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1l semble donc (et c’est le point de vue de
H. Hasse, F.K. Schmidt et O. Teichmiiller)
que l'on ne puisse étudier les opérateurs Ay
isolement, mais uniquement le systéme qu’ils
forment avec les relations qui les relient.
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Abstract

Let k£ be a commutative ring and A a commutative k-algebra. In this paper we
introduce the notion of enveloping algebra of Hasse-Schmidt derivations of A over k
and we prove that, under suitable smoothness hypotheses, the canonical map from the
above enveloping algebra to the ring of differential operators & 4, is an isomorphism.
This result generalizes the characteristic 0 case in which the ring 94, appears as the
enveloping algebra of the Lie-Rinehart algebra of the usual k-derivations of A provided
that A is smooth over k.
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Introduction

In classical Z-module theory, left @x-modules on a smooth space X (e.g. a smooth algebraic
variety over a field of characteristic 0, or a complex smooth analytic manifold, or a smooth
rigid analytic space over a complete ultrametric field of characteristic 0, etc.) are the same
as modules over the structure sheaf Ox endowed with an integrable connection, which is
equivalent to an Ox-linear action of the module of derivations Per(0x) satisfying Leibniz
rule and compatible with Lie brackets. A similar result holds for right @x-modules. This
fact plays a basic role in classical @2-module theory, for instance in the definition of various
operations or in the canonical right @ x-module structure on top differential forms on X.
It can be conceptually stated as saying that the sheaf @x is the enveloping algebra of the
Lie algebroid Dery(0x) and it is strongly related with the canonical isomorphism of graded
Ox-algebras:

Sym,, Dery(Ox) = gr Dx/y - (1)

The main motivation of this paper is the existence of a canonical isomorphism:

['4 Derg(A) = gr D Ak (2)
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for any commutative ring k (of arbitrary characteristic) and any HS-smooth k-algebra A
(see Definition 23.11]), where I' 4 denotes the power divided algebra functor (remember that
Ty =Symy, if Q C A). The proof of @) in [I1] depends on the fact that for a HS-smooth
k-algebra A, any k-derivation 6 : A — A is integrable in the sense of Hasse—Schmidt (see
Definition 2Z.3T]). This result suggests that, under these hypotheses, the ring of differential
operators 9 4 should be recovered in some canonical way from Hasse-Schmidt derivations.
This paper is devoted to answering this question.

The main difficulty is that Hasse-Schmidt derivations have a much less transparent
algebraic structure than usual derivations. The module of usual derivations Dery(A) carries
an A-module structure and a k-Lie algebra structure, and both are mixed on a Lie-Rinehart
algebra structure, enough to recover the ring of differential operators as its enveloping algebra
provided that Q C k and A is smooth over k (see [I5]), although Hasse-Schmidt derivations
were only known to carry a (non-commutative) group structure. In our previous paper [13],
we introduced and studied the action of substitution maps (between power series rings) on
Hasse—Schmidt derivations, to be thought as a substitute of the A-module structure on usual
derivations.

In this paper we prove that both the group structure and the action of substitution maps
allow us to define the enveloping algebra of Hasse-Schmidt derivations and to prove that,
under smoothness hypotheses, this enveloping algebra is canonically isomorphic to the ring
of differential operators without any assumption on the characteristic of k. A key step in the
proof is the existence of a canonical map of graded algebras from the power divided algebra
of the module of integrable derivations (in the sense of Hasse—Schmidt) to the graded ring
of the enveloping algebra of Hasse-Schmidt derivations.

Let us now comment on the content of this paper.

In section 1 we recall and adapt, for the ease of the reader, the material in [I3] §1, §2,
§3]. We will concentrate ourselves in the case of power series rings and modules in a finite
number of variables, which will be enough for our main results in section In the last
sub-section we recall the notions of exponential type series and power divided algebras.

In section 2 first we recall the notion of Hasse-Schmidt derivation and its basic proper-
ties. As we already did in [I3] §4], we need to study, not only uni-variate Hasse—Schmidt
derivations, but also multivariate ones: a (p,A)-variate Hasse-Schmidt derivation of our
k-algebra A is a family D = (Dg),ca of k-linear endomorphisms of A such that Dy is the
identity map and

Da(zy) = Y Dg(z)D,(y), Vo€ AVa,y € A,

Bty=a

where A C NP is a non-empty co-ideal, i.e. a subset of NP such that everytime € A and
o’ < a wehave o/ € A. An important idea is to think of Hasse-Schmidt derivations as series
D =73 _. Das® in the quotient ring R[[s]]a of the power series ring R[[s]] = R[[s1, ..., sp]],
R = Endg(A), by the two-sided monomial ideal generated by all s* with & € NP\ A. In the
second sub-section we recall [I3] §5] on the action of substitution maps on Hasse-Schmidt
derivations. The starting point is simple: given a substitution map ¢ : A[[s1,...,Sp]]la —
Allt1,...,tq]]lv and a (p, A)-variate Hasse—Schmidt derivation D = Y _, D,s* we may
consider a new (g, V)-variate Hasse-Schmidt derivation given by:

peD = Z ©(s*)Dy,.

aceA



In the last sub-section, we first recall the notion of integrable derivation: a k-derivation
0 : A — A is said to be m-integrable if there is a uni-variate Hasse-Schmidt derivation
D = (D;)!", such that Dy = 4, and second we recall the main results in [I1].

