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SOME NONCOMMUTATIVE MINIMAL SURFACES

D. ROGALSKI, S. J. SIERRA, AND J. T. STAFFORD

ABSTRACT. In the ongoing programme to classify noncommutative projective surfaces (connected graded
noetherian domains of Gelfand-Kirillov dimension three) a natural question is to determine the minimal
models within any birational class.

In this paper we show that the generic noncommutative projective plane (corresponding to the three di-
mensional Sklyanin algebra) as well as noncommutative analogues of P! x P! and the more general Van den
Bergh quadrics satisfy very strong minimality conditions. Translated into an algebraic question, where one

is interested in a maximality condition, we prove the following result.

Theorem A: Let R be a Sklyanin algebra or a Van den Bergh quadric that is infinite dimensional over
its centre and let A 2 R be any connected graded noetherian mazimal order, with the same graded quotient

ring as R. Then, up to taking Veronese rings, A is isomorphic to R.

Let T be an elliptic algebra (that is, the coordinate ring of a noncommutative surface containing an elliptic
curve). Then, under an appropriate homological condition, we prove that every connected graded noetherian

overring of T is obtained by blowing down finitely many lines (line modules) of self-intersection (—1).

CONTENTS

Introduction

Generalities

Some key lemmas

Overrings of locally simple elliptic algebras
Algebras with A; singularities

Sklyanin algebras and Van den Bergh quadrics
Overrings not contained in T,

General overrings in the locally hereditary case

© ® N e e W

Gelfand-Kirillov dimension
Appendix A. Commutative algebras
Index of Notation

References

Date: April 27, 2020.
2010 Mathematics Subject Classification. Primary: 14A22, 16P40, 16538, 16W50; Secondary: 14H52, 14E30.

Key words and phrases. Noncommutative projective geometry, Sklyanin algebras, noncommutative minimal models.
The first author was partially supported by the NSF grant DMS-1201572 and the NSA grant H98230-15-1-0317.

The second author was partially supported by EPSRC grant EP/M008460/1.
1

EEEFEFEIREIEEE sEss



http://arxiv.org/abs/1807.09889v3

1. INTRODUCTION

The classification of noetherian, connected graded domains R of Gelfand-Kirillov dimension 3 (or the cor-
responding noncommutative surfaces, written qgr-R) is one of the major open problems in noncommutative
algebraic geometry. The classification has been solved in many particular cases and those solutions have led
to some fundamental advances in the subject; see, for example, [ATV1] (RSS2l (KRS, [SmV]| VB2, [VB3]. In
[Ar], Artin conjectured that, birationally at least, there is a short list of such surfaces. More precisely, the
corresponding division rings of rational functions are either: (1) finite over their centre; (2) Ore extensions of
k(C) for a curve C; or (3) the division ring associated to a Sklyanin algebra Skl, as defined in Example
Artin’s conjecture is completely open, but this then leaves the question of classifying the algebras in each
birational class. Case (1) was largely resolved in [KRS| RS, [Si], while it is expected that case (2) will be
answered by an amalgam of the methods developed cases (1) and (3). Thus a fundamental part of the
classification problem, and the motivating question for this paper is:

What are the connected graded noetherian algebras R that are birational to a Sklyanin algebra Skl?
In this paper, such algebras are always assumed to be infinite dimensional over their centres.

A natural approach to this problem is to follow the commutative classification of rational surfaces, which
we briefly review. Here, one first classifies the minimal models: smooth projective surfaces X with the
property that any birational morphism from X to a smooth projective surface Y is an isomorphism [Shi

p. 175]. Tt is a consequence of Zariski’s Main Theorem and Castelnuovo’s contraction criterion that:

Theorem 1.1. A smooth projective surface X is a minimal model if and only if X contains no lines of

self-intersection (—1).
In fact much more is true.

Theorem 1.2. ([Ha, Corollary V.5.4]) If X and Y are smooth projective surfaces, then any birational
morphism X — Y factors as a composition of finitely many monoidal transformations (contractions of lines

of self-intersection (—1)).

Theorem 1.3. ([Hal Theorem V.5.8, Remark V.5.8.4])

(1) Any smooth projective surface X has a birational morphism to a minimal model.

2) The minimal rational surfaces are known: they are P? and Hirzebruch surfaces F,, for n # 1.
Y

In this paper we move the classification programme for noncommutative surfaces forward by giving non-
commutative analogues of Theorems [[.]] and Theorem for algebras birational to Skl.

We note that noncommutative analogues of blowing up points are understood (see [VB2, [Rg, [RSS2])
and this has, for example, been used to classify the noetherian subalgebras of Skl that are birational to
that algebra [RSS2|, BH]. Moreover, a noncommutative analogue of contraction or blowing down has been

developed in [RSS4], showing in particular that one really can contract lines (or more formally line modules)
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of self-intersection (—1). Beyond that, what one might call the birational geometry of noncommutative
projective surfaces is wide open. In particular, it is important to understand whether noncommutative
minimal models exist and, indeed, how they should be defined. Whatever the definition, one would expect
that the Sklyanin algebra Skl and Van den Bergh’s quadrics Qvyp are indeed examples (see Example
and [VB3] for the definition).

The main aim of this paper is to show these algebras are indeed minimal models; indeed they satisfy a
minimality property that is far stronger than is possible in the commutative situation. This is provided by
Theorem A from the abstract. The reason why this is described in terms of overrings will be explained below
but we will continue to use the geometric notation since we feel this gives the better intuition for the results
proved here.

To formalise these statements we need some definitions. In the paper, all rings will be algebras over a
fixed algebraically closed field k, while in the introduction we also assume that k has characteristic zero. A
k-algebra R is connected graded or cg if R = @P,,- Ry is a finitely generated N-graded algebra with Ry = k.
For such a ring R, the category of graded noetherian right R-modules will be denoted gr-R with quotient
category qgr-R obtained by quotienting out the Serre subcategory of finite dimensional modules. An effective
intuition is to regard qgr-R as the category of coherent sheaves on the (nonexistent) space Proj(R). The
graded quotient ring Qg4-(R) of R is obtained by inverting the non-zero homogeneous elements and two such
domains R and S are birational if Qg (R)o = Qgr(S)o.

As is explained in [Rg, [RSS2], when one works with algebras related to Skl it is convenient to work with
the following general class of algebras. An elliptic algebra is a cg domain T containing a distinguished central
element g € T} so that T'/¢T is isomorphic to a twisted homogeneous coordinate ring B = B(E, N, T), where
E is an elliptic curve equipped with an ample invertible sheaf A/ (which we assume in the introduction to
have degree > 3) and an infinite order automorphism 7. See Section Pl for more details. For example, the
Veronese rings T' = Skl ) and T = Qva 52 are elliptic; the Veronese ring is needed to ensure that the central
element has degree one, but this is a fairly harmless change since qgr-S =~ qgr-T for S = Skl, respectively
Qvap. By Lemma [A ]l a ring that is commutative but satisfies all other properties of an elliptic algebra is
the anticanonical coordinate ring of a del Pezzo surface, so this is a natural class of algebras to consider.

The ring-theoretic notion of blowing up a ring R in |[Rg] produces a subring R c R, although as its
construction is not used in this paper we will not repeat the definition. As noted in |[Rg, Introduction], this
notion of blowing up is equivalent to Van den Bergh’s categorical notion [VB2]. Subalgebras described in
terms of blowups also appear naturally in the commutative case (see Remark [A 4] for an example).

The appropriate notion of blowing down for an elliptic algebra T has been studied in [RSS4]. In brief,
define a cyclic graded right T-module L to be a line module if has the Hilbert series (1—t)~2 of k[x,y]. Then
one can contract (blow down) any line module L satisfying the noncommutative notion of self-intersection
(—1); that is, (L- L) = 3.7 ,(—1)"* dim Extgg, (L, L) = —1. This gives an elliptic algebra 7" 2 T defined

by the property that T”/T is a suitable direct sum of shifts of copies of L. Crucially, 7" has a point module
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can be blown up to recover T. Conversely, blowing up a point on 7' constructs a subalgebra T with a line
module L that can be contracted to recover T. See [RSS4] Introduction] for the results mentioned here.

So, in the noncommutative context, what is the appropriate definition of a minimal model? Since contract-
ing a curve corresponds to taking a certain overring within the graded quotient ring, any noncommutative
analogue of a minimal surface should be an algebra with few overrings. However, beyond that, it is unclear
how best to translate the commutative definition. Fortunately, it does not matter since the elliptic algebras

of interest satisfy a very strong maximality property, which we can take as our definition.

Definition 1.4. Given an elliptic algebra T', with its central element g € T3, write T\, for the localisation
obtained by inverting the homogeneous elements from T ~\ ¢g7. Then a minimal (noncommutative) elliptic
surface is an elliptic algebra T" which has the property that, if R is a cg noetherian algebra with 7' = R < 1|,
then T' = R.

As will be seen in Theorem [ the restriction to subrings of T, is also unnecessary.

Definition [[.4] is so strong that one may wonder if there are any minimal elliptic surfaces at all. After all,
every cg commutative noetherian domain A of Krull dimension > 2 has a proper cg noetherian overring—
simply adjoin an element of positive degree from its graded quotient ring. In contrast, in the noncommutative

setting minimal elliptic surfaces do exist, as our main theorem shows.

Theorem 1.5. (See Theorem [6.16l) Let T = Qvas® be the second Veronese of a Van den Bergh quadric

orT = Skl(?’), the third Veronese of a quadratic Sklyanin algebra Skl. Then T is a minimal elliptic surface.

Theorem is a consequence of the following noncommutative version of Theorem [[L1] which further

justifies our definition of a minimal model.

Theorem 1.6. (See Theorems and BI2) Let T be an elliptic algebra with no line modules of self-

intersection (—1). Assume that (T[g~])o is hereditary. Then T is a minimal elliptic surface.

The conditions of this theorem always hold for T = SkI® and hold generically for T' = QVdB(2).
We note that Theorem [LF easily lifts to give the analogous result for the original rings Skl and Qvyp.

Corollary 1.7. (See Corollary [6I8l) Set S = Qvap or S = Skl, with corresponding central element g. If

S c U c Sy for some cg noetherian ring U then S = U.

The focus on the localised ring T(,4) in Definition [[.4l may seem mysterious. However, as we next dis-
cuss, minimal models still have few overrings without this restriction. Let T" be one of the algebras from
Theorem [[J5] or indeed any minimal elliptic surface, with its central element g € T;. Then there always
exist cg noetherian overrings of T with the same graded quotient ring. Indeed, for any integer n > 2 one
has T ; k(T,,g'~™). This is of course a rather “cheap” counterexample since after a change of grading,
k(T,g'~") =~ T under the homomorphism zg'~" — z for = € T,,. As we will see, rings like this are

essentially the only other cg noetherian overrings of 7T'.
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In the next result, a Z-graded Goldie domain U is a maximal order if it satisfies the following condition: If
V is a Z-graded k-algebra with U € V < Q,,(U) that satisfies aVb < U for some a,b e U~ {0}, then V =U.
This condition is equivalent to its ungraded analogue and is the appropriate noncommutative analogue of

an integrally closed domain. We note that elliptic algebras are maximal orders (see Remark [6.8]).

Theorem 1.8. (See Theorem [T1l) Let T be any minimal elliptic surface, with central element g € Th, and
let R be a cg noetherian k-algebra with T < R < Qg (T). If R is a mazimal order, then RM ~ T for

some integers m,n = 1. The analogous theorem also holds for the rings Skl and Qvap-

In the commutative case, Theorem follows from the Néron-Severi theorem and Castelnuovo’s con-
traction criterion. In Section [§] we use the techniques from the proof of Theorem [[LI together with the
noncommutative version of Castelnuovo’s contraction criterion from [RSS4], to give a noncommutative ana-
logue of this result. Given a graded T-module M over an elliptic algebra T, we define T° = T[g~ ']y and
M° =M @7 T[g 0.

Theorem 1.9. (See Corollary R3l) Let T be an elliptic algebra for which T° is hereditary and let T € R <
T(g) be any noetherian cg overring. Then there is a module-finite ring evtension R = R’ such that R' is

obtained from T by contracting finitely many line modules L of self-intersection —1.

We remark that finitely generated but non-noetherian cg overrings of minimal elliptic surfaces T" obviously
exist (just take the ring generated by T" and a homogeneous element of positive degree from T\,y). However,
the resulting ring has many unpleasant properties (see, for example, Proposition [L.8 and Corollary B.7]).
Moreover (except for trivial overrings like R = k(T,,g'™")), the Gelfand-Kirillov dimension GKdim R must
jump; for example, if R is a cg noetherian ring with T’ ; R c T, then GKdim R > 4 > 3 = GKdim T (see
Section [@ and in particular Corollary [0.7]).

The idea of the proof of Theorem is as follows. The starting point is that, by Lemma [6.14] 7" has no
line modules to contract. But suppose that T" does have a noetherian cg overring T' ; R < T,. Form the
localisation R° := R[g~']o 2 T° := T[g™']o. In the cases of interest, one can always reduce to the case when
T° is simple and is either hereditary or has a mild singularity. For simplicity assume that 7° is hereditary;
the argument is easiest to explain here but does still give the general idea. Also, after possibly replacing R by
a harmless, finitely generated extension one can assume that R = ®(R°) = @, c;{a € (T(gy))n : ag™" € R°}
(see Lemma [3.9)).

Now pick a simple submodule N = M/T° < R°/T°. One can show that M = M*° for some module M 2T
such that N = M /T is a 2-critical T-module with N° = N. Since N cannot be a line module, one proves that
there are many copies of submodules of N inside Q- (T')/T', one of which, say N’ = M’/T, is not contained
in R/T. However, one still has (N')° =~ N =~ N°. Now, as T° is hereditary, a classic result of Goodearl [Go]
shows that R° will be a torsion-theoretic localisation of T°. This means that R°/T° will contain all possible

copies of N° and in particular (N')°. In other words, (M')° € R° and hence M’ € ®(R°) = R, giving the
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required contradiction. See Section Ml for the details. This argument is modified to work for algebras with
Aj singularities in Section Bl and, as is shown in Section [B] this in turn is enough to prove the theorem.
Finally, we note that noncommutative versions of Theorem [[.3] have yet to be established and are the
subject of ongoing work. We believe that the full list of minimal models for the quantum rational case
will consist of qgr-R for R = Skl and R = Qvgp, as above, together with their Veronese rings and certain
endomorphism algebras; see Remark We conjecture that Theorems and can be extended to
prove the ultimate goal that, given an elliptic algebra R, then one can obtain a minimal model R from R
by contracting finitely many line modules. This in turn will prove much of Artin’s programme for algebras

birational to the Sklyanin algebra Skil. See Conjecture [R13] and Remark for more details.

