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WILDLY RAMIFIED RIGID G2-LOCAL SYSTEMS

KONSTANTIN JAKOB

Abstract. In earlier work of the author rigid irregular connections with dif-
ferential Galois group G2 and whose slopes have numerator 1 were classified
and new rigid connections were constructed. The same construction can be
carried out for ℓ-adic local systems in the setting of positive characteristic. In
this article we provide the results that are needed to obtain the classification
of wildly ramified rigid G2-local systems whose slopes have numerator 1. The
overall strategy of the classification is very similar but the methods needed to
obtain some invariants differ.

1. Introduction

Rigid local systems are local systems which are globally determined by their local
monodromy. They have been studied in detail by Katz in [Ka3] who proved that any
such local system arises from a system of rank one by iterating tensor products with
rank one local systems and middle convolution. To include equations or connections
with irregular singularity, Arinkin has extended the result of Katz by additionally
involving Fourier-Laplace transform of D-modules in [Ar]. This builds on work
of Bloch and Esnault who prove in [BE] that Fourier-Laplace transform preserves
rigidity. The statement is that any rigid irreducible connection (with possibly
irregular singularities) can be obtained from a connection of rank one by iterating
Fourier-Laplace transforms. In the article [Ja], this method of construction was
used to give a classification of rigid irregular irreducible connections with differential
Galois group G2 and whose slopes have numerator 1.

When working with ℓ-adic sheaves on some open subset U ⊂ P1
k over the alge-

braic closure k of a finite field Fq of characteristic p one can prove similar results.
There are a lot of similarities and analogies in both settings, but unfortunately not
everything translates directly from one to the other. The goal of this article is to
introduce the necessary tools and methods to transfer the classification of [Ja] to
the arithmetic setting.

Let us explain the strategy of the classification. Rigid local systems can be
identified through a cohomological invariant. An irreducible ℓ-adic local system L

on U ⊂ P1 is rigid if and only if

χ(P1, j∗E nd(L )) = 2

where j∗ denotes the non-derived direct image along the open embedding j : U →֒
P1. For this reason we will call

rig (L ) := χ(P1, j∗E nd(L )

the index of rigidity. The fact that rig (L ) = 2 implies rigidity of L is essentially
a consequence of Poincaré duality for ℓ-adic sheaves. The other direction is more
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complicated and was recently proven by Fu in [Fu3] using rigid analytic geometry.
Let S = P1 − U . Using the Euler-Poincaré formula, one can compute the index of
rigidity through local invariants as follows

rig (L ) = (2− |S|)rk(L )2 +
∑

s∈S

Sws(L ) + dim(L )Is .

One of the main ingredients of the classification in [Ja] is a classic result of Levelt-
Turittin for formal connections which allows to decompose any such connection into
a direct sum of objects of the form

[r]∗(E
ϕ ⊗R)

where [r] denotes an r-fold covering of the formal punctured disc, E ϕ = (C((t)), d+
dϕ) is a formal connection with an exponential solution and R is some regular
singular formal connection. For objects of this form one knows how to compute the
invariants needed to compute the index of rigidity. We will see that the same is
true for representations of the inertia group I = Gal(k((t))sep|k((t))) corresponding
to sheaves of the form

[r]∗(Lψ(ϕ) ⊗K )

where Lψ is the restriction of an Artin-Schreier sheaf (for some fixed non-trivial

additive character ψ : Fp → Qℓ
∗
), Lψ(ϕ) denotes pull-back of Lψ by the morphism

given by the polynomial ϕ ∈ t−1k[t−1] and K some tamely ramified sheaf on the
punctured formal disc. In general, an irreducible representation of I might not be
of the above form, i.e. an analogue of the Levelt-Turittin decomposition does not
exist in positive characteristic. There is however a weaker form proven by Fu in
[Fu1]. In the same article he raised the following question. Given an irreducible

continuous Qℓ-representation V of I, does there exist a tame character χ : I → Qℓ
∗

such that χ⊗ V has finite image?
We answer this question positively, strengthening his result [Fu1, Proposition

0.5] to the following statement.

Proposition 1.1. Let ρ : I → GL(V ) be an indecomposable continuous Qℓ-
representation and denote by P the wild ramification subgroup of I. Suppose that
ρ(P p[P, P ]) = 1 and that the Swan conductor Sw(V ) < p. In this case, V is iso-
morphic to the representation corresponding to [r]∗(Lψ(ϕ) ⊗K ) for an integer r
prime to p, ϕ ∈ t−1k[t−1] and K some tamely ramified sheaf.

In our setting this result suffices to conclude that the local monodromy of the
rigid systems we will consider decomposes into these simple objects. We will com-
pute tensor products and determinants of such representations and attach to them
invariants which are similar to formal monodromy and exponential torus of a for-
mal connection (these are invariants coming from differential Galois theory). This
will in turn allow us to conclude the following classification theorem which is a
generalization of the classification of tame rigid G2-local systems by Dettweiler and
Reiter in [DR].

