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THE BASIC LOCUS OF THE UNITARY SHIMURA
VARIETY WITH PARAHORIC LEVEL STRUCTURE, AND

SPECIAL CYCLES

SUNGYOON CHO

ABSTRACT. In this paper, we study the basic locus in the fiber at p of a
certain unitary Shimura variety with a certain parahoric level structure.
The basic locus M=* is uniformized by a formal scheme A which is called
Rapoport-Zink space. We show that the irreducible components of the
induced reduced subscheme N,..q of N are Deligne-Lusztig varieties and
their intersection behavior is controlled by a certain Bruhat-Tits build-
ing. Also, we define special cycles in N and study their intersection
multiplicities.
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1. INTRODUCTION

This paper is a contribution to the theory of integral models of certain
Shimura varieties. In particular, we will give a concrete description of their
basic loci. These problems have important applications to Kudla’s pro-
gram which relates arithmetic intersection numbers of special cycles on in-
tegral models of certain Shimura varieties to Eisenstein series (see [KR11],
[KR14al), and Arithmetic Gan-Gross-Prasad conjecture (see [Zhal2], [RSZ18a],
[RSZ18b], [RSZ17]). In this paper, we study the basic locus of the special
fiber of a certain unitary Shimura variety at an inert prime with parahoric
level structure. Let (G, hg) be a Shimura datum and let K5 be an open
compact subgroup in G(Af). We refer to Section 4 for the precise defini-
tion. This Shimura variety has a moduli interpretation M, (G) as a moduli
space of abelian varieties with additional structure. This Shimura variety is
a variant of the Shimura variety which appears in [GGP12] and its integral

model M (G) is defined in [RSZ18b]. The basic locus of the special fiber

of Mg G(é) can be studied using the uniformization theorem of Rapoport
and Zink, [RZ, Theorem 6.30] (more precisely, see Theorem 4.3). Therefore,
we can study the corresponding Rapoport-Zink space and use its explicit
description to study the basic locus of the special fiber of the Shimura vari-
ety.

We will now describe our main results in more detail. First, let us consider
the Rapoport-Zink spaces which are local analogues of Shimura varieties.

1.1. The local result : relative Rapoport-Zink spaces. Let I’ be a
finite extension of QQ,, and let £ be a quadratic unramified extension of F
with ring of integers Op and residue field F 2. We fix a uniformizer 7. Let

E be the completion of a maximal unramified extension of E. Fix integers
nand 0 < h,r < n. Here, h is related to a certain self-dual lattice chain,
and r is related to the determinant condition. We define a moduli space
N g / p(r,n —r) over Spf Op of quasi-isogenies of strict formal Op-modules
with additional structure (see Section 2 for its definition). If h = 0, r = 1,
F =Qp, and ' = Qy2, then this moduli space coincides with the Rapoport-
Zink space that is studied by Vollaard and Wedhorn ([VW11]). This case
corresponds to the hyperspecial level structure case. In their paper, they
proved that the irreducible components of the induced reduced scheme of
N&pQ /Qp(l,n — 1) are Deligne-Lusztig varieties, and their intersection be-

havior is controlled by a certain Bruhat-Tits building. Howard and Pappas
studied the moduli space /\/(5 2/Q, (2,2) in [HP14] (also, see Remark 2.20).
P

When £/ is not equal to 0, we have a parahoric level structure. When A =1,
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n = 2, the moduli space N}E/F(l, 1) is studied in [KR14b]. In this paper,

Kudla and Rapoport proved that the moduli space is represented by a Drin-

feld p-adic half-plane. Furthermore, they studied N(é ) /Qp(l, n — 1) in their
P

unpublished notes [KR]. They showed that its reduced scheme has two kinds
of Bruhat-Tits strata: One consists of projective spaces and the other con-
sists of Deligne-Lusztig varieties. Our result is the generalization of theirs
to arbitrary h and F.

The cases that F is a ramified extension of F' are also studied in literature.
For example, we refer to [RTW14], [Wul6] (also, see [RSZ18a], [RSZ18b],
[RSZ17] for their connection to Arithmetic Gan-Gross-Prasad conjecture).

We now state our main result in local situation. Let (X,ix,Ax) be a
framing object of N g / p(L,n —1): X is a supersingular strict formal Op-
module of F-height 2n over F,; ix is an Og-action on X, and Ax is a
polarization. We note that the integer h is related to this polarization. For
this triple, there is an associated hermitian E-vector space N k0" An Op-
lattice A in NJ  is called a vertex lattice of type t(A), if T HIAY C A C wfAY
for some i and the dimension of A/7* T AV is ¢(A) as F2-vector space. Here,
AV is the dual lattice of A. For each i = 0,1, we denote by £; the set of
vertex lattices. We also define the following sets of vertex lattices:

L = {Og-lattices A | TAY € A C AV, t(A) > h+1};
Ly = {Og-lattices A | TAY € A C AV t(A) < h—1};
L] = {Og-lattices A | 7*AY ¢ A C AV, t(A) >n —h+1};
L] = {Og-lattices A | 72AY C A C 7AY t(A) <n—h—1}.
Note that there is a bijection between L£i and £; via the map sending
Ae Ef to mAY € £, . In this way, the union E(J{ I_IE;r can be identified with
L$ ULy and then this can be identified with the set of vertices of a certain
Bruhat-Tits building. For each vertex lattices A in £ U L], we define a
projective subscheme N} of the reduced subscheme of N g / r(Ln — 1)015:'
For i = 0,1 and A € £, we define the set £} := {A € L]\ C A}. We

7 )

define the subscheme N7 := Nj\ UA’EEX Nyar. The schemes Ny, N} have
the following properties (see Theorem 3.14 and Section 3.8).

Theorem 1.1. The following properties ong/F(l,n — 1) hold.

(1) For A € L (resp. A € LT), Ny is isomorphic to a Deligne-Lusztig
variety and it is projective, smooth, and geometrically irreducible of
dimension (t(A) —h—1)+h (resp. 3(t(A) —(n—h—+1))+n—h).

(2) For i = 0,1, consider A € L. Then N} is open and dense in
Ny and we have a stratification (N/?)Aeﬁj,izo,l ong/F(l,n —~ 1o,
which is called the Bruhat-Tits stratification. The closed subschemes
N Ong/F(l,n — 1)OE are called the closed Bruhat-Tits strata.
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(3) For i = 0,1, consider two vertex lattices N' C A in L. Then we
have Npr C Ny.

(4) For i = 0,1, consider two vertex lattices ', A in L. Then two
closed Bruhat-Tits strata Ny, Nar have nonempty intersection if and
only if AN A € L, and in this case Ny N Ny = Nanar-

5) For vertex lattices Ag € L, Ay € LT, two closed Bruhat-Tits strata
0 1
Na, Nar have nonempty intersection if and only if mAY C Ag.

We also have the following properties of N g / p(ln — 1)OE.

Theorem 1.2. The following assertions hold.
(1) In case h # 0,n, the formal scheme Ng/p(l, n—1)o, has semistable
reduction. If h = 0,n, Ng/p(l,n — 1)0E is formally smooth over
Spt Oj. In particular, it is reqular for all h.
(2) There exists a Rapoport-Zink space Ng/Qp(l,n — 1)0E of PEL type
that is isomorphic to ./\/'g/F(l,n —1o,-

Remark 1.3. In case F' is unramified over Q,, the above statements in
Theorem 1.1 and Theorem 1.2 hold without base change to O.

We now describe §2-3 in more detail. In Section 2, we study the k-points of
N g / #(1,n—1) by using the relative Dieudonne theory, where k is an algebraic
closure of the residue field of E. In Section 3, we define a subscheme Ny
for each vertex lattice A and prove that this is isomorphic to a Deligne-
Lusztig variety. Furthermore, we prove the regularity of N6p2 /Qp(l, n—1)

via the theory of local model. Also, we prove that there is a stratification
of N /F(l,n — 1) so called Bruhat-Tits stratification. Finally, we relate

N g / (1,n—1) to a certain PEL-type Rapoport-Zink space as Mihatsch did
in [Mih16]. By using this result, we prove the regularity of NE/F(I, n—1).

1.2. The global result: non-archimedean uniformization. In the global
situation, we write F' for a CM field, I’ for its totally real subfield of index
2, and ® for a CM type. We fix an embedding 7, € ® and an embed-
ding v : Q — Qp. These two determine places vg of F™ and wq of F. We
assume further that vg is unramified over p and inert in F. We denote
by S, the set of places of F* over p. We will define three Shimura data:
(G, hg),(Z,hy), (G, hg). The first Shimura datum is associated to a uni-
tary group Resp+ o U(V) for a hermitian space V. This Shimura variety
is of abelian type and appears in [GGP12]. The second Shimura datum is
associated to a torus Z. The third Shimura datum is the product of the
first two Shimura data, and is our main interest. This Shimura variety is
studied in [RSZ18b], and the authors formulate a moduli problem Mg G(é)
of abelian varieties with additional structure. Here, K5 is a certain open
compact subgroup of G(A 7). We should note that an integer 0 < h < n also
appears in global situation, and this is closely related to K. In particular,
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if h = 0, Kz gives a hyperspecial level structure, and if h # 0, Kz gives
a parahoric level structure. This h is also closely related to the h in local

situation. The moduli problem M . (G) gives a model over a reflex field

E of the Shimura variety Shg,(G). We write u for the place of E that is
determined by @. In [RSZ18b], the authors define global integral models
of Mk, (G) over Spec O and semi-global integral models over Spec OE, ()
in case h = 0, and in case h = 1, F;g = Qp. In our paper, we construct

semi-global integral models M. (G) over Spec O, () for arbitrary h.
Now we can formulate the following proposition.

Proposition 1.4. (Proposition 4.1, Proposition 4.2) We can formulate a

moduli problem that is representable by a Deligne-Mumford stack MKG(G)
flat over SpecOp (. For Kg small enough, MKG(C?) is relatively rep-
resentable over MS’W. The generic fiber MKG(G) XSpec O, (u) SPECE s
canonically isomorphic to My .(G) and Mk, (G) is naturally isomorphic to

the canonical model of Shg . (G). Furthermore, if h = 0,n, then MKG(C?) is

smooth over Spec O (y)- If h # 0,n, then Mk, (@) has semistable reduction
over Spec O, () provided that E, is unramified over Q.

Now we will state the non-archimedean uniformization theorem of Rapoport
and Zink in our situation. By this theorem, we can relate the basic locus
(I,m — 1). In order to

of Mk (G) and the Rapoport-Zink space ./\f;i JEF

simplify notation, we write M for My (G) and N for Ng JEh (I,n —1).
wq /oy

Let E, be the completion of a maximal unramified extension of Ey, and let

k be the residue field of Op . Let M be the completion of Mo, ~along

the basic locus of Mo, ® k. Then we have the following non-archimedean

uniformization theorem.

Theorem 1.5. (Theorem 4.3) There is a non-archimedean uniformization

isomorphism
UOw ——

O : I(Q)\N x C?(A?)/Kg >~ Mss,
where
N' = (Z(Qp)/Kzp) x No,, x [T UWV)FES)/ K-
vESp\{vo}

Here, I is an inner twist of G. We refer to Section 4.3 for all notation
above and its detail.

1.3. Special cycles. In this subsection, we use the notation in Section 1.1.
In [KR], Kudla and Rapoport defined the special cycles Z(x) in (1%2 /0, (I,n—
1) and computed its reduced scheme as in their another paper [KR11]|. By
following their work, we define special cycles Z(x) and another special cy-
cles Y(y) in N / p(l,n —1)o,. We also study their reduced schemes and
arithmetic intersection numbers in some cases.
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Let k be the residue field of O, and let (Y, ig, Ay) (vesp. (X, ix, Ax)) be
the framing object of Ng/F(O, Lo, (resp. Ng/F(l,n —1)o,)- The space of
special homomorphisms V is the E-vector space

V := Homgp, (Y, X) ®z Q,

with a F-valued hermitian form h such that for all z,y € V,
1

h(z,y) == Azt oy" o Ax oz € Endo, (V) © Q £ E.

For each x € V, we define the special cycle Z(x) as follows. For each
O j-scheme S such that 7 is locally nilpotent, Z(z)(S) is the subfunctor of
collections (Y, iy, Ay, py, X, ix, Ax, px) such that

—1
Y xs8 T x5 5 X%, 8 25 X xg
extends to a homomorphism from Y to X.

For each y € V, we define the special cycle Y(y) in a similar way, but here
we use the isomorphism NE/F(l,n - 1o, =~ Ng/_lfl(l,n —1)o, to define
the cycle. We refer to Definition 5.4 for the precise definition. All of these
cycles are relative divisors in N }% / r(ln— 1)OE‘ Therefore we can consider

the arithmetic intersections of these cycles as in [KR11].
We prove the following theorem.

Theorem 1.6. (Theorem 5.14) Let {x1,...,Tpn_n,Y1,---,Yn} be an orthog-
onal basis of V. Assume that

val(h(z;, z;)) =0 for all3<i<n-—h,
val(h(y;,y;)) = =1 forall1 < j <h,

and write a := val(h(z1,x1)), b := val(h(za,x2)). We assume that a < b
and a £ b mod 2. Then we have

1 a
X(Oy(y) @6+ @65 Oz(a)) = 5 D_d'(a+b+1-21).
1=0
More generally, consider another basis [T, Y] := [T1, . Tn—h,T1s---,Tn)
of V such that * = Zg1,Yy = g2 for g1 € GL,_r(Og) and g € GLy(OF).
Then we have

a
X(Oy() @6y @65 Oz(a,) = % > d(a+b+1-20).
=0
In this case, the reduced scheme of the intersection has dimension 0.
Therefore we can use the deformation theory as in [KR11] for F' = Q, and
[Liull] in general.
We have one more case that seems to be realistic, but we do not include it
in this paper. See Remark 5.16. Also, we believe that the similar conjecture
to [KR11, Conjecture 1.3] can be formulated in our case.
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2. THE MODULI SPACE N OF STRICT FORMAL Op-MODULES

In this section, we will define the moduli problem N and study its struc-
ture.

2.1. The moduli space Ng/p(r,n —r). We fix a prime p > 2. Let F be a
finite extension of Q,, with ring of integers Op, and residue field IF,. We fix
a uniformizer w. Let E be a quadratic unramified extension of F', with ring
of integers Op and residue field F2. Let E Dbe the completion of a maximal
unramified extension of £. Denote by * the nontrivial Galois automorphism
of E over F. We recall the definition of strict formal Op-module from
[RZ17].