2. GENERALITIES

In this short section, we set up some of the basic notation and results used later in the paper. Fix an
algebraically closed base field k of arbitrary characteristic. Let T" be an elliptic algebra with graded quotient
ring Q- (T) = D[g,g™'], for the appropriate division ring D. Thus T'/¢T =~ B := B(E, M, 1) is a twisted
homogeneous coordinate ring, or TCR, over the elliptic curve E and 7 is an automorphism of E of infinite
order (and so 7 is given by translation by a point of F under the group law). Here B = @ B,,, where
B, = HY(E,M,;) and M,, = M® - ® MTH*I, with the natural multiplication. We say that F is the
elliptic curve associated to T (or B) and define the degree of T' to be the degree of the line bundle M. Unless
stated otherwise, we assume in the body of the paper that deg M > 2 so that B and T are generated in

degree 1 (see, for example, [Rgl Lemma 3.1(2)]).

Definition 2.1. First, it is convenient to weaken the concept of a cg algebra. Define a Z-graded k-algebra
R to be finitely graded if dimy R,, < oo for all n and R,, = 0 for some n > 0 (the final condition is included
since it is convenient to exclude rings graded by —N). Obviously, apart from R = k itself, cg algebras, as

defined in the introduction, are finitely graded.

Remark 2.2. The following observations will be used several times, usually without further comment.

(1) Suppose that R is a Z-graded domain with dimg R,, = 2 for some n > 0 (as is always the case in this
paper). If R is not N-graded, say with R_, = 0, then (R_,)"(R,)® contains an element « € Ry \ k and so
Ry contains the polynomial ring k[«]. Thus R is not finitely graded. Equivalently, if R is finitely graded
then R is necessarily N-graded with Ry = k.

(2) In a similar vein, if R is a noetherian N-graded k-algebra with Ry = k, then generators of the R-module

R, also generate R as an algebra. Thus R is cg.

We next review some important homological conditions. Throughout Hompg(M, N) and Ext’ (M, N) will
denote the given groups in the category of R-modules. When M and N are finitely generated Z-graded

modules over an N-graded ring R, these carry a natural Z-gradation.
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Definition 2.3. Let A be a ring with injdim(A4) < oo, in the sense that A has finite injective dimension on
both left and right. For a finitely generated right A-module M, write j(M) = min{r : Ext (M, A) = 0} for
the homological grade of M. Then M is then called Cohen-Macaulay (or CM), if Ext/, (M, A) = 0 for all
j = j(M). The module M is mazimal Cohen-Macaulay (or MCM) if it is CM with j(M) = 0.

A ring A with injdim(A4) < oo is called Auslander-Gorenstein if the following holds: if 0 < p < ¢ and
M is a finitely generated A-module, then Ext (N, A) = 0 for every submodule N of Ext% (M, A). Write
GKdim(M) for the Gelfand-Kirillov dimension of an A-module M, as in [KL]. Let A be an noetherian
Auslander-Gorenstein k-algebra with GKdim(A) < c0. The algebra A is called Cohen-Macaulay (or CM),
provided that j(M) + GKdim(M) = GKdim(A) holds for every finitely generated A-module M. Note that
an elliptic algebra is always Auslander-Gorenstein and CM by [RSS3| Proposition 2.4].

Let M = @,,;,
such that dimy M,, < oo for all n. Then M is called d-critical if GKdim M = d but GKdim(M/N) < d for

M,, be a non-zero Z-graded module over a cg ring R of finite Gelfand-Kirillov dimension

all non-zero submodules N < M. In order to avoid repetition, we always assume that critical T-modules
are both finitely generated and graded. Similarly, M is d-pure if GKdim M = GKdim N = d for all non-zero
submodules N € M. Note that, by [KL, Theorem 6.14], a d-critical Z-graded module is automatically
d-pure.

The Hilbert series of M is defined to be hilb M = @, ,(dimy My)t". Finally, M is a linear module if
M = MyR, with hilb(M) = (1 —t)"P for some p > 0. When p = 1, respectively 2, the module M is called a
point module, respectively a line module. If R is also an elliptic algebra, then M is called torsion or Goldie
torsion if, for all m € M there exists t € R \ {0} with mt = 0. We say that M is g-torsion if for all m e M
one has mg™ = 0 for some n > 0. The terms Goldie torsionfree and g-torsionfree then have their expected

meaning. If M is a graded R-module and n € Z, define M([n] = @, M[n];, where M[n]; = M;,.

Lemma 2.4. Let B = B(E,L,7) be a TCR over an elliptic curve E with deg L > 2 and |T| = o0.
(1) B is Auslander-Gorenstein, CM and generated by By as an algebra.
(2) We have Extz(k, B) = §; ok.
(3) Let M be a right (left) point module over B. Then M is CM and Exty(M, B)[1] is a left (right)

point module.

Proof. For Part (1), see [RSS4] Lemma 2.2], for Part (2) see [Le, Theorem 6.3] and for Part (3) see [RSS4,
Lemma 3.3] (this final result assumes that deg £ > 3 but the proof also works when deg £ = 2). O

Lemma 2.5. Let T be an elliptic algebra. Let M be a 2-pure finitely generated graded g-torsionfree T'-
module such that M /Mg is 1-pure. Then M /Mg has a filtration with shifted point module sub-factors
{P(p;)[mi] : 1 < i < d}. Moreover, Ext(M,T) has Hilbert series Z'Z:l smitl /(1 — s)2.

Remark 2.6. In the lemma above, we write P(p) for the T/Tg-point module parameterised by p € F; we

shall not need the details of this parameterisation. The number d is written d = d(M).
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Proof. Since M /Mg is 1-pure, it has a composition series 0 = Ng € N7 € --- € Ng = M with 1-critical
factors N;/N;_1. By [RSS3| Lemma 2.8], the 1l-critical modules over B = T/gT are just shifted point
modules, which proves the first statement. The second statement then follows from [RSS4, Lemma 5.4(2)]

(once again, that result assumes that deg £ > 3, but the proof also works when deg £ = 2). O

Notation 2.7. Given a right module M over an elliptic algebra T, set E''(M) := Exty(Exty(M,T),T).
Recall that T° := T[g7 o = U, =0 Tng~™ and that M° := M[g~]o =~ (M &1 T[g7])o-

n=0

Lemma 2.8. Let M be a 2-critical, g-torsionfree right module over an elliptic algebra T'. Then

(1) EYY(M) is the mazimal essential extension of M by finite-dimensional modules. Hence E**(M) is
still g-torsionfree and 2-critical, with (E*'(M))° = M° and Exth(k, E™(M)) = 0;
(2) EYY(M) is CM. Moreover EYL(M)/EY(M)g is 1-pure.

Proof. (1) The first statement follows, for example, from [Lel (4.6.6) and Remark 5.8(4)]. As such, E'Y(M)/M
is annihilated by a power of g and so E'*(M)° = M°. The other two assertions then follow easily.

(2) If EYY(M)/E'*(M)g has a non-zero, finite dimensional submodule, say W/E(M)g, then EY (M) ~
EY(M)g[1] has a nontrivial extension by that finite-dimensional module, contradicting Part (1). Thus

EY(M)/EY(M)g is 1-pure. The CM condition then follows from Lemma 25 and [RSS4, Lemma 5.4]. 0O

3. SOME KEY LEMMAS

In this section we provide three technical lemmas that, nevertheless, lie at the heart of the proofs of the
main theorems.

The first lemma is at the heart of the proof of Theorem [[L& it shows that the structure of certain modules
over an elliptic algebra T' can be perturbed without affecting their image in the localised category mod-T°.
This is used in Proposition to get useful pertubations of T modules. The final result of the section
investigates the relationship between a cg algebra and its g-divisible hull, as defined below, which will be

important in understanding general rings.

Lemma 3.1. Let T be an elliptic algebra with a 2-critical, g-torsionfree T-module M such that M = E**(M)
and min{i : M; # 0} = 0. Suppose that M /Mg has a filtration

0 = N(0)/Mg & N(1)/Mg S -~ S N(d)/Mg = M/Mg

with factors being (unshifted) point modules {P(p;) := N(i)/N(i — 1) : 1 < i < d}. Then the following hold.
(1) N := N(1) is again 2-critical CM g-torsionfree, with N° = M° and min{i : N; # 0} = 0.
(2) However, now N/Ng has a filtration by shifted point modules {P(g;)[n:] : 1 < i < d} where ng =0

butn; = —1 for1 <i<d-—1.

Proof. (1) We may assume that d > 1, as the result is trivial otherwise. The module N is trivially 2-critical

and g-torsionfree and hence also 2-pure. By Lemma 28 E'!(N) is the largest essential extension of N by
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finite-dimensional modules, while M has no nontrivial such extensions. Thus, using the inclusion E*}(N) <
I(N) < I(M), inside the injective hull I(M), we conclude that E'(N) < M. But, by construction, M/N
is filtered by shifted point modules and hence is 1-pure. Thus E*'(N) = N. Therefore, by Lemma 2.8 N is
CM. Since M 2 N 2 Mg, certainly M° = N°. Since (N/Mg)o = P(p1)o = 0, certainly Ny = 0 and hence
min{i : N; # 0} = 0.

(2) It remains to understand the shifted point module filtration of N/Ng. Recall that Tor! (L,T/Tg)[1] =
{x € L : xzg = 0} for any graded T-module L (see, for example, [Rgl Equation (8.1)]). In particular,
Tor] (M, T/Tg) = 0. Thus the short exact sequence 0 — N — M — M/N — 0 induces an exact sequence

0 — Tor! (M/N,T/Tg) — N/Ng — M /Mg — M /(N + Mg) — 0.

By [Rg, Equation (8.1)], again, X := Tor! (M/N,T/Tg) = (M/N)[—1]. Thus, by the definition of N, X is
filtered by the point modules {P(p;)[—1] : 2 < i < d}, while (N/Ng)/X = (N + Mg)/Mg = N/Mg is the
point module P(py). This defines the desired filtration of N/Ng. O

We now provide a useful application of Lemma [311

Proposition 3.2. Let T' be an elliptic algebra, with a finitely graded overring T ; R < T,). Assume that
T° is simple and fix a simple T°-submodule 8 of R°/T°. Then there is a 2-critical g-torsionfree T-module

M with min{i : M; # 0} = 0 such that M° = 8. Moreover, in the notation of LemmalZ3 either

(1) d(M) =1 and M is a line module, or
(2) d(M) > 1 in which case there exists a module extension T G L < T4y such that L°/T° = 8 but

L, 2 T, for some r < 0.

Remark 3.3. The significance of this result is that, for the algebras T of interest, we will show that L can also
be embedded into the given overring R. This contradicts Remark 222(1). Thus T must have line modules
which, in turn, proves much of Theorem

Proof. Write 8 =~ T°/J for some right ideal J and set I = @, iz € T, : zg7" € J}. Thus I is a
graded right ideal of T such that I° = J and so (T/I)° = §. By construction, M = T/I is g-torsionfree.
If GKdim(M) = 1 then, by the proof of [ATV2] Proposition 7.5], § = M®° would be finite-dimensional,
contradicting the simplicity of 7°. Thus GKdim(M) = 2. Indeed, we claim that M is 2-critical. To see this,
suppose that M has a proper factor T'/J with GKdim(7'/J) = 2; we may assume that T'/J is 2-critical. Then,
by the definition of I, this forces J° = T° and hence J 2 ¢g"T for some n. By [ATV2l Proposition 2.36(vi)],
T'/J has a prime annihilator and hence J 2 gT'. Since B = T'/¢gT is 2-critical, this implies that ¢7" = J o I.
This is impossible by the definition of I and implies that M is 2-critical.

By Lemma 2.8 it is harmless to replace M by E'(M) and so M now has the properties described by
that lemma. Note that Mg =~ M[—1] and so M° =~ M|[n]° for all n € Z. Thus we may also replace M by

some shift M[n] and assume that min{i : M; # 0} = 0.
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By Lemma M /Mg has a filtration with d = d(M) shifted point module subfactors. If d = 1, then
M /Mg is a shifted point module, and so M has the Hilbert series s™/(1 — s)? of a shifted line module. Since
min{i : M; # 0} = 0, actually M has Hilbert series 1/(1 — s)2. Since M /Mg is cyclic, so is M and hence M
is a line module.

So suppose that d > 2. Let the point modules in the filtration of M /Mg be {P(p;)[m;i] : 1 < i < d}.
Since min{i : (M/Mg); # 0} = 0, necessarily m; = 0 for some . It may be that m; < 0 for some j, which is
fine. If this is not the case, then m; = 0 for all 1 < ¢ < d. In this case, we can, by Lemma 3.1l replace M by
a second module with all of the properties of M except that now my =0 and m; <0 for 1 <i<d—1.

By Lemma 25, Ext}.(M,T) has Hilbert series Zf;l s™it1/(1— )2, By construction, some m; < 0 and so
writing this Hilbert series as ), _, ¢,s", we have ¢, > 0 for some n < 0. Fixing such an n, there therefore
exists 0 # 0 € Extr-(M,T), = Exth(M,T[n])o = Ext-(M[-n],T)o. Then 6 corresponds to a (necessarily
nonsplit) graded exact sequence 0 - T' — X — M[—n] — 0 for some module X. Now T is Auslander-
Gorenstein and CM by [Rg, Theorem 6.3] and so Ext}.(N,T) = 0 for any module N with GKdim(N) < 1.
Since M[—n] is 2-critical, it follows easily that the extension T < X is essential. Thus we may embed
T S X G Qu(T), the graded quotient ring of T. Since M[—n] is g-torsionfree, but (Goldie) torsion, it
follows that, for any z € X there exists t € T'\ gT" such that xt € T'. In other words, X < T\,).

Finally, X/T = M[—n], and since M° = §, one also has M[—n]° = 8. However, (X/T), = M[-n], =
My =0 with n < 0. Thus L = X satisfies the conclusions of the proposition. 0

The main results of this paper will also cover non-elliptic algebras and we end the section with some

technical results needed for this more general case.

Lemma 3.4. Suppose that A is a cg k-algebra that is a domain with GKdim A = 2 and graded quotient ring
Qgr(A). Assume that Qgr(A) — G := k(E)[t,t';7] with |7| = c.
Let {Q(%) : i = 0} be an ascending chain of graded A-sub-bimodules of G that are finitely generated as both

left and right A-modules. Then the chain is eventually stationary.

Proof. Tt does no harm to replace A by some Veronese ring A, and thereby assume that A = A™) | with
dimg A,, > 2. We emphasise that, here, we do not change the grading on A, since we cannot replace Q(j)

by its Veronese. We now claim:

Claim 3.5. A< Z := B(E',L,T'), for some invertible sheaf L over an elliptic curve E' with deg L > 2 and

|7'| = o0. This embedding may be chosen so that Z is a noetherian left A-module.

Proof of the claim: As was true for A, our convention here is that Z = @ .., Z,; with

Jj=0

Znj =HYE  LRLT @ L.
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The hypotheses of [AS| Theorem 5.9] are satisfied for A, and there is an embedding A € Z := B(FE',L,7') <
Qgr(A) for some ample invertible sheaf £ over some smooth curve E’ for which Z is a finitely generated left
A-module. Our choice of grading implies that Z = Z(") with dimy Z,, > 2. Thus deg £ > 2.

