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THE BASIC LOCUS OF THE UNITARY SHIMURA

VARIETY WITH PARAHORIC LEVEL STRUCTURE, AND

SPECIAL CYCLES

SUNGYOON CHO

Abstract. In this paper, we study the basic locus in the fiber at p of a
certain unitary Shimura variety with a certain parahoric level structure.

The basic locus M̂ss is uniformized by a formal scheme N which is called
Rapoport-Zink space. We show that the irreducible components of the
induced reduced subscheme Nred of N are Deligne-Lusztig varieties and
their intersection behavior is controlled by a certain Bruhat-Tits build-
ing. Also, we define special cycles in N and study their intersection
multiplicities.
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1. Introduction

This paper is a contribution to the theory of integral models of certain
Shimura varieties. In particular, we will give a concrete description of their
basic loci. These problems have important applications to Kudla’s pro-
gram which relates arithmetic intersection numbers of special cycles on in-
tegral models of certain Shimura varieties to Eisenstein series (see [KR11],
[KR14a]), and Arithmetic Gan-Gross-Prasad conjecture (see [Zha12], [RSZ18a],
[RSZ18b], [RSZ17]). In this paper, we study the basic locus of the special
fiber of a certain unitary Shimura variety at an inert prime with parahoric
level structure. Let (G̃, hG̃) be a Shimura datum and let KG̃ be an open

compact subgroup in G̃(Af ). We refer to Section 4 for the precise defini-

tion. This Shimura variety has a moduli interpretation MKG̃
(G̃) as a moduli

space of abelian varieties with additional structure. This Shimura variety is
a variant of the Shimura variety which appears in [GGP12] and its integral
model MKG̃

(G̃) is defined in [RSZ18b]. The basic locus of the special fiber

of MKG̃
(G̃) can be studied using the uniformization theorem of Rapoport

and Zink, [RZ, Theorem 6.30] (more precisely, see Theorem 4.3). Therefore,
we can study the corresponding Rapoport-Zink space and use its explicit
description to study the basic locus of the special fiber of the Shimura vari-
ety.

We will now describe our main results in more detail. First, let us consider
the Rapoport-Zink spaces which are local analogues of Shimura varieties.

1.1. The local result : relative Rapoport-Zink spaces. Let F be a
finite extension of Qp, and let E be a quadratic unramified extension of F
with ring of integers OE and residue field Fq2 . We fix a uniformizer π. Let

Ĕ be the completion of a maximal unramified extension of E. Fix integers
n and 0 ≤ h, r ≤ n. Here, h is related to a certain self-dual lattice chain,
and r is related to the determinant condition. We define a moduli space
N h
E/F (r, n − r) over Spf OE of quasi-isogenies of strict formal OF -modules

with additional structure (see Section 2 for its definition). If h = 0, r = 1,
F = Qp, and E = Qp2, then this moduli space coincides with the Rapoport-
Zink space that is studied by Vollaard and Wedhorn ([VW11]). This case
corresponds to the hyperspecial level structure case. In their paper, they
proved that the irreducible components of the induced reduced scheme of
N 0

Qp2/Qp
(1, n − 1) are Deligne-Lusztig varieties, and their intersection be-

havior is controlled by a certain Bruhat-Tits building. Howard and Pappas
studied the moduli space N 0

Qp2/Qp
(2, 2) in [HP14] (also, see Remark 2.20).

When h is not equal to 0, we have a parahoric level structure. When h = 1,
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n = 2, the moduli space N 1
E/F (1, 1) is studied in [KR14b]. In this paper,

Kudla and Rapoport proved that the moduli space is represented by a Drin-
feld p-adic half-plane. Furthermore, they studied N 1

Qp2/Qp
(1, n − 1) in their

unpublished notes [KR]. They showed that its reduced scheme has two kinds
of Bruhat-Tits strata: One consists of projective spaces and the other con-
sists of Deligne-Lusztig varieties. Our result is the generalization of theirs
to arbitrary h and F .

The cases that E is a ramified extension of F are also studied in literature.
For example, we refer to [RTW14], [Wu16] (also, see [RSZ18a], [RSZ18b],
[RSZ17] for their connection to Arithmetic Gan-Gross-Prasad conjecture).

We now state our main result in local situation. Let (X, iX, λX) be a
framing object of N h

E/F (1, n − 1): X is a supersingular strict formal OF -

module of F -height 2n over Fq2; iX is an OE-action on X, and λX is a
polarization. We note that the integer h is related to this polarization. For
this triple, there is an associated hermitian E-vector space N τ

k,0. An OE-

lattice Λ in N τ
k,0 is called a vertex lattice of type t(Λ), if πi+1Λ∨ ⊂ Λ ⊂ πiΛ∨

for some i and the dimension of Λ/πi+1Λ∨ is t(Λ) as Fq2-vector space. Here,
Λ∨ is the dual lattice of Λ. For each i = 0, 1, we denote by Li the set of
vertex lattices. We also define the following sets of vertex lattices:

L+
0 := {OE-lattices Λ | πΛ∨ ⊂ Λ ⊂ Λ∨, t(Λ) ≥ h+ 1};

L−
0 := {OE-lattices Λ | πΛ∨ ⊂ Λ ⊂ Λ∨, t(Λ) ≤ h− 1};

L+
1 := {OE-lattices Λ | π2Λ∨ ⊂ Λ ⊂ πΛ∨, t(Λ) ≥ n− h+ 1};

L−
1 := {OE-lattices Λ | π2Λ∨ ⊂ Λ ⊂ πΛ∨, t(Λ) ≤ n− h− 1}.

Note that there is a bijection between L+
1 and L−

0 via the map sending
Λ ∈ L+

1 to πΛ∨ ∈ L−
0 . In this way, the union L+

0 ⊔ L+
1 can be identified with

L+
0 ⊔ L−

0 and then this can be identified with the set of vertices of a certain
Bruhat-Tits building. For each vertex lattices Λ in L+

0 ⊔ L+
1 , we define a

projective subscheme NΛ of the reduced subscheme of N h
E/F (1, n − 1)OĔ .

For i = 0, 1 and Λ ∈ L+
i , we define the set L+

Λ := {Λ′ ∈ L+
i |Λ′ ( Λ}. We

define the subscheme N 0
Λ := NΛ\ ⋃

Λ′∈L+
Λ

NΛ′ . The schemes NΛ, N 0
Λ have

the following properties (see Theorem 3.14 and Section 3.8).

Theorem 1.1. The following properties of N h
E/F (1, n − 1) hold.

(1) For Λ ∈ L+
0 (resp. Λ ∈ L+

1 ), NΛ is isomorphic to a Deligne-Lusztig
variety and it is projective, smooth, and geometrically irreducible of
dimension 1

2(t(Λ) − h− 1) + h (resp. 1
2 (t(Λ) − (n− h+ 1)) +n− h).

(2) For i = 0, 1, consider Λ ∈ L+
i . Then N 0

Λ is open and dense in

NΛ and we have a stratification (N 0
Λ)Λ∈L+

i ,i=0,1 of N h
E/F (1, n− 1)OĔ

which is called the Bruhat-Tits stratification. The closed subschemes
NΛ of N h

E/F (1, n − 1)OĔ are called the closed Bruhat-Tits strata.
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(3) For i = 0, 1, consider two vertex lattices Λ′ ⊂ Λ in L+
i . Then we

have NΛ′ ⊂ NΛ.
(4) For i = 0, 1, consider two vertex lattices Λ′,Λ in L+

i . Then two
closed Bruhat-Tits strata NΛ, NΛ′ have nonempty intersection if and
only if Λ ∩ Λ′ ∈ L+

i , and in this case NΛ ∩ NΛ′ = NΛ∩Λ′.
(5) For vertex lattices Λ0 ∈ L+

0 , Λ1 ∈ L+
1 , two closed Bruhat-Tits strata

NΛ, NΛ′ have nonempty intersection if and only if πΛ∨
1 ⊂ Λ0.

We also have the following properties of N h
E/F (1, n − 1)OĔ .

Theorem 1.2. The following assertions hold.

(1) In case h 6= 0, n, the formal scheme N h
E/F (1, n−1)OĔ has semistable

reduction. If h = 0, n, N h
E/F (1, n − 1)OĔ is formally smooth over

Spf OĔ. In particular, it is regular for all h.

(2) There exists a Rapoport-Zink space N h
E/Qp(1, n − 1)OĔ of PEL type

that is isomorphic to N h
E/F (1, n − 1)OĔ .

Remark 1.3. In case F is unramified over Qp, the above statements in
Theorem 1.1 and Theorem 1.2 hold without base change to OĔ .

We now describe §2-3 in more detail. In Section 2, we study the k-points of
N h
E/F (1, n−1) by using the relative Dieudonne theory, where k is an algebraic

closure of the residue field of E. In Section 3, we define a subscheme NΛ

for each vertex lattice Λ and prove that this is isomorphic to a Deligne-
Lusztig variety. Furthermore, we prove the regularity of N h

Qp2/Qp
(1, n − 1)

via the theory of local model. Also, we prove that there is a stratification
of N h

E/F (1, n − 1) so called Bruhat-Tits stratification. Finally, we relate

N h
E/F (1, n− 1) to a certain PEL-type Rapoport-Zink space as Mihatsch did

in [Mih16]. By using this result, we prove the regularity of N h
E/F (1, n − 1).

1.2. The global result: non-archimedean uniformization. In the global
situation, we write F for a CM field, F+ for its totally real subfield of index
2, and Φ for a CM type. We fix an embedding τ−

1 ∈ Φ and an embed-
ding ṽ : Q̄ → Q̄p. These two determine places v0 of F+ and w0 of F . We
assume further that v0 is unramified over p and inert in F . We denote
by Sp the set of places of F+ over p. We will define three Shimura data:

(G,hG), (Z, hZ ), (G̃, hG̃). The first Shimura datum is associated to a uni-
tary group ResF+/Q U(V ) for a hermitian space V . This Shimura variety
is of abelian type and appears in [GGP12]. The second Shimura datum is
associated to a torus Z. The third Shimura datum is the product of the
first two Shimura data, and is our main interest. This Shimura variety is
studied in [RSZ18b], and the authors formulate a moduli problem MKG̃

(G̃)
of abelian varieties with additional structure. Here, KG̃ is a certain open

compact subgroup of G̃(Af ). We should note that an integer 0 ≤ h ≤ n also
appears in global situation, and this is closely related to KG̃. In particular,
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if h = 0, KG̃ gives a hyperspecial level structure, and if h 6= 0, KG̃ gives
a parahoric level structure. This h is also closely related to the h in local
situation. The moduli problem MKG̃

(G̃) gives a model over a reflex field

E of the Shimura variety ShKG̃(G̃). We write u for the place of E that is
determined by ṽ. In [RSZ18b], the authors define global integral models
of MKG̃

(G̃) over SpecOE and semi-global integral models over SpecOE,(u)

in case h = 0, and in case h = 1, F+
v0

= Qp. In our paper, we construct

semi-global integral models MKG̃
(G̃) over SpecOE,(u) for arbitrary h.

Now we can formulate the following proposition.

Proposition 1.4. (Proposition 4.1, Proposition 4.2) We can formulate a
moduli problem that is representable by a Deligne-Mumford stack MKG̃

(G̃)

flat over SpecOE,(u). For Kp
G small enough, MKG̃

(G̃) is relatively rep-

resentable over Ma,W
0 . The generic fiber MKG̃

(G̃) ×SpecOE,(u)
SpecE is

canonically isomorphic to MKG̃
(G̃) and MKG̃

(G̃) is naturally isomorphic to

the canonical model of ShKG̃(G̃). Furthermore, if h = 0, n, then MKG̃
(G̃) is

smooth over SpecOE,(u). If h 6= 0, n, then MKG̃
(G̃) has semistable reduction

over SpecOE,(u) provided that Eu is unramified over Qp.

Now we will state the non-archimedean uniformization theorem of Rapoport
and Zink in our situation. By this theorem, we can relate the basic locus
of MKG̃

(G̃) and the Rapoport-Zink space N h
Fw0/F

+
v0

(1, n − 1). In order to

simplify notation, we write M for MKG̃
(G̃) and N for N h

Fw0/F
+
v0

(1, n − 1).

Let Ĕu be the completion of a maximal unramified extension of Eu, and let

k be the residue field of OĔu . Let M̂ss be the completion of MOĔu
along

the basic locus of MOĔu
⊗ k. Then we have the following non-archimedean

uniformization theorem.

Theorem 1.5. (Theorem 4.3) There is a non-archimedean uniformization
isomorphism

Θ : I(Q)\N ′ × G̃(Apf )/Kp

G̃

⊔ΘW≃ M̂ss,

where

N ′ ≃ (Z(Qp)/KZ,p) × NOĔu
×

∏

v∈Sp\{v0}

U(V )(F+
v )/KG,v.

Here, I is an inner twist of G̃. We refer to Section 4.3 for all notation
above and its detail.

1.3. Special cycles. In this subsection, we use the notation in Section 1.1.
In [KR], Kudla and Rapoport defined the special cycles Z(x) in N 1

Qp2/Qp
(1, n−

1) and computed its reduced scheme as in their another paper [KR11]. By
following their work, we define special cycles Z(x) and another special cy-
cles Y(y) in N h

E/F (1, n − 1)OĔ . We also study their reduced schemes and

arithmetic intersection numbers in some cases.
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Let k be the residue field of OĔ , and let (Y, iY, λY) (resp. (X, iX, λX)) be

the framing object of N 0
E/F (0, 1)OĔ (resp. N h

E/F (1, n− 1)OĔ ). The space of

special homomorphisms V is the E-vector space

V := HomOE (Y,X) ⊗Z Q,

with a E-valued hermitian form h such that for all x, y ∈ V,

h(x, y) := λ−1
Y

◦ y∨ ◦ λX ◦ x ∈ EndOE (Y) ⊗ Q
i−1

Y≃ E.

For each x ∈ V, we define the special cycle Z(x) as follows. For each
OĔ-scheme S such that π is locally nilpotent, Z(x)(S) is the subfunctor of

collections (Y , iY , λY , ρY ,X, iX , λX , ρX) such that

Y ×S S
ρ
Y−−→ Y ×k S

x−→ X ×k S
ρ−1
X−−→ X ×S S

extends to a homomorphism from Y to X.
For each y ∈ V, we define the special cycle Y(y) in a similar way, but here

we use the isomorphism N h
E/F (1, n − 1)OĔ ≃ N n−h

E/F (1, n − 1)OĔ to define

the cycle. We refer to Definition 5.4 for the precise definition. All of these
cycles are relative divisors in N h

E/F (1, n − 1)OĔ . Therefore we can consider

the arithmetic intersections of these cycles as in [KR11].
We prove the following theorem.

Theorem 1.6. (Theorem 5.14) Let {x1, . . . , xn−h, y1, . . . , yh} be an orthog-
onal basis of V. Assume that

val(h(xi, xi)) = 0 for all 3 ≤ i ≤ n− h,
val(h(yj , yj)) = −1 for all 1 ≤ j ≤ h,

and write a := val(h(x1, x1)), b := val(h(x2, x2)). We assume that a ≤ b
and a 6≡ b mod 2. Then we have

χ(OY(y1) ⊗L
ON

· · · ⊗L
ON

OZ(xh)) =
1

2

a∑

l=0

ql(a+ b+ 1 − 2l).

More generally, consider another basis [x̃, ỹ] := [x̃1, . . . , x̃n−h, ỹ1, . . . , ỹh]
of V such that x̃ = x̃g1, ỹ = ỹg2 for g1 ∈ GLn−h(OE) and g2 ∈ GLh(OE).
Then we have

χ(OY(ỹ1) ⊗L
ON

· · · ⊗L
ON

OZ(x̃h)) =
1

2

a∑

l=0

ql(a+ b+ 1 − 2l).

In this case, the reduced scheme of the intersection has dimension 0.
Therefore we can use the deformation theory as in [KR11] for F = Qp and
[Liu11] in general.

We have one more case that seems to be realistic, but we do not include it
in this paper. See Remark 5.16. Also, we believe that the similar conjecture
to [KR11, Conjecture 1.3] can be formulated in our case.
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2. The moduli space N of strict formal OF -modules

In this section, we will define the moduli problem N and study its struc-
ture.

2.1. The moduli space N h
E/F (r, n− r). We fix a prime p > 2. Let F be a

finite extension of Qp, with ring of integers OF , and residue field Fq. We fix
a uniformizer π. Let E be a quadratic unramified extension of F , with ring
of integers OE and residue field Fq2. Let Ĕ be the completion of a maximal
unramified extension of E. Denote by ∗ the nontrivial Galois automorphism
of E over F . We recall the definition of strict formal OF -module from
[RZ17].

Definition 2.1. Let S be a scheme such that p is locally nilpotent in OS .
A formal OF -module over a scheme S is a formal p-divisible group X over
S with an OF -action

i : OF → EndX.

Let X be a formal OF -module over an OF -scheme S. We call X a strict
formal OF -module if OF acts on LieX via the structure morphism OF →
OS . A strict formal OF -module X is called supersingular if all slopes of X
as a strict OF -module are 1/2.

Let h be an integer with 0 ≤ h ≤ n. We fix a triple (X, iX, λX) consisting
of the following data:

(1) X is a supersingular strict formal OF -module of F -height 2n over Fq2;
(2) iX : OE → EndX is an OE-action on X that extends the OF -action

on X;
(3) λX is a polarization

λX : X → X∨,

such that the corresponding Rosati involution induces the involution ∗ on
OE .