Definition 2.1. Let S be a scheme such that p is locally nilpotent in Og.
A formal Op-module over a scheme S is a formal p-divisible group X over
S with an Op-action

1: OF — End X.

Let X be a formal Op-module over an Op-scheme S. We call X a strict
formal Op-module if Op acts on Lie X via the structure morphism Op —
Og. A strict formal Op-module X is called supersingular if all slopes of X
as a strict Op-module are 1/2.

Let h be an integer with 0 < h < n. We fix a triple (X, ix, Ax) consisting
of the following data:

(1) X'is a supersingular strict formal Op-module of F-height 2n over [ p2;

(2) ix : Op — EndX is an Opg-action on X that extends the Op-action
on X;

(3) Ax is a polarization

Ax 0 X — XY,

such that the corresponding Rosati involution induces the involution * on
Og.

We also assume that (X, ix, \x) satisfies the following conditions.

(a) For all a € O, the action ix satisfies

Charpol(ix(a)|LieX) = (T'—a)" (T — a*)""".

Here, we view (T'—a)" (T —a*)"~" as an element of Og[T] via the structure
morphism. We call this condition the determinant condition of signature
(ryn—r).

(b) We assume that Ker Ay C X[r] and its order is ¢?".

Now, we can define our moduli problem.
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Let (Nilp) be the category of Op-schemes S such that 7 is locally nilpotent
on S. Let N} /p(r,m — 1) be the set-valued functor on (Nilp) which sends a
scheme S € (Nilp) to the set of isomorphism classes of tuples (X, ix, Ax, px)-

Here X is a (supersingular) formal Op-module of F-height 2n over S and
ix is an Opg-action on X satisfying the determinant condition of signature
(rym—r)

Charpol(ix(a)|Lie X) = (T —a)"(T'—a™)"™", Va€E.

Here we view (T'—a)"(T' — a*)"" as an element of Og[T] via the structure
morphism O — Og.
Furthermore, px is an Og-linear quasi-isogeny

pX:X§—>XxFq2 S,

of height 0, where S = S X, F,2 and X3 is the base change X x g S.

Finally, Ay : X — XV is a polarization such that its Rosati involution
induces the involution * on O, and the following diagram commutes up to
a constant in O,

AX§
_ V
X5 —5 XY

o
AxX—

S
Xz — XY

Two quadruples (X,ix, Ax, px) and (X', ix/, Axs, px/) are isomorphic if
there exists an Og-linear isomorphism « : X — X’ such that py/o(axgS) =
px and a o Axs o « differs locally on S from Ay by a scalar in Oj.

The functor N / p(r,n—7)® 0} is representable by a formal scheme over
Spf O}, which is locally formally of finite type. This is explained in [Mih16].
Indeed, we can use [RZ, Theorem 2.16], and the fact that the condition that
the Op-action on X lifts from X, and the condition that the lifted action is
strict are closed conditions.

Furthermore, when F' is unramified extension of Q,, we will fix a decent
(X, ix,Ax) in Remark 3.31. Then N }% / p(r,n — 1) is representable by a for-
mal scheme over SpfOg which is locally formally of finite type. For the
moment assume that we fix this triple (X,ix, Ax) so that N / p(ryn —r) is
representable by a formal scheme over Spf O which is locally formally of
finite type, where F' is unramified over Q,,.

From now on, we will restrict ourselves to the case r = 1. Note that the
case (r =1,h =0,F = Q,) is studied in [VW11]. For simplicity, denote by
N the moduli problem NE/F(l,n —1).
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2.2. Description of the points of N. Let k be a fixed algebraic closure
of Op/nOp = F 2. In this subsection, we will study the set NV'(k). For this,
we need to use relative Dieudonne theory in the sense of [RZ, Proposition
3.56]. We use the following notation.

Let F be the completion of a maximal unramified extension of F' con-
taining £/ and Oy its ring of integers. Let F“ be the maximal unrami-
fied extension of @, in F' and Opu its ring of integers. Let L be a per-
fect field with Op/mOp = F,-algebra structure ag : F; — L. Then,
we get a map Opu — W(L) induced from oo : F, — L. We define
Wor (L) = OF ®0pu,a0 W(L). This is the ring of relative Witt vectors
of L. In particular Wo,. (k) = Oj.

Let o be the Frobenius element in Gal(F/F).

We recall from [RZ, Proposition 3.56] (or [KR14b, Notation]) the defini-
tion of the relative Dieudonne module. Let X be a formal Op-module of
F-height 2n over k. Let (M, V) be the (absolute) Dieudonne module of X.
Consider the decomposition

Or @z, W (k) = H OF ®0pu,a W (k).
aFq—k

Here, o runs over the set of F)-embeddings o : F;, — k. Via this decompo-
sition, the action of O on M induces the decomposition

M= @ N
a:Fg—k
We define the relative Dieudonne module of X as
(M0, v = D),

where f = |F": Qp| = [Fy : Fpl.

Now, let (M, V) be the relative Dieudonne module of X, and let N =
M ®7 Q be its relative Dieudonne crystal. Denote by N, = M ®p F its
base change. The Og-action ix on X induces an FE-action on Nj. Let F
be the Frobenius of M. The polarization Ax of X induces a nondegenerate
F-bilinear alternating form on Ny

()t N x N = F,
such that for all z,y € Ni,a € E, it satisfies
(2.2.1) (Fz,y) = (z,Vy)’,

(2.2.2) (az,y) = (a,a"y).
Since we have the decomposition £ ®p F~FxF , the F-action i on Ny,
induces Z/2Z-grading
Ni = N0 @ Ng 1.
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Note that by (2.2.1), (2.2.2), each Ny ; is totally isotropic with respect to
(-,-). Also, for i = 0,1, we have that F : Ny ; = N iy1, V1 Nii = Niiv1
are homogeneous of degree 1 with respect to the decomposition.

For an O-lattice M = My @ My, we define the dual lattice MZ-L of M; as

Mil = {.’L’ S Nk7i+1\(x,M,~> C OF}
For O -lattices M; C M] C Ny ;, we denote by [M] : M;] the index of M;
in Mj, i.e. the length of the Op-module Mj/M;. If [M] : M;] = t, we write
M; & M

By the relative Dieudonne theory, we have the following proposition.

Proposition 2.2. There is a bijection between the set N'(k) and the set of
Oj-lattices M in Ny such that
o M is stable under F, V, and Og-action;
e Charpoly(a, M/VM) = (T — a)(T — a*)" ! for all a € Op;
h n n—h 1 h n n—h 1
.MOCMl cm MO)MICMO Ccm Ml.
We will use the following lemma in the next subsection.

Lemma 2.3. ([Vol10, Lemma 1.5]) Let M = My & M; be an Og-invariant
lattice in Ny. Assume that M is invariant under F and V. Then M satisfies
the determinant condition of signature (r,n —r) if and only if

My 'C FM, & My,

M, C FMy C M.
Proof. See [Vol10, Lemma 1.5]. O

2.3. Description of the points of A/ II. In this subsection, we will de-
scribe the set N (k) as the set of lattices in Nio. We use the following
notation.

Let 7 be the o%linear operator V"' F on Ny, and let N o be the set of
T-invariant elements in N . Then N, k0 is an E-vector spacé. Note that for
every T-invariant lattice A in Ny o, there exists a T-invariant basis of A (see
[Vol10, 1.10]). Therefore, we have Ny o= N{(®g .

We define {z,y} := (x, Fy). This is a nondegenerate form on NNy o which
is linear in the first variable, and o-linear in the second variable.

Also, this form {-,-} satisfies the following properties (see [Vol10, 1.11}):

{xa y} = _{y7 T—l(x)}o’
{r(2),7(y)} = {z,y}"".

For an Op-lattice A in Ny, we define AV the dual lattice of A with
respect to the form {-,-} as

AY = {z € Npol{z, A} C 04},
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For an Op-lattice A C Ni o, we have

(AY)" =7(4),

(AY) = 7(A).
We can now state the following description of N (k).
Proposition 2.4. There is a bijection between N (k) and the set
1 ~1
7BY C A'C BY,

h _
Op-lattices A C B C Nio | 1AV é B ncl AY,
TBCACB.

Proof. For M = My ® My € N(k), let A = My, B = Mj-. Then, by

h
Proposition 2.2, we have 7B C A C B. Now, we will show the following
equality.

(2.3.1) m(Mi)Y = FMj.
Indeed, we have

(Mi")Y = {y € Nyol{y, Mi"} C Oy}
= {y € Nyol(y, FMi") C Op}
= {y € Ny o[(FMi',y) C Op}
= {y € Nyol(Mi", Vy) C O}

=V I ((M{)H) =V M.
Therefore, by multiplying 7, we get the equality (2.3.1).
1 n—1
By Lemma 2.3 and (2.3.1), we have 7tBY C A C BY.
Similarly, we have VM & My <= M, & V-1My <= FM, € V-1 F(My) <

1 1 1 -1

(MY C 7(Mpy) <= mMY C M;i-. Therefore, we have A C B'C AV.
Conversely, if we have O j-lattices A, B satisfying the above conditions,
then one can easily show that A @® B~ is an element in N(k). O

From now on, we identify N (k) with the set defined in the Proposition
2.4.
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2.4. The sets R), S) indexed by vertex lattices A. In this section, we
will define the sets Ry, and S, indexed by the lattices A which are called
vertex lattices. First, we start with the definition of the vertex lattices.

Definition 2.5. Let £; be the set of all lattices A in N} ; (hence, T-invariant)
satisfying 7T1AY C A € 7#'AY. An element in £; is called a vertez lattice.

, t
We say that a vertex lattice A € £; is of type t if 7'T'AY C A. We denote
by t(A) the type of the vertex lattice A.

h
Remark 2.6. For A C B a pair in N(k), we define
TA:=A+7(A)+ - +771(A),

T;B:=B+7(B)+---+ 7 4B).

Then, by [RZ, Proposition 2.17], there exist positive integers ¢, d such that
T.(A) and Ty(B) are T-invariant.

Now, we will show the following lemma.
h
Lemma 2.7. Let A C B be a pair in N'(k). Let ¢,d be the smallest positive
integers such that T,A,TyB are T-invariant, and write Ay := T.(A), Ap :=

Ty(B). Then, at least one of the following assertions holds.
(1) Ap is a vertex lattice in Loy, and

1
A C B C Ap C A}
U U

1
nA, C 7BY C A

(2) A4 is a vertex lattice in L1, and

1
mBY C A C Ay C wA}
U U

1
7T2AX c wAY C wB
To prove the Lemma 2.7, we need the following lemma.

Lemma 2.8. For 1 <i<¢, 1 <j<d,

(241) TLANT(T;A) = 7(T; 1 A),
(2.4.2) T, A C TiA,
(2.4.3) T,B N +(T;B) = r(T;_1B),

1
(244) Tj_lB C TjB
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Proof. We will show (2.4.1), (2.4.2). The proof of (2.4.3), (2.4.4) is similar.
Note that we have

1 -1
(2.4.5) TBY CA'C BY,

(2.4.6) TAY & BT AV

Therefore, we have mwBY & Aand 7BY & 7(A) by taking the dual of
(2.4.6). If A is 7-invariant, then ¢ = 0, and hence there is nothing to prove.
Now assume that A is not 7-invariant. Since 1BY C AN7T(A) C A and 7BY
is of index 1 in A, AN 7(A) should be 7BY. Also A and 7(A) should have
index 1 in 71 A. This shows (2.4.2) when i = 1.

1 1
For (2.4.1), note that 7(A) C T1A and 7(A) C 7(T1A). If T1A is 7-
invariant, then ¢ = 1. Therefore, there is nothing to show. Assume that
Ty A is not 7-invariant. Then T1 AN 7(T1A) = 7(A). This shows (2.4.1) for
=1
For arbitrary ¢, we can use the induction on 1. O

We now go back to the proof of Lemma 2.7.

Proof of Lemma 2.7. We will prove this lemma by dividing by 6 cases and
their subcases.

Case 1. If B € Ly, then (1) holds.

Case 2. If A € £y, then (2) holds.

Case 3. Assume that A is 7-invariant, but not a vertex lattice in L.
Then A ¢ wAY. Since 7AY is of index 1 in B, and A C B, we have
B = A+ 1AV, Since A is T-invariant, B is also T-invariant. Therefore, if
B C BY, then B € Ly, and hence (1) holds. Therefore, it suffices to show
that B C BY. Assume that B ¢ BY. Since 7B" is of index 1 in A and
7B C A, we have A = 7B + ©BY. However, tBY C mAY and 7B C A"
implies that A = 7B + 7BY C wAY which contradicts to our assumption
that A is not a vertex lattice.

Case 4. Assume that B is 7-invariant, but not a vertex lattice in L.
Then B ¢ BY. Since 7BY is of index 1 in A and 7B C A, we have that
A = 7B + nBY. In particular, A is also T-invariant. Also, tBY C mAY and
7B C mAY implies that A C mAY. Therefore, A is vertex lattice in £1 and
(2) holds in this case.

Case 5. Assume that A, B are not T-invariant and B C B". In this case,
we have

(2.4.7) ANnT(A) =7BY,

(2.4.8) BNT(B)=mA".

Also, note that
B+7(B) c BY c n7 1 (A),

7(B) + m3(B) c 7(BY) c 717 (A).
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Therefore, we have

ToB C 7 '1(A) C n7 T A,
and,
(2.4.9) T;B C n Ty 1 A.