Theorem 1.2. Let k be the algebraic closure of a finite field of characteristic p > 7.
Let λ1, λ2 ∈ k such that λ1 6= ±λ2 and let

χ, x, y, z, ε, ι : lim
←−

(N,p)=1

µN (k)→ Qℓ
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be non-trivial characters such that χ is not quadratic, z4 is non-trivial, x, y, xy and
their inverses are pairwise different and such that ε is of order 3 and ι is of order 4.
Denote by χ the inverse of χ, by 1 the trivial representation of rank one and by −1
the unique character of order 2. Every pair of local monodromies in the following
list is exhibited by some irreducible rigid ℓ-adic local system of rank 7 on Gm with
monodromy group G2(Qℓ).

0 ∞

U(3)⊕U(3)⊕ 1
[2]∗(Lψ(λ1u

−1)⊗ (χ⊕ χ))
⊕ [2]∗(Lψ(2λ1u

−1))⊕ (−1)

−U(2)⊕−U(2)⊕ 13 [2]∗(Lψ(λ1u
−1)⊗ (χ⊕ χ))

⊕ [2]∗(Lψ(2λ1u
−1))⊕ (−1)

x⊕ x⊕ x⊕ x⊕ 13 [2]∗(Lψ(λ1u
−1)⊗ (χ⊕ χ))

⊕ [2]∗(Lψ(2λ1u
−1))⊕ (−1)

U(3)⊕U(2)⊕U(2)
[2]∗(Lψ(λ1u

−1))⊕ [2]∗(Lψ(λ2u
−1))

⊕ [2]∗(Lψ((λ1 + λ2)u
−1)⊕ (−1)

ι⊕ ι⊕ −ι⊕−ι⊕−12 ⊕ 1
[3]∗(Lψ(λ1u

−1))
⊕ [3]∗(Lψ(−λ1u

−1))⊕ 1

U(7) [6]∗(Lψ(λ1u
−1))⊕−1

εU(3)⊕ ε−1
U(3)⊕ 1 [6]∗(Lψ(λ1u

−1))⊕−1

zU(2)⊕ z−1
U(2)⊕ z2 ⊕ z−2 ⊕ 1 [6]∗(Lψ(λ1u

−1))⊕−1

xU(2)⊕ x−1
U(2)⊕U(3) [6]∗(Lψ(λ1u

−1))⊕−1

x⊕ y ⊕ xy ⊕ (xy)−1 ⊕ y−1 ⊕ x−1 ⊕ 1 [6]∗(Lψ(λ1u
−1))⊕−1

Conversely, the above list exhausts all possible local monodromies of wildly ramified
irreducible rigid ℓ-adic local systems on open subsets of P1 with monodromy group
G2 of slopes with numerator 1.

Acknowledgements. The author would like to thank Michael Dettweiler &
Stefan Reiter for their support during the work on this project. The author was
funded by the DFG SPP 1489.

2. Rigid Local Systems and the Katz-Arinkin Algorithm

For the rest of this article let k be the algebraic closure of a finite field of char-
acteristic p and fix a prime ℓ 6= p. Let j : U →֒ P1

k be a non-empty open subset
with complement S. An ℓ-adic local system L can be given as a continuous repre-
sentation

ρ : πét

1 (U, u)→ GLn(Qℓ)
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of the étale fundamental group with Qℓ-coefficients. For any x ∈ S we denote by
Ix the inertia group at x and we say that ρ is rigid if and only if the collection
{[ρ|Ix ]}x∈S of isomorphism classes of continuous Ix-representations determines ρ
up to isomorphism.
Recall that the index of rigidity of an ℓ-adic local system is given by

rig (L ) = χ(P1, j∗E nd(L )).

We call the local system L cohomologically rigid if rig (L ) = 2.

Proposition 2.1 ([Fu3], Thm 0.9 & [Ka3], Thm 5.0.2). An irreducible local system
L on j : U →֒ P1 is rigid if and only if it is cohomologically rigid.

We would like to link the index of rigidity to invariants of the local monodromy
in order to be able to compute it from knowledge of local information only. In
order to do that we recall the local setting. Let K = k((t)) and I its absolute Galois
group, called the inertia group. We denote by Ktame the maximal tamely ramified
extension of K and by P its absolute Galois group, which we will call the wild
ramification subgroup. We have an exact sequence

1→ P → I → Itame → 1

where the tame inertia Itame ∼= lim
←−(n,p)=1

µn(k) is an inverse limit over n-th roots

of unity in k for n prime to p.

Lemma 2.2. The sequence

1→ P → I → Itame → 1

splits. In particular there is a subgroup H ⊂ I isomorphic to Itame.

Proof. The group Itame is the maximal pro-p′ quotient of I and P is the pro-p-
Sylow subgroup of I. Therefore the assertion follows from the profinite version of
the Schur-Zassenhaus Theorem [Wi, Prop. 2.3.3.]. �

The wildness of the ramification can be measured by two kinds of invariants.
They are the slopes (also called breaks) and the Swan conductor.

Theorem 2.3 (Slope Decomposition, [Ka1], 1.1.). Let ρ : I → GL(V ) be a contin-
uous representation of I with coefficients in Qℓ. There is a unique decomposition

V =
⊕

y∈Q≥0

V (y)

where only finitely many V (y) do not vanish. These y are called the slopes of V .
The number Sw(V ) =

∑
y∈Q≥0

y dimV (y) is called the Swan conductor of V and is

a non-negative integer. The representation V is tame if and only if all of its slopes
vanish or equivalently if Sw(V ) = 0.