Section 3 contains the original results of this paper. First, we introduce the notion of HS-
module, as a generalization of the classical notion of module with an integrable connection.
Roughly speaking, a left HS-module is a module M over our k-algebra A on which Hasse—
Schmidt derivations act “globally”, in a compatible way with the group structure and the
action of substitution maps, and satisfying a Leibniz rule. More precisely, for each (p, A)-
variate Hasse-Schmidt derivation D = 3 _, D,s® of A, M is endowed with a k[[s]]a-linear
automorphism WX (D) : M[[s]]a — M[[s]]a congruent to the identity modulo (s), in such a
way that:

-) The ¥4 (—) are group homomorphism.
-) For each substitution map ¢ : A[[s]]a = A[[t]]v we have UL (peD) = @eUh (D).
-) (Leibniz rule) For each a € A we have WX (D)a = D(a)V4 (D).

Any 9 4/,-module is obviously a HS-module, since Hasse-Schmidt derivations act through
their components, which are differential operators. Namely, if M is a left @ 4 /-module, for
each (p, A)-variate Hasse-Schmidt derivation D = 3" _. Das* of A we define W/} (D) as:

VR (D)(m) =Y (Dam)s®, Vm € M.

aEA

The basic question is whether a HS-module structure can be lifted to a @ 4 /,-module struc-
ture or not.

To illustrate the notion of HS-module, or more precisely, the notion of pre-HS-module
structure (i.e. the compatibility with substitution maps only holds for substitution maps with
constant coefficients), we give natural actions of Hasse-Schmidt derivations on €24/, and on
Dery,(A) generalizing, respectively, the classical Lie derivative and the adjoint representation
of classical derivations.

In the second sub-section we generalize the well known ® and Hom operations on modules
with an integrable connection to the setting of HS-modules. In the last two sub-sections we
define the enveloping algebra of Hasse-Schmidt derivations of a commutative algebra, and
we prove, by imitating [I1], that there is a canonical map of graded algebras from the power
divided algebra of the module of integrable derivations to the graded ring of the enveloping
algebra of Hasse—Schmidt derivations. We finally prove that, under the HS-smoothness
hypothesis, the former map is an isomorphism and we deduce that the canonical map from
the enveloping algebra of Hasse—Schmidt derivations to the ring of differential operators is an
isomorphism. As a corollary, HS-modules coincide with @-modules for HS-smooth algebras.

I would like to thank the referee for the careful reading of the paper.

1 Notations and preliminaries

1.1 Notations

Throughout the paper we will use the following notations:

-) k is a commutative ring and A a commutative k-algebra.



-) D4y, is the ring of k-linear differential operators of A (see [4]).
-)ys={s1,...,8p}, t ={t1,..., g}, ... are sets of variables.
-) k-algebra over A: see Deﬁmtlon m
Jng:={aeNP | a<p})for § € NP

)t = {a e N? | |a|] <m} with m > 0.

-) 85 (NP) is the set of all non-empty co-ideals of N?: see Notation [L2.3
-) Tara is a truncation map: see ().

-) UP(R; A), %5 (R; A), %%, (R; A): see Notation [L2.41
-) r ¥ r': see Definition []

) re=7:osee [@); g g°: see [B).

-) Homy (—, =), Autgyg), (—): see Notation [L2.T1l
-) Sa(p,q; A, V) is the set of substitution maps: see Definition [L31]

-) Ce(p, ): see ([I3).

3 our, e seeL3BE  per, rep: see 37

-) P, Px: see ([I8) and (7).

-) &m(B) is the set of exponential type series: see Definition [[L4.1]

-) Sym 4 M is the symmetric algebra of the A-module M.

-) T4 M is the power divided algebra of the A-module M: see Definition [[.4.3

-) HSY(A; A) is the set of (p, A)-variate Hasse-Schmidt derivations: see Definition 2ZT.11
-) aeD: see Definition 213

-) P, for ¢ a substitution map and D a Hasse-Schmidt derivation: see Proposition 2.2.3l

-) Uajp = Ta//1 is the enveloping algebra of the Hasse-Schmidt derivations of A over k:
see Definition B.3.7

1.2 Rings and modules of power series

Throughout this section, k will be a commutative ring, A a commutative k-algebra and R a
ring, not-necessarily commutative.

Let p > 0 be an integer and let us call s = {s1,...,sp} a set of p variables. The support
of each @ € NP is defined as suppa := {i | a; # 0}. The monoid NP is endowed with a
natural partial ordering. Namely, for o, 8 € NP, we define
a<pf &5 IFyeNPsuchthat B=a+y < o <B Vi=1l...p
We denote |af := a1 + -+ + ap. If a < then |a] < |8]. Moreover, if a < 8 and |a| = |f],
then a = f.