Case 5-1. Assume that d — 1 < ¢. Since TyB is 7-invariant, (2.4.9)
implies that

TyB C ﬂ I (T 1 A) = ﬂ w17l A) (47 ﬂ Yl (zBY) = (I;B)".
leZ leZ lEZ

The last equality is induced by
(T;B)Y = BYn7(BY)n---nriYBY),

and the fact that (T;B)"Y is T-invariant. Therefore, (1) holds in this case.
Case 5-2. Assume that d — 1 > ¢. Then, T.A C T.B and T.A is 7-
invariant. Therefore, we have
r.4c N A@B) % N AB) “EY N raY) = =(T.4)".
Iz 1S/ l€Z

The last equality is induced by
(T.A)Y = AV Nnr(AV)N---n7re(AY),

and the fact that (T.A)Y is T-invariant. Therefore, (2) holds in this case.
Case 6. Assume that A, B are not 7-invariant and B ¢ BY. In this case,

(2.4.7) and (2.4.8) hold and we have A = 7B + 7BY C 7AY (see the case

4). By (2.4.8), we have A C B and A C 7(B). Therefore, T/ A C 7(B) and

T.A C T(Tc_lB).
Case 6-1 Assume that ¢ < d. Then, we have
1A c AT 2 N AB) P N r(#aY) = n(1.4)".
=4 leZ leZ

Therefore, (2) holds in this case.
Case 6-2 Assume that d < ¢. Then, B C 7 'A implies that TyB C
7 T, A. Therefore, we have

TyB C ﬂ 17 (T, A) (28 ﬂ 17l (A) (4D ﬂ 17 (7BY) = (T;B)".
lez lez leZ
This is a contradiction, since B ¢ BY and B C T;B C (TyB)Y C B".
This completes the proof of the Lemma 2.7. O

Now, let us give the definition of the sets Ry (k), Sa (k).
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Definition 2.9. (1) For a vertex lattice A € L1, we define the set

@) «BY ¢ A C A C wAY
O j-lattices U U

h
ACBC Ny | mAV C 724Y
.. n=h h
(i) ™ C A C B
(2) For a vertex lattice A € Ly, we define the set

Ry (k) :=

M~
3
Sy

(i) wAY & B c A C A
O j-lattices U U
Sk} =1 4 b Nio | mAVc 7BY & A
@ «B 'C a4 & B
Proposition 2.10. We have N'(k) = Uper, Ba(k) UUper, Sa(k)
Proof. This is clear from the Lemma 2.7. O

Proposition 2.11. If A € Ly and Sy is not empty, then h+1 < t(A) <mn,
and t(A) = h+1 mod 2.

Proof. This is clear from the Lemma 2.7 (1). O
<

Proposition 2.12. If A € £y and Ry is not empty, thenn—h+1 < t(A)
n, and t(A) =n—h+1 mod 2.

Proof. This is clear from the Lemma 2.7 (2). O

Definition 2.13. We write £7 for the set of lattices in Lo with ¢(A) > h+1
and L for the set of lattices in £y with ¢t(A) < h — 1. Similarly, we denote
by L] the set of lattices in £1 with t(A) > n — h + 1 and £] the set of
lattices in £ with t(A) <n—h —1.

Remark 2.14. For Ay € L], we have m(rAY)Y = Ay C 7AY C 7 1A =
(wAY)Y. Therefore, we can regard wAY as the element of L£y. By this
identification, we have a bijection from £ LU £y to £§ U L] by sending
A€ L§toA, and A € Ly towAY.

Remark 2.15. When i = 0 (the case in [VW11]), Rx(k) does not occur

in NV(k) (by Proposition 2.12). When h = 1, for any pair (A4, B) € Ry (k),

A should be A and t(A) = n. In this case, B can be any lattice satisfying
1

A C B c 7~ 'A. Hence, we have Ry (k) ~ P"~!(k). We should note that

Kudla and Rapoport already proved this result in their unpublished notes
[KR].
Proposition 2.16. Let A1, Ay be elements in L'(J)r.

(1) IfAl C Ao, then SAl(k) C SA2(]€).

(2) If Ay N Ag is in L, then Sy, (k) N Sp, (k) = Sa,nn, (k). Otherwise, it
s empty.
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Proof. (1) is clear from its definition.
For (2), we will show that Sy, (k)N Sa, (k) C Sa,na, (k). Let (A, B) be the
element in Sy, (k)N Sy, (k). Note that (A, B) satisfies the following diagrams,

1
TAY C B C A C AY

@] U
7AY C wBY é A ,
and
TAY C
U
7Ay C wBY &
These two diagrams imply that

CAQCAE/

= C W

7AY & B C AlNAsCAY C (A NAy)Y
U U

T(ANAs)Y = mAY +7AY C 7BY & A

Therefore, Ay N A is in L7, and (A, B) should be contained in Sy, (k).
Conversely, Sx,na, (k) C Sa, (k) NSy, (k) is obvious from (1). This com-
pletes the proof of the proposition. O

Proposition 2.17. Let Ay, Ay be elements in L.

(1) IfAl C Ao, then RAl (kf) - RA2(]€)

(2) If Ay N Ag is in LT, then Ry, (k) N Ra, (k) = Rp,na, (k). Otherwise,
it s empty.

Proof. The proof is the same as the proof of Proposition 2.16 O
Now, let us consider the intersection Ry, (k) NSy, (k).

Proposition 2.18. Let A| € ET,AO € L'(J{.
(1) Ifﬂ'A\l/ g_ Ag, then RAl(k) ﬂSAO(k) = 0.
(2) If TAY C Ao, then

1
O jz-lattices Ay C mAY C B C Ao
Ry, (k)NSp, (k) = Py U
A, (B)NS, (k) Al BC N, 1
Ay D A D 7BY O 7Af
Proof. This is clear from the definition. 0O

Remark 2.19. Let h = 1, Ay € LI, Ay € £, and 7AY C Ag. For any
(A, B) € Ry, (k), we have A = A by Remark 2.15. Therefore,

O z-lattices
R, (1) 18y, (0) = { G

This is isomorphic to P™~1(k), where m = [Ag : 7AY].

WAY&BCAO }
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Remark 2.20. We can apply our method for N’ g / (2,2) which has been

studied in [HP14]. We should note that all of the following descriptions of
k-points is already obtained in loc.cit. with a different method.

By using the relative Dieudonne theory and similar steps in Section 2, we
can show that there is a bijection between A (k) and the set

{ Op-lattice B C Ny } TBY é B % BY }

We can divide the seic into three cases.
case 1 BN7(B) C B.

1
case 2 BN7(B)=7B"Y and B C T\ B.
case 3 BN7(B)=nBY and T\ B = B".
In case 1, let TAY = BN 7(B). Then, the pair (A, B) satisfies

1 3
TAY C BC AY,
WBVéAgBV;
B CACB.

Therefore, by using Lemma 2.7, we can show that at least one of the following
is true.

(1) A is T-invariant and A = mAY.
(2) Ap C A%.
In case 2, one can prove that Ap C AY.
In case 3, since BN 7(B) = 7BY, we have B + 7(BY) = 7~ '7(B) by
taking dual. Since BY = B + 7(B), we have

B+ 7(B) +7*B) = 7 '7(B).

Let d be the smallest integer such that T;B is 7-invariant. Then TyB =
717 (Ty_oB) is T-invariant, and this means that T B is also T-invariant.
This is possible only when B is 7-invariant.

In summary, B N 7(B) is a vertex lattice of type 0 or Ap C A}; (hence
Ap is a vertex lattice). This is the analogue of Lemma 2.7.

Therefore, for each vertex lattice A, we can attach the following set.

(1) If A = wAY, then we attach the set,

O j-lattices
BCN k,0

12 1
ACBCBYCAY } .
This is the set of k-points of a Fermat hypersurface.

2
(2) If TAY C A, then we attach the set,

O j-lattices
B C Nk70

B},

This is one k-point.
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4
(3) If AV C A, then we attach the set,

O j-lattices
B C Nk70

This is the set of k-points of a Fermat hypersurface.
N (k) is the union of the above sets and this is the same result as in
[HP14].

vEpdpia—a .

3. SUBSCHEMES N OF N

In this section, we will first define the subscheme N, for each vertex
lattice A, and prove that N} is isomorphic to a generalized Deligne-Lusztig
variety. Also, we will prove the regularity of N7 / r(L,n—1)® Op. Before
we begin, let us introduce some notation. In the end of the Section 2.1,
we showed that N g / p(L,n — 1) ® O is representable by a formal scheme

over Spf O and furthermore, N g / 7(1,n — 1) is representable by a formal
scheme over Spf Op if F' is unramified over QQ,. For this reason, we will use
the following notation. Let F = [F 2 if F' is an unramified extension of Q,,
and let F =T 2 if F is ramified over Q,. Then ./\/'g/F(l,n —1) ®o, F is the
special fiber of NE/F(I, n—1) (resp. NE/F(I, n—1)®O0y) if F is unramified
over Q, (resp. if F' is ramified over Q,).

3.1. Strict formal Op-modules X,+ and X,-. In this subsection, we
fix a vertex lattice A € L], for i = 0,1. We will define the strict formal
Op-modules X+, Xj- over Fp with Og-action, polarizations Ay+ and
quasi-isogenies pp+ : Xp+ — X. For this, we will construct the following
two Dieudonne submodules of N.

First, if A € £, we define the lattices AT and A~ by

A=A
A =v7i(A)
Ay = TAY
A7 =V(AY)
AT =A@ AT
A=Ay AT

Then, one can easily show that A~ = (A*)%. Since 7 = V on A* and
A~, we have that AT and A~ are Dieudonne submodules of N.
In case A € L], we define the lattices AT and A~ by

Af =A
AT =V
Ay =AY

AT = 7wV(AY)
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AT =A@ Af
A=A, AT
Then, we have A~ = w(A")+. Again, these AT and A~ are Dieudonne
submodules of N. ' '
For A € L, we have A C 7'AY. Therefore, the pairing 7=*+1(.,-) on N
induces a Wo,.(F2)-pairing on A* and A~.
Now, let X+ and X, be the strict formal Op-modules associated to A*
and A~ with quasi-isogenies py+ : Xp+ — X.
We will use these two strict formal Op-modules to define the subschemes

Np of N.

3.2. Subschemes N, attached to vertex lattices A. We fix A € £, for
i=0,1. Let S be a F-scheme. We define N, as the subfunctor of N ®¢, F
consisting of tuples (X,ix,Ax,px) € N(S) such that

—1
Px A+ : X _P_X_> X Pat)s

(Pp-)s Xs Px D

px.a-: (Xp-)s
are isogenies.
We have the following lemma.

Lemma 3.1. The functor Ny is representable by a projective F-scheme and
the monomorphism Ny < N Q@ F is a closed immersion.

Proof. See [VW11, Lemma 4.2]. O

Lemma 3.2. IfA € L, then Ny (k) = Sa(k), and if A € LT, then Nj (k) =
R (k).

Proof. This is clear from the definition of Ny. O

3.3. Deligne-Lusztig varieties. In this subsection, we will recall some
results about Deligne-Lusztig varieties.

Let G be a connected reductive group over a finite field 8. Denote by Gz
the base change of G over &, where R is a fixed algebraic closure of &. Let
F : G — @G be the Frobenius morphism with respect to &, and let (W, .S) be
the Weyl system of Gz. Then F gives an automorphism on W. By Lang’s
theorem, G is quasi-split, and hence F(S) = S.

For I C S, let W; be the subgroup of W generated by I, and let P; =
BW;B be the corresponding standard parabolic subgroup of G.

For I, J C S, we denote by /W the set of minimal length representatives
w € W in the double coset W \W/W .

Now, we define the generalized Deligne-Lusztig varieties as follows.

Definition 3.3. Let I C S. For each w € W, we define the generalized
Deligne-Lusztig variety Xi(w) by

Xi(w):={g€G/P;:g ' F(g) € PrwPrp}.
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We will need the following two results later.

Proposition 3.4. ([Hoel0, Lemma 2.1.3]) For w €'W* () the Deligne-
Lusztig variety X(w) is smooth of dimension l(w)+1(Wry) —U(Winwrr)),
where l(w) is the length of w, (W) = max{l(w')|w' € W}, and *F(I) =
wF(Hw™t.

Proposition 3.5. ([BR06]) The following assertions are equivalent.
(1) X1(w) is geometrically irreducible.

(2) Xi(w) is connected.

(3) There ezists no J C S with F(J) = J such that Wrw C W;.

3.4. The Deligne-Lusztig variety Y,. In this subsection, we will define
the Deligne-Lusztig variety Y,. For i = 0,1 we fix a vertex lattice A € £
We use the following notation.

e Let V) be AJ /Ay and let (-, -) be the skew-hermitian form on V) induced
by 7{,-}. Note that V) is a F2-vector space of dimension d := t(A).

e Let Jj be the special unitary group associated to (V,(+,-)). This is a
connected reductive group over F,.

e Let F : Jy — Jp be the Frobenius morphism over F, and (W, S) be the
Weyl system of .Jy.

Note that

JA QF, FqQ ~ SL(VA) = SLdJFqg-

Therefore, we can identify W with the symmetric group Sy, and S with
{s1,...,84}, where s; is the transposition of 7 and i + 1.

The Frobenius F induces an automorphism of W, and this is given by
the conjugation with wg € Sy, where wg(i) = d + 1 — i for all 1.

e For a [ 2-algebra R, we denote by Vi g the base change V) ®p,.2 R. Let

o be the Frobenius of R. For a R-module M, denote by M () = M ®Rr,o R,
the Frobenius twist, and denote by M* = Hompg(M, R). Let U be a locally
direct summand of Vi g of rank m. We define its dual module U" as follows.
Since (-, -) induces an R-linear isomorphism

b (Var)? =~ (Var)",

Y(U)) is a locally direct summand of (V z)* of rank m. Let U" be the
kernel of the composition

Var = (Vagr)™ — ¢(U@)".

This is a locally direct summand of Vi g of rank d — m.
In particular, if R = k, then

UY:{xEmG:(x,U):O}.

Remark 3.6. Let R = k. For a lattice A such that AV C A C A, the
quotient A/m"t1AY is a subspace of Vi . Then by definition, we have

,n_z'—l-lA\//ﬂ_i—l—lA\/ — (A/TFH_IAV)Y.



SUPERSINGULAR LOCUS 21

We will need the following lemma.

Lemma 3.7. ([Voll0, Lemma 2.17]) Fiz I C S, and let §l be a flag in
Jp/Pr. Then the Frobenius F and the duality morphism Fl — I define
the same morphism Jn/Pr — Jx/Pr(p), i.e. the dual flag FU* is equal to
F(F0).

Let A € £§ and d = 21+ h+1 (recall that h is from NE/F(l,n —1)). We
can take the set Iy C S such that the elements in J, /P, parametrize flags

41— h — 1
OEAcBCvA,

where A, B are subspaces of V. For example, we take

In = {81, 51,8142, - -+ » Slths SL4h 25 - -+ > S2A+h )
where h > 1,1 > 1.
In case A € L], and d = 2] + (n — h) + 1, we take Iy C S such that the
elements in Jy /Py, parametrize flags
41 —n—h — 1
0 C B C ACV,,

where 7B, A are subspaces of V.