We also assume that (X, iX, λX) satisfies the following conditions.
(a) For all a ∈ OE , the action iX satisfies

Charpol(iX(a)| LieX) = (T − a)r(T − a∗)n−r.

Here, we view (T−a)r(T−a∗)n−r as an element of OS [T ] via the structure
morphism. We call this condition the determinant condition of signature
(r, n − r).

(b) We assume that KerλX ⊂ X[π] and its order is q2h.
Now, we can define our moduli problem.
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Let (Nilp) be the category of OE-schemes S such that π is locally nilpotent
on S. Let N h

E/F (r, n− r) be the set-valued functor on (Nilp) which sends a

scheme S ∈ (Nilp) to the set of isomorphism classes of tuples (X, iX , λX , ρX).
Here X is a (supersingular) formal OF -module of F -height 2n over S and

iX is an OE-action on X satisfying the determinant condition of signature
(r, n − r)

Charpol(iX(a)| LieX) = (T − a)r(T − a∗)n−r, ∀a ∈ E.

Here we view (T − a)r(T − a∗)n−r as an element of OS [T ] via the structure
morphism OE → OS .

Furthermore, ρX is an OE-linear quasi-isogeny

ρX : XS → X ×Fq2 S,

of height 0, where S = S ×OE Fq2 and XS is the base change X ×S S.
Finally, λX : X → X∨ is a polarization such that its Rosati involution

induces the involution ∗ on OE , and the following diagram commutes up to
a constant in O×

F

XS X∨
S

XS X∨
S
.

λX
S

ρX
λX
S

ρ∨
X

Two quadruples (X, iX , λX , ρX) and (X ′, iX′ , λX′ , ρX′) are isomorphic if
there exists an OE-linear isomorphism α : X → X ′ such that ρX′ ◦(α×SS) =
ρX and α∨ ◦ λX′ ◦ α differs locally on S from λX by a scalar in O×

F .

The functor N h
E/F (r, n−r)⊗OĔ is representable by a formal scheme over

Spf OĔ which is locally formally of finite type. This is explained in [Mih16].
Indeed, we can use [RZ, Theorem 2.16], and the fact that the condition that
the OF -action on X lifts from X, and the condition that the lifted action is
strict are closed conditions.

Furthermore, when F is unramified extension of Qp, we will fix a decent

(X, iX, λX) in Remark 3.31. Then N h
E/F (r, n − r) is representable by a for-

mal scheme over Spf OE which is locally formally of finite type. For the
moment assume that we fix this triple (X, iX, λX) so that N h

E/F (r, n − r) is

representable by a formal scheme over Spf OE which is locally formally of
finite type, where F is unramified over Qp.

From now on, we will restrict ourselves to the case r = 1. Note that the
case (r = 1, h = 0, F = Qp) is studied in [VW11]. For simplicity, denote by

N the moduli problem N h
E/F (1, n − 1).
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2.2. Description of the points of N . Let k be a fixed algebraic closure
of OE/πOE = Fq2. In this subsection, we will study the set N (k). For this,
we need to use relative Dieudonne theory in the sense of [RZ, Proposition
3.56]. We use the following notation.

Let F̆ be the completion of a maximal unramified extension of F con-
taining E and OF̆ its ring of integers. Let F u be the maximal unrami-
fied extension of Qp in F and OFu its ring of integers. Let L be a per-
fect field with OF /πOF = Fq-algebra structure α0 : Fq → L. Then,
we get a map OFu → W (L) induced from α0 : Fq →֒ L. We define
WOF (L) = OF ⊗OFu ,α0 W (L). This is the ring of relative Witt vectors
of L. In particular WOF (k) = OF̆ .

Let σ be the Frobenius element in Gal(F̆ /F ).

We recall from [RZ, Proposition 3.56] (or [KR14b, Notation]) the defini-
tion of the relative Dieudonne module. Let X be a formal OF -module of
F -height 2n over k. Let (M̃ , Ṽ) be the (absolute) Dieudonne module of X.
Consider the decomposition

OF ⊗Zp W (k) =
∏

α:Fq→k

OF ⊗OFu ,αW (k).

Here, α runs over the set of Fp-embeddings α : Fq → k. Via this decompo-

sition, the action of OF on M̃ induces the decomposition

M̃ =
⊕

α:Fq→k

M̃α.

We define the relative Dieudonne module of X as

(Mα0 ,V = Ṽf ),

where f = |F u : Qp| = |Fq : Fp|.
Now, let (M,V) be the relative Dieudonne module of X, and let N =

M ⊗Z Q be its relative Dieudonne crystal. Denote by Nk = M ⊗E F̆ its
base change. The OE-action iX on X induces an E-action on Nk. Let F
be the Frobenius of M. The polarization λX of X induces a nondegenerate
F̆ -bilinear alternating form on Nk

〈·, ·〉 : Nk ×Nk → F̆ ,

such that for all x, y ∈ Nk, a ∈ E, it satisfies

(2.2.1) 〈Fx, y〉 = 〈x,Vy〉σ ,

(2.2.2) 〈ax, y〉 = 〈x, a∗y〉.
Since we have the decomposition E ⊗F F̆ ≃ F̆ × F̆ , the E-action i on Nk

induces Z/2Z-grading

Nk = Nk,0 ⊕Nk,1.
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Note that by (2.2.1), (2.2.2), each Nk,i is totally isotropic with respect to
〈·, ·〉. Also, for i = 0, 1, we have that F : Nk,i → Nk,i+1, V : Nk,i → Nk,i+1

are homogeneous of degree 1 with respect to the decomposition.
For an OF̆ -lattice M = M0 ⊕M1, we define the dual lattice M⊥

i of Mi as

M⊥
i = {x ∈ Nk,i+1|〈x,Mi〉 ⊂ OF̆ }.

For OF̆ -lattices Mi ⊂ M ′
i ⊂ Nk,i, we denote by [M ′

i : Mi] the index of Mi

in M ′
i , i.e. the length of the OF̆ -module M ′

i/Mi. If [M ′
i : Mi] = t, we write

Mi
t⊂ M ′

i .

By the relative Dieudonne theory, we have the following proposition.

Proposition 2.2. There is a bijection between the set N (k) and the set of
OF̆ -lattices M in Nk such that

• M is stable under F , V, and OE-action;
• Charpolk(a,M/VM) = (T − a)(T − a∗)n−1 for all a ∈ OE;

• M0
h⊂ M⊥

1

n−h⊂ π−1M0, M1
h⊂ M⊥

0

n−h⊂ π−1M1.

We will use the following lemma in the next subsection.

Lemma 2.3. ([Vol10, Lemma 1.5]) Let M = M0 ⊕M1 be an OE-invariant
lattice in Nk. Assume that M is invariant under F and V. Then M satisfies
the determinant condition of signature (r, n − r) if and only if

πM0
n−r⊂ FM1

r⊂ M0,

πM1
r⊂ FM0

n−r⊂ M1.

Proof. See [Vol10, Lemma 1.5]. �

2.3. Description of the points of N II. In this subsection, we will de-
scribe the set N (k) as the set of lattices in Nk,0. We use the following
notation.

Let τ be the σ2-linear operator V−1F on Nk, and let N τ
k,0 be the set of

τ -invariant elements in Nk,0. Then N τ
k,0 is an E-vector space. Note that for

every τ -invariant lattice A in Nk,0, there exists a τ -invariant basis of A (see

[Vol10, 1.10]). Therefore, we have Nk,0 = N τ
k,0 ⊗E F̆ .

We define {x, y} := 〈x,Fy〉. This is a nondegenerate form on Nk,0 which
is linear in the first variable, and σ-linear in the second variable.

Also, this form {·, ·} satisfies the following properties (see [Vol10, 1.11]):

{x, y} = −{y, τ−1(x)}σ ,
{τ(x), τ(y)} = {x, y}σ2

.

For an OF̆ -lattice A in Nk,0, we define A∨ the dual lattice of A with
respect to the form {·, ·} as

A∨ = {x ∈ Nk,0|{x,A} ⊂ OF̆ }.
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For an OF̆ -lattice A ⊂ Nk,0, we have

(A∨)∨ = τ(A),

τ(A∨) = τ(A)∨.

We can now state the following description of N (k).

Proposition 2.4. There is a bijection between N (k) and the set




OF̆ -lattices A

h⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣

πB∨ 1⊂ A
n−1⊂ B∨,

πA∨ 1⊂ B
n−1⊂ A∨,

πB ⊂ A ⊂ B.





Proof. For M = M0 ⊕ M1 ∈ N (k), let A = M0, B = M⊥
1 . Then, by

Proposition 2.2, we have πB ⊂ A
h⊂ B. Now, we will show the following

equality.

(2.3.1) π(M⊥
1 )∨ = FM1.

Indeed, we have

(M⊥
1 )∨ = {y ∈ Nk,0|{y,M⊥

1 } ⊂ OF̆ }

= {y ∈ Nk,0|〈y,FM⊥
1 〉 ⊂ OF̆ }

= {y ∈ Nk,0|〈FM⊥
1 , y〉 ⊂ OF̆ }

= {y ∈ Nk,0|〈M⊥
1 ,Vy〉 ⊂ OF̆ }

= V−1((M⊥
1 )⊥) = V−1M1.

Therefore, by multiplying π, we get the equality (2.3.1).

By Lemma 2.3 and (2.3.1), we have πB∨ 1⊂ A
n−1⊂ B∨.

Similarly, we have VM1
1⊂ M0 ⇐⇒ M1

1⊂ V−1M0 ⇐⇒ FM1 ⊂ V−1F(M0) ⇐⇒
π(M⊥

1 )∨ 1⊂ τ(M0) ⇐⇒ πM∨
0

1⊂ M⊥
1 . Therefore, we have πA∨ 1⊂ B

n−1⊂ A∨.
Conversely, if we have OF̆ -lattices A,B satisfying the above conditions,

then one can easily show that A⊕B⊥ is an element in N (k). �

From now on, we identify N (k) with the set defined in the Proposition
2.4.
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2.4. The sets RΛ, SΛ indexed by vertex lattices Λ. In this section, we
will define the sets RΛ and SΛ indexed by the lattices Λ which are called
vertex lattices. First, we start with the definition of the vertex lattices.

Definition 2.5. Let Li be the set of all lattices Λ inN τ
k,0 (hence, τ -invariant)

satisfying πi+1Λ∨ ⊂ Λ ⊂ πiΛ∨. An element in Li is called a vertex lattice.

We say that a vertex lattice Λ ∈ Li is of type t if πi+1Λ∨ t⊂ Λ. We denote
by t(Λ) the type of the vertex lattice Λ.

Remark 2.6. For A
h⊂ B a pair in N (k), we define

TiA := A+ τ(A) + · · · + τ i−1(A),

TiB := B + τ(B) + · · · + τ i−1(B).

Then, by [RZ, Proposition 2.17], there exist positive integers c, d such that
Tc(A) and Td(B) are τ -invariant.

Now, we will show the following lemma.

Lemma 2.7. Let A
h⊂ B be a pair in N (k). Let c, d be the smallest positive

integers such that TcA,TdB are τ -invariant, and write ΛA := Tc(A), ΛB :=
Td(B). Then, at least one of the following assertions holds.

(1) ΛB is a vertex lattice in L0, and

πA∨ 1⊂ B ⊂ ΛB ⊂ Λ∨
B

∪ ∪
πΛ∨

B ⊂ πB∨ 1⊂ A

(2) ΛA is a vertex lattice in L1, and

πB∨ 1⊂ A ⊂ ΛA ⊂ πΛ∨
A

∪ ∪
π2Λ∨

A ⊂ π2A∨ 1⊂ πB

To prove the Lemma 2.7, we need the following lemma.

Lemma 2.8. For 1 ≤ i < c, 1 ≤ j < d,

(2.4.1) TiA ∩ τ(TiA) = τ(Ti−1A),

(2.4.2) Ti−1A
1⊂ TiA,

(2.4.3) TjB ∩ τ(TjB) = τ(Tj−1B),

(2.4.4) Tj−1B
1⊂ TjB.
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Proof. We will show (2.4.1), (2.4.2). The proof of (2.4.3), (2.4.4) is similar.
Note that we have

(2.4.5) πB∨ 1⊂ A
n−1⊂ B∨,

(2.4.6) πA∨ 1⊂ B
n−1⊂ A∨.

Therefore, we have πB∨ 1⊂ A and πB∨ 1⊂ τ(A) by taking the dual of
(2.4.6). If A is τ -invariant, then c = 0, and hence there is nothing to prove.
Now assume that A is not τ -invariant. Since πB∨ ⊂ A∩ τ(A) ( A and πB∨

is of index 1 in A, A ∩ τ(A) should be πB∨. Also A and τ(A) should have
index 1 in T1A. This shows (2.4.2) when i = 1.

For (2.4.1), note that τ(A)
1⊂ T1A and τ(A)

1⊂ τ(T1A). If T1A is τ -
invariant, then c = 1. Therefore, there is nothing to show. Assume that
T1A is not τ -invariant. Then T1A ∩ τ(T1A) = τ(A). This shows (2.4.1) for
i = 1.

For arbitrary i, we can use the induction on i. �

We now go back to the proof of Lemma 2.7.

Proof of Lemma 2.7. We will prove this lemma by dividing by 6 cases and
their subcases.

Case 1. If B ∈ L0, then (1) holds.
Case 2. If A ∈ L1, then (2) holds.
Case 3. Assume that A is τ -invariant, but not a vertex lattice in L1.

Then A * πA∨. Since πA∨ is of index 1 in B, and A ⊂ B, we have
B = A + πA∨. Since A is τ -invariant, B is also τ -invariant. Therefore, if
B ⊂ B∨, then B ∈ L0, and hence (1) holds. Therefore, it suffices to show
that B ⊂ B∨. Assume that B * B∨. Since πB∨ is of index 1 in A and
πB ⊂ A, we have A = πB + πB∨. However, πB∨ ⊂ πA∨ and πB ⊂ πA∨

implies that A = πB + πB∨ ⊂ πA∨ which contradicts to our assumption
that A is not a vertex lattice.

Case 4. Assume that B is τ -invariant, but not a vertex lattice in L0.
Then B * B∨. Since πB∨ is of index 1 in A and πB ⊂ A, we have that
A = πB + πB∨. In particular, A is also τ -invariant. Also, πB∨ ⊂ πA∨ and
πB ⊂ πA∨ implies that A ⊂ πA∨. Therefore, A is vertex lattice in L1 and
(2) holds in this case.

Case 5. Assume that A,B are not τ -invariant and B ⊂ B∨. In this case,
we have

(2.4.7) A ∩ τ(A) = πB∨,

(2.4.8) B ∩ τ(B) = πA∨.

Also, note that

B + τ(B) ⊂ B∨ ⊂ π−1τ(A),

τ(B) + τ2(B) ⊂ τ(B∨) ⊂ π−1τ(A).
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Therefore, we have

T2B ⊂ π−1τ(A) ⊂ π−1T1A,

and,

(2.4.9) TdB ⊂ π−1Td−1A.

Case 5-1. Assume that d − 1 < c. Since TdB is τ -invariant, (2.4.9)
implies that

TdB ⊂
⋂

l∈Z

π−1τ l(Td−1A)
(2.8)
=

⋂

l∈Z

π−1τ l(A)
(2.4.7)

=
⋂

l∈Z

π−1τ l(πB∨) = (TdB)∨.

The last equality is induced by

(TdB)∨ = B∨ ∩ τ(B∨) ∩ · · · ∩ τd−1(B∨),

and the fact that (TdB)∨ is τ -invariant. Therefore, (1) holds in this case.
Case 5-2. Assume that d − 1 ≥ c. Then, TcA ⊂ TcB and TcA is τ -

invariant. Therefore, we have

TcA ⊂
⋂

l∈Z

τ l(TcB)
(2.8)
=

⋂

l∈Z

τ l(B)
(2.4.8)

=
⋂

l∈Z

τ l(πA∨) = π(TcA)∨.

The last equality is induced by

(TcA)∨ = A∨ ∩ τ(A∨) ∩ · · · ∩ τ c−1(A∨),

and the fact that (TcA)∨ is τ -invariant. Therefore, (2) holds in this case.
Case 6. Assume that A,B are not τ -invariant and B * B∨. In this case,

(2.4.7) and (2.4.8) hold and we have A = πB + πB∨ ⊂ πA∨ (see the case
4). By (2.4.8), we have A ⊂ B and A ⊂ τ(B). Therefore, T1A ⊂ τ(B) and

TcA ⊂ τ(Tc−1B).

Case 6-1 Assume that c ≤ d. Then, we have

TcA ⊂
⋂

l∈Z

τ l(Tc−1B)
(2.8)
=

⋂

l∈Z

τ l(B)
(2.4.8)

=
⋂

l∈Z

τ l(πA∨) = π(TcA)∨.

Therefore, (2) holds in this case.
Case 6-2 Assume that d < c. Then, B ⊂ π−1A implies that TdB ⊂

π−1TdA. Therefore, we have

TdB ⊂
⋂

l∈Z

π−1τ l(TdA)
(2.8)
=

⋂

l∈Z

π−1τ l(A)
(2.4.7)

=
⋂

l∈Z

π−1τ l(πB∨) = (TdB)∨.