By [Scl Theorem 34], the full division ring of fractions F' := Fr(G) is finitely generated as both a left and
right module over F”’ := Fr(A). As in the proof of [RSS1], Proposition 2.6], it follows that E’ must be elliptic

with |7/| = co. Thus the claim is proven. O

We return to the proof of the lemma. Since the Goldie rank of the Q(7) as left A-modules is bounded
above by the finite Goldie rank of F' as a left F’-module, we can remove a finite number of terms and
assume that the Goldie rank of the 4Q(%) is constant. In particular, each X (i) := Q(7)Z/Q(0)Z is torsion
as a left A-module. Note that, as 4Z is finitely generated, so is each Q(i)Z as a left A-module. Similarly,
since the Q(#) are finitely generated as right A-modules, each Q(i)Z is a finitely generated right Z-module.
Write X (i) = 7", 2;Z for some x;; thus K (i) := (- Anna(X(i)) = (), ¢- Anna(z;) = 0. Moreover, [AS]
Proposition 6.5(2)] implies that dimg A/K (i) < oo. In particular, as the X (i) are finitely generated left
A/K (i)-modules it follows that each X (¢) is finite dimensional.

Now consider the Q(7)Z as right Z-modules. Since deg £ > 2, Lemma [2:4] implies that Z is Auslander-
Gorenstein and CM. By construction, each Q(i)Z is also torsionfree as a right Z-module. Thus, by [Lel (4.6.6)
and Remark 5.8(4)], there is a unique largest essential extension Y of Q(0)Z by finite dimensional right Z-
modules. By its construction in [Lel, YV is finitely generated and hence noetherian as a right Z-module. As
such, Y/Q(0)Z is finite dimensional, say with right annihilator L. Since Q(0)Z is a left A-module it follows
that, for any a € A, the right Z-module (aY + Q(0)Z)/Q(0)Z is also killed by L and hence is also finite
dimensional. Hence Y €Y and so Y = AY is actually a left A-module. In particular, as Y /Q(0)Z is finite
dimensional, Y is finitely generated as both a right Z-module and a left A-module.

Finally, as the X (i) are finite dimensional, each Q(¢)Z and hence each Q(¢) lies in Y. Since A is noetherian
by [AS| Theorem 0.4], it follows that the union J,, @(n) is also a noetherian left A-module. Thus, the chain

{Q(n)} must be eventually stationary. O

Definition 3.6. For any graded vector subspace X < T(,), the g-divisible hull of X is defined to be
(3.7) X = {t € Ty|tg" € X for some n € N}.

We say that X is g-divisible if X n gT(,) = gX. It is immediate that X is g-divisible, and if X is g-divisible
then X = X. However, even if (say) X is a cg k-algebra, there is no reason for X to be cg or even finitely
graded.

For any elliptic algebra T, the fact that g7 is completely prime quickly implies that 7" is g-divisible.

We next prove an important technical result, Lemma [3.9] which should be compared with [RSS2| Propo-
sition 8.7(2)]. The latter proposition gives a similar result in the case when R < T. We begin with a

preliminary result.
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Lemma 3.8. Let E be an elliptic curve, with an infinite order automorphism o. Let y € k(E) and let V' be

a k-subspace of k(E) with 2 < dimV < 0. Then dim(V + yV?) > dim V.

Proof. Write V - O for the (invertible) subsheaf of the constant sheaf k(E) generated by V. Concretely,
V-Op = O(Dy), where Dy = min{D € Div(E) : D+(f) = 0 for all f € V}. We have (yV?)-Og = O(Dy)°.
As deg Dy > dimV > 2 and o is an infinite-order translation, O(Dy)? 2 O(Dy ), and thus yV? # V. The

result follows. O

Two domains A and A’ with the same division ring of fractions Fr(A) = Fr(A’) are equivalent orders if

there exist nonzero elements a, b, ¢, d € Fr(A) such that aAb € A’ and cA'd < A.

Lemma 3.9. Suppose that T is an elliptic algebra and let R be a noetherian cg algebra with R < (T(g))(”)
for some n = 1. Assume that g™ € R but that R ¢ k + gTg)- Then the following hold.
(1) Both R and R := (1%)(") are noetherian as left and right R-modules, with g™ R’ < R < R’ for
some m.

(2) In particular, R and R’ are noetherian cg k-algebras while R’ is a equivalent order to R.

Proof. Note that Part (2) is an immediate consequence of Part (1) combined with the observation from
Remark 222(2) and so only Part (1) needs proof.

In this result, we regard (T(g))(") as a subalgebra of T,y and do not change the grading. We start by
simplifying the problem. Since R ¢ k + gT(g), there exists some x € Ry, N\ gT'. For the moment consider
U := R(®_ which is also noetherian by [AS] Lemma 4.10(2)]. Suppose that U is noetherian as both a left
and a right U-module. Note that if € R, then r¢™ € U for the appropriate £ and so R < U and hence
R = U. Thus R is a noetherian module over both U and R. Therefore, we may replace R by U and n by an
and assume that there exists z € R, \ g7

Next, set C' := R[g]. Since g" € R, this is certainly a noetherian R-module with C = R. In other words,
R =0, Moreover, since R < (T(g))("), clearly C™) = R[¢g"] = R. Note, also, that

(3.10) C"M = {ze (T(g))(") : g™z € R for some £ > 1}.

or T € yletT=x+g € gT(,. Set B=R=(R+g gT(,). For ¢ = 0, define
For z € T(g), 1 Ttg) € Tig)/9T1g)- Set B = It = (R + gTiy))/9T()- Fori =0, defi

("CnTiy) + 9T _ T

Qi) == c :
9Ty Tig)9

As g" € R, clearly C = Q(0) with Q(j) =€ Q(j + 1) € U2, Qi) = C for j=0.

The next sublemma provides the strategy for the proof of the lemma.

Sublemma 3.11. In the above notation, suppose that Q(r) = Q(r + 1) for r = ry. Then R=2Cisan
equivalent order to C and is noetherian as a one-sided C'-module and hence as a one-sided R-module.
Moreover, R' = C™ s an equivalent order to R, with g"R' € R € R’ for some £ > 1. As such, R' is a

noetherian cg k-algebra.
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Proof of the Sublemma. The proof is essentially the same as the second paragraph of the proof of [RSS2]
Proposition 8.7(1)], although for the reader’s convenience we include a proof here.

To begin with, we claim that Cn 9" Ty = Cn g™, for all m > p = ron. If not, there exists
y:=g"x e (6’ N g™ T(4)) ~ C for some such m. Choose (y,z) with this property for which 2 has minimal
degree. This ensures that y ¢ g™ 17|, since otherwise one could write y = g™+’ with deg(a’) = deg(x)—1.

m+ly e C for some £, and so x € C. Therefore, we can write T = [2+9T(g)]

Note that, as ¢"x € 6’, certainly g
as T = w for some w € g7"C N T(y. Thus g"w = g™~ *(g’w) € C. Moreover, x —w = gt for some ¢ € T{y)
and so g™t = gmax — g™w € 9"y N C. Here, degt = degx — 1 and so, by the inductive hypothesis for
(y,x), we obtain g™t € C. In other words, g™x = g™w + g™t € C; a contradiction. Thus the claim is
proven.

By the claim, I := Cn g°T(g4) is a non-zero ideal of both C' and C , and so certainly C' and C are equivalent
orders. As gCA’ = CA’mgT(g), an easy induction shows that g”CA’ = CA'mgPT(g) = Cng”T(,. Thus, gPCA' clcC
and so R = C is a noetherian C-module and hence a noetherian R-module on both sides, while it is cg by

Remark Moreover, g?R' = g°C™) = C() = R R’ and so R’ and R are indeed equivalent orders. [

Returning to the proof of the lemma note that, by the second paragraph of the proof, there exists
0 = z € B,,. Suppose first that dimy Q(¢); < 1 for all 4,j. As B and the Q(7) are contained in the domain
T(9)/9T(g) = k(E)[z,z~%; 7], this implies that B contains the domain k[z]. Moreover, W := | J Q(i) satisfies
dimg W,, < 1 for all n > 0. As such, W is finitely generated as a k[z]-module and hence as a B-module. In
particular, Q(r) = Q(r + 1) for all r » 0 and so the lemma follows from Sublemma BIIl (In fact a little
more work shows that this case cannot happen.)

We may therefore assume that there exists ¢, j > 1 such that V := Q(i); has dim V' > 2. We next show that
this implies that GKdim B = GKdim C = 2. Since C(™ = R, clearly (C)(") = R(n) = B, and so it suffices
to prove that GKdim C' = 2. Note that, as C' is a noetherian R-module, each Q(i) is finitely generated as a
C-module and hence as both an R-module and a B-module on either side. Now Q(9)g+n 2 2Q(9)r + Q(i)rx
for all k € Z. Since each Q(i) < k(E)[z,27%;7"], we may apply Lemma B8 with ¢ = 7", to show that
dim Q%) j4ne = dimV + a for all @ > 1. Hence GKdimQ(¢) > 2. As Q(i) is a finitely generated left and
right C-module it follows that GKdim B = GKdim C > 2.

Conversely, we know that C is a noetherian, cg subalgebra of Tig)/9T(g) = k(E) [z,27%; 7], and hence
of k(E)[z;7]. It is therefore a finitely generated algebra by the graded Nakayama’s Lemma. Thus, by
[AS, Theorem 0.1], GKdimC < 2. Combined with the last paragraph, this implies that GKdim B =
GKdimC = 2.

We can now apply LemmaBdlto A = B with B < Q(i) = Q(i + 1) = Ty /9T(y) = k(E)[z,2~";7]. Thus,
by that result, Q(r) = Q(r + 1) for all » » 0 and so we can apply the sublemma. Since R € R/, the lemma

follows. O
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4. OVERRINGS OF LOCALLY SIMPLE ELLIPTIC ALGEBRAS

In this section we begin to work towards Theorem We fix an elliptic algebra T' < T, with factor
B = T/gT and localisation T° = T[g~']o and then isolate conditions that preclude the existence of proper
noetherian cg overrings of T'. These involve slightly awkward conditions (see Hypothesis [1]) that will be
refined in later sections.

We first comment on the title to this section: we define T', or any other elliptic algebra, to be locally
simple if the localisation T° is a simple ring. The intuition behind this term is that if one regards qgr-T as
the category of coherent sheaves on the noncommutative (and non-existent) projective variety ProjT then
mod-T° corresponds to the analogous category of sheaves on the noncommutative affine space Proj7T" \ E.

This is, in turn, the smallest nonempty open subset of ProjT.

Hypothesis 4.1. Assume that:
(1) The ring T° is a simple domain with division ring of fractions Fr(7°).
(2) There is a fixed Z-graded overring TG R < Ty and a fixed simple right T°-module 8§ < R°/T°.
(3) There exists an extension 0 — 8§ — X(8) — Y — 0 of right T°-modules of finite length such that:
(a) X := X(8) has finite projective dimension;
(b) 8§ = Soc(X).

(4) 8 cannot be written as the localisation § = L° of a T-line module L.

We make a few comments about these hypotheses. First, we do not assume here that X(8) is unique.
However, if pd(8) < o, in which case (3) holds automatically, we always set X(8) = 8. Finally, note that
the hypotheses imply that § is essential in X.

We first note some elementary properties of modules over rings of injective dimension one.

Lemma 4.2. Let A be a noetherian (or Goldie) prime ring of injective dimension one. Then

(1) FEwery torsionfree, finitely generated right A-module P of finite projective dimension is projective.

(2) Ewvery finitely generated torsionfree and every finitely generated torsion A-module is CM.

Proof. (1) It does no harm to replace P by some direct sum P" so that P has Goldie rank equal to an integer
t times the Goldie rank of A. If F = Fr(A) we can then identify P € PF = F*. Clearing denominators on
the left gives an embedding of P into the finitely generated, free right A-module A*. Set M = A!/P, which
is therefore a torsion module. Then n := pd(M) < oo, say with Ext’y (M, N) = 0 for some finitely generated
module N. If A™ — N then, from the usual long exact sequence in cohomology, Ext’s (M, A™) = 0, as well.
Thus n < 1 by hypothesis and so P is projective.

(2) If M is a finitely generated torsion right A-module then Ext’} (M, A) =0 if and only if n = 1. If P is

a torsionfree right A-module, then it is again harmless to replace P by some P”. Then, as in the proof of (1)
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we can embed P into a free right A-module A? so that M = A?/P is torsion. It follows that Ext; (P, A) = 0
if and only if n = 0. O

We next apply these properties to localisations of elliptic algebras.

Lemma 4.3. Let T be an elliptic algebra. Then T° is Auslander-Gorenstein and Cohen-Macaulay with
injdim(7°) < 2. If in addition T° is simple, then
1
2

(1) T° has injective dimension injdim(7T°) = 1.

(2) FEwery torsionfree, finitely generated right T°-module P of finite projective dimension is projective.
(3) Every finitely generated torsionfree and every finitely generated torsion T°-module is CM.

(4) In particular, if T° satisfies the conditions of Hypothesis[{-1}, then pd(X) = 1.

Proof. By |[RSS1l Lemmas 2.1 and 2.2], T° = T'/(g — 1)T, which has a natural filtration A induced from the
graded structure of T. As such, the associated graded ring gry 7' =~ T'/¢gT = B. By |Le, Theorem 6.6], B is
Auslander-Gorenstein and CM of injective dimension 2. Thus, by [Bj, Theorem 4.1 and its proof], T° is also
Auslander-Gorenstein and CM with injdim(7°) < 2.

Now for (1), if T° is simple, it has no finite dimensional modules, so the CM condition easily implies that
Ext3. (M, T°) = 0 for all finitely generated right T°-modules M, and hence that injdim(7°) < 2, as required.
Parts (2) and (3) follow from (1) combined with Lemma [£2] while (4) is immediate from (2). O

As a partial converse to Lemma we have the following well-known result, for which we could not find

an appropriate reference.

Lemma 4.4. Let A be a finitely generated k-algebra that is a prime noetherian, Auslander-Gorenstein and

CM ring, with GKdim(A) = 2. If A is also hereditary, then A is simple.

Proof. If A is not simple, pick a prime ideal P = 0 of A. Then GKdim(A/P) < 1 by [KLl Proposition 3.5].
Thus, A/P satisfies a polynomial identity by [SW]. As such, A/P and hence A has a finite dimensional factor
ring A [KL Corollary 10.9]. But now the CM condition implies that j4(A4) = 2, whence Ext% (4, A) = 0.

This contradicts the hereditary assumption. O

We next give a general lemma on torsionfree extensions, which we will use several times below.

Lemma 4.5. Let A be a prime right noetherian ring and let L be an essential submodule of the finitely
generated right A-module M. Further suppose that Ext% (M/L,A) = 0. Then every torsionfree extension

0> A— X — L— 0 lifts to an extension 0 > A - Y — M — 0 and every such Y is torsionfree.