Definition 3.8. In case h = 0,n, we define wy =id. Incase 1 <h <n-—1,
we define wy as follows. If A € L, we define wy = 5418142 .. 8144 OF
wp = (I + 1,14+ h + 1), the transposition of [ + 1 and | + h + 1. Note that
these two wy gives the same coset in Wy, wyaWx(z,). In case A € L], we
define wa = s;118142 - - - Sitn_h-

Then we have the following proposition.

Proposition 3.9. We have the following bijections.
(1) If 1<h<n-—1and A € L], then

Sa(k) = Xy, (id)(k) U X1, (wa) (k).
(2) If1<h<n-—1and A€ L], then
Ry (k) = X1, (id) (k) U X1, (wp)(K)
(3) If h=0 and A € LT, then
Sa(k) = X1, (id) (k).
(4) If h=mn and A € LT, then
Ry (k) = Xy, (id)(k).

Proof. (1) Let (A C B) € Sy(k). By sending this to (A/7AY C B/mAY), we
have an element in X7, (id)(k) U X7, (wp)(k) (here we use Lemma 3.7).
Indeed, if

l 1 h—1 1 1
0CcwBYCA C mAY C BCA,
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then (A/7AY C B/wAY) € X, (id)(k).
And if
mBY C A¢ nAY C B,
then (A/mAY C B/wAY) € Xp, (wp) (k).
The proofs of (2), (3), (4) are similar. O

Definition 3.10. For i = 0,1, let A € ﬁj. If 1 <h<n-—1, then we define
a [F2-scheme

Y = X]A(id) (| X]A(’u)A) = X]A(’wA).
The second equality is from the property of the Bruhat order (see [HP14,
Lemma 3.7]). If h = 0 and A € £, then we define Y, := X, (id). Similarly,

if h=mn and A € L7, then we define Y, := X7, (id). By abuse of notation,
we denote by Y, its base change Yy ® IF.

By Proposition 3.4 and Proposition 3.5, we have the following proposition.
Proposition 3.11. For A € £ (i =0,1), Y is irreducible, and

(1) if A € L, the dimension of Yy is

t(A)—1—nh
2

(2) if A € LT, the dimension of Yy is

t(A)—1—(n—nh)
2

+ h,

+n — h.

3.5. Description of the points of N,. In this subsection, we will use
the theory of Op-windows in [ACZ16], [Ahs1l] to obtain a description of
N (k) for an arbitrary field extension k of F (For a perfect field k, we can
use the relative Dieudonne theory as in Section 2.2, 2.3). This will be used
to prove the Theorem 3.14. For simplicity we denote by O the ring of
integers Op. Let k be an arbitrary field extension of I, and let Wo (k) be
the ring of ramified Witt vectors. Let Wo , = (Wo(k), Io(k), k,° V') and
Wor = (Wo(F), nWo(F),F,° Y™ ) be Witt O-frames.

Let (M, F,V) be the relative Dieudonne module of X defined in Sec-
tion 2.2. then (M, VM, F,V™!) is the Wp p-window of X. The inclusion
Wo(F) < Wo(k) induces a morphism of O-frames Wor — W ;. Then
by base change, we get the Wo p-window (M, M, F, Vk_l) of X® k. More
precisely,

L Mk = Wo(k) ®Wo(]F) ML

e M = Ker(wy ® pr), where wq is 0-th Witt polynomial, and pr : M —
M/VM.

o Ji. = QF.

oV 1'is the unique ?-linear morphism which satisfies

V,;l(w @y)="weVly,
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Viltwey) =we Fy,
for all w € Wo(k), x € M, and y € VM.
Let N = My ®@w,x) Frac(Wo(k)). The Og-action on M induces the
Opg-action on Nj.
The polarization A ® k on X ®p k induces a nondegenerate Frac(Wo(k))-
bilinear alternating form (-,-) on Ny

(,) : N x Ny — Frac(Wo(k)),
such that for all x,y € N, and a € E, it satisfies
<Fk$7 Fky> = 7T<:E7 y>07

(az,y) = (z,a"y).
The Og-action on Ny induces Z/2Z-grading

N, = Nk70 ) Nk,l'

Each Ny ; is totally isotropic with respect to (-,-) and Fj is homogeneous
of degree 1 with respect to the decomposition. For a Wp(k)-lattice M =
Mo @® M; C N, we define the dual lattice M+ = M1l @ MOl as

MZ‘J_ = {33 € Nk,i+1|<$vMi> € WO(k)}vi =0,1

Let (A7, VA, Fi, V') be the Wo -windows of X+ ® k. Then by the
theory of O-windows, we have the following proposition.

Proposition 3.12. There is a bijection between the set Ny (k) and the set
of Wo(k)-lattices M = My @ My in Ny such that
(1) M is Fy, and Og-invariant.

h —h h —h
(2) My C ML "C 7= My, My C Mg-"C == 1M;.
n—1 ;1 1 , n—1 , , ,
(3) mMy C My C My, My C M{ C M, where M' = M) & M| =
Ker(M — AfJVAL).
(4) A, C M C A}

Proof. The first condition is obvious. The condition (2) is from the condition
on polarization: Ker A\ C X[n] and the order of Ker A is ¢*". The condition
(3) is the determinant condition. The last condition is from the definition
of Nj). O

3.6. The isomorphism between N, and Y,. Let A € [,;r. In this sub-
section, we will prove that Ny and Y} are isomorphic. Let S be a F-scheme,
and let X be a strict formal Op-module over S. We denote by D(X) the Lie
algebra of the universal extension of X in the sense of [ACZ16]. Recall that
X — D(X) is the functor from the category of m-divisible formal O-module
over S to the category of locally free Og-modules. This is compatible with
base change.
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Now, we will define a morphism f : Ny — Y. Let R be a F-algebra, and
(X,ix, \x,px) € Ny(R). By definition of N, we have two isogenies

Px A+

Px . A—
XA-.R » XRr

)

Let By = AT/A™, E(X) := Ker (D(px a-))- Then by [VW11, Corollary
4.7), E(X) is a direct summand of the R-module By ®p R. By the Og-action
on Bp and on E(X), we have the following decompositions

Bp = Bp,0 @ Ba1,
E(X) = Eo(X) ® Ey(X).

We write (-,-)’ for the alternating form 7=**1(- ) on By.

> XA+.R

Remark 3.13. Let R = k be an algebraically closed field. If A € E(J{ , then
Eo(X) = A/mAY and Ey(X)Y = B/mAY (* means the dual with respect
to (-,-)") with the notation use in the proof of Proposition 3.9. Therefore,
Eo(X) ¢ Ei(X)Y. Similarly, if A € L], then Eo(X) = A/x?AY and
E1(X)Y = nB/mx%AV. Therefore, we have E1(X)Y C Ey(X).

From the remark, we obtain a map f : Ny(R) — Yx(R) by sending
(X,ix,\x, px) to (Eo(X) C Ey(X)Y) where A € £, and to (E(X)* C
Eo(X)) where A € £ (note that both Eo(X), F; (X)L are subspaces of
Bpo = Vi in Section 3.4). Since this map commutes with base change, it
gives the desired morphism f : Ny — Yj.

Theorem 3.14. The morphism f is an isomorphism.

Proof. The proof is the same as the proof of [VW] Theorem 4.8. Indeed, f
gives a bijection on k-valued points, where k is algebraically closed field by
Lemma 3.2, Proposition 3.9. Therefore, f is universally bijective. Since AN
is proper (by Lemma 3.1) and Y, is separated, we have that f is proper.
Therefore, f is a universal homeomorphism. Now, for an arbitrary field
extension k of IF, we can work systematically using Proposition 3.12 to show
that f is a bijection on k-valued points, and hence f is birational. Therefore
f is proper, finite, birational morphism, and Y} is normal (See [G6r09, Fact
2.1]). Now, by Zariski’s main theorem, f is an isomorphism. U

3.7. Regularity of N. In this subsection, we will prove that NOE =
N / p(1,n —1)o, is regular, where E' = Q2. Therefore, in this subsection,
m=p, F'=Qp, E = Q,2, but, we will use the general notation. See Proposi-
tion 3.33 for the general case. First, note that Np, = Ng/p(l, n—1)o,, is for-
mally smooth over Spf Oy (see [VW11]). This shows that Ng/F(l, n—1)o,
is formally smooth over Spf O, since NV ~ N™ (see Remark 5.2). There-
fore, we can assume that 1 < h <n—1. When h = 1, the regularity of NOE
is proved in [RSZ18a, Theorem 5.1]. We can use the same method to prove
the regularity of NOE’ where h > 2. To prove this, we need the local model
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for N as in [RZ, Definition 3.27] and [PRS]. We will follow the definition in
[RSZ18a]. Let I(+,-) be a E'/F-hermitian form on E™ given by the matrix

oy,
In—h

Fix an element § € Oy, such that §* = —§. Let (-,-) be the F-bilinear
alternating form on E™ defined by

1
(x,y) = §TTE/F(5Z(:E7ZJ))7 T,y € E".

Let Ag := O% and A := 77_10% D O%‘h. Then Ay is the dual lattice
of Ay with respect to (-,-). The local model AN"¢ is the scheme over Op
representing the functor which sends each Og-scheme S to the set of pairs
(Mg, My) satisfying the following conditions:

e For each i = 0,1, M; is an O ®0, Og-subsheaf of A; ®0, Og which

Zariski locally on S is an Og-direct summand of rank n;

ﬂ_h n—h
e The natural maps Ay ®o, Os = A1 ®0o, Os and A; ®o, Os M

Ao ®0o, Og carry My into M; and M into My, respectively;

e Mg = M, with respect to the natural perfect pairing (A9 ®o, Os) x
(A1 ®0, Og) = Og induced by (-, );

o It satisfies the determinant condition of signature (n —1,1)

Charpol(a ® 1|M;) = (T — a)" YT — a*) € Og[T]

for all @ € O, i =0, 1.
As in [RSZ18a], the base change (N°)p, is the local model for No, .
Therefore, we can use this to prove the following local property of NOE'

Proposition 3.15. If 1 < h < n — 1, then the formal scheme NOE has
semistable reduction. In particular, NOE s reqular.

Proof. By [RZ, Proposition 3.33], it suffices to show that local model N
has semistable reduction. Let S be a Og-scheme. Consider the decomposi-
tion
Og Rop Og — Og x Og
a®br— (ab,a™d).

For any (Mo, M) € N¢(S), the above decomposition induces decom-
positions

M; = M; & M C A @0, Os = (Ai @0, Os) @ (Ai ®0o, Os)",i=0,1.

By the determinant condition, M) C (A; ®0, Og)’ is Og-locally direct sum-
mand of rank n — 1. Since My = M7, we have that M}, and M/ determine
MY and M, respectively. Therefore, the map (Mg, M) — (M}, M) is
an isomorphism from A€ to the standard local model over Og in [G6r01]
for the group GL,, the cocharacter = (1(*~1),0), and the periodic lattice
chain determined by (A¢®0,O0r) C (A1®0,Og)". By [Gor01, 4.4.5] (in case
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k=h,r=n—1or k=h,r =1, since two cases are isomorphic by Lemma
4.8 in loc. cit), this standard local model has semistable reduction. O

3.8. The global structure of N: the Bruhat-Tits stratification. In
this section, we will study the global structure of N' = NE/F(I, n—1). Let
N eq be the underlying reduced subscheme of A. We define

b n if (n — h) is odd;
Ml n—1 if (n—h) is even,

‘o _{ 0 if his odd;
M1 if his even.

Let A be the set of lattices in Ly of type tmin, and B the set of lattices in
Ly of type tmax. By Remark 2.14, we have a bijective map from Ear ULy to
L& U LT, This map sends an element A € A, to 7AY which is an element of
Ef of type n — timin. We have the following theorem.

Theorem 3.16. The map sending A € A to Nypv and A € B to Ny is a
bijective map from AU B to the set of irreducible components of Nyeq. For
A e A, N pv is an irreducible component of dimension

h_l_tmz’n

—h).
" (0= )

For A € B, N is an irreducible component of dimension

tmaz — 1 —h

— + h.

5 +

Proof. This is clear from Proposition 2.16, Proposition 2.17, Lemma 3.2,
Proposition 3.11. O

Let J = SU(Ny,{-,-}) (recall that N = Ny @ N is the rational relative
Dieudonne module of X and {-,-} is a form defined in Section 2.3). This is
an algebraic group over F' . We denote by B(j , ') the abstract simplicial
complex of the Bruhat-Tits building of J. By [Voll0, Theorem 3.6] and
[VW11, Section 4.1], we can identify £y with the set of vertices of B(.J, F).
Proposition 2.16, Proposition 2.17, Lemma 3.2 show that the intersection
behavior of Ny (A € £J), Nxav (A € Ly) is closely related to the Bruhat-
Tits building structure of B(J, F'). For example, let

1 1 1 1 1
Apin C...CACAN C...C Apax,

be a chain in Lo, where Apin, A, A/, Anax are of type tmin, h — 1, h + 1, tmax,
respectively. Then we have

Nﬂ—Av c-C NT(AX\in’
NAf (@R CNA

max *
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By the above Theorem 3.16, Nzpv Ny

mi

N,eq. For an algebraically closed field k containing IF, we have
Naav (k) N Nar(k) = {(mAY, Ay} # 0.

Also, we have the following proposition.

max

Proposition 3.17. Let Ao, A{ € £, A1, A} € LT

(1) The following assertions are equivalent.

(a) NAO ﬁNA(f) # 0.

(b) AoﬂA6 Eﬁg_

In this case, we have

Nao NNy = Nignay-

(2) The following assertions are equivalent.

(a) Na, NNy, # 0.

(b) A4 ﬁAll € ﬁii_

In this case, we have

Nay "Ny = Ny -

(3) The following assertions are equivalent.
(a) NAO ﬂNAl # 0.
(b) 7TA\1/ C Ap.
(4) For an algebraically closed field k containing F, we have

Nk = | Nk

Aeciuct

27

are irreducible components of

Proof. (1), (2), (3) are clear from Proposition 2.16, Proposition 2.17, Propo-

sition 2.18. (4) is clear from Proposition 2.10, Lemma 3.2.
For i = 0,1 and A € L, we define a set
L£i={A e LN C A},
and let
Ny =M\ | Mo
Necrt
We have the following analogue of [VW11, Proposition 5.3].
Proposition 3.18. The subset N} is open and dense in Ny.
Proof. The proof is the same as the proof of [VW11, Proposition 5.3].
By definition, we have a disjoint union of locally closed subschemes
Ny =Ny U |_| Ny
NeLf

This gives a locally finite stratification (V) e+ ;_q of N

O

O
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Definition 3.19. The stratification (V) _+,;_ ; of N is called the Bruhat-

Tits stratification. The closed subschemes N, A are called the closed Bruhat-
Tits strata.

