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ON THE BIRATIONAL GEOMETRY OF HILBERT SCHEMES OF POINTS

AND SEVERI DIVISORS

CÉSAR LOZANO HUERTA AND TIM RYAN

Abstract. We study the birational geometry of Hilbert schemes of points on non-minimal surfaces.
In particular, we study the weak Lefschetz Principle in the context of birational geometry. We focus
on the interaction of the stable base locus decomposition (SBLD) of the cones of effective divisors

of X[n] and Y [n], when there is a birational morphism f ∶X → Y between surfaces. In this setting,

N1(Y [n]) embeds in N1(X[n]), and we ask if the restriction of the stable base locus decomposition

of N1(X[n]) yields the respective decomposition in N1(Y [n]) i.e., if the weak Lefschetz Principle

holds. Even though the stable base loci in N1(X[n]) fails to provide information about how the

two decompositions interact, we show that the restriction of the augmented stable base loci of X[n]

to Y [n] is equal to the stable base locus decomposition of Y [n]. We also exhibit effective divisors
induced by Severi varieties. We compute the classes of such divisors and observe that in the case
that X is the projective plane, these divisors yield walls of the SBLD for some cases.

1. Introduction

The study of how points on surfaces move and form families has driven research in algebraic ge-
ometry for a long time. The parameter space of the configurations of points on a surface, called
the Hilbert scheme of points, has been extensively studied. In fact, the birational geometry of this
Hilbert scheme has recently had advances coming from Bridgeland stability, derived categories, and
interpolation for vector bundles. Using these techniques, questions about the cone of effective divi-
sors or the stable base locus decomposition (SBLD) have satisfactory answers for some interesting
cases, e.g. [BM14, ABCH13, CHW17, LZ18, Nu16]. However, it remains a difficult problem to
determine the effective cone or the SBLD of the Hilbert scheme of points of most surfaces, even in
the case of rational surfaces. The present work studies the cone of effective divisors and the SBLD
using two approaches: via the augmented base loci and via Severi varieties. We work over the field
of complex numbers.

Suppose X is a smooth surface such that the effective cone or the stable base locus decomposition
of the Hilbert scheme of points X[n] is known. It is desirable to know how these objects behave
on the blowup of X (or the blow down). This is the first topic we investigate. We show that the

effective cone as well as the stable base locus decomposition of N1(X[n]) behave according to the
weak Lefschetz Principle. Let us be more precise.

Suppose X and Y are smooth surfaces related by a birational morphism f ∶ X → Y . We aim to
understand how the effective cone and the SBLD of the Hilbert schemes X[n] and Y [n] interact.
The morphism f induces a rational contraction, F ∶ X[n] ⇢ Y [n], in the sense of [HK00]. Most
importantly, the pullback F ∗ induces an embedding of the Néron-Severi groups

F ∗ ∶ N1(Y [n]) ↪ N1(X[n]).

In this context, the weak Lefschetz Principle says that it should be possible to determine the effective
cone and the stable base locus decomposition of N1(Y [n]) by restricting those of N1(X[n]).
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In Proposition 3.3, we show that this is the case for the cone of effective divisors: the cone Eff(X[n]),
when restricted to the image of F ∗, yields the effective cone Eff(Y [n]). However the behavior of

the stable base locus is more subtle. For one thing, the image of F ∗ (inside N1(X[n])) is fully
contained in a wall of the stable base locus decomposition. Hence, the restriction of walls provides
no information. However, we analyze the base locus of a divisor perturbed by a small multiple
of an ample divisor, which is called the augmented base locus. The stable base locus is constant
across a wall, but the augmented one is not. It turns out that the stable base locus decomposition
of Y [n] can be recovered from the augmented base locus decomposition of X[n] in good cases.
Equivalently in such cases, we can say that the stable base locus decomposition of Y [n] gives a slice
of the augmented base locus decomposition of X[n]. Intuitively, this is the content of our first main
result which we now state. We refer the reader to Theorem 3.11 for the precise details.

Theorem A. Suppose the morphism f ∶ X → Y is a series of blow ups at general points. Then,
the linear augmented stable base locus decomposition of Eff(X[n]) when restricted to the image

F ∗(N1(Y [n])) is equal to the linear stable base locus decomposition of Eff(Y [n]).

In order to prove Theorem 3.11, we first show that the restriction of the effective cone of divisors
of X[n] to Y [n] is the effective cone (Proposition 3.3). We then use the augmented base loci to

further decompose the walls of the SBLD of X[n]. If we denote the linear part of the (augmented)

stable base locus decomposition of Eff(X[n]) by ∆X[n] (Definitions 3.8, 3.9), then we may state
Theorem 3.11 as follows

∆X[n] ∣V = F
∗∆Y [n] ,

where V = F ∗ (N1(Y [n])).

Recently, the weak Lefschetz Principle has been studied in the context of birational geometry
[HLW02, Jow11, LHM18, Ott15, Ok16]. In our present context, Theorem A says that even though
the weak Lefschetz Principle fails for the stable base locus, it holds for the augmented stable base
locus. As far as we know, this is the first time this principle has been studied in these terms.

A consequence of the previous result is that if Eff(X[n]) has a finite polyhedral stable base locus

decomposition, then the stable base locus decomposition of Eff(Y [n]) is also finite polyhedral,
Corollary 3.14. In [Ok16], Okawa shows that the image of a Mori dream space under a surjective
morphism is a Mori dream space. Actually, Okawa shows more: in this case, the weak Lefschetz
Principle holds for the strong Mori equivalence, which identifies Mori equivalent line bundles and
refines the stable base locus decomposition. In this case, we are looking at a particular case beyond
these theorems where the map is a rational contraction rather than a surjective morphism.

We apply Theorem 3.11 to investigate the behavior of the stable base loci in the case of Hirzebruch

surfaces Fr. In Proposition 3.16 we describe how walls in Eff(F[n]r+1) induce walls in Eff(F[n]r ) even
though there is no morphism between Fr+1 and Fr.

While Theorem A may provide information about some extremal rays of Eff(X[n]) given X’s
minimal models, we also want to investigate effective divisors which are not (necessarily) induced
by surfaces birational to X. This would allow us to know a bigger region of the effective cone. To
do this, let us exhibit effective divisors on X[n] coming from Severi varieties.

Let us consider a line bundle L on the smooth surface X such that the linear system ∣L∣ is not
empty. Let n be an integer 0 ≤ n ≤ pa(C), where C ∈ ∣L∣ and pa stands for the arithmetic genus. Let
Vn(L) be the Severi variety, which generically parametrizes irreducible curves in ∣L∣ with exactly n

nodes and no other singularities. This variety Vn(L) is a locally closed subscheme of the projective

space ∣L∣, and we will study its image under the rational map f ∶ Vn(L) →X[n] which sends a curve
to the scheme supported at its nodes.
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Definition. Let f be the forgetful map f ∶ Vn(L) → X[n], which sends a curve to its nodes. We
define the Severi locus, Sev(n,L), as the closure of the image of the forgetful map f ,

Sev(n,L) = Im(f).

When this locus is not empty and has codimension 1, we call it a Severi divisor.

Whenever we have a Severi divisor, our second main result Theorem B computes its divisor class
in N1(X[n]). Let us state this result and refer the reader to Theorem 4.7 for the precise details.