This is a contradiction, since B * B∨ and B ⊂ TdB ⊂ (TdB)∨ ⊂ B∨.
This completes the proof of the Lemma 2.7. �

Now, let us give the definition of the sets RΛ(k), SΛ(k).
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Definition 2.9. (1) For a vertex lattice Λ ∈ L1, we define the set

RΛ(k) :=





OF̆ -lattices

A
h⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣

(i) πB∨ 1⊂ A ⊂ Λ ⊂ πΛ∨

∪ ∪
π2Λ∨ ⊂ π2A∨ 1⊂ πB

(ii) πB
n−h⊂ A

h⊂ B





(2) For a vertex lattice Λ ∈ L0, we define the set

SΛ(k) :=





OF̆ -lattices

A
h⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣

(i) πA∨ 1⊂ B ⊂ Λ ⊂ Λ∨

∪ ∪
πΛ∨ ⊂ πB∨ 1⊂ A

(ii) πB
n−h⊂ A

h⊂ B





Proposition 2.10. We have N (k) =
⋃

Λ∈L1
RΛ(k) ∪ ⋃

Λ∈L0
SΛ(k).

Proof. This is clear from the Lemma 2.7. �

Proposition 2.11. If Λ ∈ L0 and SΛ is not empty, then h+ 1 ≤ t(Λ) ≤ n,
and t(Λ) ≡ h+ 1 mod 2.

Proof. This is clear from the Lemma 2.7 (1). �

Proposition 2.12. If Λ ∈ L1 and RΛ is not empty, then n−h+1 ≤ t(Λ) ≤
n, and t(Λ) ≡ n− h+ 1 mod 2.

Proof. This is clear from the Lemma 2.7 (2). �

Definition 2.13. We write L+
0 for the set of lattices in L0 with t(Λ) ≥ h+1

and L−
0 for the set of lattices in L0 with t(Λ) ≤ h− 1. Similarly, we denote

by L+
1 the set of lattices in L1 with t(Λ) ≥ n − h + 1 and L−

1 the set of
lattices in L1 with t(Λ) ≤ n− h− 1.

Remark 2.14. For Λ1 ∈ L+
1 , we have π(πΛ∨

1 )∨ = Λ1 ⊂ πΛ∨
1 ⊂ π−1Λ1 =

(πΛ∨
1 )∨. Therefore, we can regard πΛ∨

1 as the element of L0. By this
identification, we have a bijection from L+

0 ⊔ L−
0 to L+

0 ⊔ L+
1 by sending

Λ ∈ L+
0 to Λ, and Λ ∈ L−

0 to πΛ∨.

Remark 2.15. When h = 0 (the case in [VW11]), RΛ(k) does not occur
in N (k) (by Proposition 2.12). When h = 1, for any pair (A,B) ∈ RΛ(k),
A should be Λ and t(Λ) = n. In this case, B can be any lattice satisfying

Λ
1⊂ B ⊂ π−1Λ. Hence, we have RΛ(k) ≃ Pn−1(k). We should note that

Kudla and Rapoport already proved this result in their unpublished notes
[KR].

Proposition 2.16. Let Λ1,Λ2 be elements in L+
0 .

(1) If Λ1 ⊂ Λ2, then SΛ1
(k) ⊂ SΛ2

(k).
(2) If Λ1 ∩ Λ2 is in L+

0 , then SΛ1
(k) ∩ SΛ2

(k) = SΛ1∩Λ2
(k). Otherwise, it

is empty.
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Proof. (1) is clear from its definition.
For (2), we will show that SΛ1

(k)∩SΛ2
(k) ⊂ SΛ1∩Λ2

(k). Let (A,B) be the
element in SΛ1

(k)∩SΛ2
(k). Note that (A,B) satisfies the following diagrams,

πA∨ 1⊂ B ⊂ Λ1 ⊂ Λ∨
1

∪ ∪
πΛ∨

1 ⊂ πB∨ 1⊂ A ,

and

πA∨ 1⊂ B ⊂ Λ2 ⊂ Λ∨
2

∪ ∪
πΛ∨

2 ⊂ πB∨ 1⊂ A .

These two diagrams imply that

πA∨ 1⊂ B ⊂ Λ1 ∩ Λ2 ⊂ Λ∨
1 ⊂ (Λ1 ∩ Λ2)∨

∪ ∪
π(Λ1 ∩ Λ2)∨ = πΛ∨

1 + πΛ∨
2 ⊂ πB∨ 1⊂ A .

Therefore, Λ1 ∩ Λ2 is in L+
0 , and (A,B) should be contained in SΛ1∩Λ2

(k).
Conversely, SΛ1∩Λ2

(k) ⊂ SΛ1
(k) ∩ SΛ2

(k) is obvious from (1). This com-
pletes the proof of the proposition. �

Proposition 2.17. Let Λ1,Λ2 be elements in L+
1 .

(1) If Λ1 ⊂ Λ2, then RΛ1
(k) ⊂ RΛ2

(k).
(2) If Λ1 ∩ Λ2 is in L+

1 , then RΛ1
(k) ∩ RΛ2

(k) = RΛ1∩Λ2
(k). Otherwise,

it is empty.

Proof. The proof is the same as the proof of Proposition 2.16 �

Now, let us consider the intersection RΛ1
(k) ∩ SΛ0

(k).

Proposition 2.18. Let Λ1 ∈ L+
1 ,Λ0 ∈ L+

0 .
(1) If πΛ∨

1 * Λ0, then RΛ1
(k) ∩ SΛ0

(k) = ∅.
(2) If πΛ∨

1 ⊂ Λ0, then

RΛ1
(k)∩SΛ0

(k) =





OF̆ -lattices

A
h⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣

πΛ∨
1 ⊂ πA∨ 1⊂ B ⊂ Λ0

∪
Λ1 ⊃ A

1⊃ πB∨ ⊃ πΛ∨
0





Proof. This is clear from the definition. �

Remark 2.19. Let h = 1, Λ1 ∈ L+
1 ,Λ0 ∈ L+

0 , and πΛ∨
1 ⊂ Λ0. For any

(A,B) ∈ RΛ1
(k), we have A = Λ1 by Remark 2.15. Therefore,

RΛ1
(k) ∩ SΛ0

(k) =

{
OF̆ -lattices
B ⊂ Nk,0

∣∣∣∣ πΛ∨
1

1⊂ B ⊂ Λ0

}
.

This is isomorphic to Pm−1(k), where m = [Λ0 : πΛ∨
1 ].



SUPERSINGULAR LOCUS 17

Remark 2.20. We can apply our method for N 0
E/F (2, 2) which has been

studied in [HP14]. We should note that all of the following descriptions of
k-points is already obtained in loc.cit. with a different method.

By using the relative Dieudonne theory and similar steps in Section 2, we
can show that there is a bijection between N (k) and the set

{
OF̆ -lattice B ⊂ Nk,0

∣∣∣ πB∨ 2⊂ B
2⊂ B∨

}

We can divide the set into three cases.

case 1 B ∩ τ(B)
1⊂ B.

case 2 B ∩ τ(B) = πB∨ and B
1⊂ T1B.

case 3 B ∩ τ(B) = πB∨ and T1B = B∨.
In case 1, let πA∨ = B ∩ τ(B). Then, the pair (A,B) satisfies

πA∨ 1⊂ B
3⊂ A∨;

πB∨ 1⊂ A
3⊂ B∨;

πB
3⊂ A

1⊂ B.

Therefore, by using Lemma 2.7, we can show that at least one of the following
is true.

(1) A is τ -invariant and A = πA∨.
(2) ΛB ⊂ Λ∨

B .

In case 2, one can prove that ΛB ⊂ Λ∨
B .

In case 3, since B ∩ τ(B) = πB∨, we have B∨ + τ(B∨) = π−1τ(B) by
taking dual. Since B∨ = B + τ(B), we have

B + τ(B) + τ2(B) = π−1τ(B).

Let d be the smallest integer such that TdB is τ -invariant. Then TdB =
π−1τ(Td−2B) is τ -invariant, and this means that Td−2B is also τ -invariant.
This is possible only when B is τ -invariant.

In summary, B ∩ τ(B) is a vertex lattice of type 0 or ΛB ⊂ Λ∨
B (hence

ΛB is a vertex lattice). This is the analogue of Lemma 2.7.
Therefore, for each vertex lattice Λ, we can attach the following set.
(1) If Λ = πΛ∨, then we attach the set,

{
OF̆ -lattices
B ⊂ Nk,0

∣∣∣∣ Λ
1⊂ B

2⊂ B∨ 1⊂ Λ∨

}
.

This is the set of k-points of a Fermat hypersurface.

(2) If πΛ∨ 2⊂ Λ, then we attach the set,
{
OF̆ -lattices
B ⊂ Nk,0

∣∣∣∣ B = Λ

}
.

This is one k-point.
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(3) If πΛ∨ 4⊂ Λ, then we attach the set,
{
OF̆ -lattices
B ⊂ Nk,0

∣∣∣∣ πΛ∨ 1⊂ B
2⊂ B∨ 1⊂ Λ = Λ∨

}
.

This is the set of k-points of a Fermat hypersurface.
N (k) is the union of the above sets and this is the same result as in

[HP14].

3. Subschemes NΛ of N
In this section, we will first define the subscheme NΛ for each vertex

lattice Λ, and prove that NΛ is isomorphic to a generalized Deligne-Lusztig
variety. Also, we will prove the regularity of N h

E/F (1, n − 1) ⊗ OĔ . Before

we begin, let us introduce some notation. In the end of the Section 2.1,
we showed that N h

E/F (1, n − 1) ⊗ OĔ is representable by a formal scheme

over Spf OĔ and furthermore, N h
E/F (1, n − 1) is representable by a formal

scheme over Spf OE if F is unramified over Qp. For this reason, we will use
the following notation. Let F = Fq2 if F is an unramified extension of Qp,

and let F = Fq2 if F is ramified over Qp. Then N h
E/F (1, n− 1) ⊗OE F is the

special fiber of N h
E/F (1, n−1) (resp. N h

E/F (1, n−1)⊗OĔ) if F is unramified

over Qp (resp. if F is ramified over Qp).

3.1. Strict formal OF -modules XΛ+ and XΛ− . In this subsection, we
fix a vertex lattice Λ ∈ L+

i , for i = 0, 1. We will define the strict formal
OF -modules XΛ+ , XΛ− over Fq2 with OE-action, polarizations λΛ± and
quasi-isogenies ρΛ± : XΛ± → X. For this, we will construct the following
two Dieudonne submodules of N .

First, if Λ ∈ L+
0 , we define the lattices Λ+ and Λ− by

Λ+
0 = Λ

Λ+
1 = V−1(Λ)

Λ−
0 = πΛ∨

Λ−
1 = V(Λ∨)

Λ+ = Λ+
0 ⊕ Λ+

1

Λ− = Λ−
0 ⊕ Λ−

1

Then, one can easily show that Λ− = (Λ+)⊥. Since F = V on Λ+ and
Λ−, we have that Λ+ and Λ− are Dieudonne submodules of N .

In case Λ ∈ L+
1 , we define the lattices Λ+ and Λ− by

Λ+
0 = Λ

Λ+
1 = V−1(Λ)

Λ−
0 = π2Λ∨

Λ−
1 = πV(Λ∨)
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Λ+ = Λ+
0 ⊕ Λ+

1

Λ− = Λ−
0 ⊕ Λ−

1

Then, we have Λ− = π(Λ+)⊥. Again, these Λ+ and Λ− are Dieudonne
submodules of N .

For Λ ∈ L+
i , we have Λ ⊂ πiΛ∨. Therefore, the pairing π−i+1〈·, ·〉 on N

induces a WOF (Fq2)-pairing on Λ+ and Λ−.

Now, let XΛ+ and XΛ− be the strict formal OF -modules associated to Λ+

and Λ− with quasi-isogenies ρΛ± : XΛ± → X.
We will use these two strict formal OF -modules to define the subschemes

NΛ of N .

3.2. Subschemes NΛ attached to vertex lattices Λ. We fix Λ ∈ L+
i , for

i = 0, 1. Let S be a F-scheme. We define NΛ as the subfunctor of N ⊗OE F
consisting of tuples (X, iX , λX , ρX) ∈ N (S) such that

ρX,Λ+ : X
ρX−−→ Xs

(ρΛ+ )−1
S−−−−−→ (XΛ+)S

ρX,Λ− : (XΛ−)S
(ρΛ− )S−−−−→ XS

ρ−1
X−−→ X

are isogenies.
We have the following lemma.

Lemma 3.1. The functor NΛ is representable by a projective F-scheme and
the monomorphism NΛ →֒ N ⊗ F is a closed immersion.

Proof. See [VW11, Lemma 4.2]. �

Lemma 3.2. If Λ ∈ L+
0 , then NΛ(k) = SΛ(k), and if Λ ∈ L+

1 , then NΛ(k) =
RΛ(k).

Proof. This is clear from the definition of NΛ. �

3.3. Deligne-Lusztig varieties. In this subsection, we will recall some
results about Deligne-Lusztig varieties.

Let G be a connected reductive group over a finite field K. Denote by G
K

the base change of G over K, where K is a fixed algebraic closure of K. Let
F : G → G be the Frobenius morphism with respect to K, and let (W,S) be
the Weyl system of G

K
. Then F gives an automorphism on W . By Lang’s

theorem, G is quasi-split, and hence F(S) = S.
For I ⊂ S, let WI be the subgroup of W generated by I, and let PI =

BWIB be the corresponding standard parabolic subgroup of G.
For I, J ⊂ S, we denote by IW J the set of minimal length representatives

w ∈ W in the double coset WI\W/WJ .
Now, we define the generalized Deligne-Lusztig varieties as follows.

Definition 3.3. Let I ⊂ S. For each w ∈ W , we define the generalized
Deligne-Lusztig variety XI(w) by

XI(w) := {g ∈ G/PI : g−1F(g) ∈ PIwPF(I)}.
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We will need the following two results later.

Proposition 3.4. ([Hoe10, Lemma 2.1.3]) For w ∈IWF(I), the Deligne-
Lusztig variety XI(w) is smooth of dimension l(w)+ l(WF(I))− l(WI∩wF(I)),

where l(w) is the length of w, l(WI) = max{l(w′)|w′ ∈ WI}, and wF(I) =
wF(I)w−1.

Proposition 3.5. ([BR06]) The following assertions are equivalent.
(1) XI(w) is geometrically irreducible.
(2) XI(w) is connected.
(3) There exists no J ( S with F(J) = J such that WIw ⊂ WJ .

3.4. The Deligne-Lusztig variety YΛ. In this subsection, we will define
the Deligne-Lusztig variety YΛ. For i = 0, 1 we fix a vertex lattice Λ ∈ L+

i .
We use the following notation.

• Let VΛ be Λ+
0 /Λ

−
0 and let (·, ·) be the skew-hermitian form on VΛ induced

by π−i{·, ·}. Note that VΛ is a Fq2-vector space of dimension d := t(Λ).
• Let JΛ be the special unitary group associated to (V, (·, ·)). This is a

connected reductive group over Fq.
• Let F : JΛ → JΛ be the Frobenius morphism over Fq and (W,S) be the

Weyl system of JΛ.
Note that

JΛ ⊗Fq Fq2 ≃ SL(VΛ) = SLd,Fq2 .

Therefore, we can identify W with the symmetric group Sd, and S with
{s1, . . . , sd}, where si is the transposition of i and i+ 1.

The Frobenius F induces an automorphism of W , and this is given by
the conjugation with w0 ∈ Sd, where w0(i) = d+ 1 − i for all i.

• For a Fq2-algebra R, we denote by VΛ,R the base change VΛ ⊗Fq2 R. Let

σ be the Frobenius of R. For a R-module M, denote by M (σ) = M ⊗R,σ R,
the Frobenius twist, and denote by M∗ = HomR(M,R). Let U be a locally
direct summand of VΛ,R of rank m. We define its dual module Ug as follows.
Since (·, ·) induces an R-linear isomorphism

ψ : (VΛ,R)(σ) ≃ (VΛ,R)∗,

ψ(U (σ)) is a locally direct summand of (VΛ,R)∗ of rank m. Let Ug be the
kernel of the composition

VΛ,R ≃ (VΛ,R)∗∗
։ ψ(U (σ))∗.

This is a locally direct summand of VΛ,R of rank d−m.
In particular, if R = k, then

Ug = {x ∈ VΛ,k : (x,U) = 0}.
Remark 3.6. Let R = k. For a lattice A such that πi+1Λ∨ ⊂ A ⊂ Λ, the
quotient A/πi+1Λ∨ is a subspace of VΛ,k. Then by definition, we have

πi+1A∨/πi+1Λ∨ = (A/πi+1Λ∨)g.
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We will need the following lemma.

Lemma 3.7. ([Vol10, Lemma 2.17]) Fix I ⊂ S, and let Fl be a flag in
JΛ/PI . Then the Frobenius F and the duality morphism Fl 7→ Flg define
the same morphism JΛ/PI → JΛ/PF(I), i.e. the dual flag Flg is equal to
F(Fl).

Let Λ ∈ L+
0 and d = 2l+h+ 1 (recall that h is from N h

E/F (1, n− 1)). We

can take the set IΛ ⊂ S such that the elements in JΛ/PIΛ
parametrize flags

0
l+1⊂ A

h⊂ B
l⊂ VΛ,

where A,B are subspaces of VΛ. For example, we take

IΛ = {s1, . . . , sl, sl+2, . . . , sl+h, sl+h+2, . . . , s2l+h},
where h > 1, l > 1.

In case Λ ∈ L+
1 , and d = 2l + (n − h) + 1, we take IΛ ⊂ S such that the

elements in JΛ/PIΛ
parametrize flags

0
l+1⊂ πB

n−h⊂ A
l⊂ VΛ,

where πB,A are subspaces of VΛ.