3.9. The moduli space ./\/'g/K(r,n —r). Let K be a finite extension of
Qp contained in F', with ring of integers O, and residue field F,. We
fix a uniformizer w. In this subsection, we will define the moduli space
NE /i (r,n —r). For this, we imitate the construction in [Mih16]. We will
use the notation in Section 2. Also, we will use the theory of O-display in
[ACZ16].

Let F'* (resp. E") be the maximal unramified extension of K in F' (resp.
E). Let [F : K] = ef, where f = [F" : K] is the inertia degree, and
e = [F : F"] is the ramification index. We denote by K the completion
of a maximal unramified extension of K, and ¥ : K — K the Frobenius
automorphism. We choose a decomposition ¥ := Hom g (E*, K ) =VYoU Wy
such that (¥o)* = ¥y, where * is the nontrivial Galois automorphism of E
over F'. We fix an element vy € ¥y, and E:=F ® B 1o K.

Definition 3.20. ([Mih16, Definition 2.7]) For a € E, we define the follow-
ing polynomials,

Py (a;t) = TT #(Charpolgp.(a:t)) € E"[t);
Pev;

Pi (i) = Pg/ (at)(t — a)(t — ") 7! € Blt);

PN (ast) = (PEG () (Pl (a:t)" ™" € Et).

Definition 3.21. (cf. [Mih16, Definition 3.1]) Let S be a scheme over
SpfOgr. A (supersingular) hermitian Op-Og-h-module over S is a triple
(X,ix,Ax), where X/S is a supersingular strict formal Ox-module, iy is
an Op-action on X, and Ay : X — XV is a polarization such that its Rosati
involution induces the involution * on Opg. Also, Ker Ax C X|[r] and the
order of Ker \x is s2/" = ¢%h.

An isomorphism (resp. quasi-isogeny) of two hermitian Og-Og-h mod-
ules (X,ix,Ax) and (Y,iy,\y) is an Og-linear isomorphism (resp. quasi-
isogeny) o : X — Y of the underlying strict formal Og-modules and
a” o Ay o « differs locally on S from Ax by a scalar in O.

We say that a hermitian Og-Og-h-module (X, ix, \x) is of rank n if the
K-height of X is n[E : K|.
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Let X be a hermitian Og-Og-h-module over a Spf Og-scheme S. Then
by Og-action, we have the grading

Lie(X) = @P Liey(X).
Ppevw

Here Liey(X) is the direct summand on which Ogu« acts via 1. We define
the following determinant condition.

Definition 3.22. (cf. [Mih16, Definition 2.8]) Let S be a scheme over
Spf Og. A hermitian Og-Og-h-module (X,ix,Ax) of rank n over S is of
signature (r,n —r) if for all a € Op,

(3.9.1) Charpol(ix (a)|Lie X) = P(Pi/n[fr) (a;t),
(3.9.2) (ix(a) = a)lLie,, (x) = 0.
Here, we view P(fgir)(a; t) as an element of Oglt] via the structure mor-

phism. The second equation means that Of acts on Liey, (X) via the struc-
ture morphism. Note that (3.9.1) implies (3.9.2) if F is unramified over

Qp.

Let (X,ix, Ax) be a hermitian Og-Og-h-module of signature (r, n—r) over
F,. Let N2 /i (r,n — 1) be the set-valued functor on (Nilp) which sends a
scheme S €(Nilp) to the set of isomorphism classes of tuples (X, ix, Ax, px)-
Here (X, ix, Ax) is a hermitian Og-Og-h-module of signature (r,n—r) over
S and px is a Og-linear quasi-isogeny

szXXSg%XXqug
of height 0.

Furthermore, we require that the following diagram commutes up to a

constant in O,

)‘Xg v
Xz — XY

e 4]
)\X§ v
Two quadruples (X,ix, Ax, px) and (Y, iy, Ay, py ) are isomorphic if there
exists an Op-linear isomorphism « : X — Y with py o (a xg S) = px and
aY o Ay o «a differs locally on S from Ax by a scalar in O.
The functor A7 / x(r,n — 1) ® Op is representable by a formal scheme
which is locally formally of finite type over Spf O (See [Mih16]).

Remark 3.23. Let us fix a hermitian Op-Z,-h-module (X, ix, Ax) of sig-
nature (r,n — ) over Fyp2 such that its rational Dieudonne module (N, F)

generated by elements n € N satisfying F2/n = p/n, where f is a inertia
degree of F//Q,. Such a triple exists by [Mih16, Lemma 2.10] with slight
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modification of the polarization and the base field. This is decent in the
sense of [RZ, Definition 2.13|, and hence we can use [RZ, Theorem 2.16].
Therefore, if we fix such a triple, then the functor N7 /Qp(r,n —r) is rep-
resentable by a formal scheme which is locally formally of finite type over

SpfOE

Remark 3.24. One can see that there is a unique hermitian Og-Z,-h-
module (X ix, A\x) of signature (r,n—r) over k up to quasi-isogeny, where k is
an algebraic closure of F 2. This can be proved by using [Mih16, Proposition
2.5], [Mih16, Lemma 2.10] with slight modification of the polarization.

Remark 3.25. The definition of N / p(r,n —7) in Section 2 coincides with
the definition in this section.

Definition 3.26. (cf. [Mih16, Definition 4.2]) We denote by Op-Og-h-
Herm the stack of hermitian Og-Og-h-modules (X, ix, Ax) over Sch / Spf O
such that locally for Zariski topology, it is of signature (r,n —r) for some 7.

The morphisms in this category are the Og-linear morphisms of p-divisible
groups.

Now, let S = Spec R be an affine scheme over Spf Op and (X,ix, Ax) be
an hermitian O g-Og-h-module of signature (r,n—r) over S. Let (P, Q, F, F)
be the Og-display (i.e., Ox-window over Wo,. r) of (X,ix,Ax). We denote
by (-,-) : P x P — Wo, (R) the Wo, (R)-bilinear alternating form induced
by Ax. From the Og-action, we have the decomposition

OF ®0, Wog (R) ~ H OF ®0,. Woy (R).
Pevw
This decomposition gives gradings

P=1[ Ps= [] Pvo Py,

Pew PeWy
Q=J[Qu= I Qve -
Pev PeWy

Let (PY,QV, FY, F}) be the dual Og-window of (P, Q, F, F}) (see [Mih16,
Section 11]), and consider its gradings

P =11 R/ =11 P} ® Py,

Pew IS
vV VvV Vv Vv
Q" =TI @l= II @ieQ)-
Pew Pev

Let Py g := Py ® Q, and let (-,-)g = (-,-) ® Q. Note that our pairing
satisfies
<’7 '>Q’P¢vQXP1ZJ’,Q =0 if /l/}/ 7é w*
Therefore, we have
P} = {z € Pygl(z, Py)g C Wo(R)}.

Also, we have the following lemma.
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h
Lemma 3.27. The order of Ker \x is ¢*" = s2/" if and only if Py, C PJ,
Yy e U .

Proof. Let Py = Ly®Ty, Qy = Ly+Io, (R)Ty be a normal decomposition.
By the signature condition, we have

Ly =Py, Ty =0, if ¢ € Yo\ {¢o},
L¢ = O,T¢ = Pw, if ¢ S \Pl\{¢6}

From the normal decomposition, we get a -linear isomorphism

@¢ZP¢:L¢€BT¢ — PFw
(L,t) = () +F@)

By our special signature condition, we have
(I)w : Pw — PFw
T Fl(a:), if (VNS \PQ\{¢0}

@wipw — PFw
z = F(z), ifyeUi\{o5}

k
We claim that if Pr,, C Py s, for some k, then for all 1) € ¥ we have

k
Pw C P’Z\’/ .
First, note that @, is a F_linear isomorphism, hence
<I>(PF%) = Ppi+1w0,
O (Ppi w;;) = Pr
We will show that ®(P); . ) =Pl
0

i+1 w* .
0

“ for 1 <i < f —1. Note that
0

T € P;/i+1 0 = (x,PpiJrl

(4
& (z,®(Pp

¢S> C WOK(R)
iwg» - WOK(R)‘

First, assume that Fi?[)é‘ € Uo\{?p}, then & = F; on Ppiw*. Therefore,
0
(x, ®(Pp

= <$, Fl(PF
A <CI)((I>_1($))7F1 (PF

i¢3)> C WOK (R)

) € Wo (R

).
i¢5)> - WOK(R)'

Since z € PY,, _ and My € U1\ {¢§}, we have

o
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)): Fi(Pr
& (F(27 (2)), (P,

%

)) € Wo (R)

)) € Wog (R)
g <<I>‘1(fc),PFi¢5> C Wog(R)
s ) e PFV%.

i
Yo

i

Here, we used the fact that (F-, Fy-) = (Fy-, F) =F ().
In the case that "5 € ¥1\{vg}, we can prove the claim in the same
way.

Therefore, (ID(P;%) =Pl ; for1<i< f—1.

P
k
Now, assume that Pr, C Py vo? then we can show inductively that

k
Privi, =®(Ppi, ) C <I>(P}’i¢0) =P/ Vi<i<f-1

Yo wo) i+11l10’

k k
Since Py C PIZ if and only if Py« C PIZ*, we can conclude that the claim
holds.
By this claim, we have

2fh h
|Ker x| =s*" o P z PV & Py C Py, Vel
O

With this lemma, we can follow the whole steps in [Mih16, Chatper
4]. Indeed, the only difference is the polarization, hence with the above
lemma, one can show the following analogue of [Mih16, Proposition 4.4].
Let Sch/Spf O (resp. Sch'/SpfOp) be the category of schemes (resp.
locally noetherian schemes) over Spf O together with the Zariski topology.

Proposition 3.28. (¢f. [Mih16, Proposition 4.4]) There is an isomorphism
of stacks over Sch / Spf Og

Ck.ruv : Op-Ok-h-Herm 5 Op-Opu-h-Herm

that is equivariant for the Rosati involutions and sends objects of signature
(rym —r) to objects of signature (r,n —r).

Proof. One can follow the proof of [Mih16, Proposition 4.4] with Lemma
3.27. Also see [Mih16, Remark 4.5]. O

In addition, we can show the following analogue of [Mih16, proposition
4.6].

Proposition 3.29. (¢f. [Mih16, Proposition 4.6]) There is an isomorphism
of stacks over Sch' / Spf O

Cru.p : (Op-Opu —h—Herm)oE = (OE—OF—h—Herm)oE
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that is equivariant for the Rosati involutions and sends objects of signature
(r,n —r) to objects of signature (r,n —r). Here, (=)o, means the base
change to Ojp.

Proof. One can follow the proof of [Mih16, Proposition 4.6] with Lemma
3.27. O

The following proposition is an analogue of [Mih16, Theorem 4.1].

Proposition 3.30. (¢f. [Mih16, Theorem 4.1]) For any intermediate field
Qp C K C F, we have an isomorphism

CK,F * (Ng/F(Tvn - T))OE = (Ng/K(Tvn - T))OE'
Furthermore, if F' is unramified over Qp, then
CK.F: NE/F(r,n —7) =~ /\/’E/K(r,n —r).

Proof. This follows from the above two propositions, and by fixing framing
objects. See the proof of [Mih16, Theorem 4.1]. O

Remark 3.31. Let F' be an unramified extension of Q,. Let (X, ix, Ax)
be a hermitian Og-Z,-h-module in Remark 3.23 and consider a hermitian
Og-Op-h-module Cq, r((X,ix, Ax)) by using Proposition 3.28. By Remark
3.23, we have that N }% /Qp(r,n — 1) is representable by a formal scheme
over Spf Og which is locally formally of finite type, with the framing object
(X,ix, Ax). Therefore, by Proposition 3.30, N g / p(r,n —r) is representable
by a formal scheme over Spf Og which is locally formally of finite type with
the framing object Cq,,r((X, ix, Ax)).

Remark 3.32. One can see that there is a unique hermitian Og-Og-h-
module (X, ix, A\x) of signature (r,n — r) over k up to quasi-isogeny, where
k is an algebraic closure of F 2. This can be proved by using Remark 3.24,
Proposition 3.28, Proposition 3.29.

Proposition 3.33. If h = 0,n, the formal scheme Ng/F(l,n — 1o, is
formally smooth over Spf Op. If 1 < h <n—1, then Ng/F(l,n — 1)OE has
semistable reduction. In particular, it is reqular, for all h.

Proof. When h = 0, it is proved in [Mih16, Proposition 2.14]. Since Ng/p(l, n—
Do, and N p(1,n — 1)o, are isomorphic (see Remark 5.2), N (1, n —
1)OE is also formally smooth over Spf Oj. Now assume that 1 <h <n —1.
By Proposition 3.30, it suffices to show that A/ }% /Qp (1,n—1)o,, has semistable
reduction. Since this moduli problem is PEL-type, it suffices to show that
its local model has semistable reduction ([RZ, Proposition 3.33]). To define

the local model AN*¢ in our case, we need to use the notation in Section 3.7
(here, we follow [RSZ18b, Appendix B]). Let (-, -) be a E/F-hermitian form

ln h '
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Fix an element § € O, such that §* = —d. Let HE}QP be a generator of
the inverse different of F'//Q,. Let (-,-) be the Q,-bilinear alternating form,

(.Z',y) = TTE/QP(HE}Qpél(x7y))7 T,y € E".

Let Ag = OF and Ay = 77_10% &) O%_h. Then the dual A} of the lattice Ay
with respect to (-,-) is Ag. Now, let £ be the self-dual lattice chain

{-CcahiCAyCA=AyCrAyC ...}

Then N is the functor which sends each Op-schemes S to the set of
isomorphism classes of families (A ®z, Os — Pj)ae, such that

e For each A, P, is an Op ®z, Og-linear quotient of A ®z, Og, locally
free on S as an Og-module.

e For each inclusion A C A’ in £, the arrow A®z, Og — A'®z, Os induces
an arrow Py — Pas.

e For each A, the isomorphism A ®z, Os LCEN (mA) ®z, Og identifies
Pr — Pra-

e For each A, the perfect pairing (A ®z, Os) x (AY ®z, Og) M Og
identifies (Ker(A ®z, Og — Py))* with Ker(AY ®z, Og — Pyv).