Proof. Let o : Extl (M, A) — Ext (L, A) be the map induced from the inclusion L € M. As « is surjective
by the assumption on M /L, if we regard X as an element of Ext!, (L, A), then there exists Y € a~*(X). We
may assume that A € X € Y. Let Z be the torsion submodule of Y, and suppose Z # 0. Because X is

torsionfree, Z n X =0. Thus (Z+A)nX =(ZnX)+ A=A NowY/AD(Z+A)/A#0and X/Ax=L
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is essential in Y/A = M, from which it follows that ((Z + A)/A) n X/A # 0. Thus (Z+A)n X 2 A, a

contradiction. O

Lemma 4.6. Assume thatT ; R satisfy Hypothesis[{-1l Let R° 2 € > T° be a (torsionfree) T°-module such
that C/T° = 8. Then there exists a projective T°-module C such that Fr(T°) > € 2 € and €/T° =~ X(8) = X.

Proof. If C is projective then pd(8) < oo and X = 8. Thus €= C, which is automatically projective, as
required. So assume that C is not projective.

Take the short exact sequence 0 — § - X LN Y — 0 given by Hypothesis .1 noting that 8
is essential in X. By Lemma , A = T° has injective dimension 1 and so, by Lemma L5 C lifts to an
extension 0 — 7° - M — X — 0, in which M is torsionfree. This also implies that there is a natural

embedding M — Fr(7°) extending the embedding of €. By Lemma [4.3] € =Mis projective. O

Notation 4.7. Let M be a T°-submodule of Fr(7T°). Following [RSS2l Section 7, p.2099] we define ®M :=
@z (®@M),, where (PM),, := {a € (T(y))n : ag™™ € M}. As T is g-divisible, it is immediate that T' = ®(7°)
and hence that ®M is a T-module. We remark that [RSS2] used € in place of @, but in this paper  will be
reserved for another more longstanding construction.

Let X be a T-submodule of T4 and recall the definition of the g-divisible hull X from Definition We
note that X = ®(X°).

We are now ready to prove the first main result on the non-existence of finitely graded overrings; indeed
the main theorems from the introduction will ultimately reduce to this case. We note that the idea of the

proof originates in Goodearl’s result [Gol Theorem 5] that overrings of HNP rings are localisations.

Proposition 4.8. Assume that T ; R satisfies the conditions of Hypothesis[{.1]
(1) If R is g-divisible, then dim Ry = c0.
(2) If R is finitely graded, then R is not noetherian.

Proof. (1) It is immediate that ®(R°) = R = R. Now let T° ¢ € < R° be a T°-module with C/T° = 8.
By Hypothesis B1(4), Proposition B.2(2) applies and provides a T-module extension TG D < T(,) with
D°/T° ~ 8, and so that D, 2 T, for some r < 0. Let D := D°.

Apply Lemma Gl This provides extensions

T°CCcCcF(T°) and T°cDcDcF(T),
such that €/T° = Soc(é/TO) and D/T° = Soc(D/T°) and there is an isomorphism
X:C/T° = X = DT

(If 8 and hence € have finite projective dimension then X = 8 whence €=Cand D = D. In this case the

desired properties hold tautologically.)
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Let 711 : C — é/TO and o : D — CVD/TO be the natural projections. By Lemma [4.6] Cis projective, and so

the isomorphism y lifts to a T°-module homomorphism ¢ : e—D making the following diagram commute.

(4.9) e/ —* D10
o ¢ o
C e )

As € and D are submodules of Fr(T°), & is given by left multiplication by an element 2 € Fr(7T°). Since
xm1(T°) = 0 the commutativity of (@9]) implies that m&(T°) = 0 and £(7°) < T°. In other words, z € T°.

Next, since C/T° = Soc(é/To), and o€ = xmy is surjective, the map £ must map € to the preimage of
the simple socle Soc('b/To) = D/T°. Consequently, D/T° = (€ + T°)/T°. In particular, since R° is a ring,
D= (2C+T°) caR°+T° < R°. Since D = D°, it follows that D € ®(R°) = R, and so, by Remark 2:2(1),
dim Ry = o0.

(2) Suppose that R is finitely graded and noetherian. Then, by Lemma 3.9 Risa finitely generated
right (and left) R-module and so R is also finitely graded. Moreover, by construction, R° = R° and so
Hypothesis [£1] holds for R. Thus we can apply Part (1) to R to show that IAEO is infinite dimensional; a

contradiction. O

We remark that in the penultimate sentence of the proof of Part (1) of Proposition [4.8] one needs only
that R° is a T°-bimodule. In other words, the argument above proves the following statement. Since the

result will not be used in the paper, the details are left to the interested reader.

Corollary 4.10. Assume that T G R satisfies the conditions of Hypothesis [{-1. Let & < Fr(T°) be the
mazimal extension of T° by a direct sum of copies of 8, and note that & is a T°-bimodule. Then &/T° is

simple as a T°-bimodule. O
5. ALGEBRAS WITH A; SINGULARITIES

In the next section we will show that Proposition [£.8] can be applied to show that the quadric algebras
Q defined by Van den Bergh in [VB3] are indeed minimal elliptic surfaces. The corresponding algebra @Q°
will either have finite global dimension or be simple with a mild singularity. In this section we prepare for
the latter case by studying arbitrary elliptic algebras T for which 7 has such a singularity. The relevant
definitions are as follows. As usual, given a right (left) module M over a ring A we write M* for the left

(right) A-module Hom 4 (M, A).

Definition 5.1. Given a noetherian ring A of finite injective dimension define the singularity category
Sing(A) as in [AB| Section 1.5, p.46] (where it is called the Stabilised Category) and write Hom groups in
Sing(A) by Hom 4 (M, N), for right A-modules M and N. By [Bul Theorem 4.4.1], Sing(A) can be identified
with the quotient category

Sing(A) ~ {maximal Cohen-Macaulay (MCM) modules}/{projective modules}.
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For right MCM modules M, N we have, by [Bul 2.1],
Hom 4 (M, N) = Hom4 (M, N)/{maps factoring through a projective module} = Hom (M, N)/NM*,

where NM* is the natural image of N ® M* inside Hom4 (M, N). By [Bu, Theorem 4.4.1], Sing(A) is
triangulated with the inverse of the homological shift ¥ given by the syzygy functor €.

We say that A has an A; singularity if Sing(A) is triangle equivalent to the category of k-vector spaces
Vect (necessarily with trivial homological shift). If chark # 2, then the Kleinian singularity k[[z,y]]“? has

an A, singularity, whence the name.
In the next few results, we give some basic properties of rings with A; singularities.

Remark 5.2. Observe that if an algebra A has an A; singularity, then there exists an MCM right A-module
M (equivalently, by Lemma 2] a finitely generated torsionfree module M), so that

(a) M corresponds to k under the equivalence Sing(A) ~ Vect,

(b) End 4 (M) = End 4 (M)/MM* =k, and

(c) the first syzygy QM =~ M in Sing(A).

We refer to M as the generator of Sing(A).

Lemma 5.3. Let A be a prime noetherian ring of injective dimension 1 that is either hereditary or has an
Ay singularity. Let N be a non-zero, finitely generated, torsionfree right A-module. Let M generate Sing(A)
if Sing(A) is nontrivial, or else let M = A. Then the following hold.
(1) There exist an integer s = 0 and finitely generated projective right A-modules A and B such that
NOA=BoME.
(2) There exist a projective right A-module £ and a short exact sequence 0 - N — L — N — 0. In
particular, this is true for N = M.

Proof. We may assume that Sing(A) is nontrivial.

(1) By Remark 52(a) there exists s > 0 such that N = M) in Sing(A). Now apply [AB, Proposi-
tion 1.44(4)].

(2) The result is trivial if N is projective, so assume not. Pick an isomorphism N = M) in Sing(A) by
Part (1) and note that s = 1 as N is not projective. Choose a surjection x : P — N where P is a finitely
generated projective module and set N’ = Ker(x). By RemarkB5.2(c), N 2= (QM)®) = M) = N in Sing(A).
Thus there are projective modules A and B so that N’ @A =~ N @ B.

From the short exact sequence 0 — N’ — P — N — 0 we obtain a short exact sequence
0—N®OA—>PHA—N—0.
By the previous paragraph, this induces an exact sequence

0—>NOB -2 POA 25 N 0.
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Set L := (P@®A)/a(B). Then

_ aNeoB) _ , L _PeA
£22= = e = N with L)% =~ “em =N

Finally, by its initial construction pd(£) < 1 and from the last displayed equation it follows that £ is
torsionfree. Thus, by Lemma [£2] £ is projective, as required. O

Lemma 5.4. Let A be a prime noetherian ring of injective dimension 1 that is either hereditary or has an
Ay singularity. Let C be a right A-module with A < € < Fr(A) and such that C/A =~ § is a simple right
A-module.

Then either pd(8) < oo or there exists a finitely generated right A-module X = X(8) of finite projective

dimension for which there exists an extension

0—8§ —>X—8 —0.

Proof. We may assume that pd(8) = 0. By Lemma [5.3(2) we have a short exact sequence
0—¢ % £ 2 e—0

with £ projective and the C; being the two copies of €. The natural inclusion of A into Cs lifts to a
monomorphism 6 : A — £. Thus if ¢(A) is the given copy of A inside €; then ¢(A) ® 6(A) < L. Clearly,

: &

(L(A)@b(A)+¢ — A

= 8§,

while
(A @A) + &
uA) @0(A)
is a homomorphic image of C;/t(A) = 8. Since 8 is simple and Z = 0, this implies that Z =~ §.

Finally, consider X := £/ (:(A) @ 0(A)). Then, clearly pd(X) < 1, while the last paragraph ensures that

Z =

there is the required short exact sequence 0 - 8 > X — 8§ — 0. O

Applying the results of this section to elliptic algebras we obtain our first result on minimal elliptic

surfaces:

Theorem 5.5. Let T be an elliptic algebra with localisation T°. Assume either that T° is hereditary or
that T° is simple with an Ay singularity. Further assume that T has no line modules. Then T is a minimal
elliptic surface.

More generally, let T = R < T(y) be a graded overring. Then:

(1) if either R is finitely graded or R is both finitely graded and noetherian, then R =T
(2) if T # R and R = R is g-divisible, then dim Ry = 0.

Remark 5.6. If T° is hereditary and degT > 3, then the conclusion of theorem still holds provided 7" has no

line modules of self-intersection (—1). See Theorem B.I2 for the details.
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Proof. Note that T° is a finitely generated k-algebra by [RSS1, Lemma 2.1]. Thus, if 7° is hereditary, then
T° is also simple by Lemma (.4

Pick a simple T°-submodule 8§ € R°/T°. If § has infinite projective dimension then, by Lemma [5.4] the
conditions of Hypothesis [.T] are satisfied. If pd(8) < oo, then Hypothesis [£1] is immediate. In either case,
the result follows from Proposition 4.8 O

We note the following curious consequence of the theorem, which seems to us a strikingly weird result:

Corollary 5.7. Let T be as in Theorem and let R be the subalgebra of T,y generated by T' and x, for

any homogeneous element x € T(y) \ gT(y) of positive degree. Then:

(1) R is not noetherian;

(2) Ry is infinite dimensional. O

Finally, we note for future reference the following sufficient condition, due to Simon Crawford, for when

a ring has an A; singularity. Note that the hypothesis that M is a generator is automatic if A is simple.

Proposition 5.8. ([Crl Theorem 4.5.7]) Let A be a left and right noetherian k-algebra of injective dimension
at most 2. Suppose that A has an MCM right module M which is a generator such that gldimEnd s (M) < 2
and End 4, (M) = Ends(M)/MM* =~ k. Then gldim A = o0 and A has an Ay singularity.

6. SKLYANIN ALGEBRAS AND VAN DEN BERGH QUADRICS

In this section we apply Theorem to some well-known elliptic algebras T": Sklyanin algebras and the
quadric algebras defined by Van den Bergh in [VB3]. The algebras break into two cases, the first of which is
when T satisfies the hypotheses of Theorem The other case is when gldim 7° = 2. In the latter case we
show that there is a Morita context between T' and a second elliptic algebra T” to which Theorem [E.5 can
be applied. This is enough to prove that T is also a minimal elliptic surface.

The formal definitions are as follows.

Example 6.1. The (quadratic) Sklyanin algebra is defined to be
S := Skl(a,b,c) := k{x1, x2, x3}/(ax;2;41 + brip12; + cw?+2 1€ Zs),

where [a:b:c] € P2 \ X for a (known) set . Here, S contains a canonical central element g € S5 such that
S/gS ~ B(E, L,0) for an elliptic curve E with a line bundle £ of degree 3. In this paper we assume that
|o| = oo, from which it follows that the 3-Veronese ring T' = S () is an elliptic algebra, which we sometimes

call the Sklyanin elliptic algebra. See, for example, [ATV1] Theorem 6.8(1)] for the details.

Example 6.2. The cubic Sklyanin algebra is defined as

S":= Skl'(a,b,c) = k{x, xg}/(a(:z?+1xi + xfxlqu) + bri 1T + cx? 1€ Za),
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for [a:b:c] € P2\ X for a known set 3. Then S’ contains a central element g € S so that S"/¢gS’ ~ B(E, L', o)
for an elliptic curve E with a line bundle £’ of degree 2. As above, we assume that || = o, and so (S')*)
is an elliptic algebra. Details are in [ATV1] as above. We will not need to treat this case separately, since
the Veronese ring (S')?) is a noncommutative quadric in the sense of the next example (this is implicit in

[VB3] and proven explicitly in [DL, Theorem 7.1]).

Example 6.3. Assume now that chark = 0. For the purposes of this paper we define noncommutative
quadrics as follows. First, let Skls denote a 4-dimensional Sklyanin algebra; thus Skl is the k-algebra with

4 generators xg, ..., x3 and the 6 relations
TT; — TiTo = A (Tip1Tit2 + TipaTiv1), ToTi + Tiko = Tit1Tit2 — TitaTitl,

where the subscripts are taken to be {1,2,3} mod 3 and the «; satisfy ajasas + a1 + as + ag = 0 and
{a;} n {0, +£1} = . Significant properties from [SSf] are that S = Skly is a noetherian Artin-Schelter
regular domain of dimension 4, as defined in [SSf], with the Hilbert series (1 — )~ of a polynomial ring in
4 variables. Moreover, S has a two-dimensional space of central homogeneous elements V' < Ss. The factor
ring S/SV is isomorphic to a twisted homogeneous coordinate ring B(F, L, o), where E is a smooth elliptic
curve and ¢ is an automorphism given by translation by a point also denoted o € E. However, L is now a
line bundle of degree 4. For the purposes of this paper we again assume that |o| = co.

Given a non-zero element Q € V' we define the Van den Bergh quadric Qvap := Qvap(Q) := S/SQ. As
explained, for example in [SmV] this is a domain which is Artin-Schelter Gorenstein in the sense of [ASd].
Fixing a basis element g for the image of V in Qvyp ensures that T := QVdB(2) is an elliptic algebra, which
we term a quadric elliptic algebra.