We need the following notation: if D ⊂ X is a reduced effective divisor, then D[n] ⊂ X[n] denotes
the divisor which generically parametrizes subschemes whose support intersects D.

Theorem B. Let C ⊂ X be a curve contained in a smooth projective surface with h1(OX) = 0.
Assume the Severi variety Vn(∣C ∣) has the expected dimension, generically parametrizes irreducible
curves with n nodes, and the class KX + 3C is effective. Then the class of the Severi divisor is

Sev(n, ∣C ∣) = (KX + 3C)[n] − 5

2
B[n],

as long as dim ∣C ∣ = 3n − 1, or it is empty.

Note if the Severi variety is reducible, it generically parametrizes irreducible curves means that
statement is true for the generic point of each component. As a consequence of the previous result,
and extending work of Arbarello and Cornalba [AC81], we get that the forgetful map f is finite.

Corollary C. Under the assumptions of Theorem B, the forgetful map, which sends a nodal curve
to the subscheme supported at its nodes, f ∶ Vn(∣C ∣)→ X[n], is finite.

We will compute the classes of Severi divisors, first in the case of the plane P2 and then on any
regular surface. This will demonstrate that these divisors realize walls in the stable base locus
decomposition of the effective cone of P2[n] in many cases. In such cases, the base loci of Severi
divisors are configurations of point that fail to impose independent conditions on ∣OP2(d)∣, for
certain d, Corollary 4.4. We also observe that Severi divisors provide some examples of divisor
classes which were not known to be effective for Hirzebruch surfaces.

Related work. An important part of [Hu16, CHW17] is the explicit description of the cone of

effective divisors of P2[n] (they proved more, but let us discuss only the Hilbert scheme). These

papers show that the (interesting) extremal ray of Eff(P2[n]) is generated by a Brill-Noether divisor.
That is, configurations of points such that there exists a section of a suitable vector bundle vanishing
on them. A technical part of the papers is to show that a generic point in P2[n] is not of this type;
this is called interpolation. In this paper, instead of dealing with the interpolation of higher rank
vector bundles, we study configurations of points such that there exists a section of a suitable line
bundle vanishing on them to second order. In other words, we focus on the family of points where
sections of line bundles vanish and their first derivatives vanish as well. This yields Severi divisors.

In the case of X = P2, the walls of the stable base locus decomposition correspond to walls in
the Bridgeland stability manifold [ABCH13, BMW14, LZ18, LZ]. If the correspondence of the
Bridgeland walls with the stable base locus walls holds for a minimal surface, then our results may
help understanding such a correspondence for non-minimal surfaces, and moreover they suggest a
specific structure of the stability manifold. Indeed, it would be interesting to see if the stability
manifold Stab(S) (or some slices of it), for a certain surface S, sits as a complex submanifold of
Stab(Blp(S)), and furthermore, to verify whether the Bridgeland chamber decomposition on the
submanifold is induced from the ambient one, following what Theorem 3.11 suggests.
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Organization of the paper. Section 2 contains some preliminaries on Hilbert schemes of points
on surfaces. Section 3 contains definitions of (augmented) stable base locus and the proof of
Theorem 3.11. We have also included here the discussion on walls in the SBLD in the case of
Hirzebruch surfaces. Section 4 contains the discussion about Severi divisors, in particular the proof
of Theorem 4.7. We finish the paper with examples of these divisors on Hirzebruch surfaces and

K3 surfaces. We included an example of a Severi divisor in F
[12]
1

that does not come from P2[12].
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2. Preliminaries on the Hilbert Scheme of points on surfaces

Let us begin by recalling some basic facts about Hilbert schemes of points. For a more complete
introduction to the subject see work of Nakajima [Na99].

Let Y be a smooth projective surface with h1(OY ) = 0. Let us denote by {D1, . . . ,Dk} a set of
generators of the Picard group Pic(Y ). For n > 0, recall that the set of unordered n-tuples of points

of Y is called the n-th symmetric product and is denoted by Y (n). This space is the quotient of the
n-th product Y n by the symmetric group Sn, where the action is permutation of the coordinates.
The symmetric product is singular along the locus of tuples with a repeated point of Y , which
naturally leads to a desire for a better moduli space of points; such a space is the Hilbert scheme.

Observing that a subscheme Γ ⊂ Y which consists of n distinct points has Hilbert polynomial n, it
induces a point of the appropriate Hilbert scheme. Motivated by this, let Y [n] denote the Hilbert
scheme which parametrizes subschemes of Y with constant Hilbert polynomial n.

The first step in understanding the birational geometry of Y [n] is to understand the divisors on
it. In order to state our results, we first define a Weil divisor on Y [n] given a reduced divisor on
Y . Define D[n] to be the divisor in Y [n] of subschemes whose support intersects a general fixed
reduced curve with class D. When it is clear, we will simply write D in place of D[n].
Theorem 2.1. (Fogarty [Fo68]) The Hilbert scheme Y [n] is a smooth irreducible projective variety

of dimension 2n. This space Y [n] admits a natural morphism to the symmetric product Y (n) called
Hilbert-Chow morphism

h ∶ Y [n] Ð→ Y (n).

The morphism h is birational and gives a crepant desingularization of Y (n). Furthermore, if
h1(OY ) = 0, then N1(Y [n]) = Pic(Y [n]) ⊗ Q is spanned by D1[n], . . ., Dk[n], and B where B

is the exceptional divisor of h.

This result implies that the Weil divisors on Y [n] are also Cartier divisors. Thus, the Weil divisors
Di[n] and B[n] suffice to generate all divisors of Y [n] (over Q). For example, in case Y = P2, let

H be the locus of subschemes Γ ∈ P2[n] such that Γ ∩L ≠ 0, where L ⊂ P2 is a fixed line. Also, let
B be the locus of non-reduced subschemes of P2 of dimension zero and length n. Alternatively, we
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can describe H and B in terms of the Hilbert-Chow morphism: H ∶= h∗O(1) is the pullback of the

ample generator of Pic (P2(n)) and B = Exc(h) is the exceptional divisor.

Analogously to the divisor D[n], define the curve CD[n] in Y [n] by fixing n−1 general points of Y
and then varying an n-th point along a fixed curve of class D. For Di, we will abuse notation and
write Ci[n]. By Fogarty’s theorem, we know that the space of 1-cycles on Y [n] is generated by

N1(Y [n]) = ⟨C0[n],C1[n],⋯,Ck[n]⟩
where C0[n] is the curve defined by fixing n − 2 general points of Y , a general point of a fixed
curve D0, and then varying an n-th point along that curve. The birational invariant we will study
first is defined as the closure of the cone of divisors classes which are effective; it is denoted by
Eff(X[n]) ⊂ N1(X[n]).

3. Stable base locus decomposition of the cone of effective divisors

Throughout this section we make use of the following notation. Let f ∶ X → Y be a birational
morphism between smooth surfaces with h1(OY ) = 0. Then, there is an induced rational map at

the level of Hilbert schemes, F ∶ X[n] ⇢ Y [n]. Our first result claims that via F , we can recover
the effective divisors of Y [n] from those of X[n]. We recall from [HK00] the following definition.