Let M be an abelian group and M [[s]] the abelian group of power series with coefficients
in M. The support of a series m = Y mqas® € M([s]] is supp(m) := {a € N? | m, # 0} C
NP. It is clear that m = 0 < supp(m) = (). The order of a non-zero series m =3 mqs* €
M][s]] is
ord(m) := min{|a| | @ € supp(m)} € N.
If m = 0 we define ord(0) := co. If M is an A-module, then M|[[s]] is naturally an A[[s]]-

module and for a € A[[s]] and m,m’ € M|[[s]] we have supp(m +m’) C supp(m) Usupp(m’),
supp(am),supp(ma) C supp(m) + supp(a), ord(m + m’) > min{ord(m),ord(m’)} and



ord(am), ord(ma) > ord(a) + ord(m). Moreover, if ord(m’) > ord(m), then ord(m + m') =
ord(m).

The abelian group M][[s]] is the completion of the abelian group M|[s] of polynomials
with coefficients in s with respect to the (s)-adic topology, and its natural topology is also
the (s)-adic topology.

When M = R is a ring, R[[s]] is a topological ring. If M is an A-module, there is a
natural A[[s]]-linear bicontinuous isomorphism:

A[s|®aM — M[[s]], (3)

where ®4 indicates the completed tensor product with respect to the natural topology on
Alfs]]-

Definition 1.2.1. A k-algebra over A is a (not-necessarily commutative) k-algebra R en-
dowed with a map of k-algebras v : A — R. A map between two k-algebras v : A — R
and ' : A — R’ over A is a map g : R — R’ of k-algebras such that ' = got. A filtered
k-algebra over A is a k-algebra (R,i) over A, endowed with a ring filtration (Ry)k>0 such
that L(A) C Ry.

A k-algebra over A is obviously an (A; A)-bimodule. If R is a k-algebra over A, then the
power series ring R[[s]] is a k[[s]]-algebra over A[[s]].

Definition 1.2.2. We say that a subset A C NP is an ideal (resp. a co-ideal) of NP if
everytime o € A and a < o (resp. o/ < ), then o/ € A.

It is clear that A is an ideal if and only if its complement A€ is a co-ideal, and that the
union and the intersection of any family of ideals (resp. of co-ideals) of NP is again an ideal
(resp. a co-ideal) of NP. Examples of ideals (resp. of co-ideals) of NP are the 8 + NP (resp.
the ng := {a@ € N? | a < 8} ) with 8 € NP. The t,, defined as t,, := {& € N? | |a| < m}
with m > 0 are also co-ideals. Notice that a co-ideal A C NP is non-empty if and only if
(fo =Ny :){0} C A.

Notation 1.2.3. The set of all non-empty co-ideals of NP will be denoted by 6.5 (NP).

For a co-ideal A ¢ N* and an integer m > 0, we denote A™ := ANt,,. If A c N°
is a finite non-empty co-ideal, we define its height as ht(A) := min{m € N | A C t,,} =
max{|a| | a € A}.

Let M be an (A; A)-bimodule central over k. For each co-ideal A C NP, we denote by

A the closed sub-(A[[s]; A[[s]])-bimodule of M|[s]] whose elements are the formal power
series ZQGN,, mes® such that m, = 0 whenever a € A, i.e.

Ay = {m € M][[s]], supp(m) C A°} = ¢ m € M|[s]], supp(m) C ﬂ ng =
BeEA

ﬂ {m € M[[s]], supp(m) C n%} = m (g) s -

BEA BEA

For m € N we have (t,,),; = (s)™T'M][[s]]. Let us denote by M[[s]]a := M][[s]]/Aum
endowed with the quotient topology (it coincides with the (s)-adic topology regarded as a
k[[s]]-module), for which it is a topological bimodule over (A[[s]]a; A[[s]]a)-



When A = n,, for some a € NP, we will simply denote M|[[s]]q
when A = t,,,, for some m > 0, we will simply denote M|[[s]]n, := M[[s]]

M][s]]n, - Similarly,
tm -
The elements in M[[s]]a are power series of the form
Z mas®, mq € M.
aEA
The additive isomorphism
Zmaso‘ € M[s]la = {Mma}aea € M2
aEA

is a homeomorphism, where M2 is endowed with the product of discrete topologies on each
copy of M.

For A C A’ co-ideals of NP, we have natural (A[[s]]a’; A[[s]]a’)-linear projections 7a/a :
M][[s]]as — M][[s]]a, that we call truncations:

Taat Yy mas® € M[[sllar — Y mas® € M([s]]a. (4)
aen’ aEA
When A = t,,, A" = t,,,;, m <m’, we will simply denote Ty, := T¢,,¢,,. We have (4; A)-

linear scissions:

> mas® € M[[sl]la — Y mas® € M([s]]ar

aceA acA
which are topological immersions. In particular we have natural (A4; A)-linear topological
embeddings M|[s]]a — M][[s]] and we define the support (resp. the order) of any element
in M[[s]]a as its support (resp. its order) as element of M|[s]]. We have a bicontinuous
isomorphism of (A[[s]]a; A[[s]]a)-bimodules

Mlls]la = lim M[[s]]an,
meN

where transition maps in the inverse system are given by truncations. For a ring R, the Ag
are closed two-sided ideals of R[[s]] and we have a bicontinuous ring isomorphism

R[[s]]a = lim R[s]]an.
meN

As in @), for A[[s]]a ®a M (resp. M ®4 A[[s]]a) endowed with the natural topology, we
have that the natural map A[[s]]a ®4 M — M|[s]]a (resp. M ®4 A[[s]]a — M][[s]]a) is
continuous and gives rise to a (A[[s]]a; A)-linear (resp. to a (A4; A[[s]]a)-linear) isomorphism

Allslla®aM = M([s]la (resp. M@aA[ls]]a = M[[s]]a).