Definition 3.8. In case h = 0, n, we define wΛ = id. In case 1 ≤ h ≤ n− 1,
we define wΛ as follows. If Λ ∈ L+

0 , we define wΛ = sl+1sl+2 . . . sl+h or
wΛ = (l + 1, l + h + 1), the transposition of l + 1 and l + h + 1. Note that
these two wΛ gives the same coset in WIΛ

wΛWF(IΛ). In case Λ ∈ L+
1 , we

define wΛ = sl+1sl+2 . . . sl+n−h.

Then we have the following proposition.

Proposition 3.9. We have the following bijections.

(1) If 1 ≤ h ≤ n− 1 and Λ ∈ L+
0 , then

SΛ(k) = XIΛ
(id)(k) ⊔XIΛ

(wΛ)(k).

(2) If 1 ≤ h ≤ n− 1 and Λ ∈ L+
1 , then

RΛ(k) = XIΛ
(id)(k) ⊔XIΛ

(wΛ)(k)

(3) If h = 0 and Λ ∈ L+
0 , then

SΛ(k) = XIΛ
(id)(k).

(4) If h = n and Λ ∈ L+
1 , then

RΛ(k) = XIΛ
(id)(k).

Proof. (1) Let (A ⊂ B) ∈ SΛ(k). By sending this to (A/πΛ∨ ⊂ B/πΛ∨), we
have an element in XIΛ

(id)(k) ⊔XIΛ
(wΛ)(k) (here we use Lemma 3.7).

Indeed, if

0
l⊂ πB∨ 1⊂ A

h−1⊂ πA∨ 1⊂ B
l⊂ Λ,
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then (A/πΛ∨ ⊂ B/πΛ∨) ∈ XIΛ
(id)(k).

And if

πB∨ ⊂ A * πA∨ ⊂ B,

then (A/πΛ∨ ⊂ B/πΛ∨) ∈ XIΛ
(wΛ)(k).

The proofs of (2), (3), (4) are similar. �

Definition 3.10. For i = 0, 1, let Λ ∈ L+
i . If 1 ≤ h ≤ n− 1, then we define

a Fq2-scheme

YΛ := XIΛ
(id) ⊔XIΛ

(wΛ) = XIΛ
(wΛ).

The second equality is from the property of the Bruhat order (see [HP14,
Lemma 3.7]). If h = 0 and Λ ∈ L+

0 , then we define YΛ := XIΛ
(id). Similarly,

if h = n and Λ ∈ L+
1 , then we define YΛ := XIΛ

(id). By abuse of notation,
we denote by YΛ its base change YΛ ⊗ F.

By Proposition 3.4 and Proposition 3.5, we have the following proposition.

Proposition 3.11. For Λ ∈ L+
i (i = 0, 1), YΛ is irreducible, and

(1) if Λ ∈ L+
0 , the dimension of YΛ is

t(Λ) − 1 − h

2
+ h,

(2) if Λ ∈ L+
1 , the dimension of YΛ is

t(Λ) − 1 − (n− h)

2
+ n− h.

3.5. Description of the points of NΛ. In this subsection, we will use
the theory of OF -windows in [ACZ16], [Ahs11] to obtain a description of
NΛ(k) for an arbitrary field extension k of F (For a perfect field k, we can
use the relative Dieudonne theory as in Section 2.2, 2.3). This will be used
to prove the Theorem 3.14. For simplicity we denote by O the ring of
integers OF . Let k be an arbitrary field extension of F, and let WO(k) be

the ring of ramified Witt vectors. Let WO,k = (WO(k), IO(k), k,σ ,V
−1

) and

WO,F = (WO(F), πWO(F),F,σ ,V
−1

) be Witt O-frames.
Let (M,F ,V) be the relative Dieudonne module of X defined in Sec-

tion 2.2. then (M,VM,F ,V−1) is the WO,F-window of X. The inclusion
WO(F) →֒ WO(k) induces a morphism of O-frames WO,F → WO,k. Then

by base change, we get the WO,k-window (Mk,M′
k,Fk,V−1

k ) of X⊗ k. More
precisely,

• Mk = WO(k) ⊗WO(F) M.

• M′
k = Ker(w0 ⊗ pr), where w0 is 0-th Witt polynomial, and pr : M →

M/VM.
• Fk =σ ⊗F .
• V−1

k is the unique σ-linear morphism which satisfies

V−1
k (w ⊗ y) =σ w ⊗ V−1y,
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V−1
k (Vw ⊗ y) = w ⊗ Fy,

for all w ∈ WO(k), x ∈ M, and y ∈ VM.
Let Nk = Mk ⊗WO(k) Frac(WO(k)). The OE-action on M induces the

OE-action on Nk.
The polarization λ⊗ k on X ⊗F k induces a nondegenerate Frac(WO(k))-

bilinear alternating form 〈·, ·〉 on Nk

〈·, ·〉 : Nk ×Nk → Frac(WO(k)),

such that for all x, y ∈ Nk and a ∈ E, it satisfies

〈Fkx, Fky〉 = π〈x, y〉σ ,
〈ax, y〉 = 〈x, a∗y〉.

The OE-action on Nk induces Z/2Z-grading

Nk = Nk,0 ⊕Nk,1.

Each Nk,i is totally isotropic with respect to 〈·, ·〉 and Fk is homogeneous
of degree 1 with respect to the decomposition. For a WO(k)-lattice M =
M0 ⊕M1 ⊂ Nk, we define the dual lattice M⊥ = M⊥

1 ⊕M⊥
0 as

M⊥
i = {x ∈ Nk,i+1|〈x,Mi〉 ∈ WO(k)}, i = 0, 1.

Let (Λ±
k ,VΛ±

k ,Fk,V−1
k ) be the WO,k-windows of XΛ± ⊗ k. Then by the

theory of O-windows, we have the following proposition.

Proposition 3.12. There is a bijection between the set NΛ(k) and the set
of WO(k)-lattices M = M0 ⊕M1 in Nk such that

(1) M is Fk and OE-invariant.

(2) M0
h⊂ M⊥

1

n−h⊂ π−1M0, M1
h⊂ M⊥

0

n−h⊂ π−1M1.

(3) πM0
n−1⊂ M ′

0

1⊂ M0, πM1
1⊂ M ′

1

n−1⊂ M1, where M ′ = M ′
0 ⊕ M ′

1 =
Ker(M → Λ+

k /VΛ+
k ).

(4) Λ−
k ⊂ M ⊂ Λ+

k .

Proof. The first condition is obvious. The condition (2) is from the condition
on polarization: Kerλ ⊂ X[π] and the order of Kerλ is q2h. The condition
(3) is the determinant condition. The last condition is from the definition
of NΛ. �

3.6. The isomorphism between NΛ and YΛ. Let Λ ∈ L+
i . In this sub-

section, we will prove that NΛ and YΛ are isomorphic. Let S be a F-scheme,
and let X be a strict formal OF -module over S. We denote by D(X) the Lie
algebra of the universal extension of X in the sense of [ACZ16]. Recall that
X 7→ D(X) is the functor from the category of π-divisible formal O-module
over S to the category of locally free OS-modules. This is compatible with
base change.
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Now, we will define a morphism f : NΛ → YΛ. Let R be a F-algebra, and
(X, iX , λX , ρX) ∈ NΛ(R). By definition of NΛ, we have two isogenies

XΛ−,R

ρX,Λ−−−−−→ XR

ρX,Λ+−−−−→ XΛ+,R

Let BΛ = Λ+/Λ−, E(X) := Ker (D(ρX,Λ−)). Then by [VW11, Corollary
4.7], E(X) is a direct summand of the R-module BΛ ⊗FR. By the OE-action
on BΛ and on E(X), we have the following decompositions

BΛ = BΛ,0 ⊕ BΛ,1,

E(X) = E0(X) ⊕ E1(X).

We write 〈·, ·〉′ for the alternating form π−i+1〈·, ·〉 on BΛ.

Remark 3.13. Let R = k be an algebraically closed field. If Λ ∈ L+
0 , then

E0(X) = A/πΛ∨ and E1(X)⊥′
= B/πΛ∨ (⊥′

means the dual with respect
to 〈·, ·〉′) with the notation use in the proof of Proposition 3.9. Therefore,

E0(X) ⊂ E1(X)⊥′
. Similarly, if Λ ∈ L+

1 , then E0(X) = A/π2Λ∨ and

E1(X)⊥′
= πB/π2Λ∨. Therefore, we have E1(X)⊥′ ⊂ E0(X).

From the remark, we obtain a map f : NΛ(R) → YΛ(R) by sending

(X, iX , λX , ρX) to (E0(X) ⊂ E1(X)⊥′
) where Λ ∈ L+

0 , and to (E1(X)⊥′ ⊂
E0(X)) where Λ ∈ L+

1 (note that both E0(X), E1(X)⊥′
are subspaces of

BΛ,0 = VΛ in Section 3.4). Since this map commutes with base change, it
gives the desired morphism f : NΛ → YΛ.

Theorem 3.14. The morphism f is an isomorphism.

Proof. The proof is the same as the proof of [VW] Theorem 4.8. Indeed, f
gives a bijection on k-valued points, where k is algebraically closed field by
Lemma 3.2, Proposition 3.9. Therefore, f is universally bijective. Since NΛ

is proper (by Lemma 3.1) and YΛ is separated, we have that f is proper.
Therefore, f is a universal homeomorphism. Now, for an arbitrary field
extension k of F, we can work systematically using Proposition 3.12 to show
that f is a bijection on k-valued points, and hence f is birational. Therefore
f is proper, finite, birational morphism, and YΛ is normal (See [Gör09, Fact
2.1]). Now, by Zariski’s main theorem, f is an isomorphism. �

3.7. Regularity of N . In this subsection, we will prove that NOĔ
:=

N h
E/F (1, n − 1)OĔ is regular, where E = Qp2. Therefore, in this subsection,

π = p, F = Qp, E = Qp2, but, we will use the general notation. See Proposi-

tion 3.33 for the general case. First, note that NOĔ
= N 0

E/F (1, n−1)OĔ is for-

mally smooth over Spf OĔ (see [VW11]). This shows that N n
E/F (1, n− 1)OĔ

is formally smooth over Spf OĔ , since N 0 ≃ N n (see Remark 5.2). There-
fore, we can assume that 1 ≤ h ≤ n− 1. When h = 1, the regularity of NOĔ
is proved in [RSZ18a, Theorem 5.1]. We can use the same method to prove
the regularity of NOĔ

, where h ≥ 2. To prove this, we need the local model
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for N as in [RZ, Definition 3.27] and [PRS]. We will follow the definition in
[RSZ18a]. Let l(·, ·) be a E/F -hermitian form on En given by the matrix

(
πIh

In−h

)

Fix an element δ ∈ O×
E such that δ∗ = −δ. Let (·, ·) be the F -bilinear

alternating form on En defined by

(x, y) =
1

2
TrE/F (δl(x, y)), x, y ∈ En.

Let Λ0 := OnE and Λ1 := π−1OhE ⊕ On−h
E . Then Λ0 is the dual lattice

of Λ1 with respect to (·, ·). The local model N loc is the scheme over OE
representing the functor which sends each OE-scheme S to the set of pairs
(M0,M1) satisfying the following conditions:

• For each i = 0, 1, Mi is an OE ⊗OF OS-subsheaf of Λi ⊗OF OS which
Zariski locally on S is an OS-direct summand of rank n;

• The natural maps Λ0 ⊗OF OS → Λ1 ⊗OF OS and Λ1 ⊗OF OS
(πh,1n−h)−−−−−−→

Λ0 ⊗OF OS carry M0 into M1 and M1 into M0, respectively;
• M⊥

0 = M1 with respect to the natural perfect pairing (Λ0 ⊗OF OS) ×
(Λ1 ⊗OF OS) → OS induced by (·, ·);

• It satisfies the determinant condition of signature (n− 1, 1)

Charpol(a⊗ 1|Mi) = (T − a)n−1(T − a∗) ∈ OS [T ]

for all a ∈ OE , i = 0, 1.
As in [RSZ18a], the base change (N loc)OĔ is the local model for NOĔ

.
Therefore, we can use this to prove the following local property of NOĔ

.

Proposition 3.15. If 1 ≤ h ≤ n − 1, then the formal scheme NOĔ
has

semistable reduction. In particular, NOĔ
is regular.

Proof. By [RZ, Proposition 3.33], it suffices to show that local model N loc

has semistable reduction. Let S be a OE-scheme. Consider the decomposi-
tion

OE ⊗OF OS → OS ×OS

a⊗ b 7−→ (ab, a∗b).

For any (M0,M1) ∈ N loc(S), the above decomposition induces decom-
positions

Mi = M′
i ⊕ M′′

i ⊂ Λi ⊗OF OS = (Λi ⊗OF OS)′ ⊕ (Λi ⊗OF OS)′′, i = 0, 1.

By the determinant condition, M′
i ⊂ (Λi ⊗OF OS)′ is OS-locally direct sum-

mand of rank n− 1. Since M0 = M⊥
1 , we have that M′

0 and M′
1 determine

M′′
1 and M′′

0 , respectively. Therefore, the map (M0,M1) 7→ (M′
0,M′

1) is
an isomorphism from N loc to the standard local model over OE in [Gör01]

for the group GLn, the cocharacter µ = (1(n−1), 0), and the periodic lattice
chain determined by (Λ0⊗OFOE)′ ⊂ (Λ1⊗OFOE)′. By [Gör01, 4.4.5] (in case
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k = h, r = n− 1 or k = h, r = 1, since two cases are isomorphic by Lemma
4.8 in loc. cit), this standard local model has semistable reduction. �

3.8. The global structure of N : the Bruhat-Tits stratification. In
this section, we will study the global structure of N = N h

E/F (1, n − 1). Let

Nred be the underlying reduced subscheme of N . We define

tmax =

{
n if (n− h) is odd;

n− 1 if (n − h) is even,

tmin =

{
0 if h is odd;
1 if h is even.

Let A be the set of lattices in L0 of type tmin, and B the set of lattices in
L0 of type tmax. By Remark 2.14, we have a bijective map from L+

0 ⊔ L−
0 to

L+
0 ⊔ L+

1 . This map sends an element Λ ∈ A, to πΛ∨ which is an element of
L+

1 of type n− tmin. We have the following theorem.

Theorem 3.16. The map sending Λ ∈ A to NπΛ∨ and Λ ∈ B to NΛ is a
bijective map from A ∪ B to the set of irreducible components of Nred. For
Λ ∈ A, NπΛ∨ is an irreducible component of dimension

h− 1 − tmin

2
+ (n− h).

For Λ ∈ B, NΛ is an irreducible component of dimension

tmax − 1 − h

2
+ h.

Proof. This is clear from Proposition 2.16, Proposition 2.17, Lemma 3.2,
Proposition 3.11. �

Let J̃ = SU(N0, {·, ·}) (recall that N = N0 ⊕ N1 is the rational relative
Dieudonne module of X and {·, ·} is a form defined in Section 2.3). This is
an algebraic group over F . We denote by B(J̃ , F ) the abstract simplicial
complex of the Bruhat-Tits building of J̃ . By [Vol10, Theorem 3.6] and
[VW11, Section 4.1], we can identify L0 with the set of vertices of B(J̃ , F ).
Proposition 2.16, Proposition 2.17, Lemma 3.2 show that the intersection
behavior of NΛ (Λ ∈ L+

0 ), NπΛ∨ (Λ ∈ L−
0 ) is closely related to the Bruhat-

Tits building structure of B(J̃ , F ). For example, let

Λmin
1⊂ . . .

1⊂ Λ
1⊂ Λ′ 1⊂ . . .

1⊂ Λmax,

be a chain in L0, where Λmin,Λ,Λ
′,Λmax are of type tmin, h− 1, h+ 1, tmax,

respectively. Then we have

NπΛ∨ ⊂ · · · ⊂ NπΛ∨
min
,

NΛ′ ⊂ · · · ⊂ NΛmax .
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By the above Theorem 3.16, NπΛ∨
min
,NΛmax are irreducible components of

Nred. For an algebraically closed field k containing F, we have

NπΛ∨(k) ∩ NΛ′(k) = {(πΛ∨
k ,Λ

′
k)} 6= ∅.

Also, we have the following proposition.

Proposition 3.17. Let Λ0,Λ
′
0 ∈ L+

0 , Λ1,Λ
′
1 ∈ L+

1 .

(1) The following assertions are equivalent.
(a) NΛ0

∩ NΛ′
0

6= ∅.

(b) Λ0 ∩ Λ′
0 ∈ L+

0 .
In this case, we have

NΛ0
∩ NΛ′

0
= NΛ0∩Λ′

0
.

(2) The following assertions are equivalent.
(a) NΛ1

∩ NΛ′
1

6= ∅.

(b) Λ1 ∩ Λ′
1 ∈ L+

1 .
In this case, we have

NΛ1
∩ NΛ′

1
= NΛ1∩Λ′

1
.

(3) The following assertions are equivalent.
(a) NΛ0

∩ NΛ1
6= ∅.

(b) πΛ∨
1 ⊂ Λ0.

(4) For an algebraically closed field k containing F, we have

N (k) =
⋃

Λ∈L+
0 ∪L+

1

NΛ(k).

Proof. (1), (2), (3) are clear from Proposition 2.16, Proposition 2.17, Propo-
sition 2.18. (4) is clear from Proposition 2.10, Lemma 3.2. �

For i = 0, 1 and Λ ∈ L+
i , we define a set

L+
Λ := {Λ′ ∈ L+

i |Λ′ ( Λ},
and let

N 0
Λ := NΛ\

⋃

Λ′∈L+
Λ

NΛ′ .

We have the following analogue of [VW11, Proposition 5.3].