Definition 3.1. Let F ∶ X ⇢ Y be a dominant rational map, where Y is normal and projective.
We say that F is a rational contraction if there exists a resolution of F

W

X
F

✲

q

✛

Y,

F̃
✲

where W is smooth projective, q is birational, and for every q-exceptional effective divisor E on
W , we have that

F̃∗(OW (E)) = OY .

With the notation as in the previous definition, this Lemma will be used in Proposition 3.3.

Lemma 3.2. Let F ∶ X ⇢ Y be a birational map between irreducible normal Q-factorial varieties.
Denote by W a fixed resolution of F , then the following are equivalent,

(1) The map F is a rational contraction.

(2) Any E ⊂W prime divisor q-exceptional is also F̃ -exceptional.
(3) There are two isomorphic open sets U ⊂X and V ⊂ Y , such that codim(Y /V ) ≥ 2.

Proof. Let us show (1) implies (2) using proof by contrapositive. Let W be a resolution in the
sense of the previous definition. Let E be a prime q-exceptional divisor and suppose it is not
F̃ -exceptional. Then F̃ (E) is a non-trivial divisor which satisfies F̃∗(OW (E)) ≠ OY . Indeed, let

us write N = Y /F̃∣E(exc(F̃ )), and notice that codim(Y /N) ≥ 2. Hence, F̃ (E)∣N is a prime Cartier

divisor which is not trivial. Therefore, F̃∗(OW (E))∣N =ON(F̃ (E)) ≠ON . It follows that

F̃∗(OW (E)) ≠ OY ,

which means that F fails to be a rational contraction. Now the contrapositive yields the claim.
To see that (2) implies (1), observe that if E is F̃ -exceptional, then F̃∗OW (E) = OY .
Observe that the item (2) holds if and only if the item (3). Indeed, let U ⊂ X be the open set

over which F is injective. Note the codimension of the complement of F (U) is bigger or equal than
2 if and only if any q-exceptional divisor is also F̃ -exceptional. This completes the proof. �
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Proposition 3.3. Let f ∶ X → Y be a birational morphism between smooth surfaces. If we denote
by F ∶ X[n] ⇢ Y [n] the induced map between Hilbert schemes, then F is a rational contraction and

Eff (X[n]) ∣V = F ∗ (Eff (Y [n])) ,
where V stands for the image V = F ∗ (N1 (Y [n])).
Proof. Since a birational morphism between smooth surfaces is a composition of blow downs, it
suffices to analyze the case X = BlpY , i.e., the blowup of a point p ∈ Y .

Observe that F is birational and that there are open sets U ⊂ X[n] and T ⊂ Y [n], such that F ∶
U → T is an isomorphism with codim(Y [n]/T ) ≥ 2. Indeed, the open set U is the complement of the
divisor E[n], which generically parametrizes sub schemes whose support intersects the exceptional
divisor E ⊂X. The open set T is complement of the family of subschemes whose support contains
the point p ∈ Y . It follows from Lemma 3.2 that the map F is a rational contraction.

Let us now address the claim about the effective cone. This is a claim about the equality of two
sets, so we are going to argue by showing two inclusions.

For the first inclusion, let us start by considering an effective divisor D ∈ Eff(Y [n]). Then, F ∗(D)
is again an effective divisor whose class is in F ∗(N1(Y [n])). Thus,

F ∗ (Eff(Y [n])) ⊂ Eff(X[n]) ∩F ∗ (N1 (Y [n])) .
Taking closures, we have that

F ∗ (Eff(Y [n])) ⊂ Eff (X[n]) ∩F ∗ (N1 (Y [n])) .
For the opposite inclusion, let us consider D′ ∈ Eff (X[n])∩F ∗ (N1 (Y [n])), which means that D′

is an effective divisor and D′ = F ∗(D), for a divisor class D ∈ N1(Y [n]). Assume D is not pseudo-

effective. Then, there exists a moving curve class C ∈N1(Y [n]), such that C ⋅D < 0. Observe there

exists a moving curve class C ′ ∈ N1(X[n]) defined as the class of the inverse image of a general
element in C. Note, F∗(C ′) = C. We want to show that C ′ ⋅D′ < 0. To do this, let W be a resolution
of the rational map F in the sense of Definition 3.1 ,

W

X[n]
F

✲

q

✛

Y [n],

F̃
✲

and observe that q∗(D′) = F̃ ∗(D). Indeed, the maps q and F̃ are birational morphisms, hence the

induced pullbacks, q∗ and F̃ ∗, are injective. Furthermore, there is a curve class C0 ∈ N1(W ) such
that q∗(C0) = C ′ and F̃∗(C0) = C. Observe that F̃ ∗(D).C0 < 0 by the projection formula. The
projection formula again now implies that

q∗(F̃ ∗(D).C0) = q∗(q∗(D′).C0)
=D′.C ′ < 0,

which is a contradiction due to the fact that D′ is assumed pseudo-effective. Therefore, the divisor
class D must be pseudo-effective and we get

Eff (X[n]) ∩ F ∗ (N1 (Y [n])) ⊂ F ∗ (Eff(Y [n])) ,
as desired. This completes the proof. �

We have compared in the previous proposition the effective cones Eff(Y [n]) and Eff(X[n]) via the
rational contraction F . We now want to compare the stable base locus decomposition of both
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effective cones. This is the content of Theorem 3.11 and Corollary 3.12. In order to prove these
results, let us recall the notions involved.

Definition 3.4. Let D be a divisor on a smooth projective variety X. The base locus of D, denoted
Bs(D), is the intersection of all divisors D′ linearly equivalent to D,

Bs(D) ∶= ⋂
D′∈∣D∣

D′.

The base locus is a natural construction, but varies unexpectedly for divisors with similar equiva-
lence classes. This situation leads to the following definition.

Definition 3.5. The stable base locus of D, denoted B(D), is the intersection of the base locus of
all positive multiples of D,

B(D) ∶= ⋂
m>0

Bs(mD).

Equivalently, this is the intersection of all divisors D′ linearly equivalent to some multiple of D,

B(D) = ⋂
D′∈∣mD∣,m>0

D′.

On a Mori dream space X, there is a open set of the space N1(X) on which the stable base locus
is well defined and locally constant [ELMNP06]. We call this the stable locus. The complement of
the stable locus are the walls of the stable base locus decomposition (SBLD) and they are defined
by linear equations. We will denote the collection of such walls by ∆X . Some of these properties
hold in more generality which we will discuss two paragraphs below. The techniques we use give
us control over linear walls, which leads us to make the following definition.

Definition 3.6. Let X be a smooth surface with h1(OX) = 0. We call X a Mori surface if the

Hilbert scheme X[n] has a linear stable base locus decomposition for all n. In other words, the
walls of the SBLD, denoted ∆X , are defined by linear equations for all n.

Consider a birational morphism between surfaces f ∶ X → Y , such that X[n] is a Mori dream
space. We aim to show that the walls of the SBLD of N1(Y [n]) are defined by linear equations.

Furthermore, they are determined by divisors on X[n] (Theorem 3.11). For example, if X is a Fano

surface, then both X[n] and Y [n] are Mori dream spaces [BC13], and we may try to restrict the

structure of the SBLD of N1(X[n]) to N1(Y [n]). However, when we attempt to do this we run into

a problem: if E is the exceptional divisor of f , the curve CE[n] defines a wall in N1 (X[n]) which
completely contains F ∗ (Eff(Y [n])). Hence, the restriction of the stable base locus of N1(X[n])
gives no information about the SBLD of N1(Y [n]).
In order to deal with this, we recall the definition of the augmented (restricted) stable base loci.