Each (A; A)-linear map h : M — M’ between two bimodules induces a linear map (over

((Alls]]a; Alls]]a))
h: Zmaso‘ € M[[s]a — Z h(mq)s® € M[[s]a. (5)

a€A acA

We have a commutative diagram
Allsla®aM —— M[[s]la +—— M®aA[[s]]a
Id@hl R lh@ld
Allslla®aM’ —= M'[[s]]la +=— M'@aA[[s]]a.

Clearly, if R is a k-algebra over A, then R|[[s]]a is a k[[s]]a-algebra over A[[s]]a.



Notation 1.2.4. Let R be a ring, p > 1 and A C NP a non-empty co-ideal. We de-
note by %P (R; A) the multiplicative sub-group of the units of R][s]]a whose 0-degree coeffi-
cient is 1. The multiplicative inverse of a unit r € R[[s]]a will be denoted by r*. Clearly,
UP(R; A)°PP = YP(R°PP; A). For A C A’ co-ideals we have Tan (UP(R; A")) C %P(R; A)
and the truncation map Tara : UP(R; A') — UP(R; A) is a group homomorphism. Clearly,
we have:

UP(R; A) = lim %P(R; A™) = lim %P(R;A’). (6)
n“TéN A‘TEA
1A’ <oo

Ifp=1and A=t, ={i €N |i<m} we will simply denote U(R;m) := U (R; t,,).
If R = Ug>oRq is a filtered ring, we denote:

%P (R; A) == {Zraso‘ € UP(R;A) | ro € R Ya € A} .
acA

It is clear that %%, (R; A) is a subgroup of %P (R; A).

If R= @deN Ry is a graded ring, we denote:

UP(R; A) := {Zrasa € UP(R;A) | 1o € Rjy Ya € A} .

aEA
It is clear that UL, (R; A) is a subgroup of UP(R;A).
If R be a filtered ring, we will denote by o : %g (R; A) — %% (gr R; A) the total symbol

map defined as:
o (Z Taso‘> = ZUM(TQ)SO‘.

aEA a€A

It is clear that o is a group homomorphism compatible with truncations.

For any ring homomorphism f : R — R, the induced ring homomorphism f : R[[s]]a —
R'[[s]]a sends UP(R;A) into UP(R'; A) and so it induces natural group homomorphisms
UP(R; A) — UP(R'; A). Similar results hold for the filtered or graded cases.

Definition 1.2.5. Let R be a ring, p,q > 0, s = {s1,...,8p},t = {t1,...,tq} disjoint sets
of variables and V. C NP, A C N? non-empty co-ideals. For each r € R[[s]]v,r" € R][[t]]a,
the external product r X7’ € R[[s U t]]yxa (notice that V. x A C NPT is a non-empty
co-ideal) is defined as

rXr = Z Targso‘tﬁ.

(a,)EV XA

The above definition is consistent with the existence of natural isomorphism of (R; R)-
bimodules R[[s]lv®@rR[[t]]a ~ R[[s Ut]lvxa =~ R[[t Us]jaxy ~ R[[t]]a®rR|[s|]v. Let
us also notice that 1K1 =1 and r X7 = (r X 1)(1 X r'). Moreover, if r € #P(R; V),
7€ UU(R; A), then r X1’ € UPT(R; V x A) and (r M7/)* =" Kr*.

Let E, F be two A-modules and A C NP a non-empty co-ideal. The proof of the following
proposition is straightforward.



Proposition 1.2.6. Under the above hypotheses, any k[[s]|a-linear map f : E[[s]]a —
F[[s]]a is continuous for the natural topologies, and for any co-ideal A" C NP with A" C A
we have f (AR /Ag) C Ap/Ap and so there is a unique k[[s]]|as-linear map f : E[[s]]ar —
F[[s]]ar such that the following diagram is commutative:
Bllslls —— Fllsl]a
trunc‘l trunc.

Ellsl]lar — Flis])a

1.2.7 For each r = } 4 rgs’ € Homy(E, F)[[s]]a we define 7 : E[[s]]a — F[[s]]a by
?(Z eas”‘> = Z < Z 7’5(67)> s,
aeA aeA \Bty=a
which is obviously a k[[s]]a-linear map.
Let us notice that 7 =3, s%r5. It is clear that the map
re Homk (E, F)[[S]]A — T e Homk[[s]]A(E[[s]]A, F[[S]]A) (7)
is (A[[s]]a; A[[s]]a)-linear.