We need to impose one more condition.
By the Og-action on S, there is a natural identification

Ogu Xz, Og — H Og.

Ppew
This induces a decomposition,
Pr — @ P -
Pew
e For each A, P, satisfies
(3.9.3) Charpolo,(a ® 1[Py) = P32 (ai ),
(3.9.4) (@a®1—-1®a)|Pyy, =0.

Here, Pp 4, is the direct summand on which Ogu acts via 1. These two
conditions follow from the conditions (3.9.1) and (3.9.2).

Now, fix a scheme S over Op, and let (A ®z, Og — Pa)acr € N(9).
By the signature condition (3.9.3), we have
Pa,pp 18 locally free of rank 1 over Og,
Py = Payge € (A ®z, Os)y;,
Pry =0 if ¢ € ¥o\{¢o},
Pry = (A @z, Os)y= if € Ui\{¢g}.

Therefore, (A ®z, Os — Pp)aec is determined by (Pa y,)acc-
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Also, by the condition (3.9.4), O acts on Py 4, via the structure mor-
phism, therefore Py 4, is a quotient of

AA = (A ®Zp OS) ®OE®ZPOS OSu

which is locally free of rank n over Og.

It follows that the map (A ®z, Os — Pa)aer + (Ax — Payo)rec
is an isomorphism from £!°¢ to the standard local model over Spec Op in
Proposition 3.15 (i.e. the standard local model with the group GL,, the
cocharacter p = (1*=1,0), and the lattice chain £). Therefore, by [Gor01,
4.4.5] (in case k = h,r = 1) again, this local model has semistable reduction.

O

4. UNIFORMIZATION OF UNITARY SHIMURA VARIETIES

In this section, we will define a Shimura variety and study its basic locus.
This Shimura variety is studied in [RSZ18b]. In this section, we use the
notation A for the adele rings and A s for the ring of finite adeles and A‘? for

the finite adeles away from the prime p.
Let F be a CM field over Q and F'* be its totally real subfield of index 2.

We fix a presentation F' = F*(v/A). Denote by d the dimension of F'+ over
Q. We denote by a — a the nontrivial automorphism of F/F*. Denote by
®p+ (resp. ®p) the set of real (resp. complex) embeddings of F* (resp.
F). We define ® as the CM type of F' determined by VA, ie.,

®:={¢p € Bp | p(VA) € RogV/—1}.

We have a natural projection 7w : ®p — ®p+. For every 7 € @+, denote
by 77 (resp. 71) the unique element in ® (resp. ®x\®) whose image under
mis 7. We fix a distinguished element 71 € @+ (resp. 77 € D).

4.1. The Shimura data. We first define the Shimura data (G,{hg}) as
follows. Let V be a F//FT-hermitian vector space of dimension n with the
hermitian form

(-,')VZVXV—>F,

that is F-linear in the first variable. Let U (V') be the unitary group of V.
This is a reductive group over F'™ such that for every FT-algebra R,

U(V)(R) ={g € Autg(V@p+ R)|(gv,gw)y = (v,w)y, Yv,w €V &p+ R}.

We assume that for 71, the signature of V ®p+ ;, R is (1,n — 1) and for
7 € ®p\{71}, the signature of V ®@p+ , R is (0,n).
Let G := Resp+ /g U(V). We define the Hodge map

hG : ReS(C/R Gm,(c — GR
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by the map sending z € C* = Resc/g Gim.c(R) to

<( z/% L >’(I")v"',([n ))7

where we identify Gg(R) as a subgroup of GL,(C)? via {r{ ,--- ,7; } = ®.
Then we have a Shimura data (G, {hg}).
Now, we will define the second Shimura data (Z,{hz}). Let Z be the
torus
Z:={z¢€ Resp+ /g G| NmF/F+(z) € G}
We define the Hodge map
hZ : ResC/R Gm@ — Z]R

by the map sending z € C* = Resc/r Gm,c(R) to

((2),-(2):22),
where we identify Zg(R) as a subgroup of GL1(C)4 x C* via {r,--- ,7; }.
Then we have the second Shimura data (Z, hz).
Now, we consider the reductive group G = G x Z over Q. We define its
Hodge map
ha:R (ha hz) A
G+ hesc/r Gm@ —= Gk.
Then (G, {hg}) is the product Shimura data, which is defined in [RSZ18b]
(with the same notation). Denote by E its reflex field. This is the fixed field
of the following subgroup

Aut(C/E) :={o € Aut(C)loc o ® = ® and o1y =17 }.

This Shimura variety has a moduli interpretation over Spec E. We recall
this moduli problem from [RSZ18b, Section 3.2]. First, we need to define
an auxiliary moduli problem M over Of, where a is a fixed nonzero ideal
of Op+. We denote by Mg its generic fiber. For a locally noetherian Op-
scheme, we define M§(S) to be the groupoid of triples (Ao, 0, \o), such
that

e Ay is an abelian scheme over S with an Op-action iy : O — End(Ay),
which satisfies the Kottwitz condition of signature ((0,1)res,., ), ie.,

Charpol(i(a)| Lie(A)) = H (T — 7% (a)), for all a € Op.

TE¢F+

e )\ is a polarization of Ay such that Ker \g = Ap[a]. Also, A\g’s Rosati
involution induces on Op, via iy, the nontrivial Galois automorphism of
F/FT.

A morphism between two objects (Ao, i, \o) and (Af), i, Ay) is an Op-
linear isomorphism g : Ag — Aj under which Xj, pulls back to Ag.

This M is a Deligne-Mumford stack, finite and étale over Spec Og. Also,
we can choose an ideal a such that M§ is nonempty ([RSZ18b, Remark 3.3]).

A

Let Kz C Z(Ay) be the unique maximal compact subgroup Z(Z).
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If F* = Q, then MJ®C is isomorphic to the Shimura variety Shi, (Z, hz).
In general, M§ ® C is copies of Shk,(Z, hz) and each copy corresponds to
a similarity class of a certain 1-dimensional hermitian space. More pre-
cisely, we define R (F') as the set of isomorphism classes of pairs (W, (-, -))
where W is a 1-dimensional F-vector spaces and (-,-) is a nondegenerate
alternating form (-,-) : W x W — Q such that

e (ax,y) = (z,ay) for all z,y € W, a € F;

o z — (V/Az,z) is a negative definite quadratic form on W;

e IV contains an Op-lattice A whose dual A+ with respect to (-,-) is a 71 A.

We denote by R§(F')/~ the set of similarity classes of elements of R (F')
by a factor in Q*.

Then, we have a disjoint union decomposition

MG ~ | ] MW,
WERS (F)/~

and each MS’W ® C is isomorphic to the Shimura variety Shk,(Z, hz). We
denote by Mg W the generic fiber of MS’W.

From now on, we fix an element W € R§ /.~

Now, we consider open compact subgroups Kz C G (Ay) of the form

K@ =Kogx Kz C G(AFJr,f) X Z(Af),

where K¢ is an open compact subgroup of G(Ap+ ¢).

We now define a moduli functor Mg G(é) on the category of locally noe-
therian schemes over E as follows. For every such scheme S, let Mg G(é)(S )
be the groupoid of tuples (Ay, g, \o, 4,7, A, 7), where

e (Ao, ig, Ao) is an object of MS’W(S).

e A is an abelian scheme over S with an F-action i : F — End(4)g
satisfying the Kottwitz condition of signature ((1,n—1)7, (0,n)rea, \{r}):
ie., foralla e F,

Charpol(i(a)| Lie(A)) = (T — 7y (a))(T — Tl"'(a))"_l H (T —7%(a))".
red i \{n}

e )\ is a polarization of A, whose Rosati involution induces on F', via 1,
the nontrivial Galois automorphism of F/FT.
e 7 is a Kg-level structure. This is a Kg-orbit of Ap ¢-linear isometries

1 : Homp(V(Ag), V(A)) =~ —V ®@F Ap .
Here, —V is the same E-vector space as V, but its hermitian form multiplied
by —1. We write V(A) for the full rational Tate module of A. Also, we
considered Homp (V' (Ap),V(A)) as a hermitian space with the hermitian
form h 4,

ha(z,y) = )\al oy'olox € EndAF’f(V(AO)) =Ar;.
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A morphism between two objects
(A(], 'L'O’ >\07 Aa i) >\a ”7) — ( 67 ZE)? 67 Ala il, >\/7 ’F//)y

is given by an isomorphism pg : (Ao, 0, Ao) =~ (A, (. Ay) in MS’W and an
F-linear isogeny p : A — A’ pulling X back to A and 7/ back to 7.
Now, we can state the following proposition.

Proposition 4.1. ([RSZ18b, Proposition 3.5]) Mk, (G) is a Deligne-Mumford
stack smooth of relative dimension n — 1 over Spec E. The coarse mod-

uli scheme of MKC.’,(G) 18 a quasi-projective scheme over Spec E, naturally
isomorphic to the canonical model of ShKG.(G, {hat). For Kg sufficiently
small, the forgetful morphism MKG(G) — MOC"W is relatively representable.

4.2. Integral models. In this subsection, we will imitate the semi-global
integral model in [RSZ18b, Section 4]. Our case is related to AT parahoric
level. We use the following notation. Fix a prime p # 2 and an embedding
7:Q— Qp. This embedding determines places u of E, vy of F'™, and wq of
via 71 . Denote by S, the set of places v of F'* over p. Let F, := F @p+ F,F.
Then, F, is a quadratic field extension of F, (resp. F, ~ F,f x Ef), if v
is nonsplit (resp. split). Denote by 7, a uniformizer in F;, (when v splits,
this uniformizer is an ordered pair of uniformizers on the right side of the
isomorphism F, ~ F,” x F,F). Assume that vg is unramified over p and inert
in F. We assume that the ideal a in the definition of Mg is prime to p and
we fix an element W € R§/~.
Now, we choose lattices A, C V,, such that

A, C AL C A,

where A;- means the dual lattice of A, with respect to the hermitian form.
Let h be the index of Ay, in Ay, i.e., [A : Ay] = h.

V07

We take open compact subgroup Kz C G(A ) as follows.
K@ZKngZ:Kg XKG,pXKz,

where K¢, C G(AY, ;) is arbitrary, and

Kap = ][ KewC [] G(F)),
veS) veS)
where K¢, is the stabilizer of A, in G(F;").

Now, we can formulate a moduli problem over SpecOp () as follows.
For a locally noetherian scheme S over Spec Op, (), we associate the set of
isomorphism classes of tuples (Ay, ig, Ao, 4,4, A, "), where

e (Ag,ig, A\o) is an object of MS’W(S).

e A is an abelian scheme over S.
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e i is an O ® Zy-action satisfying the Kottwitz condition of signature
(1,n=1)7,(0,n)rca, \{n}), i€, forall a € F,
(4.2.1)
Charpol(i(a)| Lie(A)) = (T'— 1, (a))(T—Tl"'(a))"_l H (T —77(a))".
TE€EP L \{T1}

e )\ is a polarization of A, whose Rosati involution induces on Op ® Z )
the nontrivial Galois automorphism of F/F*. Also, we impose the following
condition. The action of Op+ ® Zy = [[,cg, Op+, induces a decomposition
of p-divisible group,

Ap=] = ] Ap>].
vES)
Since Rosati involution of A fixes O+, A induces a polarization A, : A[v>°] —
AV[v™>®] ~ A[v>™]Y for each v. We impose the condition that Ker A, is con-
tained in A[i(m,)] of rank |A;-/A,| for each v € S,
o 77 is a Kg-orbit of AL -linear isometries

n: Homp(VP(Ag), VP(A)) ~ -V @p A%’f.
Here, —V is the same E-vector space as V, but its hermitian form multiplied
by —1. We write VP(A) for the rational prime-to-p Tate module of A.

Also, we considered Homp(V?(Ag), VP(A)) as a hermitian space with the
hermitian form A%,

My (@.y) = Ay oy o Xow € Endyy (V7(A0) = A% .

For v # vg, we impose the Eisenstein condition and the sign condition.
Before we explain these conditions, we define a function r : Hom(F,C) —
{0,1,n — 1,n} such that,

1 T=1;
T, = 0 7€ ®\{r };
n—rs T ¢ P.
First, we recall the Eisenstein condition from [RSZ18b, Section 4.1]. We

impose the Eisenstein condition only when the base scheme S has nonempty
special fiber. In this case, we may base change via @ : Op ) — Zp (the ring

of integers of @p), and pass to completions and assume that S is a scheme
over Spf Z,. We have a decomposition of the p-divisible group

Ap™] =TT A[w™).
wlp

where w runs over the places of F' over p. Since we assume that p is locally
nilpotent on S, there is a natural isomorphism

Lie A ~ Lie A[p™] = @A[woo].
wlp
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By using the embedding v : Q — @p, we can identify

HOHIQ(F, @) = HOHIQ(F, @p)a
and this gives an identification
(4.2.2) {r € Homg(F,Q)|? o 7 = w} =~ Homg(F,, Qp).
For each place w, by the Kottwitz condition (4.2.1), the p-divisible group
A[w®™] is of height n[F,, : Q,] and dimension

dim A[w™] = Z Tr.

TEHOmQ(Fw7©p)

For each place w such that w|v and v # vg, the action of F' on A[w™>]
is of a banal signature type in the sense of [RSZ18b, Appendix BJ. In other
words, 7r is 0 or n for all 7 € Homg(Fy, Qp). Let m = m, be a uniformizer
in F, and let F}; be the maximal unramified extension of Q, in F,,. For
each ¢ € Homg(F%,Q,), let

Ay = {r € Homg(F,, Qp)|7|rs = ¢ and r; = n}.

Let
Qa, = H (T — 7(m)).

TEAw

Then, the Eisenstein condition at v(# wvg) is as follows. For each place w

that divides v, and for all ¢y € Homg(Fy, Q)),
Qa,, (i(m)| Lie A[w™]) = 0.

Now, we will define the sign condition at v(# vp). We impose this condi-
tion only when v does not split in F'. The sign condition at v is the condition
that for every point s of S,

iIlVZ (AO,Sy Z‘0,57 )\0787 As: ls, )\s) = iIle(—Vv).