We can now compute the Euler characteristic of an ℓ-adic local system by means
of local information using the Euler-Poincaré formula.

Proposition 2.4 ([Fu2], Corollary 10.2.7). Let L be an ℓ-adic local system on
an open subset j : U →֒ P1

k corresponding to the representation ρ of πét
1 (U, u), let

S = P1
k − U and s = #S. We have

χ(P1, j∗L ) = (2− s)rk(L )−
∑

x∈S

(
Sw(ρx)− dim(ρx)

Ix
)
.
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For the rest of the article we fix a non-trivial additive character ψ : Fp → Qℓ
∗

and denote by Lψ the Artin-Schreier sheaf on A1 associated to the character ψ.
Let us briefly recall the definition of middle convolution with Kummer sheaves,

cf. [Ka3, Chapter 2]. Denote by Perv(A1) the category of ℓ-adic perverse sheaves
on the affine line and let K be a perverse sheaf on A1. Denote by Lχ the Kummer

sheaf on j : Gm →֒ A1 corresponding to the character χ : k∗ → Qℓ
∗

and by m the
addition map of A1. We have the two convolutions

K ∗! j∗Lχ[1] = m!(K ⊠ j∗Lχ[1])

and
K ∗∗ j∗Lχ[1] = m∗(K ⊠ j∗Lχ[1])

in the derived category Db
c(A

1,Qℓ). There is a natural morphism

K ∗! j∗Lχ[1]→ K ∗∗ j∗Lχ[1]

and we denote its image by K ∗mid j∗Lχ[1]. We obtain the middle convolution
functor

MCχ : Perv(A1)→ Perv(A1)

K 7→ K ∗mid j∗Lχ[1].

If G is an ℓ-adic local system on j : U →֒ A1 and K = j∗G [1], the convolution
K ∗mid j∗Lχ[1] will again be of the form j∗G

′[1] for some ℓ-adic local system G ′ on
U . For ease of notation we will sometimes write MCχ(G ) = G ′ in this situation. As
mentioned before, the main theorem about the structure of tamely ramified local
systems is the following.

Theorem 2.5 ([Ka3], Thm 5.2.1.). Let G be a tamely ramified cohomologically
rigid ℓ-adic local system on some non-empty proper open subset of A1 of rank at
least 2. Then there exists a tame ℓ-adic local system L of rank one and a character
χ as above such that

rk(H −1(MCχ(j∗(j
∗
G ⊗ j∗L )[1]))) < rk(G )

where j : U →֒ A1 is the embedding of an open subset of A1 where both G and L

are lisse and H i denotes the cohomology in degree i.

We wish to extend this theorem to include ℓ-adic local systems which are wildly
ramified. To that end we recall the definition of the Fourier transform for ℓ-adic
sheaves. Let A = A1

t be the affine line with coordinate t and dual A′ = A1
t′ and

denote by
m : A×k A

′ → Ga

the canonical pairing. Let pr : A ×k A
′ → A and pr′ : A ×k A

′ → A′ be the
projections. The Fourier transform with respect to the non-trivial character ψ :
k → Qℓ is the functor

Fψ : Perv(A,Qℓ)→ Perv(A′,Qℓ)

given by
Fψ(K) = Rpr′!(pr∗K ⊗Lψ(m))[1]

for K an object in Perv(A). One of the most important features of the Fourier
transform in dimension 1 is the principle of stationary phase. It will allow us to
control the behvaviour of local monodromy after Fourier transform. To state it, we
introduce the following notation. Let ηs be the formal punctured disc around s and
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η∞′ be the formal punctured disc around ∞′ (i.e. in the coordinate after Fourier

transform). We denote by F
(0,∞′)
ψ Laumon’s local Fourier transform as defined in

[La, Def 2.4.2.3].

Proposition 2.6 ([Ka2], Corollary 7.4.2). Let k be the algebraic closure of a finite
field, j : U →֒ A1 be an open subset, S its complement, L a lisse irreducible sheaf
on U and K = j∗L [1] its middle extension. Furthermore let K ′ = F (K) and
L ′ = H −1(K ′|U ′) where U ′ is the maximal open subset of A1 where K ′ has lisse
cohomology sheaves. We then have

L
′|η∞′ =

⊕

s∈S

(
F

(0,∞′)
ψ (L |ηs/L |

Is
ηs)⊗Lψ(sx

′)
)
⊕F

(∞,∞′)
ψ (Lη∞).

The stationary phase formula also allows for the computation of the generic rank
of the Fourier transform.

Corollary 2.7. Suppose that k is algebraically closed. Let j : U →֒ A1 be an open
subset, L a lisse irreducible sheaf on U and K = j∗L [1] its middle extension.
With notations as before the rank of L ′ is then

rk(L ′) =
∑

s∈S

(
Sw(L |η

s
) + rk(L )− rk(L |Isη

s

)
)
+ Sw(L |>1

η∞)− rk(L |>1
η
s

).