If f: E[[s]]a — F|[[s]]a is a k[[s]]a-linear map, let us denote by f, : E — F, a € A, the
k-linear maps defined by

€)=Y fale)s®, Ve€E.

aEA

If g: E — F[[s]]a is a k-linear map, we denote by ¢¢ : El[s]]a — F|[[s]]a the unique
E[[s]] a-linear map extending g to E[[s]]a = k[[s]]a®@rE. It is given by

9° <Z easo‘> = Zg(ea)sa. (8)
We have a k[[s]]a-bilinear and A[[s]]a-balanced map
(= =) : (r,e) € Homy(E, F)[[s]]a x E[[s]]a — (r, €) :=7(e) € F{[s]]a.
Lemma 1.2.8. With the above hypotheses, the following properties hold:

1) The map (4) is an isomorphism of (A[[s]]a; A[[s]]a)-bimodules. When E = F it is an
isomorphism of k[[s]]a-algebras over Al[s]]a.

9) The restriction map
f € Homyg) (E[s]]a, F[[s]]a) = fle € Homi(E, F([s]]a)
is an isomorphism of (A[[s]]a; A)-bimodules.
3) Forr € Homp(A, F)[[s]la, we have
r € Dery (A, F)[[s]]a <= 7 € Derys)j, (A[[s]]a, Fl[s]]a),
and so the map (7) for E = A induces an isomorphism of A[[s]]a-modules
Dery (A, F)[[s]]a = Derys)j (Al[s]]a, F[[s]]a)-



Proof. Parts 1) and 2) are proven in [13, Lemma 3]. For part 3), let us write r = 34 rgs?.
(=) Foralla=>)"_,b=>"_ € A[s]]a we have:

r(ab) =--- = Z ( Z rﬂ(a7b5)> s* =

a€A \B+v+ié=a

> ( > (bsra(ay) + W‘B(M)) s =---=br(a) + a7 (D).

a€A \B+y+é=a

(«) For all a,b € A we have:

> rglab)s® = 7(ab) = b7(a) + aF(b) = - =Y _(brs(a) + ars(h))s”

BeA BEA

and so rg € Derg (A, F) for all § € A. O

Let us call R = Endg(E). As a consequence of the above lemma, the composition of the
maps

Rl[slla 225 Endges (Blls]la) 2225 Homy (B, Efs]]a) (9)

]
is an isomorphism of (A[[s]]a; A)-bimodules, and so Homy(E, E[s]]a) inherits a natural
structure of k[[s]]a-algebra over A[[s]]a. Namely, if g,h : E — E|[[s]]a are k-linear maps
with
9(e) = > gale)s®, h(e) =D hale)s®, Ve €E, g, ha € Homy(E, E),
a€A a€A

then the product hg € Homy(E, E[[s]]a) is given by

(hg)(e) =Y ( > (hﬂogw)(e)> s®. (10)

a€A \B+y=a

Definition 1.2.9. Let p,q > 0, s = {s1,...,8p},t = {t1,...,t,} disjoint sets of variables
and A C NP,V C N7 non-empty co-ideals. For each f € Endys, (E[[s]]a) and each
9 € Endyeyo (E[[t]]v), with

fle) = Z fale)s®, gle) = Zglg(e)t'ﬁ Ve e E,

acA BeV
we define fX g € Endysueaye (El[sUt]laxy) as f R g:= h®, with:
h(z)= Y (faogs)(z)s*t’ VaeE.
(a,B)EAXV

The proof of the following lemma is clear and it is left to the reader.
Lemma 1.2.10. With the above hypotheses, for each r € R[[s]]a,r" € R|[[t]]v, we have
rX®r =77 (see Definition[TZ7).
Notation 1.2.11. We denote :
Homy (E, E[[s]]a) := {f € Homy(E, E[[s]]a), f(e) = e mod (ng) Ve € E},

Autg g, (Ellslla) := {f € Autrys)a (E[[s]]a), f(e) = eomod (ng) ; Ve € Efs]la} -
Let us notice that a f € Homy(E, E[[s]]a), given by f(e) = D ca fale)s®, belongs to
Hom,, (E, E[[s]]a) if and only if fo =Idg.



The isomorphism in (@) gives rise to a group isomorphism
r € «P(Endi(E); A) — 7 € Autyg, (Els]]a) (11)
and to a bijection
€ Autgy, (Ellsl]a) = flp € Homg (E, E[[s]]a). (12)
So, Homy, (E, E[[s]]a) is naturally a group with the product described in (I0).

1.3 Substitution maps

In this section we give a summary of sections 2 and 3 of [I3]. Let k be a commutative
ring, A a commutative k-algebra, s = {s1,...,8p},t = {t1,...,t;} two sets of variables and
A C NP,V C N? non-empty co-ideals.

Definition 1.3.1. An A-algebra map ¢ : A[[s]]a — A[[t]]v will be called a substitution
map whenever ord(¢(s;)) > 1 for alli=1,...,p. A such map is continuous and uniquely
determined by the family ¢ = {p(t;),i=1,...,p}.

If o - Alls]]a — A[[t]]lv is a substitution map, its order is defined as

ord(p) := minford(¢(s;)) |i=1,...,p} > 1.

The set of substitution maps A[[s]]a — A[[t]]v will be denoted by S 4(p, ¢; A, V). The trivial
substitution map A[[s]]a — A[[t]]v is the one sending any s; to 0 (ord(0) = oo). It will be
denoted by 0.