Proposition 3.18. The subset N 0
Λ is open and dense in NΛ.

Proof. The proof is the same as the proof of [VW11, Proposition 5.3]. �

By definition, we have a disjoint union of locally closed subschemes

NΛ = N 0
Λ ⊔

⊔

Λ′∈L+
Λ

N 0
Λ′ .

This gives a locally finite stratification (N 0
Λ)Λ∈L+

i ,i=0,1 of N .
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Definition 3.19. The stratification (N 0
Λ)Λ∈L+

i ,i=0,1 of N is called the Bruhat-

Tits stratification. The closed subschemes NΛ are called the closed Bruhat-

Tits strata.

3.9. The moduli space N h
E/K(r, n − r). Let K be a finite extension of

Qp contained in F , with ring of integers OK , and residue field Fs. We
fix a uniformizer ω. In this subsection, we will define the moduli space
N h
E/K(r, n − r). For this, we imitate the construction in [Mih16]. We will

use the notation in Section 2. Also, we will use the theory of O-display in
[ACZ16].

Let F u (resp. Eu) be the maximal unramified extension of K in F (resp.
E). Let [F : K] = ef , where f = [F u : K] is the inertia degree, and

e = [F : F u] is the ramification index. We denote by K̆ the completion

of a maximal unramified extension of K, and F : K̆ → K̆ the Frobenius
automorphism. We choose a decomposition Ψ := HomK(Eu, K̆) = Ψ0 ⊔ Ψ1

such that (Ψ0)∗ = Ψ1, where ∗ is the nontrivial Galois automorphism of E

over F . We fix an element ψ0 ∈ Ψ0, and Ĕ := E ⊗Eu,ψ0 K̆.

Definition 3.20. ([Mih16, Definition 2.7]) For a ∈ E, we define the follow-
ing polynomials,

P
E/K
(0,1) (a; t) =

∏

ψ∈Ψ1

ψ(CharpolE/Eu(a; t)) ∈ Eu[t];

P
E/K
(1,0) (a; t) = P

E/K
(0,1) (a; t)(t − a)(t − a∗)−1 ∈ E[t];

P
E/K
(r,n−r)(a; t) = (P

E/K
(1,0) (a; t))r(P

E/K
(0,1) (a; t))n−r ∈ E[t].

Definition 3.21. (cf. [Mih16, Definition 3.1]) Let S be a scheme over
Spf OE . A (supersingular) hermitian OE-OK-h-module over S is a triple
(X, iX , λX), where X/S is a supersingular strict formal OK -module, iX is
an OE-action on X, and λX : X → X∨ is a polarization such that its Rosati
involution induces the involution ∗ on OE . Also, KerλX ⊂ X[π] and the
order of KerλX is s2fh = q2h.

An isomorphism (resp. quasi-isogeny) of two hermitian OE-OK -h mod-
ules (X, iX , λX) and (Y, iY , λY ) is an OE-linear isomorphism (resp. quasi-
isogeny) α : X → Y of the underlying strict formal OK -modules and
α∨ ◦ λY ◦ α differs locally on S from λX by a scalar in O×

K .
We say that a hermitian OE-OK -h-module (X, iX , λX) is of rank n if the

K-height of X is n[E : K].
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Let X be a hermitian OE-OK-h-module over a Spf OE-scheme S. Then
by OE-action, we have the grading

Lie(X) =
⊕

ψ∈Ψ

Lieψ(X).

Here Lieψ(X) is the direct summand on which OEu acts via ψ. We define
the following determinant condition.

Definition 3.22. (cf. [Mih16, Definition 2.8]) Let S be a scheme over
Spf OE . A hermitian OE-OK -h-module (X, iX , λX) of rank n over S is of
signature (r, n − r) if for all a ∈ OE ,

(3.9.1) Charpol(iX(a)| LieX) = P
E/K
(r,n−r)(a; t),

(3.9.2) (iX(a) − a)|Lieψ0
(X) = 0.

Here, we view P
E/K
(r,n−r)(a; t) as an element of OS [t] via the structure mor-

phism. The second equation means that OE acts on Lieψ0(X) via the struc-
ture morphism. Note that (3.9.1) implies (3.9.2) if E is unramified over
Qp.

Let (X, iX, λX) be a hermitian OE-OK-h-module of signature (r, n−r) over
Fq2. Let N h

E/K(r, n − r) be the set-valued functor on (Nilp) which sends a

scheme S ∈(Nilp) to the set of isomorphism classes of tuples (X, iX , λX , ρX).
Here (X, iX , λX) is a hermitian OE-OK -h-module of signature (r, n−r) over
S and ρX is a OE-linear quasi-isogeny

ρX : X ×S S → X ×Fq2 S

of height 0.
Furthermore, we require that the following diagram commutes up to a

constant in O×
K ,

XS X∨
S

XS X∨
S
.

λXs

ρX
λX
S

ρ∨
X

Two quadruples (X, iX , λX , ρX) and (Y, iY , λY , ρY ) are isomorphic if there
exists an OE-linear isomorphism α : X → Y with ρY ◦ (α ×S S) = ρX and
α∨ ◦ λY ◦ α differs locally on S from λX by a scalar in O×

K .

The functor N h
E/K(r, n − r) ⊗ OĔ is representable by a formal scheme

which is locally formally of finite type over SpfOĔ (See [Mih16]).

Remark 3.23. Let us fix a hermitian OE-Zp-h-module (X, iX, λX) of sig-
nature (r, n − r) over Fq2 such that its rational Dieudonne module (N,F)

generated by elements η ∈ N satisfying F2fη = pfη, where f is a inertia
degree of F/Qp. Such a triple exists by [Mih16, Lemma 2.10] with slight



30 SUNGYOON CHO

modification of the polarization and the base field. This is decent in the
sense of [RZ, Definition 2.13], and hence we can use [RZ, Theorem 2.16].
Therefore, if we fix such a triple, then the functor N h

E/Qp(r, n − r) is rep-

resentable by a formal scheme which is locally formally of finite type over
Spf OE .

Remark 3.24. One can see that there is a unique hermitian OE-Zp-h-
module (X, iX, λX) of signature (r, n−r) over k up to quasi-isogeny, where k is
an algebraic closure of Fq2. This can be proved by using [Mih16, Proposition
2.5], [Mih16, Lemma 2.10] with slight modification of the polarization.

Remark 3.25. The definition of N h
E/F (r, n− r) in Section 2 coincides with

the definition in this section.

Definition 3.26. (cf. [Mih16, Definition 4.2]) We denote by OE-OK-h-
Herm the stack of hermitian OE-OK -h-modules (X, iX , λX) over Sch /Spf OE
such that locally for Zariski topology, it is of signature (r, n− r) for some r.
The morphisms in this category are the OE-linear morphisms of p-divisible
groups.

Now, let S = SpecR be an affine scheme over Spf OE and (X, iX , λX) be
an hermitianOE-OK -h-module of signature (r, n−r) over S. Let (P,Q,F, F1)
be the OK -display (i.e., OK -window over WOK ,R) of (X, iX , λX). We denote
by 〈·, ·〉 : P × P → WOK (R) the WOK (R)-bilinear alternating form induced
by λX . From the OE-action, we have the decomposition

OE ⊗OK WOK (R) ≃
∏

ψ∈Ψ

OE ⊗OEu WOK (R).

This decomposition gives gradings

P =
∏

ψ∈Ψ

Pψ =
∏

ψ∈Ψ0

Pψ ⊕ Pψ∗ ,

Q =
∏

ψ∈Ψ

Qψ =
∏

ψ∈Ψ0

Qψ ⊕Qψ∗ .

Let (P∨, Q∨, F∨, F∨
1 ) be the dual OK -window of (P,Q,F, F1) (see [Mih16,

Section 11]), and consider its gradings

P∨ =
∏

ψ∈Ψ

P∨
ψ =

∏

ψ∈Ψ0

P∨
ψ ⊕ P∨

ψ∗ ,

Q∨ =
∏

ψ∈Ψ

Q∨
ψ =

∏

ψ∈Ψ0

Q∨
ψ ⊕Q∨

ψ∗ .

Let Pψ,Q := Pψ ⊗ Q, and let 〈·, ·〉Q = 〈·, ·〉 ⊗ Q. Note that our pairing
satisfies

〈·, ·〉Q|Pψ,Q×Pψ′,Q
≡ 0 if ψ′ 6= ψ∗.

Therefore, we have

P∨
ψ = {x ∈ Pψ,Q|〈x, Pψ∗ 〉Q ⊂ WOK (R)}.

Also, we have the following lemma.
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Lemma 3.27. The order of KerλX is q2h = s2fh if and only if Pψ
h⊂ P∨

ψ ,
∀ψ ∈ Ψ .

Proof. Let Pψ = Lψ⊕Tψ, Qψ = Lψ+IOK(R)Tψ be a normal decomposition.
By the signature condition, we have

Lψ = Pψ, Tψ = 0, if ψ ∈ Ψ0\{ψ0},
Lψ = 0, Tψ = Pψ, if ψ ∈ Ψ1\{ψ∗

0}.

From the normal decomposition, we get a F -linear isomorphism

Φψ : Pψ = Lψ ⊕ Tψ → PFψ
(l, t) 7→ (F1(l) + F (t))

By our special signature condition, we have

Φψ : Pψ → PFψ
x 7→ F1(x), if ψ ∈ Ψ0\{φ0}

Φψ : Pψ → PFψ
x 7→ F (x), if ψ ∈ Ψ1\{φ∗

0}

We claim that if PFψ0

k⊂ P∨
Fψ0

for some k, then for all ψ ∈ Ψ we have

Pψ
k⊂ P∨

ψ .

First, note that Φψ is a F -linear isomorphism, hence

Φ(PFiψ0
) = PFi+1ψ0

,

Φ(PFiψ∗
0
) = PFi+1ψ∗

0
.

We will show that Φ(P∨
Fiψ0

) = P∨
Fi+1ψ0

for 1 ≤ i ≤ f − 1. Note that

x ∈ P∨
Fi+1ψ0

⇔ 〈x, PFi+1ψ∗
0
〉 ⊂ WOK (R)

⇔ 〈x,Φ(PFiψ∗
0
)〉 ⊂ WOK (R).

First, assume that F iψ∗
0 ∈ Ψ0\{ψ0}, then Φ = F1 on PFiψ∗

0
. Therefore,

〈x,Φ(PFiψ∗
0
)〉 ⊂ WOK (R)

⇔ 〈x, F1(PFiψ∗
0
)〉 ⊂ WOK (R).

⇔ 〈Φ(Φ−1(x)), F1(PFiψ∗
0
)〉 ⊂ WOK (R).

Since x ∈ P∨
Fi+1ψ0

and F iψ0 ∈ Ψ1\{ψ∗
0}, we have
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〈Φ(Φ−1(x)), F1(PFiψ∗
0
)〉 ⊂ WOK (R)

⇔ 〈F (Φ−1(x)), F1(PFiψ∗
0
)〉 ⊂ WOK (R)

⇔F 〈Φ−1(x), PFiψ∗
0
〉 ⊂ WOK (R)

⇔ Φ−1(x) ∈ P∨
Fiψ0

.

Here, we used the fact that 〈F ·, F1·〉 = 〈F1·, F ·〉 =F 〈·, ·〉.
In the case that F iψ∗

0 ∈ Ψ1\{ψ∗
0}, we can prove the claim in the same

way.
Therefore, Φ(P∨

Fiψ0
) = P∨

Fi+1ψ0
for 1 ≤ i ≤ f − 1.

Now, assume that PFψ0

k⊂ P∨
Fψ0

, then we can show inductively that

PFi+1ψ0
= Φ(PFiψ0

)
k⊂ Φ(P∨

Fiψ0
) = P∨

Fi+1ψ0
, ∀1 ≤ i ≤ f − 1.

Since Pψ
k⊂ P∨

ψ if and only if Pψ∗
k⊂ P∨

ψ∗ , we can conclude that the claim
holds.

By this claim, we have

| KerλX | = s2fh ⇔ P
2fh
⊂ P∨ ⇔ Pψ

h⊂ P∨
ψ , ∀ψ ∈ Ψ.

�

With this lemma, we can follow the whole steps in [Mih16, Chatper
4]. Indeed, the only difference is the polarization, hence with the above
lemma, one can show the following analogue of [Mih16, Proposition 4.4].
Let Sch/Spf OE (resp. Sch′/Spf OE) be the category of schemes (resp.
locally noetherian schemes) over Spf OE together with the Zariski topology.

Proposition 3.28. (cf. [Mih16, Proposition 4.4]) There is an isomorphism
of stacks over Sch /Spf OE

CK,Fu : OE-OK-h-Herm
≃→ OE-OFu-h-Herm

that is equivariant for the Rosati involutions and sends objects of signature
(r, n − r) to objects of signature (r, n − r).

Proof. One can follow the proof of [Mih16, Proposition 4.4] with Lemma
3.27. Also see [Mih16, Remark 4.5]. �

In addition, we can show the following analogue of [Mih16, proposition
4.6].

Proposition 3.29. (cf. [Mih16, Proposition 4.6]) There is an isomorphism
of stacks over Sch′ /Spf OĔ

CFu,F : (OE-OFu-h-Herm)OĔ
≃→ (OE-OF -h-Herm)OĔ
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that is equivariant for the Rosati involutions and sends objects of signature
(r, n − r) to objects of signature (r, n − r). Here, (−)OĔ means the base
change to OĔ.

Proof. One can follow the proof of [Mih16, Proposition 4.6] with Lemma
3.27. �

The following proposition is an analogue of [Mih16, Theorem 4.1].

Proposition 3.30. (cf. [Mih16, Theorem 4.1]) For any intermediate field
Qp ⊂ K ⊂ F , we have an isomorphism

cK,F : (N h
E/F (r, n − r))OĔ ≃ (N h

E/K(r, n − r))OĔ .

Furthermore, if F is unramified over Qp, then

cK,F : N h
E/F (r, n − r) ≃ N h

E/K(r, n − r).

Proof. This follows from the above two propositions, and by fixing framing
objects. See the proof of [Mih16, Theorem 4.1]. �

Remark 3.31. Let F be an unramified extension of Qp. Let (X, iX, λX)
be a hermitian OE-Zp-h-module in Remark 3.23 and consider a hermitian
OE-OF -h-module CQp,F ((X, iX, λX)) by using Proposition 3.28. By Remark

3.23, we have that N h
E/Qp(r, n − r) is representable by a formal scheme

over Spf OE which is locally formally of finite type, with the framing object
(X, iX, λX). Therefore, by Proposition 3.30, N h

E/F (r, n − r) is representable

by a formal scheme over Spf OE which is locally formally of finite type with
the framing object CQp,F ((X, iX, λX)).

Remark 3.32. One can see that there is a unique hermitian OE-OK-h-
module (X, iX, λX) of signature (r, n − r) over k up to quasi-isogeny, where
k is an algebraic closure of Fq2. This can be proved by using Remark 3.24,
Proposition 3.28, Proposition 3.29.

Proposition 3.33. If h = 0, n, the formal scheme N h
E/F (1, n − 1)OĔ is

formally smooth over Spf OĔ. If 1 ≤ h ≤ n− 1, then N h
E/F (1, n− 1)OĔ has

semistable reduction. In particular, it is regular, for all h.

Proof. When h = 0, it is proved in [Mih16, Proposition 2.14]. Since N 0
E/F (1, n−

1)OĔ and N n
E/F (1, n − 1)OĔ are isomorphic (see Remark 5.2), N n

E/F (1, n −
1)OĔ is also formally smooth over Spf OĔ . Now assume that 1 ≤ h ≤ n− 1.

By Proposition 3.30, it suffices to show that N h
E/Qp(1, n−1)OĔ has semistable

reduction. Since this moduli problem is PEL-type, it suffices to show that
its local model has semistable reduction ([RZ, Proposition 3.33]). To define
the local model N loc in our case, we need to use the notation in Section 3.7
(here, we follow [RSZ18b, Appendix B]). Let l(·, ·) be a E/F -hermitian form
on En given by the matrix

(
πIh

In−h

)
.
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Fix an element δ ∈ O×
E such that δ∗ = −δ. Let θ−1

F/Qp
be a generator of

the inverse different of F/Qp. Let (·, ·) be the Qp-bilinear alternating form,

(x, y) = TrE/Qp(θ
−1
F/Qp

δl(x, y)), x, y ∈ En.

Let Λ0 = OnE and Λ1 = π−1OhE ⊕On−h
E . Then the dual Λ∨

1 of the lattice Λ1

with respect to (·, ·) is Λ0. Now, let L be the self-dual lattice chain

{· · · ⊂ πΛ1 ⊂ Λ0 ⊂ Λ1 = Λ∨
0 ⊂ π−1Λ0 ⊂ . . . }

Then N loc is the functor which sends each OĔ-schemes S to the set of
isomorphism classes of families (Λ ⊗Zp OS ։ PΛ)Λ∈L such that

• For each Λ, PΛ is an OE ⊗Zp OS-linear quotient of Λ ⊗Zp OS , locally
free on S as an OS-module.

• For each inclusion Λ ⊂ Λ′ in L, the arrow Λ⊗ZpOS → Λ′ ⊗ZpOS induces
an arrow PΛ → PΛ′ .

• For each Λ, the isomorphism Λ ⊗Zp OS
π⊗1−−→ (πΛ) ⊗Zp OS identifies

PΛ → PπΛ.