An analogue of Theorem 2.5 holds under some hypotheses for local systems with
not necessarily tame ramification if we make use of the Fourier transform. The
following theorem is analogous to [Ar, Thm A] and its proof is essentially the same.

Theorem 2.8. Let L be an irreducible rigid ℓ-adic local system on j : U →֒ P1 of
rk(L ) > 1 with slopes k1

d1
, ..., kvdv all written in lowest terms. Assume that we have

rk(L ) < char(k) = p and max{k1, ..., kr} < p. Then one of the following holds:

(i) There exists a tame character λ : πét
1 (Gm, 1) → Qℓ

∗
and an ℓ-adic system χ

of rank one on U − {∞} such that if we let K = MCλ((j∗H om(χ,L )[1]),
V the open subset of P1 where H −1(K) is lisse and MCλ(H om(χ,L )) :=
H −1(K)|V we have

rk(MCλ(H om(χ,L ))) < rk(L ).

(ii) There is φ ∈ Aut(P1) and an ℓ-adic local system χ of rank one on U such that
if we let k : φ−1(U) →֒ P1 the embedding, K = F (k∗φ

∗(H om(χ,L )[1])), V
the open subset of P1 on which H −1(K) is lisse and let

F (φ∗H om(χ,L )) := H
−1(K)|V

we have

rk(F (φ∗H om(χ,L ))) < rk(L ).

The additional input that one needs to prove Theorem 2.8 in this setting is the
following Lemma which is stated in [Ar], Lemma 6.1, without proof and without
the additional assumption n < p.

Lemma 2.9. Let V and W be Qℓ-representations of I. Let x = n
d ∈ Q≥0 with

(p, d) = 1 and n < p. We have

dim((V ⊗W )(x)) ≥ dimV (x) dimW (x)(1 − 1/d).
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Proof. First note that in any case

dim((V ⊗W )(x)) ≥ dim((V (x) ⊗W (x)))(x)).

Hence we can assume that V = V (x) and W = W (x) and we can furthermore
assume that they are irreducible. Write x = n/d with (n, d) = 1. Since p does
not divide d, V and W are induced from the unique open normal subgroup I(d) of
index d from characters χ and ρ of slope n, see [[Ka1], 1.14.]. Let us write

V = IndII(d)χ,W = IndII(d)ρ.

By [CR, Thm. 10.18] we have

V ⊗W =
⊕

g∈I/I(d)

IndII(d)
gχ⊗ ρ,

where gχ denotes the conjugate representation of χ and by abuse of notation by g
we mean a lift in I. Because p < n by [Ka1, 8.5.7.1] we have

χ ∼= Lψ(ant
n + · · ·+ a1t)⊗K1

and similarly

ρ ∼= Lψ(bnt
n + · · ·+ b1t)⊗K2

where for ϕ(u) ∈ k((u)) by Lψ(ϕ(u)) we denote the pull-back corresponding to the
covering of formal disks given by ϕ and where K1 and K2 are tamely ramified
representations. In this setting if we identify I/I(d) ∼= µd(k) then

g(Lψ(ϕ(u))) ∼= Lψ(ϕ(gu)).

An explicit computation shows that the slope of gχ⊗ ρ can only be less than n if
ang

n + bn = 0 and this can happen at most for one g. From this it follows that

dim((V ⊗W )(x)) =
∑

g∈I/I(d)

dim
(
IndII(d)

gχ⊗ ρ
)
(x) ≥ d(d− 1)

because at most one summand can vanish. Finally we have

d(d− 1) = dim V (x) dimW (x)(1 −
1

d
)

proving the claim. �

Using this Lemma one can check that the results of Section 4.3. of [Ar] hold
in the arithmetic setting. The rest of the proof of Theorem 2.8 works completely
analogous.

Most importantly, as a corollary we have the following version of the Katz-
Arinkin algorithm for rigid irreducible local systems having slopes with numerator
1.

Corollary 2.10. Let L be a rigid irreducible ℓ-adic local system on U
j
−֒→ P1 such

that rk(L ) < p and all of its slopes have numerator 1. After a finite sequence
of Fourier transforms, coordinate changes by automorphisms of P1 and twists with
rank one local systems the sheaf L is reduced to a tamely ramified Qℓ-sheaf of rank
one.
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Using the principle of stationary phase from Proposition 2.6, to understand the
behaviour of local monodromy under Fourier transform it is therefore enough to
understand the local Fourier transform of representations of the inertia group I.
For a certain type of representations we can explicitly compute these transforms.
These are analogues of the formal connections which are called elementary in [Sa]
and correspond to sheaves of the form

[r]∗(Lψ ⊗K )

for some integer r prime to p, ϕ ∈ t−1k[t−1] and K some tamely ramified sheaf.

Proposition 2.11 ([Fu1], Thm 0.1). Let A1 = Speck[t] with k algebraically closed,
K an indecomposable tamely ramified ℓ-adic local system on Gm and denote by t′

the Fourier transform variable. Let ρ(t) = tr and

ϕ(t) =
a−s
ts

+ ...+
a−1

t
∈ t−1k[t−1]

and let

ρ̂(t) = −
d
dtϕ(t)
d
dtρ(t)

, ϕ̂(t) = ϕ(t) + ρ(t)ρ̂(t).