Definition 3.7. The augmented (resp., restricted) stable base locus of D, denoted by B+(D) (resp.,
B−(D)), is the stable base locus of D − ǫA (resp, D + ǫA), that is

B+(D) ∶=B(D − ǫA) (resp, B−(D) =B(D + ǫA)) ,
for any ample divisor A and 0 < ǫ << 1. These are independent of the choice of A.

The augmented and restricted stable base loci will allow us to detect the SBLD of N1(Y [n])
inside the wall induced by the curve CE[n] inside N1(X[n]). Every numerical class has a well
defined augmented and restricted base locus which are invariant under scaling. The stable locus is
precisely where the augmented base locus is equal to the restricted base locus. Moreover, it was
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shown in [ELMNP06, Prop. 1.26], that the locally constant property discussed before Definition
3.6 is satisfied by divisor classes such that B+(D) = B−(D). We will primarily be interested in the
augmented stable base locus, so we will state a decomposition with respect to that alone.

Definition 3.8. Let X be a smooth projective variety. The augmented stable base locus decom-
position, ASBLD of N1(X), is the partition of Eff(X) such that Bs+(D) is fixed for every class
D in a fixed element of the partition. A wall of the ASBLD is the interior of the boundary of any
element in the partition given by the ASBLD.

We will use the notion of ASBLD in order to define the ASBLD of a subspace V of the Néron-Severi
space. This will allow us to compare the ASBLD similarly to Proposition 3.3, where we compared
the effective cones. Observe that the chambers of stable base locus decomposition of X are the
interiors of the chambers in the ASBLD of V . Similarly, the curves defining the walls of the SBLD
fully determine the ASBLD and vice versa.

Definition 3.9. Let X be a smooth projective variety and V a subspace of N1(X). The augmented
stable base locus decomposition of V , denoted ∆X ∣V is the restriction of the ASBLD of X to

V ∩ Eff(X). A wall of the ASBLD is again the interior of the boundary of any element in the
partition given by the ASBLD.

This definition formalizes the restrictions to V of the walls in the SBLD of N1(X) that do not
contain V . In a Mori dream space, each wall in the SBLD is defined by a curve class C which is dual
to every divisor along the wall. The subvariety covered by the curves in the class [C] is contained
in the base locus on one side of the wall, but often not on the other side. This is equivalent to
having dim(V )−1 linearly independent divisors on the wall whose augmented base locus agree and
are not equal to their restricted base locus, which also all agree.

In this paper, every element of the partition of the Néron-Severi space (resp., subspace V ) has a
(resp., relative) full dimensional interior and any pair of chambers whose closures intersect along a
codimension 1 subspace are separated by a wall. Informally, if the decomposition is finite polyhedral,
then one can apply the definition to each subspace containing a wall in order to further decompose
such a wall.

We want to apply these notions to the Hilbert scheme of points Y [n] as we vary the surface Y

within its birational class. Indeed, let f ∶ X → Y denote the blowup of Y at a general point, and E

the exceptional divisor. Let V = F ∗ (N1 (Y [n])) be a subspace of N1 (X[n]). Our goal for the rest
of this section is to show the restriction of the ASBLD to V is equal to the pull back of the SBLD.
We first show one direction of this statement. Let us denote by E ⊂X the exceptional divisor and
the upper half space which consists of divisor classes for which E[n] has a positive coefficient by

HE ⊂ N
1(X[n]).

Lemma 3.10. Any wall of the SBLD of X[n] in HE induces a wall in the SBLD of Y [n]. Since the
ample cone of X[n] lies in the other half space, this means every wall of the ASBLD of V induces
a wall of the SBLD of Y [n].

Proof. Let D be a divisor on Y [n], F ∗(D) = D′, and U denote the open set where the map
f ∶X → Y is an isomorphism. Note in case we have a curve class C ∈ N1(X), then we may consider
the hyperplane in N1(X) defined by it: the divisor classes which pair zero with C.

The proof proceeds in three steps. First, we show any difference in base locus between chambers
in HE differ by a locus in U [n]. Second, we show that the curve defining the hyperplane in N1(X[n])
(which restricts to an augmented wall in V ), defines the same hyperplane in N1(Y [n]) (which gives
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rise to a wall in the SBLD). Finally, we show the latter hyperplanes define walls by exhibiting
enough divisors whose restricted and augmented base loci are different.

For the first step, let CE be the curve defined as those schemes containing n−1 general fixed points
and whose n-th point is on E. Observe that E[n]CE < 0, which implies that all representatives of
[CE] are contained in E[n]. If D′ ⋅ CE = 0, then it follows that E[n] is in the (augmented) base
locus for every divisor of the form D′+aE[n], where a ∈ Q is positive. Thus, any wall of the SBLD

in HE separates two cones of divisors whose base loci differs only by schemes lying in U [n] (the

complement of E[n]). Consequently, such base loci can be considered as points in either X[n] or

Y [n].
Let C ′ be a curve defining one such wall in X[n]. Since representatives of the class [C ′] cover

some portion of the difference of the base loci (i.e., points in U [n]), we can assume this curve C ′ has

an open subset contained in U [n]. Observe we may take the closure of such an open set either in
X[n] or Y [n] (as U [n] is an open set in both spaces). We will denote by C ′ the closure in X[n] and

by C the closure in Y [n]. As the blowup point X = BlpY was general, then it is not in the support
of any subscheme parameterized by some curve equivalent to C. This means that we can assume
without loss of generality that the intersection of C with a divisor D occurs in U [n]. Likewise the
intersection C ′.D′ occurs in U [n]. Then by the push-pull formula applied over U [n], we have that

C ⋅D = F∗(C ′).F∗(D′) = F∗(C ′.F ∗F∗(D′))
= F∗(C ′.D′).

In particular, if C defines a hyperplane in N1(Y [n]), then this hyperplane is the same as the

restriction to V of the hyperplane defined by C ′ on N1(X[n]), and vice versa.
Finally for the last step, it suffices to show that the curve C ′ defining an wall in HE does in

fact define a wall in Y [n] via C. Recall C = F∗(C ′), which means we map the open set which is

isomorphic and take the closure. We know that C ′ defines a wall of the ASBLD of F ∗(N1(Y [n])).
In particular, there are ρ(Y ) linearly independent divisors F ∗(D) such that C ′ ⋅F ∗(D) = 0 and each
of those divisors has a sequence {F ∗(Di)} of divisors such that augmented base locus of F ∗(Di)
is different from that of F ∗(D) and are all equal. By the reasoning above the difference between

their augmented base loci and that of F ∗(D) must consist entirely of points in U [n]. Then the

augmented base locus of a divisor on Y [n] and the augmented base locus of its pullback can only
differ by points outside of U [n] so the augmented base locus of each Di is different from that of D
in the same way. Thus, C defines a wall as desired. �

The converse of the previous lemma is the main result of this section and it is what we show next.