The structure of Qvyp depends upon the choice of 2 and so we refine our notation as follows. We use
the notation from [SmV] (10.3)], where the reader is referred for more details. First identify E < P(S}).
Given two points p, ¢ € E we can define a left S-line module L(pq) := S/SW, where W < S; consists of the
forms vanishing on the line pg = P(SF). It is known that, up to scalar multiple, there exists a unique Q € V
vanishing on L(pg). In fact, Q depends only on the sum r = p 4+ ¢ under the group law on E, so we write

0 = Q(r). Finally, we define Qvap(r) := S/SQ(r). As noted in [SmV] (10.3)], Qvap(r) = Qvap(—r — 20).

Remark 6.4. The characteristic zero hypothesis is only needed in Example because this hypothesis is
assumed in the results we cite from [LS[VBI1], and we conjecture that all the results hold over arbitrary fields.
Certainly our results on quadratic Sklyanin algebras are characteristic-free, and one can give characteristic-

free proofs for the results on cubic Sklyanin algebras.

We remark that in [VB3], Van den Bergh actually defines his quadrics as certain categories deforming the
category of quasicoherent sheaves on a commutative quadric surface. It is only after his classification that
one can identify his “elliptic” quadrics as qgr-R for factors R of Skly. Since this relationship is not relevant

to the present paper, we refer the interested reader to [VB3] and [StV] Sections 11 and 12] for the details.
21



These quadrics include, but are much more general than, the noncommutative analogue of P! x P! (see
[VB3] Introduction]) as well as a sort of noncommutative analogue of a Hirzebruch surface F» (see [SmV]
Section 10.5]).

Much is known about the Van den Bergh quadrics, and we begin by collecting some of those known facts.

We start with another definition.

Definition 6.5. If T is a cg noetherian algebra, then qgr-T" is smooth if it has finite homological dimension.

By [RSS4, Lemma 6.8], if T' is an elliptic algebra, this is equivalent to asserting that gldim 7° < co.

Lemma 6.6. Let Q := Quap(r) = S/Q(r) for some r € E, and let Ey denote the points of order 2 in E.
Then:
(1) qgr-Q is smooth if and only if r + o ¢ Fs.
(2) Assume that r + o ¢ Ea. Then either Q° is simple hereditary or gldim Q° = 2. In the latter case Q°
has, up to isomorphism, a unique finite dimensional simple module, say of dimension d. This occurs
if and only if r = w + no for some w € Ey, n € Z ~ {—1}, with d = |n + 1].
(3) If r 4+ o € Es, then Q° is simple of infinite global homological dimension.
(4) All the above results also hold for Q = Qvap(r)®.

Proof. (1) This is [SmV], Theorem 10.2].

(2) By Lemma[L3 Q° is CM of finite injective dimension and Gelfand-Kirillov dimension 2, for any choice
of r. As such, if qgr-Q is smooth then, necessarily, either Q° is simple or gldim Q° = 2, in which case Q°
has at least one finite dimensional simple module. So we need to identify when the latter happens.

Recall that a fat point over @ (or S) is a 1-critical graded @-module M. As such, there exists d such that
dimy M,, = d, for n » 0, called the multiplicity of M. Note that if M is a 1-critical S-module, then either
M is a g-torsion point module (and hence a B-module) or M is killed by at most one Q € V', up to scalar
multiples.

If M is a g-torsionfree point module, then [SSf, Proposition 2.4] implies that M is one of 4 exceptional
point modules and, by [LS| Theorem 5.7] this implies that r € {w,w — 20} for some w € Ey. On the other
hand, if M is a fat point of multiplicity d > 1, then r € {w — 1 + do} by [SSul Proposition 4.4]. Moreover, by
[SSnl, Remark p.84] if r € {w—1=+do} for d > 1, there is only one fat point in qgr-Q. By [RSS1, Lemma 2.1],
Q° =~ Q@ /(g —1). Thus Q° then has exactly one finite dimensional, simple module M° and, moreover,
dimy M° = d.

(3) The proof is similar to that of Lemma4l Assume that r + o0 € E3. By (1) gldim Q° = oo and, by (2),
it cannot have any finite dimensional modules. Suppose, however, that Q° is not a simple ring; thus it has a
proper, nonzero prime factor ring A = Q°/I. By [KL, Proposition 3.15], GKdim A < 1 and so, by [SW] and
KTl Corollary 10.9], A has a nonzero finite dimensional module, a contradiction. Thus Q° is simple.

(4) This follows immediately from the fact that qgr-Q = qgr-Q® (see for example [AS, Proposition 6.2])

and Q° = (Q®)°. O
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If ¥/ = r + no for some n € Z then Van den Bergh shows there is a Morita context between Qvyp(r) and
Qvap(r'). In the next result, we show that if n = 1, this Morita context is given by a line ideal: a right ideal
J of @ = Qvap(r) so that Q/J is a line module.

As a matter of notation, suppose that A is a noetherian domain with division ring of fractions Fr(A) and a
finitely generated fractional right ideal .JJ. Then we will identify J* = Homy (J, A) with {6 € Fr(A) : 6J < A}
and End 4 (J) with {6 € Fr(A) : §J < J}, with similar conventions for left modules. The following well-known

lemma will be used frequently.

Lemma 6.7. Let A and A’ be noetherian mazimal orders with the same division ring of fractions Fr(A) and
suppose that there is an (A, A")-bimodule M contained in Fr(A) and finitely generated on both sides. Then;
(1) A" =Ends(M) = End4(M**);
(2) Homyu (M, A) = Homa/ (M, A’), so the notation M* is unambiguous.

Remark 6.8. All the rings that concern us, in particular Sklyanin elliptic algebras, quadric elliptic algebras
as well as the Sklyanin and quadric algebras themselves are maximal orders by [Rgl, Theorem 6.7] and so the

lemma applies to them.

Proof. (1) By hypothesis A and A’ are equivalent orders in the sense that there exists non-zero elements
a,b,c,d € Fr(A) such that aA’db € A and cAd < A’. Similarly, A and End4 (M) are equivalent orders.
Moreover A’ € End4(M). Now apply [RSS2, Lemma 6.2].

(2) Note that M* = Homa (M, A) satisfies MM* € A’ = Ends(M) and so M* < Homa/ (M, A’). So
M* = Hom 4/ (M, A’) by symmetry. O

Lemma 6.9. Let Q := Qvap(r) be a Van den Bergh quadric, and let ' = r + . Then there is a right
ideal J of Q so that Endg(J) = Qvap(r’) and Endg,,,(J) = Q. Thus J is a (Qvap(r’), Q)-bimodule.
Further, we may choose J to be a line ideal that is MCM.

Proof. Set Q' := Qvap(r’) and A := Skly. By [VBI, (7.12) and Lemma 7.4.3], there is a (Q’, Q)-bimodule J
with

hilbJ = hilb@ — 1/(1 —t)* + H(t) for some some Laurent polynomial H (t)

so that Endg(J) = @’'. Technically, J is only defined as an element of qgr-@Q, so we take J to be some repre-
sentative in gr-@ of this equivalence class. In particular, from the proof and notation of [VBI], Lemma 7.4.3]

we can take
J = @TE", 06 (~1) ®p1 (Baszo)m) S DT, (Besrzo)m) = Q,

so J is a right ideal of Q. Next, as )’ is a maximal order by Remark [6.8] it follows from Lemma that
@’ = Endg(J**), and so we can replace J by J**. Necessarily, GKdim(Q)/J) = 2 still holds and L = Q/J

still has multiplicity one. However, by the CM condition, L now has no submodules of GKdim < 1.
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Now consider L as an A-module. By the CM condition for A, we have j4(L) = GKdim A — GKdim L = 2.
Thus, by [LS, Proposition 2.1(f)], both LV := Ext? (L, A) and LV := Ext? (Ext% (L, A), A) are CM over A
with GK-dimension 2. Moreover, [LS| Proposition 2.1(d)] implies that the natural map ¢ : L — L"" has
GKdim(Ker(¢)) < 1 and GKdim(Coker(¢))) < 0. Hence Ker(y)) = 0 and LV also has multiplicity 1. By
ILS|, Proposition 2.12] V" is therefore a line module and, in particular, is cyclic. Since LV Y only differs from
L by a finite dimensional module, and has a prime annihilator [LS| Theorem 6.3], it follows that LV is a
Q-module, say LY = Q/J'. Moreover, J' 2 JQx,, for some m. Since neither )/J’ nor @Q/J has a non-zero,
finite dimensional submodule, it follows that J = J’. By [SmV] Proposition 7.2] this also ensures that J is
MCM, and so J is the right ideal we seek.

Finally, the assertion that Endg/ (J) = @ follows from Lemma [6.7 and Remark [6.8 a

Lemma 6.10. Keep the set-up from Lemmal6d and let J be the (Q', Q)-bimodule constructed there. Then
J=J1Q=Q"J.

Proof. For Jg, the result follows from [RSS4, Lemma 5.6(2)], but a little more work is needed on the left.
Let B := Q/Qg = B(E,N,0) and B’ := Q'/Q'g = B(E,N’,0) for the appropriate invertible sheaves
N, N of degree 4 on E. By [RSS4, Lemma 5.6(2) and Notation 2.2], J is a saturated right B-module, in the
sense that it has no finite dimensional extensions. Moreover it is a torsion-free B-module as J is g-divisible.
As g acts centrally, J is a therefore a torsion-free left B’-module. We first prove that J is also saturated
on the left. By [Lel (4.6.6) and Remark 5.8(4)], X := Homp/(Homp (J, B'), B') is the maximal essential
extension of J by finite dimensional left B’-modules. Moreover, X /.J is finite dimensional, say with KX < J
for K := BL,,. Clearly X < Qg (B’) = Qg (B) and so if y € B then KXy < Jy < J. Hence Xy + J is a
finite dimensional extension of J and so Xy < X. Thus X is a right B-module which, as .Jp is saturated,
implies that X = J; in other words, J is saturated as a left B’-module. Therefore, by [AV] Theorem 1.3],
J = @D, HY(E,N), ® O(p)"), for some divisor p. Since Jg is a line ideal, dim J; = dim Q; — 2 = 2, and
so degp = —2, by Riemann-Roch. Therefore, [Rg, Lemma 3.1] implies that .J is generated in degree 1 as a
left B’-module. By the graded Nakayama lemma, J is also generated in degree 1 as a left Q’-module. O

We immediately obtain:

Corollary 6.11. Let Q := Qvap(r) be a Van den Bergh quadric, and let ' = r + no for some n € Z. Then
there is a graded rank one torsionfree right Q-module M = M, , so that Q" := Qvqp(r’) = Endg (M), while
Endg/ (M) = Q and both oM and Mg are finitely generated.

Proof. Take M to be the appropriate product of the bimodules J constructed by Lemma Again,
Lemma [6.7] and Remark [6.8] ensures that Endg (M) = Q. O

Proposition 6.12. Let T := QVdB(Q) be the 2-Veronese of a Van den Bergh quadric. If T° is simple, then
either T° is hereditary, or T° has an Ay singularity, as in Definition [51]

IfT = SKI®) or T = Skl’(4), then T° is simple and hereditary.
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Proof. By [ATV2, Theorem 7.3] localised Sklyanin elliptic algebras are simple (this uses our standing hy-
pothesis that |o| = ). If T = SkI® then T° is hereditary by [Ajl Proposition 2.18]. The same proof
works for T = Ski'™. If T = QVdB(Q), then the result is clear by Lemma [6.6] unless T° has infinite global
dimension. By Lemma [6.6] this happens only if 7' = Q)| where Q = Qvap(w — o) for some w € Fs.

So, fix such a @ := Qvap(w — 0), set Q' := Qvap(w) and let J be the right ideal of @ constructed in
Lemma 6.9} thus J is a (Q', Q)-bimodule. Let M := J°. Since End(g/).(M) = Endg/ (J)° = Q° is simple
by Lemma [6.6(3), M is a projective left (Q’)°-module by the Dual Basis Lemma. As gldim(Q’')° = 2 and
gldim Q° = o0, certainly (Q')° and Q° are not Morita equivalent. Thus (o M is not a generator; equivalently
MM?* = (Q")° and so Q'/JJ* is infinite-dimensional. We claim that Q'/JJ* ~ k[g].

By Lemma [610) ¢/J and Jg are generated by Ji, which has dimension 2. In particular, J[1] is in the
set M of right MCM @Q-modules defined in [SmV] 5.3]. Thus by [SmV] Lemma 7.1], dim(J*)q = 2, say with
basis {a,b}. If Ja = Jb, then Jab™' = J and so ab™! € Endg/(J)o = Qo = k, which is impossible. Thus
Ja = Jb. Since J = Q' J; it follows that dim(JJ*); > 3; equivalently codim(JJ*); < 1. We note also that
J%, =0 as J is not cyclic.

By [RSS4, Lemma 5.6S(2)], J is saturated and so, as in the proof of Lemma [B.I0, we may write B :=
Q/Qg = B(E,N,0), and J = @D,0 H*(E,0(q) ® Ny,), for some invertible sheaf A" and divisor q with
degq = —2. By [RSS2, Lemma 6.14]

(6.13) JEc (N)* =@ HYE,N,®0(-q)7").

n=0

By [RSS4, Lemma 5.6] and [RSS2, Lemma 2.12], J and hence J* are g-divisible. Thus dim J§ = dim J*¥, = 2
by the last paragraph, while dim(J)¥ = 2 by (6I3) and Riemann-Roch. Thus, J*; = (J)i. By [Rg}
Lemma 3.1] and (6I3), (J)* is generated in degree zero and so J* = (J)*. By |[Rg, Lemma 3.1], again,
(JJ*)n = By, for n = 2. Since (JJ*)p12 2 g(JJ*)n, it follows that codim(JJ*), 12 < codim(JJ*),, for all
n € N. This codimension is bounded by 1 in degrees 0 and 1, so codim(JJ*),, <1 for all n > 0. Conversely,
as dim Q'/JJ* = oo, clearly (JJ*),, # Q) holds for all n > 0. Thus P = @'/JJ* is a point module, from
which it follows that P is g-torsionfree since P° = 0. Thus P = k[g], as claimed.

Since P = Endg(J)/JJ* = k[g], the stable endomorphism ring of M = J° is

End,,. (M) = (Q)°/MM* = k.

We are now ready to apply Proposition 5.8 to A = @°. Bt the second paragraph of the proof, gldim Q° = o
while (Q')° = Endgo (M) has gldim((Q’)°) = 2. Moreover, as ° is simple, M is automatically a generator.
Finally, injdim(Q°) = 1 and M is a MCM @Q°-module by Lemma[£3] By Proposition5.8and the last display,
Q° therefore has an A; singularity. O

We next note that these elliptic algebras never have line modules.
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Lemma 6.14. Let A be a cg noetherian algebra of finite global dimension such that hilb A = (1 —¢)™™ for

some n = 2. Then for d > 1, the Veronese ring A has no linear modules other than point modules.