Suppose that 2, r, s and r+ s are all prime to p and denote by χ2 : µ2(k)→ Qℓ
∗

the
unique quadratic character. We then have

F
(0,∞′)((ρ∗(Lψ(ϕ(t)) ⊗K )|η0)

∼= ρ̂∗(Lψ(ϕ̂(t))⊗K ⊗ [s]∗Kχ2)|η∞′ .

Even though an analogue of the Levelt-Turittin theorem does not hold in full
generality we will see in the next section that in our setting it still suffices to un-
derstand representations of the above form. The construction of rigid local systems
is then carried out exactly as in [Ja].

3. Local Structure

A powerful tool for the classification in the complex setting is the Levelt-Turittin
theorem. It describes the structure of C((t))-connections in a very detailed way
which allows us to explicitly compute the formal types of Fourier transforms. Under
the right conditions we have the following weaker version of an analogue of the
Levelt-Turrittin Theorem.

Theorem 3.1 ([Fu1] Prop. 0.5.). Let ρ : I → GL(V ) be an irreducible Qℓ-
representation satisfying the following conditions.

(i) Let P be the wild inertia subgroup of I. Denote by P p p-th powers in p. Then
ρ(P p[P, P ]) = 1.

(ii) The image ρ(I) is finite.
(iii) We have s := Sw(ρ) < p where Sw(ρ) is the Swan conductor of ρ.
Then there is an integer r not divisible by p, a tame character λ of I and a poly-
nomial ϕ ∈ u−1k[u−1] of degree s such that

V ∼= IndII(r) (Lψ(ϕ)⊗ λ) .

Note that

ResIP IndII(r) (Lψ(ϕ(t)) ⊗ λ) ∼=
⊕

ζ∈µr(k)

Lψ(ϕ(ζt)),
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and this is a direct sum of characters factoring through µp(Qℓ). Hence it is trivial on
P p[P, P ]. Therefore the first condition is a necessary condition for a representation
to be of the desired shape.

Let ζ be a topological generator of Itame and denote by J the pre-image of ζZ

in I under the canonical map I → Itame. Then J is a dense subgroup of I and we
have J/P ∼= Z whose generator we also denote by ζ.

Lemma 3.2 ([Fu1], Lemma 2.2.). Let ρ : J → GL(V ) be an irreducible represen-

tation over Qℓ. Then there is a character χ : J → Qℓ
∗

trivial on P such that ρ⊗χ
has finite image.

Regarding the second condition in Theorem 3.1, the following stronger statement
holds.

Corollary 3.3. Let ρ : I → GL(V ) be an irreducible Qℓ-representation of dimen-

sion n. Then there is a character χ : I → Qℓ
∗

trivial on P such that ρ ⊗ χ has
finite image.

Proof. Let ρ̃ = ρ|J be the restriction of ρ to J . This is again irreducible which can
be seen as follows. Suppose it is not, then ρ̃(J) stabilizes a subspace W ⊂ V hence
is contained in a proper parabolic subgroup P of GL(V ). Since ρ is continuous and
P is closed we have

ρ(I) = ρ(J) ⊂ ρ̃(J) ⊂ P = P.

Therefore ρ couldn’t have been irreducible. We conclude that ρ̃ must be irreducible.

By the above lemma there exists a character χ̃ : J → Qℓ
∗

such that ρ̃⊗ χ̃ has finite
image in GL(V ). Let g ∈ J be an inverse image of ζ ∈ J/P and let x = ρ̃⊗ χ̃(g).
The cyclic group generated by x inside the image of ρ̃⊗ χ̃ must be finite, so there
is a positive integer r such that gr lies in the kernel of ρ̃⊗ χ̃. We find that

1 = det(ρ̃⊗ χ̃(gr)) = χ̃(g)rn det(ρ̃(gr)).

Since ρ(I) is compact, we can assume that it is a subgroup of GLn(OE) for a finite
extension E of Qℓ. Now ρ̃(gr) = ρ(gr) ∈ GLn(OE) and χ̃(g)rn ∈ O∗

E . After a
further finite extension E ⊂ E′ we get that χ̃ factors through O∗

E′ . The latter is
compact, hence complete and we can extend χ̃ : J → O∗

E′ by [Hu, Page 96] to a
character

χ : I → O∗
E′ →֒ Qℓ.

Finally we have

ρ⊗ χ(I) = ρ⊗ χ(J) ⊂ ρ̃⊗ χ̃(J) = ρ̃⊗ χ̃(J)

proving the claim. �

This means that the following stronger version of Theorem 3.1 is true.

Corollary 3.4. Let ρ : I → GL(V ) be an indecomposable Qℓ-representation. Sup-
pose ρ(P p[P, P ]) = 1 and Sw(ρ) < p. Then the lisse Qℓ-sheaf on η = Spec k((t))
corresponding to ρ is isomorphic to

[r]∗(Lψ(ϕ) ⊗K )

where r is an integer prime to p, [r](u) = ur, K is a tamely ramified Qℓ-sheaf on
η, Lψ is the Artin-Schreier sheaf and ϕ is a polynomial in u−1 where ur = t.
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Corollary 3.5. Let ρ : I → GL(V ) be an indecomposable Qℓ-representation. Sup-

pose ρ(P p[P, P ]) = 1 and Sw(ρ) < p. Then the same is true for F (0,∞′)(V ).