We need to explain these two factors. For the left one, we refer to [RSZ18b,
Appendix A]. Also, we define

inv, (=V,) := (=1)"™ Y2 det (-V,) € F;F*/Nm F}*,

where det(—V,) € F,~*/NmF;"* is the class of the determinant of any
hermitian matrix of the hermitian space —V,,.
A morphism between two objects

(A07i07)‘07A7i7)‘777p) — ( 67i67)‘E)7A,7i,7)‘/7ﬁ/p)7

is given by an isomorphism (Ag,ig, Ao) =~ (A, iy, Aj) in MS’W(S) and a
quasi-isogeny A — A’ which induces an isomorphism

A[p>] = A'[p™],
compatible with ¢ and ', with A and )\, and with 7P and 7’P.
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Proposition 4.2. The moduli problem defined above is representable by
a Deligne-Mumford stack M. (G) flat over SpecOg (). For K?, small

enough, MKG(C?) 1s relatively representable over MS’W. The generic fiber

M4 (G) XSpecOp () SPEC E is canonically isomorphic to Mg (G). Further-
more, if h = 0,n, then MKG(G) is smooth over SpecOg (,y- If h # 0,n,

then Mk (G) has semistable reduction over Spec O () provided that E, is
unramified over Q.

Proof. The representability and the statement for the generic fiber and the
smoothness when A = 0 (and hence when h = n) are proved in [RSZ18b,
Theorem 4.1]. Therefore, it suffice to show that this has semistable reduction
over Spec Op, ) where h # 0,n and E,, is unramified over Q. To prove this
we need to use the theory of the local model as in [RSZ18b, Theorem 4.10].
The local model corresponding to Ay is étale because MS’W is. Let M be
the local model corresponding to A. Before we prove that M has semistable
reduction, we introduce some notation. By the identification (4.2.2), we
have

(4.2.3) Homg(F, Q) ~ |_| Homg, (Fy, Qp).
vES)

Let 7|, : Homg(F,,Q,) — {0,1,n — 1,n} be the restriction of the function

r to Homg(F,,Qp). Let

Sigr‘v = E T,

T€Homg(Fy,Qp)

which is an element of N[® ], the commutative monoid freely generated by
® . Note that the Galois group Gal(C/Q) acts on ® hence on N[®fg]. Let

E,|, be the fixed field of the stabilizer in Gal(C/Q) of the element sig, .
Then we have a decomposition

M = H M, X SpecOp, | Spec Og,,,
vES)

which is induced from (4.2.3).

For v # vy, by our Kottwitz condition, M, is a banal local model as in
[RSZ18b, Appendix B]. Therefore, M, = Spec Og,,. Also, My, is a local
model which appears in the proof of Proposition 3.33 (here, we used the con-
dition that v is unramified, and therefore the condition (3.9.2) follows from
the condition (3.9.1) which follows from the Kottwitz condition). Therefore,
it has semistable reduction over Spec OEM. Since E, is unramified over Q,
(hence, over E,|,) and semistable reduction is stable under an unramified
base change, M has semistable reduction over SpecOg,, O
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4.3. The uniformization theorem. In this subsection, we will relate the

basic locus of the special fiber of Mg (G) to the (relative) Rapoport-

Zink space N
p Fug/Fif

formization theorem of Rapoport and Zink. We will follow the proof of
[RSZ18b, Theorem 8.15]. In order to simplify notation, we write M for
Mk (G), and./\/'for/\/;i /F+(1,n—1).

wo v0

Let E, be the completion of a maximal unramified extension of E,,, and
k be the residue field of OEU‘ Let MOE =M R0, (u) OEu' We denote by

M?*% the basic locus of M ®0g, () k and by M5s the completion of Moﬁ;
along M3,
Choose a point (Ao, %9, Ao, A, %, A, 1) of M**(Oy ). Let

Xo = Ao[p™] = [lies, Ao[v™],
X = Ap™] =Iles, Alv™],

(I,n — 1) in Section 2, via the non-archimedean uni-

and ix,, Ax,, ix, Ax be the induced O ® Z,-actions and polarizations. This
choice gives us the following non-archimedean uniformization morphism
along the basic locus by [RZ, Theorem 6.30],

0 : I(Q)\N x G(AR)/KE ~ M.

Here the group [ is an inner form of G associated to the hermitian space V7,
where V' is negative definite at all archimedean places and isomorphic to V'
at all non-archimedean places except at vy (hence, by the product formula
and the Hasse principle, V'’ is determined), and AN’ is the corresponding
Rapoport-Zink space whose framing object is (Xo, ix,, Axy, X, iX, AX)-

By [RSZ18b, Lemma 8.16], we have

N = (Z(Qp)/Kzp) x (NE, jo,(Ln=D)oy, x I UWVINEN/Ke.
veSp\{vo}

Also, by Proposition 3.30, No,, =~ (/\/ﬁwo/(@p(l, n—1))o, -

The following theorem summarizes the above discussion.
Theorem 4.3. There is a non-archimedean uniformization isomorphism
0 : [(Q)\N' x G(A}) /K. ~ M-,
where
N' = (2(Qy)/Kz) x Noy, x T] UWV)ES)/Ke..
vESp\{vo }

Proof. This is essentially the same as the proof of [RZ, Theorem 6.30]. For
the convenience of the reader, we will construct the inverse morphism of
O. Let S be a OEu—Scheme such that p is locally nilpotent. Let s be a
geometric point of S. Choose a point P = (Ag,ig, Ao, 4,1, \, ) € M*5(S).
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By [RZ, Proposition 6.29], we can choose Op-linear quasi-isogenies

po : Ao x5 Sk, — Aok Xk Sk,
p:AXg S — Ap Xi Sk,

compatible with polarizations. Then, we have the induced quasi-isogenies

po = Ag[p™] x5 Sk — Xok i Sk,
p: A[p™] x5 Sk — Xy Xy, Sk,

The tuple (Ag[p>], A[p], po, p) (with the induced O ® Z,-actions and the
induced polarizations) gives an element in A(S) and this is the N/ part of
e0~1(P).

Now, we should find an element (z,g) € Z(A‘?) X G(A?) = G(A?) such
that 6_1(P) = ((A0[poo]7 A[poo]’ P0, 10)7 (Za g))

The element z in Z (A?) comes from the moduli space MS’W. More pre-

cisely, by definition of MS’W, we have two O ® A?—linear similitudes

£:VP(Ags) = W @ AP,
:VP(Ag) = W @ AL

Therefore, the composite
—1 ~ A
W @ AL S UP(Ags) 2% UP(Ag) & W @ AP

gives an element z in Z(A%).
For the element g, consider the composite

Vo A, T Homp(V7(Ags), T77(A,)
—1
M Homp(VP(Aok), VP(Ax)) 2 —Ver A%,f’

This is an isometry which gives rise to an element g in G(Ag’f).
The construction of © is identical to the arguments in [RZ, Chapter 6]. I

5. SPECIAL CYCLES AND ARITHMETIC INTERSECTION NUMBERS

In this section, we use the notation in Section 2. Also we denote by k = I_Fp
and by wal the valuation of E. We will define the special cycles and study
their intersections.

Let (Y,ig, Ay) be a strict formal Op-module of F-height 2 over k, with
an action iy : Op — End(Y) and with principal polarization Ay. Also, we
assume that it satisfies the determinant condition of signature (0,1). Let
N?(0,1) be the corresponding moduli space. To simplify notation, we write

N for N(0, Do, N for Ng/p(l,n —1)o, and N for Ng/_lff(l,n — 1o,
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Definition 5.1. The space of special homomorphisms is the E-vector space
V := Homgp, (Y, X) ®z Q.

For x,y € V, we define a hermitian form h on V as

1

iz
h(z,y) = 25" oy” o Ax oz € Endo, (V) ® Q ~ E.
We often omit z%l via the identification Endp, (Y) ® Q~E.

Remark 5.2. We have an isomorphism between N and N. For each O o
scheme S, the isomorphism sends (X, ix, Ax, px) € N(S) to

=V _ 7
(XV,ZXv fX)(pX) 1) GN(S)
Here \y : XV — X is the unique polarization such that Ny o Ax = ix(m),

and for a € Op, we define ix(a) := ix(@)".

Definition 5.3. We write 6 : N — N for the isomorphism which is defined
in Remark 5.2.

Definition 5.4.

(1) For a given special homomorphism x € V, we define the special cycle
Z(x) associated to x in N? x N as the subfunctor of collections
¢ = (Y, iy, Ay, py X, ix, Ax, px) in (MY x N)(S) such that the
quasi-homomorphism

p;<10$op7:7xS§—>Xxs§

extends to a homomorphism from Y to X.

(2) For a given special homomorphism y € V, we define the special
cycle Y(y) associated to y in N'° x A as follows. First, consider the
cycle Z(A\x o y) in NV x N. This is the subfunctor of collections
¢ = (V,ig, Ay pys XV 1, N, (0%)™1) i (V0 x N)(S) such that
the quasi-homomorphism

p}/(o)\xoyop?:?XSF%Xv Xg S
extends to a homomorphism from Y to XV. We define Y(y) as
(id x 0~1)(Z(A\x 0 %)) in N0 x .
We note that N0 can be identified with Spf O, hence Z(z),Y(y) can be

identified with closed formal subschemes of N. Also, by abuse of notation,
we often write x : Y — X for the extension of quasi-homomorphism ,0)_(1 o

T o ,O?

Let M = Mg @M? be the Dieudonne module of Y. As in [KR11, Remark
2.5], it is easy to see that Mg = Oplp and Mg = Oply, where F1; = 1o,
Flp =71y and {Ip,To} = 7. We write NV for M’ R Q.

Now, let # € V. This induces a homomorphism from N° to N. We also
write x for the induced homomorphism. Note that we can write x = xg+ x1,
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where g : N — Ny and x7 : NY — Nj, since the morphism z has degree 0
with respect to the decompositions NJ @ N and Ny & N.

To study the sets of k-points Z(x)(k),V(y)(k), x,y € V, recall that we
have a bijection between N (k) and the set of lattices (A, B) in Ny (see
Proposition 2.4). Now, we can state the following analogue of [KR11, Propo-
sition 3.10].

Proposition 5.5. (¢f. [KR11, Proposition 3.10]) For z,y € V, we have the
following bijections.

(1)

; xBY C A" BY,
= -latti 1 _n-1
Z(z)(k) = F amees | cav e B''c AV,
A C BC Ngp 7B C AC B,
:E(](T(]) € tBY.
(2)
1 n—1
7BY C A C BY,
O z-lattices 1 _n-1
Y(y)(k) = . TAY C B C AY,
A C B C Nip 7B C AC B,
yo(To) e rAY.

Proof. The proof of (1) is identical to the proof of [KR11, Proposition
3.10]. For (2), note that for the Dieudonne module M = A @& Bt of
(X,ix,\x,px) € N(k), its dual M+ = B @ At is the Dieudonne mod-
ule of XV (here, © means the dual with respect to (-,-) in Section 2.2).
Therefore, (2) can be proved in the same way:. O

Lemma 5.6. ([Vol10, Lemma 1.16]) Let t € O with t* = —t and let V' be
a E-vector space of dimension n. Let I, be the identity matriz of rank n
and let J, be the matrixz

1

There exist two perfect skew-hermitian forms on V up to isomorphism.
These forms correspond to tl, and to tJ, respectively. Furthermore, if M
s a lattice in 'V and i € Z with

aHMY C M Ay
thenn—r =ni mod 2 in the first case and n—r % ni mod 2 in the second
case.

Proof. See [Voll0, Lemma 1.16]. Note that F' is a finite extension of Q,,
therefore the above statement is more general. But, the proof is identical.
O
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Remark 5.7. Recall that the E-vector space N, k0 in Section 2.3 has a lattice

M with

eV E M MY
This fact follows from Lemma 2.7. Therefore, by the above lemma, the form
{-,-} is isomorphic to tI, if n —h —1 =0 mod 2 and is isomorphic to t.J,
ifn—h—1#£0 mod 2.

We need the following analogue of [KR11, Lemma 3.7].
Lemma 5.8. Assume that h # 0,n. Then we have

(A= (0),
A

where A runs over all vertex lattices of type h + 1.

Proof. First, assume that n = h + 1 4+ 2k for some integer £ > 0, and h + 1
is odd. Then by Remark 5.7, the form {-,-} is isomorphic to tI,. Choose
a basis {e1,...,e,} such that {e;,e;} = td;;. Choose any h + 1 elements

{f17"' afh-i-l} in {617"'>en} and rename {617"' aen} to {f17"' afn}
Let «, 5 be elements in E such that aa® = —1 and 53* = 1/2.
We define

Ih+1 = fnet,
92i+1 = B(faix1 + afait2),
gaiv2 = B(fais1 — afoira), YO<i<h -1

Then we have

{92i+1,92i41} =0, {92i42, 92142} =0,
{92i41, g2i42} =1t, VO<i<h/2 -1

Now consider an element v € E such that 1 + yy* = 7, and define
hpt142it1 = far142i1 TV nr142it2
hhyiv2iv2 =V frrir2ien — frria2ite, VO<i<k—1.
Also, we define
Iht1+42i+1 = B(hny142i41 + ahny1y2it2)
Ght142i42 = B(Ahr142i41 — Chppi42i2), Y0O<i<k—1.
Then we have

{9n+142i41: Ght142i+1} = 0, {Ght14+2i+2: Ght142i42} = 0,
{9n+142i01, Ghy1y2ipe} = tm, VO<i<k—1.

For I := (a1,...,ap/2,b1,...,bx) € ZM2 x 7k, we set
A{le---vgn}yf = [7Ta1917 T ga,..., 7-‘-ah/2ghb—17 7T_ah/29h7 X
Ght 1, T Ght 2y ooy T kgn]

Then, this is a vertex lattice of type h 4+ 1 and we have

ﬂ A{Ql,---7gn}7f = (0)7
{917---7!]71}7[
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where {g1,...,9n} runs over all choices and I runs through Zh2 % 7k,
This proves the lemma in the case that n = h + 1 + 2k for some integer
k>0, and h+ 1 is odd.
Similar arguments work for the other cases. O

Proposition 5.9. The functors Z(x) and Y(y) are represented by closed
formal subschemes of N° x N. In fact, Z(x) and Y(y) are relative divisors
in NO x N (or empty) for any z,y € V\{0}.