Theorem 3.11. Let f ∶ X → Y a birational morphism between Mori surfaces which is a sequence
of blow ups of general points. Then, the restriction of the ASBLD to V is equal to the pull back of
the SBLD via the rational map F ∶ X[n] ⇢ Y [n]. That is to say

∆X[n] ∣V = F ∗(∆Y [n]),
where V = F ∗N1(Y [n]).
Proof. We may assume that X is a blowup X = BlyY , and that f ∶ X → Y is the blowup map. It

follows from Lemma 3.10 that a wall of the ASBLD of V induces a wall of the SBLD of Y [n]. In
other words, F ∗(∆Y [n]) ⊃ ∆X[n] ∣V . Then, it suffices to show that given a wall of Y [n] (i.e., a wall
in F ∗(∆Y [n])) induces a wall of V .

Let C be a curve class defining a wall of the SBLD of Y [n] andDi the ρ(Y )−1 linearly independent

divisor class on that wall (i.e., C ⋅Di = 0 in Y [n]). Since the point y ∈ Y is a generic point and
the support of the elements of C sweeps out a curve, then y is not part of the support of any
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subscheme contained in the general element of C. Therefore, we can consider C as a curve class
C ′ on X[n]. As the F ∗(Di) are still linearly independent, it suffices to show each F ∗(Di) is
dual to C ′ and the augmented stable base locus of F ∗(Di,j) differs from that of F ∗(Di). Since
C ′ ⋅ F ∗(Di)∣E = C ⋅Di∣y = 0 as y is general, we can apply the projection formula to each curve’s

open set in U [n]. Thus, by the projection formula,

C ′ ⋅ F ∗(Di) = C ⋅D = 0,
so F ∗(Di) is dual to C ′.

Since the augmented stable base locus of F ∗(Di) and Di differ only by points not in U [n] for all

divisors Di and the augmented stable base locus of Di,j differs from that of Di by points in U [n],
the augmented stable base locus of F ∗(Di,j) differs from that of F ∗(Di) as desired. �

Relaxing the assumption that y was a general point, a slight modification of the same argument
gives the following corollary.

Corollary 3.12. Let X = Blp(Y ) where p may no longer be general, and X and Y are Mori
surfaces. Then the walls of ∆X[n] ∣V differ from those of F ∗(∆Y [n]) only by walls where the base
locus on either side differs only by schemes whose support intersects the exceptional divisor or the
blown down point.

As mentioned at the beginning of the section, we also get the previous result for any birational
morphism of surfaces.

Corollary 3.13. Let f ∶ X → Y be a birational morphism between Mori surfaces. Then the walls
of the ASBLD of V differs from those of Y [n] only by walls where the base locus on either side
differs only by schemes whose support intersects the exceptional divisors or the blown down points.

We now have an immediate corollary that concerns the image of Hilbert schemes of Mori surfaces
under rational contractions.

Corollary 3.14. Let f ∶ X → Y be a birational morphism between surfaces. If X[n] has a finite
polyhedral stable base locus decomposition, then so does Y [n].

Observe that in case Y [n] has infinitely many chambers in its SBLD, then X[n] will as well. In
particular, if Y [n] fails to be a Mori dream space due to the presence of infinitely chambers in the
SBLD, then X[n] will fail to be a MDS for the same reason.

Example 3.15. (SBLD correspondence for Del Pezzo surfaces.) Let Sd be the degree 9 − d Del
Pezzo surface for 8 ≥ d ≥ 1. Recall that Sd is isomorphic to the blowup of P2 at d general points.
Hence, the Picard group Pic(Sd) is generated by H and E1, . . . ,Ed, where H is the pull back from
P2 of a general line and the Ei each denote an exceptional divisor. Denote the blow up map by

fd ∶ Sd → P2 with corresponding birational maps Fd ∶ S
[n]
d
⇢ P2[n]. It follows from Theorem 3.11,

applied to each successive blow up Sd → Sd−1, that

∆
S
[n]
d

∣V = F ∗d (∆P2[n]),
where V = F ∗d (N1 (P2[n])) = ⟨H[n],B[n]⟩.
Example: The following picture exemplifies how the SBLD of P2[3] can be interpreted inside the

SBLD of F
[3]
1
= S

[3]
1

in the subspace generated by ⟨H,B⟩. In the case of F
[3]
1

, we are drawing a
cross-section of the cones. Also, we have shaded the moving cones to draw attention to how they

correspond. Note Xi,0 = iH − 1

2
B on F

[3]
1

and Xi = iH − 1

2
B on P2[3].
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B

H
F

X2,0

X1,0

B

H
X2

X1

The SBLD of F
[3]
1 The SBLD of P2[3]

3.1. Chambers of F
[n]
r+1 induce chambers in F

[n]
r . Let Fr denote the Hirzebruch surface defined

as Fr = P(OP1 ⊕ OP1(r)), with r > 0. Denote by E the class in Pic(Fr) of the unique curve of
self-intersection −r, denote by F the class of a fiber of the ruling of Fr, and denote by H the class
of the strict transform of a general line under the birational map Fr ⇢ P2. Note that H = E + rF .

We aim to compare the SBLD of the effective cone of F
[n]
r+1 with the SBLD of F

[n]
r . This result does

not follow immediately from Theorem 3.11 as the birational maps involved are now compositions
of a blow up and a blow down.

In order to show this result, we apply Corollary 3.12 to the morphisms p1 and p2 separately in the

following diagram below and analyze how they interact in the effective cone of F
[n]
r,r+1. Set,

Fr,r+1

Fr

p1

✛

Fr+1,

p2
✲

where Fr,r+1 is the blow up of Fr at a point of E (which is isomorphic to the blow up of Fr+1 at a
point not on E).

Proposition 3.16. Every linear wall of ∆
F
[n]
r+1

either induces a linear wall of ∆
F
[n]
r

for r > 0 or its

induced hyperplane intersects an intersection of two walls.

Proof. The strategy is to use prior ideas to lift a curve from F
[n]
r+1 to F

[n]
r,r+1, and then look at the

hyperplane that the image of this curve defines in N1(F[n]r ).
Let α be a curve class determining a wall of the SBLD of F

[n]
r+1. Then, α can be considered as

a curve class β in F
[n]
r,r+1 since p2 was the blow up at a general point. Let Z be a general scheme

(of some component) of those schemes which are in the base loci for all divisors which intersect α
negatively and which is not in the base loci for all effective divisors which intersect α non-negatively.
Since the blow up point p was general, then Z is supported away from the strict transform of the
fiber containing p.

As such the general point of a general curve C in class β corresponds to a scheme whose support
misses the exceptional divisor of the map from Fr,r+1 to Fr (recall that this is the strict transform
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of the fiber on Fr+1 through the blow up point). Thus, an open subset of C is contained in the

locus where the map from F
[n]
r,r+1 to F

[n]
r is an isomorphism. Let γ be the class of the closure of this

open set in F
[n]
r .

Now, because Z avoids that strict transform of that fiber, we can consider it as a point of F
[n]
r .

Now Z is in the base locus on one side of the induced hyperplane but not in the base locus of some
divisor on the other side. This implies the result. �

The converse to the proposition is false, but we do conjecture a partial converse in the case that
the number of points is low compared with r.

Conjecture 3.17. The Hilbert scheme F
[r−k]
r is a Mori dream space, r > k ≥ 0, and the decompo-

sition of Eff(F[r−k]r ) is given by the walls defined in Theorem 4.15 of [BC13].