Proof. By the corollary, V ∼= [r]∗(Lψ(ϕ) ⊗ K ) with deg(ϕ) = Sw(ρ). Now by

Theorem 2.11 the local Fourier transform F (0,∞′)(V ) is of a similar shape with the
same Swan conductor and hence satisfies the desired conditions. �

In particular, we obtain a Levelt-Turrittin-type decomposition for the local mon-
odromy of rigid local systems with slopes having numerator 1. Note that the tame
sheaf K can be given in terms of a Jordan form. Denote by U(n) the representation
of Itame given by mapping the topological generator to a Jordan block of length
n. Then any indecomposable representation of Itame of rank n can be written as
χ⊗U(n) for χ some character.

4. Classification

To carry out the same classification as in [Ja] we need the following tools:
(1) A way to compute the determinant of representations of the form

[r]∗(Lψ(ϕ) ⊗K )

(2) and tensor products of such objects,
(3) an analogue of formal monodromy (see [Mi, Section 1]), giving us con-

straints on the tame sheaves K

(4) and an analogue of the exponential torus, providing constraints on the ϕ.
We will discuss these in the given order.

Proposition 4.1. The determinant of the representation ρ associated to

[r]∗(Lψ(ϕ(u)) ⊗K )

with (r, p) = 1 is given by

det(ρ) = (χ2)
(r−1)n · χnTrϕ(t) ⊗ det(K )

where n is the rank of K , χnTrϕ(t) is the character associated to Lψ(nTrϕ(t)) and
Trϕ(t) is the trace of ϕ(u) with respect to the Galois extension k((t)) ⊂ k((u)).

Proof. The representation ρ is induced from the unique normal subgroup I(r) of I.
Using the projection formula we reduce to the case [r]∗Lψ(ϕ(u)). Denote by χ the
character corresponding to Lψ(ϕ(u)). By [CR, Prop. 13.15.] we have

det IndII(r)(χ) = εI→I(r) · (χ ◦ V
I
I(r))

where εI→I(r)(σ) is the sign of the permutation induced by σ on I/I(r) and V II(r)
is the transfer map. We refer to [CR, 13.10] for the definition of the transfer map.
To compute the character

εI→I(r) : I → Qℓ
∗

first note that since I(r) is normal the permutation representation π : I → Sr, σ 7→
πσ on I/I(r) factors through I/I(r) ∼= µr(k). We therefore have the following
commutative diagram

I
εI→I(r)

//

  ❇
❇❇

❇❇
❇❇

❇❇
Qℓ

∗

µr(k)

<<②②②②②②②②
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and we denote the map µr(k)→ Qℓ
∗

also by εI→I(r). Choose representatives gi of

I/I(r) for i = 0, ..., r − 1 in such a way that the image of gi in µr(k) is ζir where
ζr is a primitve r-th root of unity. In this case the permutation associated to gi is
πi(j) = j + i mod r. Now εI→I(r)(g1) = sgn(π1) = (−1)r−1. We can view εI→I(r)

as a map Itame → Qℓ
∗

and we see that εI→I(r)(ζ) = (−1)r−1 where ζ denotes

the topological generator of Itame. Hence εI→I(r) = χr−1
2 where χ2 is the unique

quadratic character. It remains to compute φ := χ ◦ V II(r) : I → Qℓ
∗
. Note that for

σ ∈ I(r) we have χϕ(u)(g
−1
i σgi) = χϕ(ζi

r
u)(σ). By the definition of transfer

V II(r)(σ) =

r−1∏

i=0

g−1
πσ(i)

σgi.

Recall that the sequence

1→ P → I → Itame → 1

splits by the profinite Schur-Zassenhaus theorem and that we have a subgroup
H ⊂ I which is isomorphic to Itame such that I = PH and H ∩P = 1. Let σ ∈ H .
We have σ = τp for some τ as every element in H is a p-th power. Therefore we
find

φ(σ) = χ(V II(r)(σ)) = χ((V II(r)(τ))
p) = 1.

For a general element σ ∈ I we have σ = σPσH with σP ∈ P and σH ∈ H . Since
we have P ⊂ I(r) and the Artin-Schreier character Lψ(Trϕ(u)) is also trivial on H
we compute

φ(σ) = φ(σP )φ(σH ) = χ

(
r−1∏

i=0

g−1
i σP gi

)
= Lψ(Trϕ(u))(σP ) = Lψ(Trϕ(u))(σ).

Here we used the additivity

r−1⊗

i=0

Lψ(ϕ(ζ
i
ru))

∼= Lψ(Trϕ(u))

of the Artin-Schreier sheaf. We have therefore computed both factors of the deter-
minant, proving the claim. �

Corollary 4.2. Suppose that in the situation of the above proposition s < r. The
sheaf

det([r]∗(Lψ(ϕ(u))⊗K ))

is tamely ramified.

Proof. It is enough to prove the claim for ϕ(u) = a−s/u
s. We have

Tr(ϕ(u)) = a−s
∑

ζ∈µr(k)

(ζs)−1 1

us
.