The composition of substitution maps is obviously a substitution map. Any substitution
map ¢ : A[[s]]a — A[[t]]v determines and is determined by a family

{Celp,a),e € V,a e Ala| <lel} C A, with Co(p,0) =1,

such that:

® (Z aaso‘> = Z Z C.(p,a)ay | t°. (13)

acA e€V aEA
Jal<lel

In section 3, 2. of [I3] the reader can find the explicit expression of the C. (¢, ) in terms
of the ¢(s;). The following lemma is clear.

Lemma 1.3.2. If A C A’ C NP are non-empty co-ideals, the truncation Tara : Al[s]]ar —
A[[s]]a is clearly a substitution map and Cg (Tara, ) = 0ap for all w € A and for all B € A’
with |a| < |B].

Definition 1.3.3. We say that a substitution map ¢ : A[[s]]a — A[[t]]v has constant coef-
ficients if ©(s;) € k[[t]]v for alli=1,...,p. This is equivalent to saying that C.(p,a) € k
for all e € V and for all a« € A with |a| < |e|. Substitution maps with constant coefficients
are induced by substitution maps k[[s]|a — k[[t]]v.

We say that a substitution map ¢ : A[[s]]a — A[[t]]v is combinatorial if p(s;) € t for all
i=1,...,p. A combinatorial substitution map has constant coefficients and is determined
by (and determines) a map s — t. If v : s — t is such a map, we will also denote by
v Al[s]]la — A[[t]]v the corresponding substitution map, for any non-empty co-ideal V C
tx(A) :={B € N | Bor € A} (here multi-indexes in N? or NP are considered as maps t — N
or s = N respectively).
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Definition 1.3.4. Let u = {uy,...,um}, v ={v1,...,v,} be another sets of variables. The
tensor product of two substitution maps ¢ : Al[s]]lv — A[[t]]a, ¥ : Al[u]]v: — A[[v]]ar s
the unique substitution map

Y& 1/} : A[[S L u]]va/ — A[[t LJ V]]AXA’

making commutative the following diagram:

Allslly —— AllsUullvxy «—— Af[ullv

Je Jor J»

Allt]la —— At Uvllaxar < A[[v]la,

where the horizontal arrows are the combinatorial substitution maps induced by the inclusions
s,u—slu, t,v‘—>t|_l.

For all (o, 8) € V x V' C NP x N™ = NP*™ we have

(p@P)(s™u’) = p(s™)p(u’) == > Cclp,a)Cy(v, B)tv/
e€A, fen’
A
and so, for all (e, f) € A x A’ and all (o, 8) € V x V' with |e] + |f] = |(e, f)| > |(, B)] =
|a] + |8] we have

Ce(,0)Cs(®,8) if |a| < <l
Clep (@, (a,m){ Culp,@)Cy(w,8) if ol <|el and 13| <1

Proposition 1.3.5. Let ¢ € Sa(p,q; A, V) be a substitution map and p(s;) = Z ciﬁtB €
1810
Allt]lv, ¢ = 1,...,p. Let us denote inp(s;) := Z c;;t'ﬁ e Alftllv, i =1,...,p and ¥ :
181=1
Al[s]] = A[[t]]v the substitution map determined by 1(s;) = inp(s;) fori=1,...,p. Then,
PY(Aa) = {0} and there is a unique induced substitution map inp : Al[s]]a — A[[t]]lv

satisfying (in@)(s;) =inp(s;), i =1,...,p.

Proof. First, let us prove that supp ¢(s®) C supp ¢(s®) for all « € NP. Since the in ¢(s;) are
homogeneous of degree 1, we deduce that 1(s®) is homogeneous of degree || for all & € NP.
So, if e € supp ¥(s®), then |e| = |a| and C.(v, &) # 0, but from [I3} Lemma 6, (2)] we have
C.(p,a) = Cc(¥h, ) # 0 and we deduce e € supp p(s*).

The substitution map @ : A[[s]] — A[[t]]v obtained by composing ¢ with the projection
Al[s]] — A[[s]]a satisfies p(A4) = {0}, i.e. for all & ¢ A we have p(s®) = 0, and so
P(s*) = 0. We deduce that ¥(A4) = {0} and so it induces a unique substitution map
ing : A[s]]a — A[[t]]v as required. O

Let us notice that, with the notations of Proposition [[L3.0] we have ord ¢ > 1 if and only
ifinp = 0.

'Let us notice that there are canonmical continuous isomorphisms of A-algebras A[[s U u]lyxv/ =~
Allsllv@aAl[ullvs, Allt Uvllaxar = Alt]la®aA[[V]]ar
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1.3.6 Let M be an (A; A)-bimodule. Any substitution map ¢ : A[[s]]a — A[[t]]v induces
(A; A)-linear maps:

= @1y - M([s]]a = Alls]]a®aM — M[[t]]v = A[tly®aM

and
me = 1dyu®@p : M[[s]|la = MBaA[s]]a — M([t]]y = M@aA[[t]]v.