A comment about related work is in order here. In [Hu16], the Brill-Noether divisor induced by a
stable vector bundle E over P2 is defined. Divisors of this type fully control the cone of effective
divisors, Eff(P2[n]). This conjecture predicts a lower bound for when the Brill-Noether divisors of
higher rank vector bundles are needed to fully compute the effective cone.

We also make the following conjecture which would imply that the word linear in the previous
proposition is unnecessary.

Conjecture 3.18. Fr is a Mori surface.

4. Severi divisors on regular surfaces

The results of the previous sections explore the effective cone and its stable base locus decomposition
using birational surfaces. However, these techniques are far from enough to fully describe this
decomposition; which in most cases is unknown in general. In this section, we exhibit a set of
effective divisors, coming from Severi varieties, in order to know a larger part of the effective cone
Eff(X[n]). We explore some properties of such divisors and conclude the section with examples of
classes not previously known to be effective in the case of Hirzebruch surfaces.

Let us consider an effective line bundle L on a smooth surface X, such that the linear system ∣L∣
is not empty. Let n be an integer 0 ≤ n ≤ pa(C), where C ∈ ∣L∣ and pa stands for the arithmetic
genus. Let Vn(L) be the Severi variety, which generically parametrizes irreducible curves in ∣L∣
with exactly n nodes and no other singularities. This variety Vn(L) is a locally closed subscheme
of the projective space ∣L∣ and questions about whether it is empty, smooth, or irreducible have
been intensely studied and the literature on the subject is vast.

Let us suppose the surface X is regular, i.e. h1(OX) = 0. This property has strong implications
on the Severi variety Vn(L). For example, it implies that the nodes of a curve C ⊂ X can be
smoothed out separately, and this is important information to decide whether Vn(L) is nonempty.
In many cases, one can deduce that Vn(L) is not empty by smoothing out nodes of rational curves.
For instance, regularity coupled with a result by Chen [Ch97], implies that the Severi variety
Vn(OX(d)) ⊂ ∣OX(d)∣ is not empty and regular (all its components are generically smooth) for X

a general quartic in P3.

In the case of a rational surface X, the Severi variety Vn(L) is regular and has the expected
dimension if it is nonempty [AC81, Ta80, Se06]. In [Ta80], a criteria was shown for deciding whether
Vn(L) is not empty for rational surfaces. In the case of the plane P2 or a Hirzebruch surface Fr,
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the Severi variety Vn(L) is not empty as long as 0 ≤ n ≤ pa(C), where C ∈ ∣L∣. Furthermore, it is
regular and irreducible [Ha86, Ty07]. We will pay particular attention to these two cases.

Let us exhibit effective divisors on the Hilbert scheme X[n] coming from Severi varieties. Let
Vn(L) ⊂ ∣L∣ be the Severi variety which generically parameterizes irreducible curves in ∣L∣ with
exactly n nodes. There is a map f ∶ Vn(L) → X[n] sending a curve to the reduced subscheme

supported at its nodes. Under some numerical conditions, the image of f will be a divisor in X[n],
which we will study when it is not empty.

Definition 4.1. Let f be the forgetful map f ∶ Vn(L)→X[n]. We define the Severi locus, Sev(n,L),
as the closure of the image of the forgetful map f ,

Sev(n,L) = Im(f).
When this locus has codimension one and it is not empty, we will call it the Severi divisor.

We will compute the classes of the Severi divisors, first in the case of the plane P2 and then on any
regular surface, see Theorem 4.7. We will see that these divisors in many cases realize walls in the
stable base locus decomposition of the effective cone of P2[n], see Corollary 4.4.

Severi divisors in P2[n]. Let us analyze the case X = P2 and ∣L∣ = ∣O(d)∣. In this case the Severi
variety Vn(L) is not empty for 0 ≤ n ≤ 1

2
(d − 1)(d − 2), it has the expected dimension, and it is

irreducible [Se06, Ha86]. Observe that, if 1

6
d(d + 3) ≤ n ≤ 1

2
(d − 1)(d − 2) (except (d,n) ≠ (6,9)),

then the forgetful map f is birational into its image [Tr89]. Therefore, we have that the nodes of an

irreducible curve in P2 of degree d form a divisor in P2[n], the Severi divisor, when the dimension
dim Im(f) = 2n − 1, which means

(d + 2
2
) = 3n.

In this particular case of ∣L∣ = ∣O(d)∣, we denote Sev(n,L) simply by Sev(n).
Remark 4.2. The result of Treger does not hold for reducible nodal plane curves. For example
the family of quintics with seven nodes has a component V consisting of reducible curves with
components: an irreducible smooth cubic and a reducible conic. Then, f(V ) is not a divisor; even

though (5+2
2
) = 3 ⋅7. There is no conflict with our results as in this case the Severi variety V7(O(5))

contains no irreducible curves, hence it is empty.

Proposition 4.3. Let (d+2
2
) = 3n, with d ≥ 7. Then the class of the Severi divisor in Pic(P2[n]) is

Sev(n) = (3d − 3)H − 5

2
B.

Proof. Observe that Vn(O(d)) is not empty. Let us compute the class of Sev(n) by intersecting

it with two test curves. Let γ1 denote the curve induced in P2[n] by fixing p1, . . . , pn−1 points and
varying pn ∈ l on a fixed line l. Let γ2 be the fiber of the Hilbert-Chow morphism h ∶ P2[n] → P2(n)

over a general point of the diagonal.
We need to show that

(1)
γ1 ⋅ Sev(n) = 3d − 3,
γ2 ⋅ Sev(n) = 5.

Indeed, the linear system Σ of plane curves of degree d nodal at p1, . . . , pn−1 has dimension 2.
After possibly blowing up some extra base points q1, q2 . . . , it defines a morphism f ∶ Y → P2 with
Y = Blp1,...,pn−1,q1,...P

2. The number γ1 ⋅ Sev(n) equals deg(π(R)) where π ∶ Y → P2 is the blow-up
13



morphism and R is the ramification curve of f , because R parametrizes the singular points of
curves of Σ (c.f. [EH16]). Let Ei = π−1(pi), Dj = π−1(qj), and ℓ = π∗l. Then f is defined by
L ∶= dℓ − 2∑iEi −∑j kjDj for some kj ≥ 1 and we have:

c1(R) =KY − f∗KP2

= −3ℓ +∑
i

Ei +∑
j

Dj + 3L

= (3d − 3)ℓ − 5∑
i

Ei −∑
j

(3kj − 1)Dj .