The map

µr(k)→ µr(k), ζ 7→ ζs

defines a non-trivial charater of µr(k), hence
∑

ζ∈µr(k)
(ζs)−1 = 0. Therefore

Tr(ϕ(u)) = 0 and the sheaf is tamely ramified. �
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Proposition [Sa, Prop. 3.8.] provides a detailed formula to compute tensor
products of elementary connections [r]∗(E

ϕ ⊗R). A similar formula is true in our
setting.

Proposition 4.3. Let ρi(u) = uri, d = gcd(r1, r2), r
′
i = ri/d, ρ

′
i(u) = ur

′
i and

ρ(u) = u
r1r2

d . Suppose that p does not divide either r1 or r2. For two polynomials

ϕ1, ϕ2 ∈
1
t k[

1
t ] we set ϕ(k)(u) = ϕ1(u

r′2)+ϕ2((ζ
k
r1r2/d

u)r
′
1) where ζr1r2/d is a primi-

tive r1r2
d -th root of unity. In addition let K1 and K2 be tamely ramified ℓ-adic local

systems on η and let K = (ρ′2)
∗K1 ⊗ (ρ′1)

∗K2. We then have

ρ1,∗(Lψ(ϕ1(u))⊗K1)⊗ ρ2,∗(Lψ(ϕ2(u))⊗K2) ∼=

d−1⊕

k=0

ρ∗(Lψ(ϕ
(k)(u))⊗K ).

Proof. The proof is an application of Mackey theory. First notice that because of
the projection formula we can reduce to the case of K1 = K2 = Qℓ. We regard all
the sheaves as representations of respective Galois groups

I

I(d)

✉✉
✉✉
✉✉
✉✉
✉

■■
■■

■■
■■

■

I(r1)

■■
■■

■■
■■

■
I(r2)

✉✉
✉✉
✉✉
✉✉
✉

I( r1r2d ).

In this language we have to compute the tensor product of induced representations

V := IndII(r1)Lψ(ϕ1)⊗ IndII(r2)Lψ(ϕ2).

We have I(r1) · I(r2) = I(d) and I(r1) ∩ I(r2) = I( r1r2d ). In addition all these
subgroups are normal, hence stable under conjugation and furthermore we have

I(r1)\I/I(r2) ∼= I(r1)I(r2)\I ∼= µd(k).

We apply [CR, Thm. 10.18] for to obtain

V ∼=

d−1⊕

i=0

IndII( r1r2
d

)

(
Res

I(r1)

I(
r1r2

d
)
Lψ(ϕ1)⊗ Res

I(r2)

I(
r1r2

d
)
Lψ(ϕ2 ◦mζk)

)

where mζ(u) = ζu for a primitive r1r2
d -th root of unity ζ. The representation

Res
I(r1)

I(
r1r2

d
)
Lψ(ϕ1)⊗ Res

I(r2)

I(
r1r2

d
)
Lψ(ϕ2 ◦mζk)

is isomorphic to

Lψ(ϕ1 ◦ ρ
′
2)⊗Lψ(ϕ2 ◦ µζk ◦ ρ

′
1)
∼= Lψ(ϕ

(k)),

hence translating back to sheaves yields the claim. �

Consider the sheaf [r]∗(Lψ(ϕ(t)) ⊗K ) where r is a positive integer prime to
p, K is an indecomposable tamely ramified sheaf and denote by ρ its associated
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representation. Recall that by Lemma 2.2 for the wild inertia group P of I we have
the exact sequence

1→ P → I → Itame → 1

where P is the pro-p-Sylow subgroup and Itame is the maximal prime-to-p-quotient
of I. In particular there is a subgroupH ⊂ I such thatH ∼= Itame and I ∼= P⋊Itame.
Recall that after a choice K 1/r of an r-th root of K we have

[r]∗(Lψ(ϕ(t)) ⊗K ) ∼= [r]∗(Lψ(ϕ(t))) ⊗K
1/r.

We want to compute

ResIHIndII(r)Lψ(ϕ(t))

to obtain the tame monodromy of the induced Artin-Schreier sheaf. By the Mackey
Subgroup Theorem [CR, Thm. 10.13] we have

ResIHIndII(r)Lψ(ϕ(t)) ∼=
⊕

x∈I/I(r)H

IndHI(r)∩HRes
I(r)
I(r)∩H

x
Lψ(ϕ(t)).

One can check that I(r) ∩ H = H(r) where H(r) is the corresponding subgroup
obtained through the Schur-Zassenhaus theorem for I(r). Since Lψ(ϕ(t)) is trivial
on p-th powers in I(r) and every element of H(r) is a p-th power,

Res
I(r)
H(r)

x
Lψ(ϕ(t)) = 1

is the trivial representation. Therefore

ResIHIndII(r)Lψ(ϕ(t)) = ResIHIndII(r)1.

As a representation of H ∼= Itame the representation IndII(r)1 maps the topological
generator to the cyclic permutation matrix Pr of dimension r. Restricting the
representation ρ corresponding to

[r]∗(Lψ(ϕ(t))) ⊗K
1/r

to H therefore yields the tame sheaf K 1/r ⊗ Pr. This is the analogue of formal
monodromy in differential Galois theory.