• For each Λ, the perfect pairing (Λ ⊗Zp OS) × (Λ∨ ⊗Zp OS)
(·,·)⊗OS−−−−−→ OS

identifies (Ker(Λ ⊗Zp OS ։ PΛ))⊥ with Ker(Λ∨ ⊗Zp OS ։ PΛ∨).

We need to impose one more condition.
By the OE-action on S, there is a natural identification

OEu ⊗Zp OS −→
∏

ψ∈Ψ

OS .

This induces a decomposition,

PΛ −→
⊕

ψ∈Ψ

PΛ,ψ.

• For each Λ, PΛ satisfies

(3.9.3) CharpolOS(a⊗ 1|PΛ) = P
E/Qp
(1,n−1)(a; t),

(3.9.4) (a⊗ 1 − 1 ⊗ a)|PΛ,ψ0
= 0.

Here, PΛ,ψ0
is the direct summand on which OEu acts via ψ0. These two

conditions follow from the conditions (3.9.1) and (3.9.2).

Now, fix a scheme S over OĔ , and let (Λ ⊗Zp OS ։ PΛ)Λ∈L ∈ N loc(S).
By the signature condition (3.9.3), we have





PΛ,ψ0
is locally free of rank 1 over OS ,

PΛ,ψ∗
0

= P⊥
Λ,ψ0

⊂ (Λ ⊗Zp OS)ψ∗
0
,

PΛ,ψ = 0 if ψ ∈ Ψ0\{ψ0},
PΛ,ψ∗ = (Λ ⊗Zp OS)ψ∗ if ψ ∈ Ψ1\{ψ∗

0}.
Therefore, (Λ ⊗Zp OS ։ PΛ)Λ∈L is determined by (PΛ,ψ0

)Λ∈L.
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Also, by the condition (3.9.4), OE acts on PΛ,ψ0
via the structure mor-

phism, therefore PΛ,ψ0
is a quotient of

AΛ := (Λ ⊗Zp OS) ⊗OE⊗ZpOS OS ,

which is locally free of rank n over OS .
It follows that the map (Λ ⊗Zp OS ։ PΛ)Λ∈L 7→ (AΛ ։ PΛ,ψ0

)Λ∈L

is an isomorphism from Lloc to the standard local model over SpecOĔ in
Proposition 3.15 (i.e. the standard local model with the group GLn, the

cocharacter µ = (1(n−1), 0), and the lattice chain L). Therefore, by [Gör01,
4.4.5] (in case k = h, r = 1) again, this local model has semistable reduction.

�

4. Uniformization of unitary Shimura varieties

In this section, we will define a Shimura variety and study its basic locus.
This Shimura variety is studied in [RSZ18b]. In this section, we use the
notation A for the adele rings and Af for the ring of finite adeles and Apf for
the finite adeles away from the prime p.

Let F be a CM field over Q and F+ be its totally real subfield of index 2.
We fix a presentation F = F+(

√
∆). Denote by d the dimension of F+ over

Q. We denote by a 7→ ā the nontrivial automorphism of F/F+. Denote by
ΦF+ (resp. ΦF ) the set of real (resp. complex) embeddings of F+ (resp.

F ). We define Φ as the CM type of F determined by
√

∆, i.e.,

Φ := {φ ∈ ΦF | φ(
√

∆) ∈ R>0

√
−1}.

We have a natural projection π : ΦF → ΦF+. For every τ ∈ ΦF+, denote
by τ− (resp. τ+) the unique element in Φ (resp. ΦF\Φ) whose image under
π is τ . We fix a distinguished element τ1 ∈ ΦF+ (resp. τ−

1 ∈ Φ).

4.1. The Shimura data. We first define the Shimura data (G, {hG}) as
follows. Let V be a F/F+-hermitian vector space of dimension n with the
hermitian form

(·, ·)V : V × V → F,

that is F -linear in the first variable. Let U(V ) be the unitary group of V .
This is a reductive group over F+ such that for every F+-algebra R,

U(V )(R) = {g ∈ AutR(V ⊗F+ R)|(gv, gw)V = (v,w)V , ∀v,w ∈ V ⊗F+ R}.
We assume that for τ1, the signature of V ⊗F+,τ1

R is (1, n − 1) and for
τ ∈ ΦF+\{τ1}, the signature of V ⊗F+,τ R is (0, n).

Let G := ResF+/Q U(V ). We define the Hodge map

hG : ResC/R Gm,C → GR
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by the map sending z ∈ C× = ResC/RGm,C(R) to
((

z/z̄
In−1

)
,
(
In

)
, · · · , ( In

))
,

where we identify GR(R) as a subgroup of GLn(C)d via {τ−
1 , · · · , τ−

d } = Φ.
Then we have a Shimura data (G, {hG}).

Now, we will define the second Shimura data (Z, {hZ}). Let Z be the
torus

Z := {z ∈ ResF+/QGm| NmF/F+(z) ∈ Gm}.
We define the Hodge map

hZ : ResC/RGm,C → ZR

by the map sending z ∈ C× = ResC/RGm,C(R) to
((
z̄

)
, · · · , ( z̄ )

; zz̄
)
,

where we identify ZR(R) as a subgroup of GL1(C)d ×C× via {τ−
1 , · · · , τ−

d }.
Then we have the second Shimura data (Z, hZ ).
Now, we consider the reductive group G̃ = G × Z over Q. We define its

Hodge map

hG̃ : ResC/R Gm,C
(hG,hZ)−−−−−→ G̃R.

Then (G̃, {hG̃}) is the product Shimura data, which is defined in [RSZ18b]
(with the same notation). Denote by E its reflex field. This is the fixed field
of the following subgroup

Aut(C/E) := {σ ∈ Aut(C)|σ ◦ Φ = Φ and στ−
1 = τ−

1 }.
This Shimura variety has a moduli interpretation over SpecE. We recall

this moduli problem from [RSZ18b, Section 3.2]. First, we need to define
an auxiliary moduli problem Ma

0 over OE , where a is a fixed nonzero ideal
of OF+ . We denote by Ma

0 its generic fiber. For a locally noetherian OE-
scheme, we define Ma

0(S) to be the groupoid of triples (A0, i0, λ0), such
that

• A0 is an abelian scheme over S with an OF -action i0 : OF → End(A0),
which satisfies the Kottwitz condition of signature ((0, 1)τ∈ΦF+ ), i.e.,

Charpol(i(a)| Lie(A0)) =
∏

τ∈ΦF+

(T − τ+(a)), for all a ∈ OF .

• λ0 is a polarization of A0 such that Kerλ0 = A0[a]. Also, λ0’s Rosati
involution induces on OF , via i0, the nontrivial Galois automorphism of
F/F+.

A morphism between two objects (A0, i0, λ0) and (A′
0, i

′
0, λ

′
0) is an OF -

linear isomorphism µ0 : A0 → A′
0 under which λ′

0 pulls back to λ0.
This Ma

0 is a Deligne-Mumford stack, finite and étale over SpecOE . Also,
we can choose an ideal a such that Ma

0 is nonempty ([RSZ18b, Remark 3.3]).

Let KZ ⊂ Z(Af ) be the unique maximal compact subgroup Z(Ẑ).
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If F+ = Q, then Ma
0⊗C is isomorphic to the Shimura variety ShKZ (Z, hZ).

In general, Ma
0 ⊗ C is copies of ShKZ (Z, hZ) and each copy corresponds to

a similarity class of a certain 1-dimensional hermitian space. More pre-
cisely, we define Ra

Φ(F ) as the set of isomorphism classes of pairs (W, 〈·, ·〉)
where W is a 1-dimensional F -vector spaces and 〈·, ·〉 is a nondegenerate
alternating form 〈·, ·〉 : W ×W → Q such that

• 〈ax, y〉 = 〈x, āy〉 for all x, y ∈ W , a ∈ F ;

• x → 〈
√

∆x, x〉 is a negative definite quadratic form on W ;
• W contains an OF -lattice Λ whose dual Λ⊥ with respect to 〈·, ·〉 is a−1Λ.
We denote by Ra

Φ(F )/∼ the set of similarity classes of elements of Ra
Φ(F )

by a factor in Q×.
Then, we have a disjoint union decomposition

Ma
0 ≃

⊔

W∈Ra

Φ
(F )/∼

Ma,W
0 ,

and each Ma,W
0 ⊗C is isomorphic to the Shimura variety ShKZ (Z, hZ ). We

denote by Ma,W
0 the generic fiber of Ma,W

0 .
From now on, we fix an element W ∈ Ra

Φ/∼

Now, we consider open compact subgroups KG̃ ⊂ G̃(Af ) of the form

KG̃ = KG ×KZ ⊂ G(AF+,f ) × Z(Af ),

where KG is an open compact subgroup of G(AF+,f ).

We now define a moduli functor MKG̃
(G̃) on the category of locally noe-

therian schemes over E as follows. For every such scheme S, let MKG̃
(G̃)(S)

be the groupoid of tuples (A0, i0, λ0, A, i, λ, η̄), where

• (A0, i0, λ0) is an object of Ma,W
0 (S).

• A is an abelian scheme over S with an F -action i : F → End(A)Q
satisfying the Kottwitz condition of signature ((1, n−1)τ1 , (0, n)τ∈ΦF+ \{τ1}),
i.e., for all a ∈ F ,

Charpol(i(a)| Lie(A)) = (T − τ−
1 (a))(T − τ+

1 (a))n−1
∏

τ∈ΦF+\{τ1}

(T − τ+(a))n.

• λ is a polarization of A, whose Rosati involution induces on F , via i,
the nontrivial Galois automorphism of F/F+.

• η̄ is a KG̃-level structure. This is a KG-orbit of AF,f -linear isometries

η : HomF (V̂ (A0), V̂ (A)) ≃ −V ⊗F AF,f .

Here, −V is the same E-vector space as V , but its hermitian form multiplied
by −1. We write V̂ (A) for the full rational Tate module of A. Also, we

considered HomF (V̂ (A0), V̂ (A)) as a hermitian space with the hermitian
form hA,

hA(x, y) = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndAF,f (V̂ (A0)) = AF,f .
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A morphism between two objects

(A0, i0, λ0, A, i, λ, η̄) → (A′
0, i

′
0, λ

′
0, A

′, i′, λ′, η̄′),

is given by an isomorphism µ0 : (A0, i0, λ0) ≃ (A′
0, i

′
0, λ

′
0) in Ma,W

0 and an
F -linear isogeny µ : A → A′ pulling λ′ back to λ and η̄′ back to η̄.

Now, we can state the following proposition.

Proposition 4.1. ([RSZ18b, Proposition 3.5]) MKG̃
(G̃) is a Deligne-Mumford

stack smooth of relative dimension n − 1 over SpecE. The coarse mod-
uli scheme of MKG̃

(G̃) is a quasi-projective scheme over SpecE, naturally

isomorphic to the canonical model of ShKG̃(G̃, {hG̃}). For KG̃ sufficiently

small, the forgetful morphism MKG̃
(G̃) → Ma,W

0 is relatively representable.

4.2. Integral models. In this subsection, we will imitate the semi-global
integral model in [RSZ18b, Section 4]. Our case is related to AT parahoric
level. We use the following notation. Fix a prime p 6= 2 and an embedding
ṽ : Q̄ → Q̄p. This embedding determines places u of E, v0 of F+, and w0 of F
via τ−

1 . Denote by Sp the set of places v of F+ over p. Let Fv := F ⊗F+ F+
v .

Then, Fv is a quadratic field extension of F+
v (resp. Fv ≃ F+

v × F+
v ), if v

is nonsplit (resp. split). Denote by πv a uniformizer in Fv (when v splits,
this uniformizer is an ordered pair of uniformizers on the right side of the
isomorphism Fv ≃ F+

v ×F+
v ). Assume that v0 is unramified over p and inert

in F . We assume that the ideal a in the definition of Ma
0 is prime to p and

we fix an element W ∈ Ra
Φ/∼.

Now, we choose lattices Λv ⊂ Vv such that

Λv ⊂ Λ⊥
v ⊂ π−1

v Λv,

where Λ⊥
v means the dual lattice of Λv with respect to the hermitian form.

Let h be the index of Λv0 in Λ⊥
v0

, i.e., [Λ⊥
v0

: Λv0 ] = h.

We take open compact subgroup KG̃ ⊂ G̃(Af ) as follows.

KG̃ = KG ×KZ = Kp
G ×KG,p ×KZ ,

where Kp
G ⊂ G(ApF+,f ) is arbitrary, and

KG,p :=
∏

v∈Sp

KG,v ⊂
∏

v∈Sp

G(F+
v ),

where KG,v is the stabilizer of Λv in G(F+
v ).

Now, we can formulate a moduli problem over SpecOE,(u) as follows.
For a locally noetherian scheme S over SpecOE,(u), we associate the set of
isomorphism classes of tuples (A0, i0, λ0, A, i, λ, η̄

p), where

• (A0, i0, λ0) is an object of Ma,W
0 (S).

• A is an abelian scheme over S.
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• i is an OF ⊗ Z(p)-action satisfying the Kottwitz condition of signature
((1, n − 1)τ1 , (0, n)τ∈ΦF+ \{τ1}), i.e., for all a ∈ F ,

(4.2.1)

Charpol(i(a)| Lie(A)) = (T −τ−
1 (a))(T −τ+

1 (a))n−1
∏

τ∈ΦF+ \{τ1}

(T −τ+(a))n.

• λ is a polarization of A, whose Rosati involution induces on OF ⊗ Z(p)

the nontrivial Galois automorphism of F/F+. Also, we impose the following
condition. The action of OF+ ⊗Zp ≃ ∏

v∈Sp OF+,v induces a decomposition
of p-divisible group,

A[p∞] =
∏

v∈Sp

A[v∞].

Since Rosati involution of λ fixes OF+ , λ induces a polarization λv : A[v∞] →
A∨[v∞] ≃ A[v∞]∨ for each v. We impose the condition that Kerλv is con-
tained in A[i(πv)] of rank |Λ⊥

v /Λv | for each v ∈ Sp.
• η̄p is a Kp

G-orbit of ApF,f -linear isometries

η : HomF (V̂ p(A0), V̂ p(A)) ≃ −V ⊗F ApF,f .

Here, −V is the same E-vector space as V , but its hermitian form multiplied
by −1. We write V̂ p(A) for the rational prime-to-p Tate module of A.

Also, we considered HomF (V̂ p(A0), V̂ p(A)) as a hermitian space with the
hermitian form hpA,

hpA(x, y) = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndAp

F,f
(V̂ p(A0)) = ApF,f .

For v 6= v0, we impose the Eisenstein condition and the sign condition.
Before we explain these conditions, we define a function r : Hom(F,C) →
{0, 1, n − 1, n} such that,

τ 7→ rτ :=





1 τ = τ−
1 ;

0 τ ∈ Φ\{τ−
1 };

n− rτ̄ τ /∈ Φ.

First, we recall the Eisenstein condition from [RSZ18b, Section 4.1]. We
impose the Eisenstein condition only when the base scheme S has nonempty
special fiber. In this case, we may base change via ṽ : OE,(u) → Z̄p (the ring

of integers of Q̄p), and pass to completions and assume that S is a scheme

over Spf Z̄p. We have a decomposition of the p-divisible group

A[p∞] =
∏

w|p

A[w∞].

where w runs over the places of F over p. Since we assume that p is locally
nilpotent on S, there is a natural isomorphism

LieA ≃ LieA[p∞] =
⊕

w|p

A[w∞].
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By using the embedding ṽ : Q̄ → Q̄p, we can identify

HomQ(F, Q̄) ≃ HomQ(F, Q̄p),

and this gives an identification

(4.2.2) {τ ∈ HomQ(F, Q̄)|ṽ ◦ τ = w} ≃ HomQ(Fw, Q̄p).

For each place w, by the Kottwitz condition (4.2.1), the p-divisible group
A[w∞] is of height n[Fw : Qp] and dimension

dimA[w∞] =
∑

τ∈HomQ(Fw,Q̄p)

rτ .

For each place w such that w|v and v 6= v0, the action of F on A[w∞]
is of a banal signature type in the sense of [RSZ18b, Appendix B]. In other
words, rτ is 0 or n for all τ ∈ HomQ(Fw, Q̄p). Let π = πw be a uniformizer
in Fw and let F uw be the maximal unramified extension of Qp in Fw. For

each ψ ∈ HomQ(F uw, Q̄p), let

Aψ := {τ ∈ HomQ(Fw, Q̄p)|τ |Fuw = ψ and rτ = n}.
Let

QAψ :=
∏

τ∈Aψ

(T − τ(π)).

Then, the Eisenstein condition at v(6= v0) is as follows. For each place w
that divides v, and for all ψ ∈ HomQ(F uw , Q̄p),

QAψ(i(π)| LieA[w∞]) = 0.

Now, we will define the sign condition at v(6= v0). We impose this condi-
tion only when v does not split in F . The sign condition at v is the condition
that for every point s of S,

invrv(A0,s, i0,s, λ0,s, As, is, λs) = invv(−Vv).
We need to explain these two factors. For the left one, we refer to [RSZ18b,
Appendix A]. Also, we define

invv(−Vv) := (−1)n(n−1)/2 det (−Vv) ∈ F+,×
v /NmF+,×

v ,

where det(−Vv) ∈ F+,×
v /NmF+,×

v is the class of the determinant of any
hermitian matrix of the hermitian space −Vv.