Therefore γ1 ⋅ Sev(n) = deg(π(R)) = 3d − 3. The number γ2 ⋅ Sev(n) counts the curves F ∈ Σ
having n singularities two of which are concentrated at pn−1. For this to happen it is necessary
and sufficient that the proper transform of F is again singular at some point of En−1. Therefore
γ2 ⋅ Sev(n) counts the number of intersections of R with En−1. This number is 5 = R ⋅En−1. �

Example: We set n = 12, d = 7. Let us compare the classes, in P2[12]
= ⟨H,B⟩, of the Severi

divisor, the extremal divisor of the effective cone Eff(P2[12]) = ⟨J,B⟩, and the extremal divisor

of the movable cone, Mov(P2[12]) = ⟨M,H⟩. We compute J and M following [Hu16, LZ18]. The
classes are the following,

J = 7H −B,

M = 25H − 7

2
B ∼ J + 1

7
H,

Sev(12) = 18H − 5

2
B ∼ J + 1

5
H.

On the other hand, let us fix a general nonsingular quartic C and consider a general Z ⊂ C,
Z ∈ P2[12]. A pencil P4 ⊂ ∣Z ∣ on C defines a curve in P2[12] which is moving. It satisfies the
following:

P4 ⋅H = 4, P4 ⋅B = 28
and therefore P4 ⋅J = 0. On the other hand, using the numerical classes, we find that P4 ⋅Sev(12) = 2.
We can also consider another curve Q4 ⊂ P

2[12] by taking a pencil in the linear system ∣3KC ∣. The
pencil Q4 is swept on C by a pencil of cubic curves. The curve Q4 is a specialization of P4 and
therefore has the same intersection numbers with H, B, J , and Sev(12) as P4 does. In particular
Q4 ⋅ Sev(12) = 2. There is an apparent contradiction here: no 12-nodal irreducible septic can have
its nodes on a cubic, and so one is led to think that Q4 and Sev(12) have empty intersection; on
the other hand Q4 ⋅ Sev(12) = 2. This is explained by the fact that Q4 and Sev(12) can meet (and
actually do meet) along the boundary of Sev(12), i.e. at points of Sev(12) ∖ f(V12(7L)), where
V12(7L) stands for the Severi variety of irreducible curves of degree 7 and precisely 12 nodes. It
would be nice to recognize directly what these two points are.

Corollary 4.4. Let d ≡ 1 (mod 5) and d < n ≤ 1

3
(d+2

2
). Then the class of the Severi divisor can be

written as Sev(n) = kH − 1

2
B, hence it spans a wall of the SBLD. Furthermore, the augmented and

restricted base locus of Sev(n) contains the schemes which fail to impose independent conditions
on curves of degree k.

Proof. This is a direct consequence of [ABCH13]. �

Example: We set n = 145, d = 28. The class of the Severi divisor is Sev(145) = 81H − 5

2
B,

whereas the following class is extremal in the effective cone J = 576

37
H − 1

2
B. Observe that the class

D17 = 17H − 1

2
B comes from a well-defined effective divisor and its slope is larger than that of the
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Severi divisor. This implies that the stable base locus B(Sev(145)) contains the locus of points
that fail to impose independent conditions on curves of degree 17.

Let us analyze the case of an incomplete linear system. Let Γ = {q1, . . . , qr} be a general fixed scheme
of degree r and dimension zero. Then consider the Severi variety Vn(L), where ∣L∣ = ∣OP2(dH −Γ).
We have Severi divisors in P2[n] as long as

(2) (d + 2
2
) = 3n + r + 1,

and the Severi variety is not empty.

For this choice of ∣L∣, the computation of the class of Sev(n,L) carries over.
Proposition 4.5. Let ∣L∣ ⊂ ∣OP2(d)∣ be a subspace of codimension r. Assume (d+2

2
) = 3n+r+1, and

that the Severi variety Vn(L) is not empty. Then the class of the Severi divisor in Pic(P2[n]) is
Sev(n,L) = (3d − 3)H − 5

2
B.

Proof. Let Γ = {q1, . . . , qr} be a sufficiently general fixed scheme of degree r. We blow up the points
p1, . . . , pn−1, q1, . . . qr ∈ P

2 and arguing as in Proposition 4.3 on the linear system ∣OP2(dh−2p1 −⋯−
2pn−1 − q1 −⋯− qr)∣ = P2, the result follows. �

Informally, the previous proposition allows us to interpret the Severi divisor Sev(n,L) as the locus

Z ∈ P2[n] such that Z can be realized as nodes of an irreducible curve of degree d which contains a
general fixed subscheme of degree r, denoted by Γ.

Example: Set n = 18, d = 9 and r = 1. Let ∣L∣ = ∣OP2(dH − p)∣, where p ∈ P2 is a fixed point.
We can interpret a generic point in Sev(18,L) as parametrizing configurations of 18 points that
can be realized as nodes of a curve of degree 9 that contains a fixed point p ∈ P2. In this case,
the divisor class J = 23H − 5

2
B spans an extremal ray of Eff(P2[18]); [Hu16]. Moreover, there exist

effective divisors Dk, for 5 ≤ k ≤ 17, whose base loci contain configurations of points that fail to
impose independent conditions on curves of degree k, [ABCH13]. The class of the Severi divisor is
Sev(18,L) = 24H − 5

2
B, which implies that there is a containment of base loci Bs(D5) ⊂ B(Sev).

It follows that configurations of 18 points which fail to impose independent conditions in ∣OP2(5)∣
are in the closure of the Severi divisor Sev(18,L).
We now consider the case where we only require a subcollection of the points to be the nodes of a
curve. We start with an example which later we will generalize.

Example: We want to compute the divisor class D in Pic(P2[13]) of the following family. Consider
the family of points when we require that 12 out of a collection of 13 points are the nodes of an
irreducible degree 7 curve. We will use test curves and the class, in P2[12], of the Severi divisor
Sev(12) = 18H − 5

2
B.

The first test curve C parametrizes twelve fixed general points and a thirteenth point moving on a
fixed general line L. Let us label the points p1, . . . , p12 and p13, where p13 ∈ L is the moving point.
Consider curves which are nodal at p1 through p11. Then we know that there are 3 ∗ 7 − 3 = 18
points on L which are the twelfth node of such a curve by Proposition 4.3. The same holds true
for any collection of eleven points in p1 through p12. Consequently C ⋅D = 12 ∗ 18 = 216.

The second test curve C ′ parametrizes twelve fixed general points and a thirteenth point moving
on a fixed line L through one of the previous points. Let us label the points p1, . . . , p12, and p13,
where p13 ∈ L is the moving point and L passes through p12. There are now two distinct types of
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subcollections of the fixed points of size eleven: those with p12 and those without p12. Consider the
only collection without it: p1, ⋯, p11. Then consider the curves which are nodal at p1 through p11.
We know that there are 3∗7− 3 = 18 points on L which are the twelfth node of such a curve. Now,
there are eleven collections that include p12. For any of these, there are 3∗7−3−5 = 13 points on the
line L which are the twelfth node of such a curve. Consequently, C ′ ⋅D = 18+11∗13 = 161. Therefore,
we get the class D = 216H − 55

2
B. An extremal ray of Eff(P2[13]) is spanned by J = 15

4
H −B/2.

The previous computation holds in general. The following proposition lists the class for these cases;
we omit the details of the proof as no difficulties arise.

Proposition 4.6. Let ∣L∣ ⊂ ∣OP2(d)∣ be a subspace of codimension l such that (d+2
2
) = 3n + l, with

d ≥ 7, n ≤m. Then the class of the Severi divisor in Pic(P2[m]) is
Sev(m,L) = (m − 1

n − 1
)(3d − 3)H − (m − 2

n − 2
)5
2
B.