The exponential torus is a diagonal subgroup of the differential Galois group
coming from the relations satisfied by the exponential factors of formal solutions
to a C((t))-connection, see [Zo, Section 11.22.]. Denote by ρ the representation

IndII(r)(Lψ(ϕ(u))⊗λ) where λ is a tamely ramified character of I. By the projection
formula we have

IndII(r)(Lψ(ϕ(u))⊗ λ) ∼= IndII(r)(Lψ(ϕ(u))) ⊗ λ
1/r

for any choice of r-th root of λ. Restricting the representation ρ to the wild rami-
fication subgroup P ⊂ I(r) yields the diagonal shape

ρ|P ∼=
⊕

ζ∈µr(k)

Lψ(ϕ(ζt)).

In particular the image T := ρ(P ) is a diagonal subgroup of the monodromy group.
Noting that

Lψ(ϕ(t)) ⊗Lψ(β(t)) = Lψ(ϕ(t) + β(t))

we obtain the same relations for the ϕ(ζt) as in the differential setting.
The exponential torus provided a method to analyze of what form the exponential

factors in the differential setting could be. This will almost carry over to this setting.
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The only instance where it does not is [Ja, Lemma 5.3.] whose proof we have to
modify.

Lemma 4.4. Let L be an irreducible rigid ℓ-adic local system with monodromy
group G2 on some open subset of P1 with all slopes having numerator 1 and let
Vx be its local monodromy at some singularity x of L . The pole order of any ϕ
appearing in the analogue of the Levelt-Turrittin decomposition of Vx can only be 1
or 2.

Proof. We have the following table of possible cases for the ramification order r
and for the pole order s.

s r

2 2, 4, 6

3 3, 6

4 4

6 6

All cases apart from s = 3 and r = 6 or r = 3 are excluded in the same way
as in the proof of [Ja, Lemma 5.3.]. We will deal with these two remaining cases
separately. Let us consider the case s = 3 and r = 3. The local monodromy of Vx
then contains a module of the form

IndII(3)(Lψ(ϕ(u))⊗ λ)

where λ is a tame character and

ϕ(u) = a3u
−3 + a2u

−2 + a1u
−1

with a3 6= 0. This representation is not self-dual and therefore its dual also has to
appear. This means that

Vx ∼= IndII(3)(Lψ(ϕ(u)) ⊗ λ)⊕ IndII(3)(Lψ(−ϕ(u))⊗ λ
∨)⊕ λ′

for some tame character λ′. Denote by ρx the homomorphism corresponding to Vx.
A general element in ρx(Px(3)) is of the form

(x, y, z, x−1, y−1, z−1, 1).

To prove that there are elements not contained in G2(Qℓ) it is therefore enough to
show that there is no relation xy = z, xz = y or yz = x. This can be reformulated
as follows. Let ζ3 be a primitive 3-rd root of unity. We have to show that there is
no relation

ϕ(u) + ϕ(ζ3u) = ϕ(ζ23u)

and the other combinations respectively. Note that the coefficient of u−3 in ϕ(ζi3u)
is the same for all i. Therefore any of these relations translates into a3 + a3 = a3.
Since s = 3 we have a3 6= 0 and hence there cannot be a relation of the above form.

The case s = 3 and r = 6 is similar. We consider a representation of the form

IndII(6)Lψ(ϕ(u))⊗ λ
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with ϕ(u) = a3u
−3 + a2u

−2 + a1u
−1. This representation has to be self-dual which

in turn forces a2 = 0. In this case

Vx ∼= IndII(6)(Lψ(ϕ(u)) ⊗ λ)⊕ λ
′

for a tame character λ′. Let ζ6 be a primitive 6-th root of unity. We have the
following relations

ϕ(u) + ϕ(ζ36u) = 0,

ϕ(ζ6u) + ϕ(ζ46u) = 0,

ϕ(ζ26u) + ϕ(ζ56u) = 0.

Therefore elements in ρx(Px(6)) are of the form

(x, y, z, x−1, y−1, z−1, 1).

As before we have to show that there are no relations xy = z, xz = y or yz = x. In
terms of the leading coefficient of ϕ(ζi6u) for i = 1, 2, 3 this translates into a3−a3 =
a3, a3+ a3 = −a3 and −a3+ a3 = a3 respectively. Because the characteristic p > 7
in all cases from these relations it would follow that a3 = 0. But we have a3 6= 0
because s = 3. Therefore none of these relations are satisfied and we find elements
in ρx(Px) which do not lie in G2(Qℓ). �

Theorem 1.2 is now obtained by the following methods. The index of rigidity
yields constraints on Swan conductors and dimensions of invariants of the local
monodromy by using the results on tensor products and determinants. We obtain
further constraints on the shape of the local monodromy by means of the analogues
of exponential torus and formal monodromy. A case-by-case check of the remain-
ing possibilities of the Levelt-Turittin-type decomposition of the local monodromy
yields the classification theorem in the arithmetic setting. For a detailed proof we
refer to [Ja, Section 6]. The arguments are completely analogous after replacing all
objects by their respective counterparts.
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