We have:

YMm <Z mozsa) = Z @(Sa)moz = Z Z Ce(‘Pa a)ma te,

acEA acEA ecV ae
[e|<|e|
- (zmasa) S o) =Y [ 3 maCuena) | ¢
aEA aEA eev \S\i\Ae\

for all m € M[[s]]a. If M is a trivial bimodule, then @y = 4,0. If ¢ 1 A[[t]]ly — A[[u]]q is
another substitution map and ¢” = ¢ o ', we have ¢, = Oapro@y;, p@” = P o e

For all m € M[[s]]a and all a € A[[s]]v, we have

pm(am) = p(a)pu(m), ap(ma) = pp(m)p(a),

ie. opr is (p; A)-linear and ,,¢ is (A;p)-linear. Moreover, ¢y and ;¢ are compatible
with the augmentations, i.e.

em(m) =momod (ng),, /Var, yp(m)=momod (ng),, /Va, me M[s]la. (14)

If ¢ is the trivial substitution map (i.e. ¢(s;) = 0 for all s; € s), then ¢y : M][s]]a —
M][[t]]v and ;0 : M|[s]]a — M[[t]]v are also trivial, i.e. @pr(m) = j;0(m) = my, for all
m € M[[s]]v.

1.3.7 The above constructions apply in particular to the case of any k-algebra R over A,
for which we have two induced continuous maps: pr = ¢®Idg : R[[s]]a — R[[t]]v, which is
(A; R)-linear, and pp = Idg®¢p : R[[s]]a — R[[t]]v, which is (R; A)-linear. For r € R[[s]]a
we will denote per := pgr(r), rep := ro(r). Explicitly, if r =3 ros8* with o € A, then:

per = Z Z Celp,a)ra |t Tep = Z TaCel(p, a) | t°. (15)
e

v acA v acA
la|<[e] lal<lel

From (I4)), we deduce that:
pe UP(R; A) C U (R; V), UP(R;A)ep CUI(R;V),

and if R is a filtered k-algebra over A, then e %% (R; A) C %%, (R; V) and %% (R; A)ep C
%% (R; V). We also have pel = lep = 1.

If  is a substitution map with constant coefficients, then ¢r = ¢ is a ring homomorphism
over . In particular, per =rep and pe (rr') = (per)(per’).
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If o =0: A[[s]]a — A[[t]]v is the trivial substitution map, then Oer = re0 = 7y for all
r € R[[s]]a. In particular, Qer = re0 =1 for all r € %?(R; A).

If u = {uy,...,u,} is another set of variables,  C N” is a non-empty co-ideal and ¥ :
R][[t]]v — R][u]]q is another substitution map, one has:

Ye(per) = (Yop)er, (rep)eth =re(thop).

Since (R[[s]]a)?™® = R°PP[[s]]a, for any substitution map ¢ : A[[s]]a — A[t]]v we have

(@R)Opp = Ropp and (R@)Opp = @Ropp .

The proof of the following lemma is straightforward and it is left to the reader.
Lemma 1.3.8. If ¢ : A[[s]]a — Al[t]]v is a substitution map, then:
(i) g is left p-linear, i.e. pr(ar) = ¢(a)pr(r) for alla € A[[s]]a and for allr € R[[s]]a.

(i) gy is right p-linear, i.e. rp(ra) = ge(r)e(a) for all a € Al[s]]a and for all r €
R[s]]a-

For each substitution map ¢ : A[[s]]a — A[[t]]v we define the (A; A)-linear map:
s : f € Homg (A, A[[s]|a) — ¢.(f) = o f € Hom (A, A[[t]]v) (16)
which induces another one @y : Endy), (A[[s]|a) — Endy) (A[[t]]v) given by:

P(f) = (@« (fla)" = (9o fla)” Vf € Endye, (Alls]]a)- (17)

More generally, for any left A-modules E, F' we have (A; A)-linear maps:

(or)« : [ € Homy(E, Fl[s]]a) — (¢r)«(f) = ¢ro f € Hom(E, F[[t]]v),

(¢r)« : Homyg, (E[[s]]a, F[[s]]a) — Homy) o (E[[t]]v, F[[t]]v),
(pr)«(f) == (profle)*.

Let us consider the (A4; A)-bimodule M = Homy(E, F). For each m € M[[s]]a and for each

e~

e € E we have opr(m)(e) = pr (m(e)), ie.

em(m)|e = pro (M|E), (18)

or more graphically, the following diagram is commutative (see ([@)):

M[[s]]a —== Homyg), (Ells]la, Flls]]a) 57 Homw(E, F[[s]]a)

@Ml lm (‘PF)*\L (19)

M{[t]]v —== Homyo (Ellt]v, Flltllv) < Homy(E, Fl[t]]v).

restr.

In order to simplify notations, we will also write:

pof = (pr):(f) VI € Homyq, (E[[s]]a, Flls]la),

and so we have pem = pem for all m € M([[s]]a. Let us notice that (pe f)(e) = (prof)(e)
foralle € E, i.e.