Proof. If h = 0 (resp. h = n), then we have Z(z) = Y(x) (resp. Z(nx) =
Y(x)). Therefore, the case where h = 0 is proved in [KR11, Proposition
3.5] (the case that h = n is the same since we have the isomorphism 0).
For the other cases, we can follow the proof of [KR11, Proposition 3.5] with
Lemma 5.8. Indeed, we only need to show that Z(x)(k) cannot be NV (k). If
N (k) € Z(z)(k), then we have

x € ﬂWAV,
A

where A runs over all vertex lattices of type h + 1. This fact follows from
Lemma 2.7 and Proposition 5.5. Now, since we have

ﬂWAV C ﬂA: (0),
A A

by Lemma 5.8, we have that x should be 0. This finishes the proof of the
proposition. O

We have the following analogue of the remarks after [KR11, Lemma 5.2]
(and also in [KR]).

Proposition 5.10.
(1) If val(h(z,z)) = 0, then Z(x) ~ NE/F(l,n ~2)0,-
(2) If val(h(y,)) = —1, then V() ~ Ni7h(Ln — 2o,

Proof. (1) For an Og-scheme S, assume that (X,ix,Ax,px) € Z(z)(95).
We can take a rescaled x by an element in Oj; such that h(z,z) = 1. We
denote by z* the element A=! o ¥ o Ax. Then we have that e := z o z*
is an idempotent in Endp, (X), so that X = e(X) x (1 —e)(X). Via this
decomposition, we have the decomposition of the action ix = i1 X i9. Also,
note that we have the canonical isomorphisms e¢¥(XV) = (eX)Y and (1 —
e”)(X) = ((1—e)(X))Y. By this identification, we have that the polarization
Ax decomposes into the product of polarizations \; = Ax oe and Ay =
Ax o (1 —e) of eX and (1 — e)(X) respectively. Let p; = eo px, p2 =
(1 —e) o px, the quasi-isogenies of e(X) and (1 — e)X, respectively. Then
x defines an isomorphism Y ~ e(X) compatible with polarizations, and
((1 —e)(X),i2, A2, p2) gives an element in Ng/F(l,n —2)o,(S).
Conversely, for an element (Xa,i2, Ay, p2) € NE/F(I, n—2)o,(S), we can
take X =Y x Xy with z = inc; : Y — X, the action ix = iy X iz, the
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polarization Ay x Ay and the quasi-isogeny py X p2. Then this gives an
element in Z(z)(S). This construction gives the inverse of the previous one
up to isomorphism.

(2) For an Op-scheme S, let (X,ix,Ax,px) € Y(y)(S). Consider

9((X7Z.X7/\X710X)):(vag;/(7 S{v(p}/()_l)'
For z = Ax oy, let 2* :)\%IOZVO)\/ . Then we have
z¥oz —)\— oy oAy oNyoAxoy
—>\ oy¥o (- >\X)0>\'X0>\X0y
:—Wh(y,y)

Therefore, val(z* o z) = 0. We can take rescaled y by an element in O}
such that z* o z = 1. Then we have that e := z o z* is an idempotent in
Endp, (X"). Now, as in the proof of (1), we have that

_.\/

(1= )XY, 7%, (1 — )Xy, (1 — )(0)™) € MR — 2)0,. ().
Therefore, by taking 671((1—e) X", 7y, (1—e¥ )Ny, (1—e)(p%) ™)), we have
an element of Ng;}(l, n—2)o,.

Now, let (X2,i2, A2, p2) € Nh 1(1 n—2)o,. We will construct the inverse
of the above construction. Flrst consider
9((X2,i2,/\2,,02)) (X27Z27 27(!02) ) NE‘/F( _2)OE
Then we define .
XV =Y x XY,
E}/( = Z? X g2,
iX = )\7 X )\/2,
(p%)~! = py x (p3)
This (XY, 7y, Ny, (p%) ™) is an element of /\/”_h(l,n ~ 1o,
Now, we define (X, ix,Ax,px) =0 1(XV,7ix, Ny, (p%) ™), with

Ax oy :=1inc; : Y — XV,

-1

Then, this (X,ix,Ax,px) gives an element in )(y) and this construction
inverts the previous one up to isomorphism. O

Proposition 5.11. Assume that val(h(z,z)) = 0, val(h( y)) = —1. As-
sume further that by rescaling as in Pmposztzon 5.10, x*ox =1,(Axoy)* o
(Axoy) = 1. We define e :== x0oz* and e, := (Axoy) o ()\X oy)*. Fiz
isomorphisms

D Z(x) ~ N p(lin —2)o,,
U Y(y) ~ NE/F( Z)OE’
as in Proposition 5.10. Then the following statements hold.

(1) For z € V such that h(z,z) =0, let 2’ := (1 —e,)oz. Then, we have
O(Z(x)NZ(2)) = Z(7) in E/F(l,n —2) and h(Z',2") = h(z, 2).
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(2) Forw €V such that h(z,w) =0, let w' := (1—e;)ow. Then, we have
O(Z(x)NY(w)) = Y(W') in Ng/p(l,n—2) and h(w',w'") = h(w,w).

(3) For z € V such that h(y,z) = 0, let 2’ := (1—e,;)oz. Then, we have
V(V(y) N Z(2)) = Z(z') in N a(l,n = 2) and h(2',2') = h(z,2).

(4) Forw €V such that h(y,w) = 0, let w' := (1—e, Jow. Then, we have
UV (y)NY(w)) = Y(W') in /\/h ~(1,n—2) and h(w',w'") = h(w,w).

Proof. We will prove (3). Similar arguments work for (1), (2), (4). For
an element (X,ix,A\x,px) in Y(y) N Z(z), we denote by (Xa,ix,, Ax,, PX;)
the element ¥ ((X,ix,\x,px)) in g/}l(l n —2)o,. Also, we denote by
(Xq, ix,, Ax, ) the framing object of ./\fh ~(1,n— 2)0,- By definition of Y(y)
and Z(z), we have that e, can be extended to a morphism in End(XV),
and z : Y — X can be extended to a morphism z : ¥ — X. Therefore,
2 = (1—e))oz can be extended to a morphism Y — Xs = (1—e,)X. This
proves that ¥(Y(y) N Z(z)) C Z(2').

Conversely, for a given element (Xa,ix,,Ax,,px,) in Z(z'), we can use
the construction in Proposition 5.10, with

2z =incpor 1Y = Xo 5 X =Y x Xo.

This construction gives an element in Y(y) N Z(z), and it is the element
U1 ((X2,ix,, AXy, pX,))- Therefore, we have ¥(Y(y) N Z(2)) = Z(2).
Now, it remains to show that h(z’,2") = h(z, z). We have

h(z',2) = )\%1 o (2")V oAx, 027

=Aghe(eel-g))o((l—e)oxn) o ((1-c))o2)

—)% oz o(l—ey)o)\xoz
_)‘Y 02" O)\on—)\— 0zVoe 0Axo0z
=h(z,z2) — )\— 02V oeyO)\on

Here, we used e, o A\x = Ax o (e, ). Now, it remains to show that
A%lozvoeyo)\xoz:O.

Note that
ey:)\Xoyo)\§10yVO)\§/§O)\§g .

Therefore, we have

:A%lono)\Xoyo)\%loyVo)\%gO)\ggo)\XOZ

The last equality follows from our assumption h(y, z) = 0. This finishes the
proof of (3). O
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Lemma 5.12. Assume that x1,22,y1,y2 are linearly independent special
homomorphisms in V and

val(h(z1,21)) = 0,val(h(y1,y1)) = —1.
Then we have the following assertions.
(1) OZ( 1) ®6y Oz(23) = Oz(21) Q0n Oz (ay)-
( ) (z1) ®EéN Oy(yz) = OZ(xl) ®O/\/’ Oy(yz)'
(3) 0y(y1> ®ON Oz(2s) = Oy) @0n Oz(ar)-
(4) Oy(y) @65 Ov(y2) = Ov(yr) @0n O(ya)-
Here, we write @ for the derived tensor product of Onr-modules.

Proof. (1) By Terstiege’s proof in [Terl3, Lemma 3.1], it suffices to show
that Z(x1) and Z(z2) have no common component. By Proposition 5.10,
Z(x1) ~ /\/}%/F(l, n—2)o,, and by Proposition 5.11, Z(z1) N Z(z2) = Z(x3)
in g/F(l, n—2)o,.. Therefore, by Proposition 5.9, Z(z1)NZ(x2) is a divisor
in }%/F(lv n —2)o,. This implies that Z(z1) N Z(x2) has codimension 2 in
N and hence, Z(z1) and Z(z3) have no common component.

The proof of (2),(3),(4) are similar. O

Remark 5.13. Let {x1,...,2p_p,y1,.-.,yn} be an orthogonal basis of V.
If val(h(z1,21)) = 0, then by above lemma, we have

Oy(y1) @6 " @0, Ovin) @0, O2(a1) @6, "+ @6, O2(wa 1)
= (Oz@@) @6 Oyn) €65,y " 621, (O2() B0 O2(an-1)
= (Oz()) ®ox Oy) @65, "~ ©6s,) (Oz@1) @0y Oz, 1)

_ L L
- Oz(xl)my(yl) ®OZ(11) e ®OZ(:¢1) OZ(wl)ﬂZ(xn,h)

_ L L ol
o Oy(yi) ®0Nh(1,n72) o 'OZ(:C/Z) ®O/\/’h(l,n72) ®0Nh(1,n72) OZ(:(::%h)'

In the last line, we regard the special cycles Y(y), ... Z(x},) as the cycles in
N"(1,n — 2) via the identification Z(x1) = N"(1,n — 2) as in Proposition
5.11.

Similarly, we can do the same reduction, when val(h(y1,y1)) = —1. In
this case, we have an intersection in N"~1(1,n — 2)

Let [x,y] := [z1,..-,%n_h,Y1,--.,ys] be an orthogonal basis of V. We
will compute the intersection number
(Oy() @6 " @6 Ov() @6 Oz(ar) @6+ ®6 O )
XY (y1) Qo On Y Y(yn) ¥On Y Z(z1) FON On Y Z(zn—n))s

in some special cases. Here, we write x for the Euler-Poincare characteristic
([KROO], [Zhal2]). More precisely, for the structure morphism w : N' —



SUPERSINGULAR LOCUS 51

Spf O} and for a sheaf of Ox-modules H, we define
X(H) = Z(—l)i lengthg (R'w,H).

For a bounded complex of sheaves H® of Oa-modules, we define
X(H®) := Z(—l)lx(’}-ll)

Theorem 5.14. Let {x1,...,Zpn_n,Y1,---,Yn} be an orthogonal basis of V.
Assume that

val(h(x;,x;)) =0 forall3<i<n-—h,

val(h(y;,y;)) = =1  for all1 < j <h,
and write a := val(h(z1,x1)), b := val(h(za,x2)). We assume that a < b
and a £ b mod 2. Then we have

1 a
X(Oy(y1) ®6y -+ @6y Oz(ay)) = 3 > da+b+1-2).
=0

More generally, consider another basis [Z, Y] := [T1, . Tn—h,T1s---TUn)
of V such that * = Zg1,Yy = g2 for g1 € GL,_r(Og) and g € GLy(OF).
Then we have

1 a
X(Oy@,) ®6y -+ @6y Oz(a) = 3 > da+b+1-20).
=0

Proof. By applying Remark 5.13 repeatedly, the problem reduces to the case
of n = 2 and we need to compute the intersection number

L
X(Oz(z21) 6,0, ) OZ(22))-

This intersection number is computed in [Liull, Theorem 4.13]. Indeed,

1 a
L !
X(02(21) @60, ,, Oz(z) = 5 g d(a+b+1-20).

For the general cases, first we need to show that (Y(g1)N---NZ(Zy)) (k)
is a single point. By Proposition 5.5, (Y(g1) N --- N Z(&p)) (k) is
*BY & A'C BY

1 n—1
h TAY C B C AY;
(5.0.1) Op-lattices A C B C Ny B C AC B:
jl(T(l)a R ,fn_h_(T()) S 7TB\/;
91(To), ..., 9n(Tg) € TAY.

It is easy to see that this is the same as (Y(y1) N --- N Z(zp))(k), since
the above conditions in (5.0.1) are invariant under the linear combination
X = &g1,y = §g2. Also, by Remark 5.13, we know that this is a single
point. Therefore, we can use the length of a deformation ring to compute
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our intersection number as in [KR11, Section 5], and this is invariant under
the linear combination [X,y]| = [xg1,ygz2]. Therefore, we have
X(Oy@) €65+ B0y Oz(@n) = X(Oyi) @6, @6, Oz(wn)
=3 Stodia+b+1—2I).
O

Theorem 5.15. Let {x1,...,Zp_pn,Y1,...,Yn} be an orthogonal basis of V.
Assume that

val(h(z;,x;)) =0 for all 1 <i<n —h,

val(h(y;,y;)) = —1 for all 3 < j < h,

and write a := val(h(y1,y1)), b := val(h(y2,y2)). We assume that a < b and
aZb mod 2. Then we have,

+
=

a

¢'(a+b+3—2I).

Tﬁ)—n

Lol
=)

X(Oy(yl) ®Eé/\f T ®Eé/\f OZ(:vh)) -
1

More generally, consider another basis [Z, Y] := [Z1,. -, Tn_h,U1,---Un)
of V such that & = g1,y = §go for g1 € GL,_r(Op) and g2 € GLy(OFg).
Then

<

a+1

1
X(Oy(g) @6y ©6, Oz(a) = 5 2 d'(a+b+3-20).
=0

Proof. By applying Remark 5.13 repeatedly, the problem reduces to the case
of n = 2 and we need to compute the intersection number

L
X(Oy ) @00, ., Ovwn))-

By applying 6, we can change our problem to the problem of computing the
intersection number

X(OZ()‘XOZJI) (X%NO(M) OZ(AXOyz))'

Note that Axoy1, Axoys have orders a+1 and b+ 1, respectively. Therefore,
by [Liull, Theorem 4.13], we have

1 a+1

L l

X(OZ()\Xoyl) ®ON0(1,1) OZ(AXOyz)) = 5 l_g - ¢ (a+b+3—20).

The proof of the general case is the same as Theorem 5.14. (]

Remark 5.16. Assume that
val(h(z;,x;)) =0 forall1<i<n—h-—1,
val(h(y;,y;)) = —1 forall 1 <j<h-—1.

In this case, by the above remark, we can reduce the problem to the inter-
section problem in N71(1,1) that is the Drinfeld upper half-plane. In this
case all intersection numbers of special cycles (even in the case of improper
intersection) can be computed explicitly (see [Sanl7] or [KR00]). We will
compute this in forthcoming work.
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