Proof. Let L be a finitely generated graded A(Y-module with Hilbert series (1 —)~7. Let L:=1L R A,
and note that L = L@, Let P, — L — 0 be a finite graded free resolution of L. Thus, each P; =
@fil A[—a;;] for some natural numbers ¢;,a;; and so hilbL = F(t)/(1 — t)" for F = Zj(fl)j Dt
Since p = GKdim(i) = GKdim L, we can cancel common factors of (1 — t) from this equation to obtain a
polynomial G € Z[t], with G(1) # 0, such that hilb L = G(t)/(1 — t)?. Rewriting G as an integer polynomial
in 1 —t gives

P
hilb L = H(t) + > ex/(1— )",
k=1
where H € Z[t] and the ¢, € Z. Thus there exists f(t) € Q[t] with leading term c,t?~1/(p — 1)! with
dim L,, = f(n) for n » 0. Thus dim L,, = dim Lan = f(dn) for n.» 0. But dim L,, = (";rf;l) by hypothesis.
Thus, taking leading terms and multiplying by (p — 1)! gives ¢,(dn)?~' = n?~! for n » 0. As d > 1 and

cp € Z this is only possible if p = 1. O
Corollary 6.15. IfT = SEI®) or T = SKI'™ or T = QVdB(Q), then T has no line modules.

Proof. For T = Skl® the result is immediate from Lemma [6.141 For the other cases use the fact that QvaB
(and hence T = SkI"®) is, by definition, a factor of the Sklyanin algebra A = Skl (see Example 63). [

Putting together the results of this section gives our main theorem.

Theorem 6.16. Let T = QVdB(2) or T = SkI®® or T = SKI'™. Then T is a minimal elliptic surface.
Indeed, suppose that T = R < Ty is a finitely graded overring such that either R is noetherian or R is
finitely graded. Then R=T.

Proof. Suppose first that T° is simple. By Proposition[6.12/and Corollary[6.15] T = R satisfies the hypotheses
of Theorem and so the result follows from that theorem.

Now suppose that T° is not simple. Then Proposition and Lemma imply that 7' = Q®, where
Q := Qvap(w + ko) for some w € By and k € N. Let Ty, := (Qvap(w — 0))®. Let M denote the
((Qvap(w — o), Q)-bimodule constructed by Corollary and set N = M®). Clearly, N is a (T, T)-
bimodule that is finitely generated on both side and contained in Qg4 (T'). It follows from Lemma that
K = N** is a (T, T)-bimodule contained in Qg,(T) = Qgr (T ) such that Endy(K) = Ty, and, conversely,
Endr, (K) = T. Suppose that the theorem is false, say for the overring T g R < T(,. If R is noetherian,
then Lemma implies that Risa finitely generated R-module and hence is finitely graded. Thus, in all
cases, we can replace R by R and assume that R is finitely graded with R = R. We aim for a contradiction.

By Lemma [6.7, K* = Homy (K, T) = Homry, (K, Ty). Proposition 5.8 Set m = K K*; this is an ideal of
T, which, since T is simple, contains ¢g” for some n > 1. Let U := T,, + K RK™, which is certainly a finitely

graded ring with T, € U S (Tio)(g) = T(g)- Ifv e U, then g™v € U for some m > 1 and so g™ (K*vK)
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K*UK € R = R. Thus K*vK C R and so mum = KK*vKK*  U. Thus ¢>"U < mUm < U. Thus U is
finitely graded. By Theorem this forces U = Ty, and so

(K*K)R(K*K) < K*ToK = K*K = T.
Therefore, T and R are equivalent orders which, by [Rgl Theorem 6.7], implies that T' = R. O

Remark 6.17. Suppose that T is one of the algebras in the Theorem, and that T ; R=Rc Tig) is a
g-divisible graded overring. Then we can further apply Theorem to conclude that dim R,, = oo for some
n = 0. If T° is simple one can even show that dim Ry = o0 and we conjecture that this holds without the

assumption of simplicity.

The conclusion of Theorem [6.16] also extends to Sklyanin algebras and Van den Bergh’s quadrics them-

selves.

Corollary 6.18. Let S = Skl or S = Skl' or S = Qvyr. Then S is a minimal surface in the sense that if
S cUc Sy for some cg noetherian ring U then S =U.

Proof. Fix such a ring U and pick d so that 7 = S(?) is an elliptic algebra. Then T < U® < T(g)- By [AS]
Lemma 4.10] U@ is noetherian and cg and so, by Theorem 616, U(® = T. If U = S, pick v € Updgir ~ Sndsr
for some n and 0 < r < d. Then USffT c UMD = §d < §. Since S is generated in degree 1 it follows that
vS>4 € S and hence that (vS + 5)/S is finite dimensional. By the CM property for S (see [Lel, (4.6.6) and
Remark 5.8(4)]) this forces v € S and hence U = S. O

7. OVERRINGS NOT CONTAINED IN T,

Let T be one of the algebras from Theorem [6.10], or indeed any minimal elliptic surface; thus by definition
there is no noetherian cg ring T' ; U < T(4). There do, however, exist cg noetherian overrings of 7" inside
Qgr(T). Indeed, for any integer n > 2 one has T < R := k(T,,¢g'™™). This is of course a rather “cheap”

" g for

counterexample since after a change of grading, k(T,,g*~") = T under the homomorphism zg'~
all z € T,,. As we show in this section the possible cg noetherian overrings of T" are tightly constrained, and
are all quite similar to the “cheap” example above. We do, however, need the technical assumption that the

overring is a maximal order.

Theorem 7.1. (1) Let T be a minimal elliptic surface and let T € R < Qg (T) be a cg noetherian
overring of T that is a mazimal order in Q4,-(T). Then for eachn there is ¢ = n so that R, = Tyg" ™",
and there exist integers M = N > 1 so that RN) = k(Tp;gN M) =~ T7(M),

(2) Similarly, let S = Qvap or S = Skl or S = Skl' and let d = degg. Let S € A < Q4-(S) be a cg
noetherian overring of S that is a mazimal order in Qg4-(S). Then for all n, there is ¢ € Z so that

A, = ¢'S,_qe, and there are integers N, M > 1 so that AWN) ~ g(M),
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Proof. (1) For j € N, define

(7.2) 051 Qgr(T) = (Qgr(T))UHY by ¢;(f) = fg'™ for all f € Qqr(T)n.

Since g is central, ¢; is a k-algebra homomorphism. Since R is cg, and hence a finitely generated algebra,

there exists j > 0 with ¢;(R) < Ty). Let U := ¢;(R). Define h : N — N u {oo} by
h(n) := max{i: U, < g'T,)}, with h(n):= o0 if U, = 0.

We begin by following the proof of [RSS2l, Proposition 9.1], although as our notation is slightly different
we give most of the details.
Let U be generated in degrees < r, so U, = >/, UjUp—; for all n > r. As in [RSS2], the fact that g7},

is a completely prime ideal implies that h(n) + h(m) = h(n + m) for all n,m € N and, moreover, that
(7.3) h(n) = min{h(n —i) + h(i): 1 <i<r} forn>r,

with the obvious convention if any of these numbers equals 0. Now choose 1 < K < r so that A = h(K)/K

is minimal. Applying induction to ([Z3), we have h(n) = An for all n € N, and this forces
(7.4) h(nK) =nh(K) forallneN.

Since U = ¢;(R) < (T(,))Y*") and Uk # 0, the number N := K/(j + 1) is an integer. Let D := h(K),
and note that D < K, since if D = K then Ug < gKT(g), and so Ry < gNT(g), contradicting Tnx € Ry.
Let M = K — D. By [@4), U,k < g”DT(g) for all n € N. Thus the function U,x — (T(4))nar given by

nD is well-defined, and induces an injective vector space homomorphism 6 : U¥) — T((é\;[) with

T — xg
O(U KDy Zk+ gT(4)- It is routine to see that ¢ is an algebra homomorphism.

Let V:= 0(U%)) and Z := 17[;] < T{g), recalling Notation .7l Since T} = R, both ¢’Ty and g% 1T} are
contained in U. Thus g™ 1T} = 6(g%"~'T1) < V, and in particular g™ € V. By Lemma[3.9, Z and Z() are
finitely generated left and right V-modules and are thus cg noetherian. Further, as ¢™~'Ty < V, we have
Z 2T which, as T' is a minimal elliptic surface, forces T'= Z. Thus V = G(U(K)) c T andso UK T,

We claim that in fact U < T'. To see this, take U,, = 0. Since R 2 T, clearly U,, = g*T} for some a,b > 1.
Therefore, g“(K_l)UnTb(K_l) =Un(9°Ty)5"t C Uy € T. As T is g-divisible, it follows that U, T. < T for
¢ =b(K —1). Hence U, T, = U, T.T < T and so (U,T + T)/T is a finite dimensional extension of T. As
in the proof of Corollary [6.I8, the CM property therefore forces U,, € T. Hence U < T, as claimed.

It remains to get a detailed understanding of the graded pieces U, of U. To this end, define a graded
subspace W of T by

hm T, if U, #0
g n— n 1 n
W, = e

0 otherwise.
Let n, m be such that W,,, W,,, # 0. Using the equation h(n + m) < h(n) + h(m) we have

W, W,, = gh(n)+h(m)Tn7h(n)Tm7h(m) c gh(ner)Ternfh(ner) = Whim.
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Thus W is a ring. The definition of h and g-divisibility of T force U € W and we may clearly extend 6 to
an isomorphism 6 : W) 5 7(01),

We next want to understand the structure of W over its Veronese subalgebras. By [AS, Lemma 4.10], U
is a finitely generated left and right module over U¥). For 1 <i < K — 1, let U(i) = @®,, Unx+:. This is
finitely generated as a right U)-module, say by @, Unk+i- Using (Z3), it follows for n = n, that

h(nK +1) = nrpglgl(h(n’K +1i) + h((n —n')K))

(72 = (n—ny)h(K) + nrlnglglll(h(n/K +1i) 4+ h((n; —n)K)) = (n—n;)h(K) + h(n; K + ).
Consequently, W,k +; = Wik +iWi—nnk = Wn-n)kWn,k+i for1<i< K—1andn>=n;, and so W is
a finitely generated left and right W()-module. Now §(W(¥)) = T(M) ig a finitely generated module over
V = (UT)) on both sides, and so W) is a finitely generated U)-module on both sides. Thus W is
finitely generated as a U¥)-module and hence as a U-module on both sides. Since T R, it is clear that
Qur(U) = Que(W) = (Qu (1)) FY. H As R and therefore U are maximal orders, U = W. It follows that
V =WE) =70,

Finally, for n € N, we have
Ry = 07 (Wisnm) = ¢" VD ™MT 0 0 n(Gaym)-
Pick m € N. Then, as (j + 1)N = K and h(Km) = h(K)m, we have
Rym = "Ny iiemy = 9N MM gy

and so RWY) = k(gVN="MT),» = TM), As Ry 2 Ty we have M > N and the result is proved.

(2) Our notation in this part of the proof is that Veronese rings are not regraded; so (A%)) g, = Ak,
for all n € N and g € T; = S4. A number of the steps of the proof exactly parallel those from Part (1), in
which case the proof is left to the reader.

For j € N, extend ¢; to a map v, : Qg (S) — Qur(SUIHV) by v;(f) = fg' for all f € Qu(S)n. As in
Part (1), each ¢; is an injective graded algebra homomorphism, and 1;(A) < S, for some j. Set X = 1;(A).
Define h: N — N u {00} by

h(n) := max{i : X,, € ¢g'S(y)}, with h(n) = o0 if X,, = 0.

As in Part (1), h(n +m) < h(n) + h(m) for all n,m € N and h(n) satisfies the analogue of ([T.3]).

Set R := A@D o T := S  Then R and U := wj(A(d)) < T4y have the same properties as their
counterparts in Part (1) of the proof. In particular, there is an integer K, which we may take to be a multiple
of d, so that h(nK) = nh(K) for all n € N. Further, there is a graded ring homomorphism 6 : U%) — T
with 0(z) = g~"de®)z for all homogeneous z € U¥) and, moreover, V. = (UK)) ¢ k + gT|,. Set

LAs an aside for later use, we remark that so far we have used only that R is cg noetherian and that T is a minimal elliptic

surface.
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e

Z = V|g]. Using the fact that T is a minimal elliptic surface by Theorem [6.16] the arguments of Part (1)
show that Z =T is a finitely generated V-module on both sides. Moreover U < T'.

We next claim that X < S. Certainly there exists L such that X(X) = U < T (in fact L = (dj + 1)d
will work). As A 2 S, if X,, = 0 then X,, © ¢%S;, for some a,b = 1. Now the proof from Part (1) that
U < T can be used essentially unchanged to show that X < S.

Now define Y = @, -, Y where

h(n) g if X, #0
g n— n 1 n
Y, dh(n)

0 else.

Clearly Y,, 2 X, for all n by g-divisibility of S. Using the inequality h(n + m) < h(n) + h(m) gives
Yo Yim = gh(n)+h(m)Sn+m—d(h(n)+h(m)) = gh(n+m)sn+m—dh(n+m) = Yn+m7

and so Y is a k-algebra.

Recall that T' = Z is a finitely generated module over V' = 0(U)). As in Part (1), each U (i) = @®,, Unk +i

(K)

is finitely generated as a right U*)-module, say by @, Unx+:. Equation (Z5) then follows formally and

this now ensures that Y is a finitely generated Y *)-module on both sides. It follows that Y (%) is a finitely
generated UK)
Part (1), Qe (Y) = Qu(X) and as X = A is a maximal order, Y = X. This proves the first assertion of

Part (2). The final sentence follows as in Part (1). O

-module on both sides and thus Y is a finitely generated X-module on both sides. As in

One of the significant consequences of [RSS2] is that graded maximal orders contained in T are automat-
ically noetherian. We conjecture that in the main theorems of this paper, Theorems and [T as well as

Corollary [6.18] the same is true for overrings. More precisely:

Conjecture 7.6. Theorem[7.1](1) holds even if R, respectively A, is not assumed to be noetherian. In partic-
ular, and in the notation of the theorem, finitely graded mazimal orders T < R < Qg (T) are automatically

noetherian. Similar comments hold for overrings of S.

We next give a couple of examples that show that one cannot easily improve on Theorem [T.Il As usual,
given a subset V in a k-algebra A we write k(V') for the k-algebra generated by V. Following the discussion
at the beginning of the section, and by analogy with [RSS2| Proposition 9.1], one might hope that any cg
noetherian overring ' € U < Qg (T") would have the form U = k(T},+19~") for some n. As the next example

shows, this is not the case.

Example 7.7. Let T := Skl(3), the 3-Veronese of a quadratic Sklyanin algebra and set
U:=k(Ty,g 'T3) = k+ Ty +T3g ' +Tug ' +Teg 2+ Tog > + ...

Then U is a noetherian cg maximal order with U D T that cannot be written as U = k(T},+19™") for any n.

However, up to a change of grading, U®) ~ 7).
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Proof. Note that ¢1(U) = R = k{gT1, gTs), in the notation from the proof of Theorem [Tl Since g
is central and T is generated in degree one it is easy to see that (¢71)%> = ¢*T» < ¢T3 and hence that
RW = Kk(gT3) = T®). Since T®) is noetherian, so are R and hence R by [AS, Lemma 4.10(3)]. Tt is an
easy exercise to see that U is not generated by any set 75,4197 ".