A morphism between two objects

(A0, i0, λ0, A, i, λ, η̄
p) → (A′

0, i
′
0, λ

′
0, A

′, i′, λ′, η̄′p),

is given by an isomorphism (A0, i0, λ0) ≃ (A′
0, i

′
0, λ

′
0) in Ma,W

0 (S) and a
quasi-isogeny A → A′ which induces an isomorphism

A[p∞] ≃ A′[p∞],

compatible with i and i′, with λ and λ′, and with η̄p and η̄′p.
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Proposition 4.2. The moduli problem defined above is representable by
a Deligne-Mumford stack MKG̃

(G̃) flat over SpecOE,(u). For Kp
G small

enough, MKG̃
(G̃) is relatively representable over Ma,W

0 . The generic fiber

MKG̃
(G̃)×SpecOE,(u)

SpecE is canonically isomorphic to MKG̃
(G̃). Further-

more, if h = 0, n, then MKG̃
(G̃) is smooth over SpecOE,(u). If h 6= 0, n,

then MKG̃
(G̃) has semistable reduction over SpecOE,(u) provided that Eu is

unramified over Qp.

Proof. The representability and the statement for the generic fiber and the
smoothness when h = 0 (and hence when h = n) are proved in [RSZ18b,
Theorem 4.1]. Therefore, it suffice to show that this has semistable reduction
over SpecOE,(u) where h 6= 0, n and Eu is unramified over Qp. To prove this
we need to use the theory of the local model as in [RSZ18b, Theorem 4.10].

The local model corresponding to A0 is étale because Ma,W
0 is. Let M be

the local model corresponding to A. Before we prove that M has semistable
reduction, we introduce some notation. By the identification (4.2.2), we
have

(4.2.3) HomQ(F, Q̄) ≃
⊔

v∈Sp

HomQp(Fv ,Qp).

Let r|v : HomQ(Fv , Q̄p) → {0, 1, n − 1, n} be the restriction of the function

r to HomQ(Fv , Q̄p). Let

sigr|v :=
∑

τ∈HomQ(Fv,Q̄p)

rττ,

which is an element of N[ΦF ], the commutative monoid freely generated by
ΦF . Note that the Galois group Gal(C/Q) acts on ΦF hence on N[ΦF ]. Let
Er|v be the fixed field of the stabilizer in Gal(C/Q) of the element sigr|v .

Then we have a decomposition

M =
∏

v∈Sp

Mv ×SpecOEr|v
SpecOEu ,

which is induced from (4.2.3).
For v 6= v0, by our Kottwitz condition, Mv is a banal local model as in

[RSZ18b, Appendix B]. Therefore, Mv = SpecOEr|v
. Also, Mv0 is a local

model which appears in the proof of Proposition 3.33 (here, we used the con-
dition that v0 is unramified, and therefore the condition (3.9.2) follows from
the condition (3.9.1) which follows from the Kottwitz condition). Therefore,
it has semistable reduction over SpecOEr|v

. Since Eu is unramified over Qp

(hence, over Er|v) and semistable reduction is stable under an unramified
base change, M has semistable reduction over SpecOEu , �
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4.3. The uniformization theorem. In this subsection, we will relate the
basic locus of the special fiber of MKG̃

(G̃) to the (relative) Rapoport-

Zink space N h
Fw0/F

+
v0

(1, n − 1) in Section 2, via the non-archimedean uni-

formization theorem of Rapoport and Zink. We will follow the proof of
[RSZ18b, Theorem 8.15]. In order to simplify notation, we write M for
MKG̃

(G̃), and N for N h
Fw0/F

+
v0

(1, n − 1).

Let Ĕu be the completion of a maximal unramified extension of Eu, and
k be the residue field of OĔu . Let MOĔu

= M ⊗OE,(u)
OĔu . We denote by

Mss the basic locus of M ⊗OE,(u)
k and by M̂ss the completion of MOĔu

along Mss.
Choose a point (A0, i0,λ0,A, i,λ, η̄) of Mss(OĔu). Let

X0 = A0[p∞] =
∏
v∈Sp A0[v∞],

X = A[p∞] =
∏
v∈Sp A[v∞],

and iX0 , λX0 , iX, λX be the induced OF ⊗ Zp-actions and polarizations. This
choice gives us the following non-archimedean uniformization morphism
along the basic locus by [RZ, Theorem 6.30],

Θ : I(Q)\N ′ × G̃(Apf )/Kp

G̃
≃ M̂ss.

Here the group I is an inner form of G̃ associated to the hermitian space V ′,
where V ′ is negative definite at all archimedean places and isomorphic to V
at all non-archimedean places except at v0 (hence, by the product formula
and the Hasse principle, V ′ is determined), and N ′ is the corresponding
Rapoport-Zink space whose framing object is (X0, iX0 , λX0 ,X, iX, λX).

By [RSZ18b, Lemma 8.16], we have

N ′ ≃ (Z(Qp)/KZ,p) × (N h
Fw0/Qp

(1, n − 1))OĔu
×

∏

v∈Sp\{v0}

U(V )(F+
v )/KG,v .

Also, by Proposition 3.30, NOĔu
≃ (N h

Fw0/Qp
(1, n − 1))OĔu

.

The following theorem summarizes the above discussion.

Theorem 4.3. There is a non-archimedean uniformization isomorphism

Θ : I(Q)\N ′ × G̃(Apf )/Kp

G̃
≃ M̂ss,

where

N ′ ≃ (Z(Qp)/KZ,p) × NOĔu
×

∏

v∈Sp\{v0}

U(V )(F+
v )/KG,v.

Proof. This is essentially the same as the proof of [RZ, Theorem 6.30]. For
the convenience of the reader, we will construct the inverse morphism of
Θ. Let S be a OĔu-scheme such that p is locally nilpotent. Let s be a

geometric point of S. Choose a point P = (A0, i0, λ0, A, i, λ, η̄) ∈ Mss(S).
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By [RZ, Proposition 6.29], we can choose OF -linear quasi-isogenies

ρ̃0 : A0 ×S Sk → A0k ×k Sk,
ρ̃ : A×S Sk → Ak ×k Sk,

compatible with polarizations. Then, we have the induced quasi-isogenies

ρ0 : A0[p∞] ×S Sk → X0k ×k Sk,
ρ : A[p∞] ×S Sk → Xk ×k Sk,

The tuple (A0[p∞], A[p∞], ρ0, ρ) (with the induced OF ⊗Zp-actions and the
induced polarizations) gives an element in N ′(S) and this is the N ′ part of
Θ−1(P ).

Now, we should find an element (z, g) ∈ Z(Apf ) × G(Apf ) = G̃(Apf ) such

that Θ−1(P ) = ((A0[p∞], A[p∞], ρ0, ρ), (z, g)).

The element z in Z(Apf ) comes from the moduli space Ma,W
0 . More pre-

cisely, by definition of Ma,W
0 , we have two OE ⊗ Apf -linear similitudes

ξ : V̂ p(A0s) → W ⊗ Apf ,
ζ : V̂ p(A0k) → W ⊗ Apf .

Therefore, the composite

W ⊗ Apf
ξ−1

−−→ V̂ p(A0s)
ρ0−→ V̂ p(A0k)

ζ−→ W ⊗ Apf

gives an element z in Z(Apf ).
For the element g, consider the composite

−V ⊗F ApF,f
η−1

−−→ HomF (V̂ p(A0s), V̂
p(As))

(ρ−1
0 ,ρ)−−−−→ HomF (V̂ p(A0k), V̂

p(Ak))
η−→ −V ⊗F ApF,f .

This is an isometry which gives rise to an element g in G(Apf ).

The construction of Θ is identical to the arguments in [RZ, Chapter 6]. �

5. Special cycles and arithmetic intersection numbers

In this section, we use the notation in Section 2. Also we denote by k = F̄p
and by val the valuation of E. We will define the special cycles and study
their intersections.

Let (Y, iY, λY) be a strict formal OF -module of F -height 2 over k, with

an action iY : OE → End(Y) and with principal polarization λY. Also, we
assume that it satisfies the determinant condition of signature (0, 1). Let
N 0(0, 1) be the corresponding moduli space. To simplify notation, we write

N 0 for N 0(0, 1)OĔ , N for N h
E/F (1, n − 1)OĔ and N̂ for N n−h

E/F (1, n − 1)OĔ .
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Definition 5.1. The space of special homomorphisms is the E-vector space

V := HomOE (Y,X) ⊗Z Q.

For x, y ∈ V, we define a hermitian form h on V as

h(x, y) = λ−1
Y

◦ y∨ ◦ λX ◦ x ∈ EndOE(Y) ⊗ Q
i−1

Y≃ E.

We often omit i−1
Y

via the identification EndOE (Y) ⊗ Q≃E.

Remark 5.2. We have an isomorphism between N and N̂ . For each OĔ-
scheme S, the isomorphism sends (X, iX , λX , ρX) ∈ N (S) to

(X∨, i
∨
X , λ

′
X , (ρ

∨
X)−1) ∈ N̂ (S).

Here λ′
X : X∨ → X is the unique polarization such that λ′

X ◦ λX = iX(π),

and for a ∈ OE , we define i
∨
X(a) := iX(a)∨.

Definition 5.3. We write θ : N → N̂ for the isomorphism which is defined
in Remark 5.2.

Definition 5.4.

(1) For a given special homomorphism x ∈ V, we define the special cycle
Z(x) associated to x in N 0 × N as the subfunctor of collections
ξ = (Y , iY , λY , ρY ,X, iX , λX , ρX) in (N 0 × N )(S) such that the
quasi-homomorphism

ρ−1
X ◦ x ◦ ρY : Y ×S S → X ×S S

extends to a homomorphism from Y to X.
(2) For a given special homomorphism y ∈ V, we define the special

cycle Y(y) associated to y in N 0 × N as follows. First, consider the

cycle Z(λX ◦ y) in N 0 × N̂ . This is the subfunctor of collections

ξ = (Y , iY , λY , ρY ,X
∨, i

∨
X , λ

′
X , (ρ

∨
X)−1) in (N 0 × N̂ )(S) such that

the quasi-homomorphism

ρ∨
X ◦ λX ◦ y ◦ ρY : Y ×S S → X∨ ×S S

extends to a homomorphism from Y to X∨. We define Y(y) as
(id × θ−1)(Z(λX ◦ y)) in N 0 × N .

We note that N 0 can be identified with Spf OĔ , hence Z(x),Y(y) can be
identified with closed formal subschemes of N . Also, by abuse of notation,
we often write x : Y → X for the extension of quasi-homomorphism ρ−1

X ◦
x ◦ ρY .

Let M
0

= M
0
0 ⊕M

0
1 be the Dieudonne module of Y. As in [KR11, Remark

2.5], it is easy to see that M
0
0 = OF̆ 10 and M

0
1 = OF̆ 11, where F11 = 10,

F10 = π11 and {10, 10} = π. We write N0 for M
0 ⊗ Q.

Now, let x ∈ V. This induces a homomorphism from N0 to N . We also
write x for the induced homomorphism. Note that we can write x = x0 +x1,



SUPERSINGULAR LOCUS 45

where x0 : N0
0 → N0 and x1 : N0

1 → N1, since the morphism x has degree 0
with respect to the decompositions N0

0 ⊕N0
1 and N0 ⊕N1.

To study the sets of k-points Z(x)(k),Y(y)(k), x, y ∈ V, recall that we
have a bijection between N (k) and the set of lattices (A,B) in Nk,0 (see
Proposition 2.4). Now, we can state the following analogue of [KR11, Propo-
sition 3.10].

Proposition 5.5. (cf. [KR11, Proposition 3.10]) For x, y ∈ V, we have the
following bijections.

(1)

Z(x)(k) =





OF̆ -lattices

A
h⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣

πB∨ 1⊂ A
n−1⊂ B∨,

πA∨ 1⊂ B
n−1⊂ A∨,

πB ⊂ A ⊂ B,
x0(10) ∈ πB∨.





(2)

Y(y)(k) =





OF̆ -lattices

A
h⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣

πB∨ 1⊂ A
n−1⊂ B∨,

πA∨ 1⊂ B
n−1⊂ A∨,

πB ⊂ A ⊂ B,
y0(10) ∈ πA∨.





Proof. The proof of (1) is identical to the proof of [KR11, Proposition
3.10]. For (2), note that for the Dieudonne module M = A ⊕ B⊥ of
(X, iX , λX , ρX) ∈ N (k), its dual M⊥ = B ⊕ A⊥ is the Dieudonne mod-
ule of X∨ (here, ⊥ means the dual with respect to 〈·, ·〉 in Section 2.2).
Therefore, (2) can be proved in the same way. �

Lemma 5.6. ([Vol10, Lemma 1.16]) Let t ∈ OE with t∗ = −t and let V be
a E-vector space of dimension n. Let In be the identity matrix of rank n
and let Jn be the matrix

Jn :=




π
1

. . .

1


 .

There exist two perfect skew-hermitian forms on V up to isomorphism.
These forms correspond to tIn and to tJn respectively. Furthermore, if M
is a lattice in V and i ∈ Z with

πi+1M∨ r⊂ M
n−r⊂ πiM∨,

then n−r ≡ ni mod 2 in the first case and n−r 6≡ ni mod 2 in the second
case.

Proof. See [Vol10, Lemma 1.16]. Note that F is a finite extension of Qp,
therefore the above statement is more general. But, the proof is identical.

�
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Remark 5.7. Recall that the E-vector space N τ
k,0 in Section 2.3 has a lattice

M with

πM∨ h+1⊂ M
n−h−1⊂ M∨.

This fact follows from Lemma 2.7. Therefore, by the above lemma, the form
{·, ·} is isomorphic to tIn if n − h − 1 ≡ 0 mod 2 and is isomorphic to tJn
if n− h− 1 6≡ 0 mod 2.

We need the following analogue of [KR11, Lemma 3.7].

Lemma 5.8. Assume that h 6= 0, n. Then we have
⋂

Λ

Λ = (0),

where Λ runs over all vertex lattices of type h+ 1.

Proof. First, assume that n = h+ 1 + 2k for some integer k ≥ 0, and h+ 1
is odd. Then by Remark 5.7, the form {·, ·} is isomorphic to tIn. Choose
a basis {e1, . . . , en} such that {ei, ej} = tδij. Choose any h + 1 elements
{f1, . . . , fh+1} in {e1, . . . , en} and rename {e1, . . . , en} to {f1, . . . , fn}.

Let α, β be elements in E such that αα∗ = −1 and ββ∗ = 1/2.
We define

gh+1 := fh+1,
g2i+1 := β(f2i+1 + αf2i+2),

g2i+2 := β(f2i+1 − αf2i+2), ∀0 ≤ i ≤ h
2 − 1.

Then we have

{g2i+1, g2i+1} = 0, {g2i+2, g2i+2} = 0,
{g2i+1, g2i+2} = t, ∀0 ≤ i ≤ h/2 − 1.

Now consider an element γ ∈ E such that 1 + γγ∗ = π, and define

hh+1+2i+1 := fh+1+2i+1 + γfh+1+2i+2

hh+1+2i+2 := γ∗fh+1+2i+1 − fh+1+2i+2, ∀0 ≤ i ≤ k − 1.

Also, we define

gh+1+2i+1 := β(hh+1+2i+1 + αhh+1+2i+2)
gh+1+2i+2 := β(hh+1+2i+1 − αhh+1+2i+2), ∀0 ≤ i ≤ k − 1.

Then we have

{gh+1+2i+1, gh+1+2i+1} = 0, {gh+1+2i+2, gh+1+2i+2} = 0,
{gh+1+2i+1, gh+1+2i+2} = tπ, ∀0 ≤ i ≤ k − 1.

For I := (a1, . . . , ah/2, b1, . . . , bk) ∈ Zh/2 × Zk, we set

Λ{g1,...,gn},I := [πa1g1, π
−a1g2, . . . , πah/2gh−1, π

−ah/2gh,

gh+1, π
b1gh+2, . . . , π

−bkgn].

Then, this is a vertex lattice of type h+ 1 and we have
⋂

{g1,...,gn},I

Λ{g1,...,gn},I = (0),
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where {g1, . . . , gn} runs over all choices and I runs through Zh/2 × Zk.
This proves the lemma in the case that n = h + 1 + 2k for some integer

k ≥ 0, and h+ 1 is odd.
Similar arguments work for the other cases. �

Proposition 5.9. The functors Z(x) and Y(y) are represented by closed
formal subschemes of N 0 × N . In fact, Z(x) and Y(y) are relative divisors
in N 0 × N (or empty) for any x, y ∈ V\{0}.

Proof. If h = 0 (resp. h = n), then we have Z(x) = Y(x) (resp. Z(πx) =
Y(x)). Therefore, the case where h = 0 is proved in [KR11, Proposition
3.5] (the case that h = n is the same since we have the isomorphism θ).
For the other cases, we can follow the proof of [KR11, Proposition 3.5] with
Lemma 5.8. Indeed, we only need to show that Z(x)(k) cannot be N (k). If
N (k) ⊂ Z(x)(k), then we have

x ∈
⋂

Λ

πΛ∨,

where Λ runs over all vertex lattices of type h + 1. This fact follows from
Lemma 2.7 and Proposition 5.5. Now, since we have

⋂

Λ

πΛ∨ ⊂
⋂

Λ

Λ = (0),

by Lemma 5.8, we have that x should be 0. This finishes the proof of the
proposition. �

We have the following analogue of the remarks after [KR11, Lemma 5.2]
(and also in [KR]).

Proposition 5.10.

(1) If val(h(x, x)) = 0, then Z(x) ≃ N h
E/F (1, n − 2)OĔ .

(2) If val(h(y, y)) = −1, then Y(y) ≃ N h−1
E/F (1, n − 2)OĔ .

Proof. (1) For an OĔ-scheme S, assume that (X, iX , λX , ρX) ∈ Z(x)(S).