Note, the previous class spans the following ray

Sev(m,L) ∼ m − 1
n − 1

(3d − 3)H − 5

2
B.

4.1. The general computation. We now prove the main result of this section:

Theorem 4.7. Let L be an effective line bundle over a regular surface X. Assume the Severi
variety Vn(L) has the expected dimension, its generic point parametrizes an irreducible curve with
precisely n nodes, and the class KX + 3C is effective. Then the class of the Severi divisor is

Sev(n,L) = (KX + 3C)[n] − 5

2
B[n],

as long as dim ∣C ∣ = 3n − 1, or it is empty.

Proof. Observe that the expected dimension of the Severi variety is

(3) dimVn(L) = dim ∣L∣ − n.
Then, after blowing up (possibly extra) fixed points, we have a morphism f ∶ Y → P2, where

Y = Blp1,...,pn−1,q1,...X → P2 is given by the linear system ∣OS(C −p1 −⋯−pn−1)∣. Writing π ∶ Y → X

the blowup map, we can then write the class of the ramification curve R of f , as follows

c1(R) = π∗KX + 3C̃ − 5E +∑Dj ,

where C̃ is the strict transform of the curve C ⊂ X, and E = E1 + ⋯ + En−1 is the sum of the
exceptional divisors over p1, . . . pn−1 and Dj are the exceptional divisors over qj. Taking π∗c1(R)
we get a curve class in Pic(X) and we can read off the class of the Severi divisor out of it. Observe

that since the cohomology class of Sev(n,L) ≠ 0, it follows that dim Sev(n,L) ≥ dim X[n] − 1.
However, dimVn(L) ≤ 2n − 1, which implies that Sev(n,L) is a divisor or empty. �

Note if the Severi variety is reducible, it generically parametrizes irreducible curves means that
statement is true for the generic point of each component.

Corollary 4.8. Under the assumptions of Theorem 4.7, the forgetful map f ∶ Vn(L) → X[n] is
finite.
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The Severi divisors in F
[n]
r . Let us now apply these results to Hirzebruch surfaces. Let us denote

by F the class of the fiber in Pic(Fr) and by E ⊂ Fr the unique curve with negative self-intersection.

Let Vn(La,b) ⊂ ∣La,b∣ = ∣OFr
(aE+bF ) ∣ be the Severi variety parametrizing irreducible curves in ∣La,b∣

with n nodes and no other singularities. In this case, Vn(La,b) is irreducible if nonempty [Ty07]. It is

nonempty if 1

2
(a−1)(−ar+2b−2) ≥ pa(La,b) and KFr

+3C is effective. Then, there is a Severi divisor

Sev(n) = f(Vn(La,b)) ⊂ F
[n]
r as long as the class KFr

+ 3C is effective and dimVn(La,b) = 2n − 1.
This last equation becomes

(4) (a + 1)(b + 1) − r

2
(a2 + a) = 3n,

because the Severi variety Vn(La,b) has the expected dimension as long as b ≥ ar [Se06]. Since
Eff(Fr) = ⟨E,F ⟩, we can assume that a, b ≥ 0.

Suppose that (a, b,n, r) satisfies (4) and K + 3C is effective. It follows from Theorem 4.7 that the

class of the Severi divisor in Pic(F[n]r ) = ⟨H[n],E[n],B[n]⟩ is
(5) Sev(n,La,b) = (3a − 2)E[n] + (3b − r − 2)F [n] − 5

2
B[n].

Example (new effective classes in F
[10]
1

): Let us mention the case of n = 10 points in F1. The

subcone spanned by E[10], 9F [10] − 1

2
B[10], and B[10] was studied in [BC13]. There is a single

line bundle O(3H) with the correct numbers of sections to give an extremal divisor of the effective
cone.

In this case, there are two possible Severi divisors coming from 10-nodal irreducible curves with
classes 3E+8F and 4E+7F , which indeed exist and hence the respective Severi variety is nonempty.
These give divisors with the classes Sev(10,L3,8) = 7E[10] + 21F [10] − 5

2
B[10] and Sev(10,L4,7) =

10E[10] + 18F [10] − 5

2
B[10], respectively. Both of these classes are outside the known chambers

and outside the span of the four known extremal divisors.

We again can define the Severi divisors for n which do not have the right number of sections. If we
append a general collection n −m points to the each point in Sev(m), we get the divisor class

Sev(m) = (3a − 2)E[n] + (3b − r − 2)F [n] − 5

2
B[n] ∈ N1 (F[n]r )

for all m ≤ n. Similarly, if we require that a subcollection of m points be in Sev(m), we get the
divisor class

Sev(m) = (n − 1
m − 1

)(3a − 2)E[n] + (n − 1
m − 1

)(3b − r − 2)F [n] − (n − 2
m − 2

)5
2
B[n] ∈ N1 (F[n]r )

for all m ≤ n.

Example in F
[12]
1

: Let us work out the case of n = 12 points in F1. The equation 4 yields
(a + 1)(2b − a + 2) = 72. Some solutions to this equation are (a, b) = {(7,7), (2,12), (0, 35)}. Let us
consider the first pair (a, b) = (7,7). Theorem 4.7 implies that the class of the Severi divisor, which
is not empty since Severi variety is nonempty, is

(6)
Sev(12,L7,7) =19E + 18F − 5

2
B,

=18H +E − 5

2
B,

where we write Pic(F[12]
1
) = ⟨H,E,B⟩. Note that Sev(12,O(7)) ⊂ P2[12] has class 18H − 5

2
B. This

does not conflict with Theorem 3.11 as imposing nodes on a curve class and pulling back the Severi
divisor is distinct from pulling back the curve class and then imposing nodes on that curve class.
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Example in F
[12]
r : More generally, the case of F

[12]
r works out similarly. Interestingly, the number

and cases of the Severi divisors coming from full linear series depend on the parity of r. If r = 2k+1
and k > 0, the Severi varieties come from line bundles with the classes (7,7k + 7), (8,8k + 7),
(23,23k + 12), and (71,71k + 35). If r = 2k, the Severi varieties come from line bundles with the
classes (5,5k + 5), (8,8k + 3), (11,11k + 2), (17,17k + 1), and (35,35k). We also have ones coming
from the line bundles with class (3,3k + 8) if k > 2.

Severi divisors for some K3 surfaces. Let X be one of the following K3 surfaces: S4 ⊂ P
3, a

general quartic surface, or the complete intersection of a general quadric and a cubic, S2,3 ⊂ P
4 or

the complete intersection of 3 general quadrics, S2,2,2 ⊂ P
5. The Severi variety coming from curves

in ∣Ld∣ = ∣OX(d)∣ has the expected dimension and is regular, if nonempty.

It follows by a result of Chen [Ch97] that in the cases above, the Severi variety Vn(Ld) is not empty

for all d, if 0 ≤ n ≤ pa(C), with C ∈ ∣Ld∣. Then, by Corollary 4.8 there exists a Severi divisor in X[n]

as long as dimVn(Ld) = 2n− 1. By writing this equation in terms of d and n, observe it has integer
solutions only in the cases S4 ⊂ P

3 and S2,2,2 ⊂ P
5. Moreover, the case S2,2,2 ⊂ P

5, admits only one
Severi divisor, namely (d,n) = (1,2). That is, two points on S2,2,2 form a Severi divisor if they can
be realized as nodes of a hyperplane section; a curve of arithmetic genus 5 and degree 8.
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