It remains to prove that R is a maximal order. Throughout the proof we keep the grading from T'; thus R
is generated in degrees 2 and 4, while deg(g) = 1. First, by [BH, Proposition 3.37], R® =~ T() is a maximal
order. So, suppose that R € A is an equivalent order. Then A® is equivalent to R by [BH, Lemma 3.32]
and hence A = R™®. We next show that A € T. Let a € A~ T be homogeneous. Since A®) = R®),
clearly deg(a) = 4e + 2 for some e € N. Since g*> € R we have g%a € R®W c k+¢gT and so a € g~ 'T. As
a¢ T, then a = g~ 'z for some z € T ~ gT. Notice that g does not divide x2 since ¢gT is a completely prime
ideal. Hence a? = g~22% ¢ T'; a contradiction. Thus A < T.

Now let @ € Ayeto for some e € N. Write a = g"v with u as large as possible. Writing a as a sum of terms we
may also assume that v = v,vo with v,ve € T and degv; = 1. Then ¢?“v? € Ageqs = Rgers = g2 Tger3.
As ¢T is completely prime, g does not divide v? and so 2u > 2e + 1, hence u > e. Thus we can rewrite
e+1

a = g lviws = (gv1)(g°ws) where, now, wy € Tse. Thus, géws € g°T3. = R4e and a € RM{¢T}) = R, as

required. O

As the next example shows, if one merely assumes that U is a noetherian cg overring of T' in Theorem [[T]

then more complicated examples can arise.

Example 7.8. Let T := Skl(g), the 3-Veronese of a quadratic Sklyanin algebra with factor B := T/gT. Set
R:= (¢T)® +T® and let U := ¢; *(R), where ¢; is defined by (ZZ). Then U and R are noetherian cg rings
such that R® = T® is a finitely generated R-module on both sides. Similarly, T € U < V := ¢; (T®),
with V' a finitely generated U-module on both sides. However, both R® /R and V /U are infinite dimensional,

so U has noetherian overrings that are substantially larger than itself.

Proof. Clearly ¢1(T) = k{gT1) Sk + (¢gT)? € R< T® = ¢;(V). Thus T < U € V and all the assertions
about U follow from the corresponding assertions about R.

Since ¢?°T® = R < T® = T, certainly R® = T?®. On the other hand as T® < R < T® and T®
is a (left and right) noetherian 7(*-module, so is R. Hence R is a noetherian ring and R is a noetherian
R-module on both sides. It remains to prove that dimy 7 /R = oo. Since (¢7)? is an ideal of R, it suffices
to prove that 7 /(¢T)? = B® is not a finite dimensional extension of R/(¢7)®. Since

(gT)(Q) + 7@ N T#) _ T4 B
(97)®

(2) — =
ftat) GNP AT® gm0

the assertion follows. O

Remark 7.9. Let S := Skl be a quadratic Sklyanin algebra, and let T' := S®). For the purposes of this

remark, define a minimal model to be a cg noetherian algebra T’ containing g and birational to T with the
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property that if R’ is cg noetherian with "G R’ < T(/g)7 then T" = R’ (thus we are not assuming that 7" is
elliptic). The ultimate aim in the present project is, of course, to classify all the minimal models birational
to T (or S) and then to prove that any finitely graded maximal order R birational to S can be obtained
from such a minimal model by blowing up (including virtual blowing up as in [RSS2]) finitely many points
on the elliptic curve FE.

However, unlike the commutative situation, we expect there to be more minimal models than just the
noncommutative projective plane and quadrics. More precisely, reflexive right ideals P of S have been
classified through formal moduli spaces [NS], with a discrete invariant ¢(P) analogous to a second Chern
class and a continuous one deforming a Hilbert scheme of points. By analogy with work on the Weyl algebra

(see for example [BW]), we hope that
Endg(P) ~ Endg(P') <= ¢(P) =c(P')  for reflexive right ideals P, P'.

Analogous results should hold if S is replaced by T" or Qvgp or their Veronese rings.
The expectation is that the corresponding endomorphism rings End(P) will then give all minimal models

birational to S. For elliptic algebras a stronger conjecture will be given in Conjecture .13

8. GENERAL OVERRINGS IN THE LOCALLY HEREDITARY CASE

The arguments of Section M can also be used to obtain information on the structure of arbitrary cg
noetherian overrings of non-minimal elliptic surfaces T" provided that T is locally hereditary in the sense
that gldimT° = 1. The main result of this section is an analogue of Theorem [[.2} that is, the classical
result that any birational morphism of smooth projective surfaces is a composition of finitely many monoidal
transformations.

We recall that for elliptic algebras T there is a good analogue of Castelnuovo’s theorem on contracting
rational curves of self-intersection (—1). In order to state this we note that, if 7" is an elliptic algebra such
that qgr-T is smooth in the sense of Definition [G.5] then there is a well-defined intersection product [MS], on
qgr-T. This is given by (M- N) := 3,22 /(—=1)"*! dim Extflgr_T(M, N), for M, N € gr-T. The noncommutative

version of Castelnuovo’s theorem is as follows.

Theorem 8.1. (JRSS4, Theorems 1.4, 1.5, and 8.1, Lemma 8.2]) Let T be an elliptic algebra so that qgr-T
is smooth, and let L be a line module so that L has self-intersection (L - L) = —1. Then there is an elliptic
algebra T with T < T < T(y) and so that T)T ~ @i>1 LI—i] as right T-modules. Further, T is the mazimal
submodule of Qg (T) so that f/T 1s isomorphic to a direct sum of shifts of L, and qgr—f 18 smooth.

We refer to the construction of 7' from T given in Theorem Bl as blowing down or contracting the line L.

We now state the main result of this section.
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Theorem 8.2. Let T' be an elliptic algebra of degree = 3 such that T° is hereditary and let T = R < T{y)
be any g-divisible finitely graded overring. Then R is obtained from T by successively blowing down finitely

many line modules L of self-intersection (L - L) = —1. In particular, R is elliptic.
We immediately note a simple corollary obtained by combining the theorem with Lemma

Corollary 8.3. Let T' be an elliptic algebra of degree > 3 such that T° is hereditary and let T = R < T{y
be any noetherian cg overring. Then there is an extension R € R < T(g), finitely generated as a left and
right R-module, such that R' is obtained from T by successively blowing down finitely many line modules L

of self-intersection (—1). O

The proof of Theorem will take the whole section and we assume throughout that the hypotheses of
the theorem are satisfied. To begin, we may assume that 7' = R and, by Proposition B.2] pick a critical
module L so that some shift of L is contained in R/T and so that 8§ := L° is a simple submodule of R°/T°.
Without loss of generality, we may shift L so that min{n : L, = 0} = 0. If no such L is a line module
(by Proposition this is equivalent to saying that L has multiplicity d(L) > 1), then the conditions of
Hypothesis 1] are automatically satisfied. In this case Proposition .8 applies and leads to a contradiction.

Thus, we can and will assume that L is a line module.

Remark 8.4. We note that by [RSS4, Lemmas 5.2 and 5.4], L is CM with j(M) = 1.
The heart of the proof will be to prove the following fact.

Proposition 8.5. In the situation above, (L - L) = —1.

Before proving the proposition, we will show that this quickly implies the theorem.

Proof of Theorem[82 Let T < M < R so that M /T ~ L[—i] for some 3.

Applying Theorem [8.1] we can blow down T at L to obtain a second elliptic algebra U := T 2 T such that
U/T = @D,,>, L[-n]. Therefore U°/T° = @, ., S, with §,, = L° for all n. However, by [Go, Theorem 5]
every overring of T° is obtained by a torsion-theoretic localisation at some set X of simple modules. In
particular, the overring of T° generated by M° is such an overring and hence must equal U°. Consequently,
U° < R°. Since U is g-divisible, U = ®(U°) < ®(R°) = R.

By [Kul Proposition 1.6], U° is hereditary. Since co > dim Ry > dimU; > dim 77, we may now induct

on dimU; to conclude that R is obtained from U (and hence T') by blowing down a finite number of line

modules of self-intersection (—1). This completes the proof of the theorem. O

It remains to prove Proposition 83l for which we need several lemmas. Note that, by [RSS4, Corollary 6.6

and Lemma 5.5],

(8.6) (L-L) =—1 < Exty(L, L) =0.
33



So the proof of Proposition B35 amounts to describing this Ext group. We note that Goodearl’s result also
applies to the rings T° € R° and implies, in particular, the following fact: Suppose that T° € N° < Fr(7°)
is a finitely generated module extension such that N°/T° has a composition series with factors consisting
entirely of copies of § = L°. Then N € R°.

Applying ® this gives:

Lemma 8.7. Suppose that P is a T-module with T = P < T,y and assume that P/T has a finite composition
series with all factors isomorphic to shifts L|r] of L. Then P < R. O

We note also that the possibilities for Exth (L, L) are quite limited.

Lemma 8.8. If T is any elliptic algebra and L is any right T-line module, then as a g-module ExtlT(L7 L)

is isomorphic to one of:
0, klgl, ¢ 'klg], g 'klg]@klg].

In particular, ExtlT(L, L) is g-torsionfree.
Proof. Let L = L/Lg, and note that, by [RSS4, Lemma 4.7], there is an exact sequence
0 — Exth(L, L[~1]) ——= Exth(L, L) —> Ext} (L, I).

This immediately shows that Ext}.(L, L) is g-torsionfree. By [RSS4, Proposition 3.6(2)], ExtlT/gT(f, L) =
k ®k[1]. Thus, Imd is a graded subspace of k @ k[1]. Since Exty(L, L) is left bounded and g-torsionfree,

this gives the four claimed possibilities. g
Lemma 8.9. Ext}.(L,L)_; = 0.
Proof. Suppose the contrary: so Exty (L, L[—1])o = Ext}.(L, L)_1 # 0 and there is a nonsplit extension
0—L[-1]>M—L—0.
Since L is CM by Remark [B4] this induces an exact sequence
0 — Bxth(L,T) — BExth(M,T) — Exth(L[-1],T) — 0.

By Lemma 5 Ext4(L, T); = k, say given by the nonsplit extension [Y]:0 — T — Y — L[-1] — 0. By
the displayed equation this lifts to a (necessarily nonsplit) extension, say 0 > T — X — M — 0.

We claim that Y is (Goldie) torsionfree. Indeed, if Y has a nonzero torsion submodule N, then N would
be canonically isomorphic to a submodule of L[—1] and hence Ext}.(L[—1]/N,T) = 0. As L[—1] is 2-critical,
GKdim(L[—1]/N) < 2 and so this contradicts the fact that T is CM [RSS3| Proposition 2.4]. This proves
the claim; in particular Y° is also torsionfree.

By Lemma B8 Exth(L, L) is g-torsionfree and so the extension 0 — 8§ — M° — 8§ — 0 is nonsplit. Thus

by Lemma [£5] X° is (Goldie) torsionfree. As L is g-torsionfree, so are M and X. Thus, if X had nonzero
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Goldie torsion, then so would X [g~!] and X°, giving a contradiction. Therefore, X must also be torsionfree.

Finally, by Lemma [B.7] this implies that X < R. Since dim Xy = 2 but Ry = k, this is a contradiction. [J

Combining the last two lemmas gives:
Corollary 8.10. FEither Ext:(L,L) = 0 or Extr-(L, L) = k[g]. 0
We now come to the key step in the proof of Proposition

Proposition 8.11. In Corollary[810, suppose that Exty(L, L) # 0. Then for all n € Zs, there is a graded
CM T-module L(n), where:

(1) L(1) = L;

(2) there is a nonsplit extension 0 — L(n) — L(n+ 1) > L — 0;

(3) L(n)° is essential in L(n + 1)°.

Proof. We will show by induction that L(n) exists with the claimed properties and that Exti.(L, L(n)) =
Homy (L, L(n)) = k[g]. The base case n = 1 holds by Remark B4 and Corollary BI0l

Suppose that N = L(n) has been constructed with the given properties. Since Exth (L, N) = k[g], there
is a nonsplit exact sequence 0 > N — M — L — 0 and so certainly M = L(n + 1) exists, and is CM by
induction. By Lemma &8, Ext}(L, N) is g-torsionfree, so M° 2 N°@8. As L° = § is simple, N° is essential
in M°.

Consider the localised exact sequence

a B
0 —— Homg- (8, N°) —— Homry- (8, M°) —— Homr-(8,8) ——

—— Extio (8, N°) — Extjo (8, M°) — Ext}.(8,8) — 0.
As noted above, M° is a nonsplit extension, and so

Homre (8, M°) = Homy- (8, N°) = k.

Thus, @ = 0. Thus § is injective, and since Extr}po (8, N°) = k by induction, S is even an isomorphism. It
follows that Exth. (8, M°) = Ext}.(8,8) = k.
Consider now the long exact sequence

a B
0 —— Homy (L, N) —— Homy¢ (L, M) —— Homy(L,L) ——

— BExt}(L,N) — Exti(L, M) — Exti(L, L)

Since @ = 0, the image of @ must be a g-torsion submodule of Exti-(L,L) = k[g], and so & = 0. Thus
Homy(L, M) =~ Homy(L,N) = k[g] by induction, again. Further, 3 is an injective map between the
graded spaces Homr (L, L) = k[g] and Ext}(L, N) = k[g] and so is an isomorphism. Thus Exty-(L, M) <

[
Exty (L, L) = k[g] and so Ext}.(L, M) = g"k[g] for some m > 0.
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Finally, write L := L/Lg and consider the exact sequence
Exty(L, M)[-1] =% Extp(L,M) — Extg (L, M),

given by [RSS4, Lemma 4.7]. Since M has a filtration whose factors are n + 1 copies of the point module
L, [RSS4, Proposition 3.6(2)] implies that Tm~y < (k[1] @ k)(™*1). Thus, since Exth(L, M) is left bounded
and g-torsionfree the map -g is an injection and the graded version of Nakayama’s Lemma implies that
generators of Im(y) pull back to generators of Exty (L, M). Hence m = 0, completing the proof of the

induction step. 0

Proof of Proposition [83. Suppose that Exty(L, L) # 0. Then modules L(n) as in Proposition 1T exist for
all n. We claim that there is a torsionfree extension 0 —» T — X (n) — L(n)[—1] — 0 for all n.

As in the proof of Lemma B3] certainly X (1) exists. By induction, assume that X (n) exists and let &,
be the corresponding element of ExtT.(L(n),T). As L(n) is CM we have the exact sequence

0 — Ext}(L, T) — Ext}(L(n + 1), T) — Ext}(L(n), T) — 0.

Let &,41 be a preimage of &, in Exty(L(n +1),T) and let 0 - T — X(n + 1) — L(n + 1) — 0 be the
corresponding extension. Under localisation this gives the extension 0 - T° — X(n+1)° — L(n+1)° — 0.
By Lemma and Proposition BTT|(3), X (n + 1)° is torsionfree, and as in the final paragraph of the proof
of Lemma [89 X (n 4+ 1) must be torsionfree, as claimed.