We can take a rescaled x by an element in O×
E such that h(x, x) = 1. We

denote by x∗ the element λ−1
Y

◦ x∨ ◦ λX . Then we have that e := x ◦ x∗

is an idempotent in EndOE(X), so that X = e(X) × (1 − e)(X). Via this
decomposition, we have the decomposition of the action iX = i1 × i2. Also,
note that we have the canonical isomorphisms e∨(X∨) = (eX)∨ and (1 −
e∨)(X) = ((1−e)(X))∨ . By this identification, we have that the polarization
λX decomposes into the product of polarizations λ1 = λX ◦ e and λ2 =
λX ◦ (1 − e) of eX and (1 − e)(X) respectively. Let ρ1 = e ◦ ρX , ρ2 =
(1 − e) ◦ ρX , the quasi-isogenies of e(X) and (1 − e)X, respectively. Then
x defines an isomorphism Y ≃ e(X) compatible with polarizations, and
((1 − e)(X), i2, λ2, ρ2) gives an element in N h

E/F (1, n − 2)OĔ (S).

Conversely, for an element (X2, i2, λ2, ρ2) ∈ N h
E/F (1, n− 2)OĔ (S), we can

take X = Y × X2 with x = inc1 : Y → X, the action iX = iY × i2, the
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polarization λY × λ2 and the quasi-isogeny ρY × ρ2. Then this gives an
element in Z(x)(S). This construction gives the inverse of the previous one
up to isomorphism.

(2) For an OĔ-scheme S, let (X, iX , λX , ρX) ∈ Y(y)(S). Consider

θ((X, iX , λX , ρX)) = (X∨, i
∨
X , λ

′
X , (ρ

∨
X)−1).

For z = λX ◦ y, let z∗ = λ−1
Y

◦ z∨ ◦ λ′
X . Then we have

z∗ ◦ z = λ−1
Y

◦ y∨ ◦ λ∨
X ◦ λ′

X ◦ λX ◦ y
= λ−1

Y
◦ y∨ ◦ (−λX) ◦ λ′

X ◦ λX ◦ y
= −πh(y, y).

Therefore, val(z∗ ◦ z) = 0. We can take rescaled y by an element in O×
E

such that z∗ ◦ z = 1. Then we have that e := z ◦ z∗ is an idempotent in
EndOE (X∨). Now, as in the proof of (1), we have that

((1 − e)X∨, i
∨
X , (1 − e∨)λ′

X , (1 − e)(ρ∨
X)−1) ∈ N n−h

E/F (1, n − 2)OĔ (S).

Therefore, by taking θ−1((1−e)X∨, i
∨
X , (1−e∨)λ′

X , (1−e)(ρ∨
X )−1)), we have

an element of N h−1
E/F (1, n − 2)OĔ .

Now, let (X2, i2, λ2, ρ2) ∈ N h−1
E/F (1, n−2)OĔ . We will construct the inverse

of the above construction. First, consider

θ((X2, i2, λ2, ρ2)) = (X∨
2 , i

∨
2 , λ

′
2, (ρ

∨
2 )−1) ∈ N n−h

E/F (1, n − 2)OĔ

Then we define
X∨ := Y ×X∨

2 ,

i
∨
X := iY × i

∨
2 ,

λ′
X := λY × λ′

2,
(ρ∨
X)−1 := ρY × (ρ∨

2 )−1.

This (X∨, i
∨
X , λ

′
X , (ρ

∨
X)−1) is an element of N n−h

E/F (1, n − 1)OĔ
Now, we define (X, iX , λX , ρX) = θ−1((X∨, i

∨
X , λ

′
X , (ρ

∨
X)−1), with

λX ◦ y := inc1 : Y → X∨.

Then, this (X, iX , λX , ρX) gives an element in Y(y) and this construction
inverts the previous one up to isomorphism. �

Proposition 5.11. Assume that val(h(x, x)) = 0, val(h(y, y)) = −1. As-
sume further that by rescaling as in Proposition 5.10, x∗ ◦ x = 1, (λX ◦ y)∗ ◦
(λX ◦ y) = 1. We define ex := x ◦ x∗ and ey := (λX ◦ y) ◦ (λX ◦ y)∗. Fix
isomorphisms

Φ : Z(x) ≃ N h
E/F (1, n − 2)OĔ ,

Ψ : Y(y) ≃ N h−1
E/F (1, n − 2)OĔ ,

as in Proposition 5.10. Then the following statements hold.

(1) For z ∈ V such that h(x, z) = 0, let z′ := (1− ex)◦z. Then, we have
Φ(Z(x) ∩ Z(z)) = Z(z′) in N h

E/F (1, n − 2) and h(z′, z′) = h(z, z).
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(2) For w ∈ V such that h(x,w) = 0, let w′ := (1−ex)◦w. Then, we have
Φ(Z(x)∩ Y(w)) = Y(w′) in N h

E/F (1, n− 2) and h(w′, w′) = h(w,w).

(3) For z ∈ V such that h(y, z) = 0, let z′ := (1−e∨
y )◦z. Then, we have

Ψ(Y(y) ∩ Z(z)) = Z(z′) in N h−1
E/F (1, n − 2) and h(z′, z′) = h(z, z).

(4) For w ∈ V such that h(y,w) = 0, let w′ := (1−e∨
y )◦w. Then, we have

Ψ(Y(y) ∩ Y(w)) = Y(w′) in N h−1
E/F (1, n− 2) and h(w′, w′) = h(w,w).

Proof. We will prove (3). Similar arguments work for (1), (2), (4). For
an element (X, iX , λX , ρX) in Y(y) ∩ Z(z), we denote by (X2, iX2 , λX2 , ρX2)

the element Ψ((X, iX , λX , ρX)) in N h−1
E/F (1, n − 2)OĔ . Also, we denote by

(X2, iX2 , λX2) the framing object of N h−1
E/F (1, n− 2)OĔ . By definition of Y(y)

and Z(z), we have that ey can be extended to a morphism in End(X∨),

and z : Y → X can be extended to a morphism z : Y → X. Therefore,
z′ = (1− e∨

y )◦z can be extended to a morphism Y → X2 = (1− e∨
y )X. This

proves that Ψ(Y(y) ∩ Z(z)) ⊂ Z(z′).
Conversely, for a given element (X2, iX2 , λX2 , ρX2) in Z(z′), we can use

the construction in Proposition 5.10, with

z = inc2 ◦z′ : Y → X2 → X = Y
∨ × X2.

This construction gives an element in Y(y) ∩ Z(z), and it is the element
Ψ−1((X2, iX2 , λX2 , ρX2)). Therefore, we have Ψ(Y(y) ∩ Z(z)) = Z(z′).

Now, it remains to show that h(z′, z′) = h(z, z). We have

h(z′, z′) = λ−1
Y

◦ (z′)∨ ◦ λX2 ◦ z′

= λ−1
Y

◦ (z∨ ◦ (1 − ey)) ◦ ((1 − ey) ◦ λX) ◦ ((1 − e∨
y ) ◦ z)

= λ−1
Y

◦ z∨ ◦ (1 − ey) ◦ λX ◦ z.
= λ−1

Y
◦ z∨ ◦ λX ◦ z − λ−1

Y
◦ z∨ ◦ ey ◦ λX ◦ z

= h(z, z) − λ−1
Y

◦ z∨ ◦ ey ◦ λX ◦ z.

Here, we used ey ◦ λX = λX ◦ (e∨
y ). Now, it remains to show that

λ−1
Y

◦ z∨ ◦ ey ◦ λX ◦ z = 0.

Note that

ey = λX ◦ y ◦ λ−1
Y

◦ y∨ ◦ λ∨
X ◦ λ′

X .

Therefore, we have

λ−1
Y

◦ z∨ ◦ ey ◦ λX ◦ z
= λ−1

Y
◦ z∨ ◦ λX ◦ y ◦ λ−1

Y
◦ y∨ ◦ λ∨

X ◦ λ′
X ◦ λX ◦ z

= −h(y, z)h(z, y)π
= 0.

The last equality follows from our assumption h(y, z) = 0. This finishes the
proof of (3). �
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Lemma 5.12. Assume that x1, x2, y1, y2 are linearly independent special
homomorphisms in V and

val(h(x1, x1)) = 0, val(h(y1, y1)) = −1.

Then we have the following assertions.

(1) OZ(x1) ⊗L
ON

OZ(x2) = OZ(x1) ⊗ON OZ(x2).

(2) OZ(x1) ⊗L
ON

OY(y2) = OZ(x1) ⊗ON OY(y2).

(3) OY(y1) ⊗L
ON

OZ(x2) = OY(y1) ⊗ON OZ(x2).

(4) OY(y1) ⊗L
ON

OY(y2) = OY(y1) ⊗ON OY(y2).

Here, we write ⊗L for the derived tensor product of ON -modules.

Proof. (1) By Terstiege’s proof in [Ter13, Lemma 3.1], it suffices to show
that Z(x1) and Z(x2) have no common component. By Proposition 5.10,
Z(x1) ≃ N h

E/F (1, n−2)OĔ , and by Proposition 5.11, Z(x1)∩Z(x2) = Z(x′
2)

in N h
E/F (1, n−2)OĔ . Therefore, by Proposition 5.9, Z(x1)∩Z(x2) is a divisor

in N h
E/F (1, n− 2)OĔ . This implies that Z(x1) ∩ Z(x2) has codimension 2 in

N and hence, Z(x1) and Z(x2) have no common component.
The proof of (2),(3),(4) are similar. �

Remark 5.13. Let {x1, . . . , xn−h, y1, . . . , yh} be an orthogonal basis of V.
If val(h(x1, x1)) = 0, then by above lemma, we have

OY(y1) ⊗L
ON

· · · ⊗L
ON

OY(yh) ⊗L
ON

OZ(x1) ⊗L
ON

· · · ⊗L
ON

OZ(xn−h)

= (OZ(x1) ⊗L
ON

OY(y1)) ⊗L
OZ(x1)

· · · ⊗L
OZ(x1)

(OZ(x1) ⊗L
ON

OZ(xn−h))

= (OZ(x1) ⊗ON OY(y1)) ⊗L
OZ(x1)

· · · ⊗L
OZ(x1)

(OZ(x1) ⊗ON OZ(xn−h))

= OZ(x1)∩Y(y1) ⊗L
OZ(x1)

· · · ⊗L
OZ(x1)

OZ(x1)∩Z(xn−h)

= OY(y′
1) ⊗L

O
Nh(1,n−2)

. . . OZ(x′
2) ⊗L

O
Nh(1,n−2)

· · · ⊗L
O

Nh(1,n−2)
OZ(x′

n−h).

In the last line, we regard the special cycles Y(y′
1), . . .Z(x′

h) as the cycles in

N h(1, n − 2) via the identification Z(x1) = N h(1, n − 2) as in Proposition
5.11.

Similarly, we can do the same reduction, when val(h(y1, y1)) = −1. In
this case, we have an intersection in N h−1(1, n − 2)

Let [x,y] := [x1, . . . , xn−h, y1, . . . , yh] be an orthogonal basis of V. We
will compute the intersection number

χ(OY(y1) ⊗L
ON

· · · ⊗L
ON

OY(yh) ⊗L
ON

OZ(x1) ⊗L
ON

· · · ⊗L
ON

OZ(xn−h)),

in some special cases. Here, we write χ for the Euler-Poincare characteristic
([KR00], [Zha12]). More precisely, for the structure morphism ω : N →
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Spf OĔ and for a sheaf of ON -modules H, we define

χ(H) :=
∑

i

(−1)i lengthOĔ
(Riω∗H).

For a bounded complex of sheaves H• of ON -modules, we define

χ(H•) :=
∑

i

(−1)iχ(Hi).

Theorem 5.14. Let {x1, . . . , xn−h, y1, . . . , yh} be an orthogonal basis of V.
Assume that

val(h(xi, xi)) = 0 for all 3 ≤ i ≤ n− h,
val(h(yj , yj)) = −1 for all 1 ≤ j ≤ h,

and write a := val(h(x1, x1)), b := val(h(x2, x2)). We assume that a ≤ b
and a 6≡ b mod 2. Then we have

χ(OY(y1) ⊗L
ON

· · · ⊗L
ON

OZ(xh)) =
1

2

a∑

l=0

ql(a+ b+ 1 − 2l).

More generally, consider another basis [x̃, ỹ] := [x̃1, . . . , x̃n−h, ỹ1, . . . , ỹh]
of V such that x̃ = x̃g1, ỹ = ỹg2 for g1 ∈ GLn−h(OE) and g2 ∈ GLh(OE).
Then we have

χ(OY(ỹ1) ⊗L
ON

· · · ⊗L
ON

OZ(x̃h)) =
1

2

a∑

l=0

ql(a+ b+ 1 − 2l).

Proof. By applying Remark 5.13 repeatedly, the problem reduces to the case
of n = 2 and we need to compute the intersection number

χ(OZ(z1) ⊗L
ON 0(1,1)

OZ(z2)).

This intersection number is computed in [Liu11, Theorem 4.13]. Indeed,

χ(OZ(z1) ⊗L
ON 0(1,1)

OZ(z1)) =
1

2

a∑

l=0

ql(a+ b+ 1 − 2l).

For the general cases, first we need to show that (Y(ỹ1) ∩ · · · ∩ Z(x̃h))(k)
is a single point. By Proposition 5.5, (Y(ỹ1) ∩ · · · ∩ Z(x̃h))(k) is

(5.0.1)





OF̆ -lattices A
h⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣∣

πB∨ 1⊂ A
n−1⊂ B∨

πA∨ 1⊂ B
n−1⊂ A∨;

πB ⊂ A ⊂ B;
x̃1(10), . . . , x̃n−h(10) ∈ πB∨;
ỹ1(10), . . . , ỹh(10) ∈ πA∨.





.

It is easy to see that this is the same as (Y(y1) ∩ · · · ∩ Z(xh))(k), since
the above conditions in (5.0.1) are invariant under the linear combination
x̃ = x̃g1, ỹ = ỹg2. Also, by Remark 5.13, we know that this is a single
point. Therefore, we can use the length of a deformation ring to compute
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our intersection number as in [KR11, Section 5], and this is invariant under
the linear combination [x̃, ỹ] = [xg1,yg2]. Therefore, we have

χ(OY(ỹ1) ⊗L
ON

· · · ⊗L
ON

OZ(x̃h)) = χ(OY(y1) ⊗L
ON

· · · ⊗L
ON

OZ(xh))

=
1

2

∑a
l=0 q

l(a+ b+ 1 − 2l).

�

Theorem 5.15. Let {x1, . . . , xn−h, y1, . . . , yh} be an orthogonal basis of V.
Assume that

val(h(xi, xi)) = 0 for all 1 ≤ i ≤ n− h,
val(h(yj , yj)) = −1 for all 3 ≤ j ≤ h,

and write a := val(h(y1, y1)), b := val(h(y2, y2)). We assume that a ≤ b and
a 6≡ b mod 2. Then we have,

χ(OY(y1) ⊗L
ON

· · · ⊗L
ON

OZ(xh)) =
1

2

a+1∑

l=0

ql(a+ b+ 3 − 2l).

More generally, consider another basis [x̃, ỹ] := [x̃1, . . . , x̃n−h, ỹ1, . . . , ỹh]
of V such that x̃ = x̃g1, ỹ = ỹg2 for g1 ∈ GLn−h(OE) and g2 ∈ GLh(OE).
Then

χ(OY(ỹ1) ⊗L
ON

· · · ⊗L
ON

OZ(x̃h)) =
1

2

a+1∑

l=0

ql(a+ b+ 3 − 2l).

Proof. By applying Remark 5.13 repeatedly, the problem reduces to the case
of n = 2 and we need to compute the intersection number

χ(OY(y1) ⊗L
ON 2(1,1)

OY(y2)).

By applying θ, we can change our problem to the problem of computing the
intersection number

χ(OZ(λX◦y1) ⊗L
ON 0(1,1)

OZ(λX◦y2)).

Note that λX◦y1, λX◦y2 have orders a+1 and b+1, respectively. Therefore,
by [Liu11, Theorem 4.13], we have

χ(OZ(λX◦y1) ⊗L
ON 0(1,1)

OZ(λX◦y2)) =
1

2

a+1∑

l=0

ql(a+ b+ 3 − 2l).

The proof of the general case is the same as Theorem 5.14. �

Remark 5.16. Assume that

val(h(xi, xi)) = 0 for all 1 ≤ i ≤ n− h− 1,
val(h(yj , yj)) = −1 for all 1 ≤ j ≤ h− 1.

In this case, by the above remark, we can reduce the problem to the inter-
section problem in N 1(1, 1) that is the Drinfeld upper half-plane. In this
case all intersection numbers of special cycles (even in the case of improper
intersection) can be computed explicitly (see [San17] or [KR00]). We will
compute this in forthcoming work.



SUPERSINGULAR LOCUS 53

References

[Ahs11] T. Ahsendorf, O-displays and π-divisible formal O-modules, Ph.D. thesis, Uni-
versität Bielefeld (2011). ↑22

[ACZ16] T. Ahsendorf, C. Cheng, and T. Zink, O-displays and π-divisible formal O-
modules, Journal of Algebra (2016), 129–193. MR3490080 ↑22, 23, 28

[BR06] C. Bonnafe and R. Rouquier, On the irreducibility of Deligne-Lusztig varieties,
C.R. Math. Acad. Sci. Paris 343 (2006), 37–39. MR2241956 ↑20

[GGP12] W. T. Gan, B. Gross, and D. Prasad, Symplectic local root numbers, central crit-
ical L-values, and restriction problems in the representation theory of classical
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