b, namely
pulling over a 1-edge.

Principle 2: bringing together two 1-edges (of two different graphs). This
only works if one of the 1-edges is connected to a vertex with one looping 2-edge
and one non-looping 2-edge. So any combination of graphs no. 1, 5, and 6 gives no
or no new relation. If one of the graphs is graph no. 1, we can reduce to Principle
1 or 2. So we exclude this as well and get

1

Γ1
1

2

2

Γ2

+

2

Γ1
1

1

2

Γ2

+

1

1 2

2

Γ1 Γ2

≃ −

1

2

1 2

Γ1 Γ2

≃

1

Γ2
2

2

1

Γ1

+

2

Γ2
2

1

1

Γ1

+

2

1 2

1

Γ1 Γ2

≃

1

Γ2
1

2

2

Γ1

+

2

Γ2
1

1

2

Γ1

+

2

1 2

1

Γ1 Γ2

+

1

2 2

Γ1

1

Γ2

+

1

2 1

Γ1

2

Γ2

.

Principle 3: bringing together three 1-edges. Here as well one of the 1-edges
must be connected to a vertex with a looping and a non-looping 2-edge and none
of the graphs must be no. 1. We have

∑

(i,j,k)⊢(123)
i

Γ1

j

Γ2
1

k

2

Γ3

+
∑

(i,jk)⊢(123)
i

Γ1
1

j k

2

Γ2 Γ3

≃ −
∑

(i,jk)⊢(123)
i

Γ1

j

k

1 2

Γ2 Γ3

≃

(

k

i

2

Γ3

j 1

Γ1 Γ2

+

k

i

1

Γ2

j 2

Γ1 Γ3

)
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≃ −
∑

(i,jk)⊢(123)

(

i

Γ3
2

j k

1

Γ1 Γ2

+

i

Γ2
1

j k

2

Γ1 Γ3

)

.

Principle 4a: going around circular graphs. We get the second identity in
the following by going around the circular graph with four vertices first with the
2-edge of color 1 and then with the 2-edge of color 2:

1

2 8

4 6

3 5 7

+

8

2 4 6

1 3 5 7

≃ −

8

1 4 6

2 3 5 7

≃
∑

(i,jklmn)⊢(345678)

(

(−1)i+1

1

i n

j l

2 k m )

+

1

2 7

3 5

8 4 6

+
∑

(i,jklmn)⊢(345678)

(

(−1)i+1

2

i n

j l

1 k m )

+

8

2 4 6

1 3 5 7

.

Thus we get

2

1

2

(

8

4 6

3 5 7

−

7

3 5

8 4 6
)

≃
∑

(i,jklmn)⊢(345678)
(−1)i+1

(

1

i n

j l

2 k m

+

1

i m

n k

2 j l

+

2

i n

j l

1 k m

+

2

i m

n k

1 j l )

≃
∑

(g,h)⊢(12)

∑

(i,jklmn)⊢(345678)
(−1)i+1

g

i

(

n

j l

h k m

−

m

h k

n j l )

+
∑

(i,jk,l)⊢(3456)
sgn(⊢)

(

1

8

2

i

j

k

l

7

+

2

8

1

i

j

k

l

7

)

.

Principle 4b: determinantal relations. Consider the matrices

B :=













yj134 yj234 yj334 yj434 yj534 yj634
−yj124 −yj224 −yj324 −yj424 −yj524 −yj624

yj123 yj223 yj323 yj423 yj523 yj623

yj114 yj214 yj314 yj414 yj514 yj614

−yj113 −yj213 −yj313 −yj413 −yj513 −yj613
yj112 yj212 yj312 yj412 yj512 yj612













,

A :=













yi112 yi212 yi312 yi412 yi512 yi612

yi113 yi213 yi313 yi413 yi513 yi613
yi114 yi214 yi314 yi414 yi514 yi614

yi123 yi223 yi323 yi423 yi523 yi623

yi124 yi224 yi324 yi424 yi524 yi624
yi134 yi234 yi334 yi434 yi534 yi634













, C :=







∣

∣i1j1

∣

∣ · · ·
∣

∣i1j6

∣

∣

...
. . .

...
∣

∣i6j1

∣

∣ · · ·
∣

∣i6j6

∣

∣






.
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We have det(A) =
∣

∣i1· · ·i6

∣

∣, det(B) = −
∣

∣j1· · ·j6

∣

∣ and ATB = C. Thus

det(C) +
∣

∣i1· · ·i6

∣

∣

∣

∣i1· · ·i6

∣

∣ = 0

holds. Moreover, we have the standard Plücker identity for determinants of matrices
of the form A:

∑

(i1···i6,j1)⊢(k1...k7)

∣

∣i1· · ·i6

∣

∣

∣

∣j1· · ·j6

∣

∣ = 0.

Both of the above identities could also be achieved via ’going around circular
graphs’, which turns out to be a lot harder as this approach. Since we found
all relations from Theorem 1.5, the proof is complete. �

7. An outlook

In this section, we want to give a short compendium of possible further appli-
cations of our method. First of all, at least for small n, some ni = 0 and aid of
computers, determination of generating sets for C[W ]SLn seems to be possible.

On the other hand, as Section 6 shows, at least our method provides some intu-
itive processes to generate relations, while showing (in general) that these generate
the ideal of relations requires more and possibly totally different considerations.

Of course our method is not restricted to antisymmetric tensors. As we men-
tioned in the introduction, related methods have been applied to binary forms. On
the other hand, the symbolic method elaborated by Grosshans, Rota and Stein
is able to deal with combinations of symmetric and antisymmetric tensors, so it
seems likely to apply our graph method to such combinations. In this case, edges
of different ’behaviour’ would correspond to symmetric or antisymmetric tensors
respectively. The presumably easiest nontrivial case would be that of SL3 acting
on symmetric and antisymmetric 2-tensors.

Another direction for generalization is that of changing the acting group. The
classical groups SOn and Spn for example have a principal tensor g besides det. This
tensor is an (anti-)symmetric bilinear form, see [26, §9.5]. It could be represented
by vertices of degree two that now behave differently than the vertices of degree n
corresponding to det.
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