Thus X (n) < R for all n, by Lemma B7 But dim X(n); > n, whence dim R; = oo. This gives the
required contradiction and completes the proof of the proposition and hence that of Theorem 0

We also note that Theorem [B2] provides the following variant of Theorem .0l for elliptic algebras of degree
at least 3.

Theorem 8.12. Let T be an elliptic algebra of degree = 3 such that T° is hereditary and T has no line

modules of self-intersection (—1). Then T is a minimal elliptic surface.

Proof. Suppose there exists a cg noetherian ring R with ' C R < T{,). By Lemma we can replace R by
R and assume that R is also g-divisible. Now Theorem implies that R = T. O

We end by making the following conjecture. This may be compared with Remark where the algebras

are not assumed to be elliptic.

Conjecture 8.13. If T,T" are two elliptic algebras with Qur(T) = Qgr(T"), then they are related, up to

isomorphism, by a finite series of blowdowns and blowups.
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9. GELFAND-KIRILLOV DIMENSION

In this final section, we consider the Gelfand-Kirillov (GK) dimension of overrings of elliptic algebras. See
IKT] for the basic theory of GK-dimension. Let T' be a minimal elliptic surface; by definition GKdimT" = 3.
Theorem and Corollary [6.I8 can be viewed as saying that any noetherian graded algebra lying strictly
between T and Q- (1) must be significantly larger than 7. In this section we prove that this is true in
the sense of GK-dimension as well: any proper noetherian graded overring of T' contained in T{,) has GK-
dimension > 4. We also show that, when T = SKI® or T = SKI'™ or T = QVdB(2), any proper overring of
T° has GK-dimension > 3.

We first give some elementary computations on linear systems on elliptic curves. Let E be an elliptic

curve and let K = k(F). If f € K, we write

(9.1) (f) = (flo = (N

for the divisor of f, where both (f)o and (f)s are effective and of minimal degree. If D is a divisor on E,
we write |D| = H°(E, O(D)), which we identify with {f € K : (f) + D = 0}.
If y € K then

(9.2) yD|={feK:y 'feD}={f:(/)+D= )} =|D— Wl <|D+ ¥l

We need the following elementary lemmas.
Lemma 9.3. Let D, D’ be divisors on E such that deginf{D, D’} > 0. Then |D|+ |D'| = |sup{D, D'}|.

Proof. Certainly |D|, |D’| < |sup{D, D’}|. For the other inclusion, we count dimensions. We have:
DI |D|={feK:(f)=>-D,-D'} = {f: (f) = sup{-D, - D'}} = |inf{D, D'}.
So
dim(|D| + |D’|) = dim|D| + dim|D’| — dim(|D| n |D'|)
=deg D + deg D' — deginf{D, D'} by Riemann-Roch and hypothesis on inf{D, D’}
= degsup{D, D'} = dim|sup{D, D'}|.
The lemma follows. O

Lemma 9.4. Let x,y € K \k and let a = deg(x)y = deg(x)s and b = deg(y)o = deg(y)w- If (z) and (y)
have disjoint supports and deg D > a + b then

z|D| +y[D] = [D + (x)oo + (4)oo]-

Proof. By @2) we have |D| = |D — (2)], y|D| = |D — (y)|. We have inf{D — (x), D— (1)} = D— (x)o — (1)o
by hypothesis and so deginf{D — (z), D — (y)} = deg D — a — b > 0. Thus by Lemma [0.3 we have

z|D| +y|D] = [D = (2)| + [D = (y)| = [sup{D — (), D = (y)}| = [D + () + (¥)eo],
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again using our assumption on the supports of (x) and (y). O

In the next result, let ¢ be an infinite order translation automorphism of E. We work inside the Ore

extension K[t;0].

Lemma 9.5. Let y € K \ k be such that all points in the support of (y) have disjoint o-orbits, and let
d := deg(y)o. Let D be a divisor with deg D > 2d. Let V := |D| -t and let W :=k+ky+ V. Ifn=m =1,
then W™ n Kt™ = |F(n, m)|t™, where

F(n,m):=D+o 'D+---+0 ™D+ (n— m)((y)oo + (Y )+ + (ygm)oo).
Proof. Certainly W™ n Kt™ is spanned by
{yiov(yo)ilvo . ngfl (ygm)imtm . Zij <n—m,i; =0 vj}.

Each of these is contained |F(n, m)[t™, giving one inclusion.

We show the other inclusion by induction on n > m. Certainly W™ n Kt™ = V™ = |F(m,m)[t™, so
assume that n > m. By induction, W"~! n Kt™ = |F|t™, where F = F(n —1,m).

Choose 0 < j <m — 1. Then

gitl

W' A K™ 2 (y7 Wl 7 W) A Kt = (7 |F +y” | )

gitl

—F+ 4w + (47 )o|t™, by Lemma @4

where we have used that deg F' = deg D > 2d.
So

W"n Kt™ 2 Z |F+ (y7 ) + (y"ﬁl)oo|tm = [sup F' + (" oo + (y”]+1)oo|tm using Lemma [0.3]
7=0 I

=|F + (y”j Jo|t™ by assumption on y

s

Il
o

J

= |F(n, m)[t",
as needed. O

We now give a result on the GK-dimension of overrings of TCRs of elliptic curves.

Proposition 9.6. Let B := B(E, L,0) where E is an elliptic curve, o has infinite order, and L is an ample

invertible sheaf on E, and let B G C € Qg (B) where C' is Z-graded with dim Cy > 1. Then GKdim C' > 3.

Proof. We write K := k(E) and C = @ C;t* < K[t,t"';0]. By hypothesis there exists y € Co \ k. Let
d := deg(y)o > 0.
Choose a positive integer ¢ so that all points in the support of (y) have disjoint o¢-orbits and so that

deg L. > 2d. Let C' := (B{y))(®. Tt suffices to prove that GKdim C’ > 3.
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We note that ¢’ = k(W) where W :=k + ky + H°(E, L.)t°. By Lemma [0.5 we have

n
e 3

m=1 m=1

dimW" > i dim(W"™ n Kt™¢) = i (n—m)m=mn i

,n (n n ' nS
< ;1) (n+1)(2 +1>:€+0(n2>,

and so GKdim C” > 3. (A little more work will show that GKdim C” = 3 but this is all that is required.) O
Applying this to minimal elliptic surfaces, we obtain:

Corollary 9.7. Let T be a minimal elliptic surface and let T ; R < Ty be a noetherian graded overring

of T. Then GKdim R > 4. In particular, by Theorem[6.18, this holds for T = Qvap'® or SKI®) or SKI'™)

Proof. By definition, R cannot be cg. Note that one cannot have R¢y = k, as this would contradict
Remark 2.2(2). Thus Remark 2.2(1) implies that Ry D k.

So, suppose that Ry 3 $1_1$ng, for some m > 0 and x; € T~ ¢g7T. Then Rgo 3z = a:l_lzzrg with z €
Tg) ~ g1 (g). Thus R+ 9Ty 2 T{z) and hence Ro T(Z). Therefore, by Proposition @6, GKdim R/gR > 3.

Note that R° = (R)°. Therefore, by [RSS1, Lemmas 2.1 and 2.2], there is a filtered isomorphism 6 :
R° > R/(g — 1)R, with gr(R°) = R/gR. Thus, GKdim gr(R°) > 3. By [KL, Lemma 6.5], GKdim R° >
GKdim gr(R°). Therefore, by [KL, Proposition 3.15], GKdim R > GKdim R° + 1. Putting this together
gives GKdim R > 4. 0

We also have:

Theorem 9.8. Let T = Ski®® or T = (SEIY® or T = Quap'®. If A is an algebra with T° S AcCQ(T°)
then GKdim A > 3 = GKdim7T° + 1.

Proof. We first establish the result if 7° is simple. Using Notation L7 and [RSS2], p.2099], A = (PA)° and
soT G ®A € T(,). Since PA = @, Remark implies that dim(®A)y > 1. Thus by Proposition [1.6],
GKdim ®A > 3.

Now suppose that GKdim A := a < 3. Since ®(A4) < A[g,g7!], it follows from [KL, Lemma 3.1 and
Proposition 3.5] that § := GKdim ®(4) < GKdim A[g,97'] < o+ 1. Now, as g1, n ®(A) = g®(A4) is a
nonzero ideal of the domain ®A, it follows from [KLJ, Proposition 3.15] that GKdim®A < 8 -1 < a < 3.
This contradicts the first paragraph of the proof.

Now suppose that T is not simple. As in the proof of Theorem .16} there are a simple elliptic algebra Ty,
and a (Tw, T)-bimodule K, which is finitely generated on both sides by Corollary [6.11] so that Endr(K) =
Ty and Endp (K) = T. Set X := K°; thus £ := X*X < T° and KK* = T3 as T3 is simple. Let
C:=T5 +KAK*. If C = T2, then LAL € K*T3K < T°. As T° is a maximal order by Remark [6.8] this

implies that A € T°, a contradiction. Thus C' 2 T2 and so, by the first part of the proof, GKdim C' > 3.
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Let A" :=T° + X*CXK < A. Now, KA' = K + XKK*CK = CX, and so CX is a (C, A’)-bimodule which is
finitely generated, and clearly torsionfree, on both sides. Thus by [KL, Corollary 5.4],

3 < GKdim C = GKdim ¢(CX) = GKdim(CX) 4 = GKdim A’ < GKdim 4,
giving the result. O

We conjecture that Theorem holds if T' is any minimal elliptic surface.

Remark 9.9. Theorem [0.8] is reminiscent of a striking result of Makar-Limanov [ML] on the localised Weyl
algebra. If chark = 0 and A := k(z)[d,07'], for 0 := L he shows that if B is a ring with A & B < Fr(A)
then GKdim B > GKdim A4; in fact GKdim B = 0.

APPENDIX A. COMMUTATIVE ALGEBRAS

We end this paper with a few comments on the commutative analogues of the results in this paper; thereby
justifying some of the comments from the introduction by noting that elliptic algebras are noncommutative
versions of anticanonical (homogeneous coordinate) rings of del Pezzo surfaces, and by exploring some of the
properties of these rings. This result will not be used in the body of the paper, so can be skipped on first

reading.

Lemma A.1. Let T be a cg commutative domain that is generated by T1 and so that there is g € T1 with
T/gT isomorphic to the homogeneous coordinate ring B := B(E, L) of an elliptic curve E with respect to an
ample line bundle £ on E. Suppose also that X := ProjT is nonsingular. Then X is a del Pezzo surface of

degree = 3, and T is isomorphic to the anticanonical coordinate ring of X .

Proof. We need to prove that w)}l is ample.. We use C - C’ to denote the intersection product on X. From
the setup, g defines the elliptic curve E < X, and Ox (F) =~ Ox(1) with £ =~ Ox(F)|g. Since B(E, L) is
generated in degree 1, d := deg L = E?, where E? := E - E > 3. Letting K = Kx be the canonical divisor
on X, by adjunction [Hal Proposition V.1.5] we have

(A.2) 0=E-(E+K).

For a sheaf M on X, let hi(X, M) = dim H*(X, M). Then we have

1 n
% =Y dim B, = dimT,, as B =T/gT

k=0

=h%(X,0x(nE)) = x(Ox (nE)) forn>» 0

1+d

=x(Ox) + %nE -(nE - K) by Riemann-Roch
n(n+1
=x(Ox) + %W by ([A.2).

Since E% = d, x(Ox) = 1.
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Further, note that K is not effective, as F is ample and K - E = —E? < 0. In particular, h?(X,0x) =
RO(X,K) =0, and as 1 = x(Ox) = h°(X, Ox), we have h'(X,Ox) = 0.

Consider the exact sequence
Hl(X,Ox) - Hl(XvoE) - H2(Xa OX(iE)) - HQ(Xv(QX)

Since the outside terms are zero, it follows that that k =~ H?(X,0Ox(—FE)) =~ H°(X,0Ox(K + E)). Thus
K + E is effective. By (A.2) and the fact that E is ample, K + E = 0, so wy' =~ Ox(FE). In particular, wy'
is ample. Thus, by definition, X is del Pezzo, while T' and B(X, w)_(l) = B(X,0x(F)) are equal in large
degree. But the Hilbert series of B(X, w)_(l) is the same as that of T, which was calculated above, by [Kd,
Corollary I11.3.2.5]. Thus 7' = B(X,wy") is the anticanonical coordinate ring of X. O

Remark A.3. Line modules of self-intersection (—1) play a crucial role in the noncommutative theory we
are developing. We remark that in the context of Lemma [A1] all line modules correspond to lines of self-
intersection (—1). Indeed, let X be a smooth del Pezzo surface of degree > 3, and let T := B(X,wy")
be the anticanonical ring. Let L be a line module over T'. Then there is a curve C' on X so that, for n
sufficiently large, L, = H°(C,wx"|c), by Serre’s Theorem [Hal Exercise I1.5.9]. From the Hilbert series of L
and Riemann-Roch on C, we obtain that —Kx - C' = 1 and that x(O¢) = 1. Thus by |[Ko, Lemma I11.3.6.1]

C' is a smooth rational curve of self-intersection —1.

It may seem counterintuitive that blowing up a point corresponds to constructing a subalgebra, but it

can be quite natural in the commutative case, as the following example illustrates.

Remark A.4. Let X be the blowup of P? at p. Then the anticanonical ring of X is the subalgebra of
k[z,y, z]® generated by 3-forms vanishing at p.

Proof. To see this, let 7 : X — P? be the blowdown morphism and let L be the exceptional line. By [Hal,
Proposition V.3.3], —Kx = 7*(—Kp2) — L. Thus
HY(X,wy') = H(X, ~Kx) = {f € H*(X, 7" (~Kp=)) : f|r =0}
= {f e H(P?, —Kp=) : f(p) = 0}.

As the anticanonical ring of a degree 8 del Pezzo surface is generated in degree 1, this is sufficient. O

INDEX OF NOTATION

Auslander-Gorenstein algebra critical and pure modules

associated elliptic curve degree of an elliptic algebra
EY (M) = Exth(Exth(M,T),T)

elliptic algebra T'

birational algebras
Cohen-Macaulay (CM) ring
CM and MCM modules
connected graded (cg) algebra

finitely graded algebra
GKdim M Gelfand-Kirillov dimension
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g-torsion and Goldie torsion modules
g-divisible module, g-divisible hull X
Hilbert series hilb(M)

J(M) homological grade of a module

OM := P, .7 (PM),

quadric elliptic algebra T' = Qvap®
gr-R, qgr-R (quotient) module category
Qgr(R) graded quotient ring

=
o

linear, line and point modules
locally hereditary algebra
locally simple algebra

M°,
maximal order
minimal elliptic surface

multiplicity of M

Tw special quadric elliptic algebra
singularity category, A; singularity
Sklyanin algebra, S = Skl(a, b, c)
Sklyanin elliptic algebra, T' = S
smooth qgr-T'

TCR twisted coordinate ring B(X, L, 0)
Van den Bergh quadric Qvas = Qvas(r)

T° localisations
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