[(pe£)le = (prof)le = ¢ro (flr), but in general g f # prof. | (20)
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If ¢ = 0 is the trivial substitution map, then for each f = >  fos® € Homy(E, E[[s]|a)
(esp. f = 0, fus® € Endu(E)[[s]la = Endye)s (E[isla)), we have 0f = f40 = fy €
End,(E) C Homy(E, E[[s]]a) (vesp. 0« f = fe0 = f§ = fo € Endys), (£[[s]]a))-

If ¢ : A[[s]]a — A[[t]]v is a substitution map, we have:

pelaf) =p(a)(pef), (fa)ep = (fop) p(a)
for all a € A[[s]]a and for all f € Homg(E, E[[s]]a) (or f € Endyg). (E[[s]]a)).

Moreover:
(1) (Homg (B, M (s]]a)) € Homy (B, E[t]]v),
e (Autfip, (Blls]]a)) € Autiiy (E[t]v)

and so we have a commutative diagram:

UP(R; A) — == Autyg, (Blls]la) o Homy (B, E[[s]]a)

restr.

@.(7% La.(_) l(w;)* (21)

UNR; V) = AutSye (Ellt]lv) —= Homy(E, Fl[t]]v).

1.3.9 Let us denote ¢ : A[[s]]a — A[[sUt]]axv, & : A[[t]]lv — A[[sUt]]axv the combinatorial
substitution maps given by the inclusions s — sUt, t — sl t.

Let us notice that for r € R[[s]]a and ' € R[[t]]v, we have (see Definition [[20)
r&r’ = (rer)(ker') € R[[sUt]laxy. If A” C A C NP, V' C V C N? are non-empty
co-ideals, we have

Taxv.axv (r&r') = 7a ar(r) Ky v ().
If we denote by ¥ : R[[s Us]lyxv — R[[s]]v the combinatorial substitution map given by
the co-diagonal map s LIs — s, it is clear that for each r, 7' € R[[s]]v we have

rr’ = Ye(rXr'). (22)

If o : Al[s]]a — A[[u]]q and ¢ : A[t]]ly — A[[v]los are substitution maps, we have new
substitution maps ¢ ® Id : A[[sU t]jJaxy — A[[ul t]loxy and Id ® ¢ : A[[s Ut]laxv —
Al[s U v]]axq (see Definition [[L34) taking part in the following commutative diagrams of
(4; A)-bimodules:

Ris)a @r Rty “*% Rlullo @ Rty

Can.l lcan.

R[[sUt]]axvy Ll N Rl[uUt]joxv

and

R[s]]a @& R[t]lv ~—% Rl[s]]a @r R[[v]ler

Can.l lcan.

RllsUtllaxy —29%, RllsUv]jaxer.

We deduce that (per) X' = (¢ @Id)e(rX ') and r X (1 etp) = (r X 1') e (Id ® ).
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Proposition 1.3.10. Let R be a filtered k-algebra over A and ¢ € S a(p,q; A, V) a substi-
tution map. The following diagram is commutative:

U (R; A) —— L (gr R; A)

w(ﬂi l‘i”)'(‘)

where in @ has been defined in Proposition (.33l

Proof. For any element r =Y r,s* € %% (R; A) we have:

o (per)=0 Z Z C.(p,a)ry | t° :ZO'M Z C.lp,a)ry | t° =

e€EV aEA e€VvV aEA
lel>]a| le|>]al

Z(ﬂe\ Z Ce(p,a)ra te:Z(ﬂe\ Z C.(inp,a)r, |t =

e€evV a€A eEV a€A
lel=la] lel=la]

Z Z C.(inp,a)ojq) (1) | t° = (ingp)eo(r).

eeEV a€A
lel=|al

1.4 Exponential type series and divided power algebras

General references for the notions and results in this section are [I6] [17], [I] and [7]. In this
section, A will be a fixed commutative ring.

For a given integer m > 1 or m = oo, we consider the following substitution maps:
¢ Altllm — Allt,tIm,  @(t) =t +1,
v Altllm — A[lt,Nm,  o(t) =1,
Al — Al ], (8) =T

For each commutative A-algebra B, the above substitution maps induce homomorphisms of
A-algebras (actually, they are the “same” substitution maps over B):

po(=) :7(t) € B[t]]m — r(t +t') € B[[t,t']]m,
te(=) :7(t) € B[[t]]lm — r(t) € B[[t,t']}m,
to(=):7(t) € B[[t]]m — 7(t') € Bl[t,t']]m.

Definition 1.4.1. An element r = r(t) = >.i" rit" in B[[t]]s is said to be of exponential
type if ro =1 and r(t +t') = r(t)r(t'), i.e. oer = (1er) (¢ or), or equivalently, if

i
< j;])riﬂ- =mryrj, wheneveri+j <m+ 1.

The set of elements in B[[t]]m of exponential type will be denoted by &, (B). The set & (B)
will be simply denoted by &(B).
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The set &,,,(B) is a subgroup % (B;m) and the external operation

<a, Znt’) € Bx&n(B)— Zri(at)i = Zriaiti € &m(B) (23)
i=0 i=0 i=0

defines a natural B-module structure on &,,(B). It is clear that &,(B) is canonically iso-
morphic to B (as B-module).

Let C' be another commutative A-algebra. For each m > 1, any A-algebra map h :
B — C induces obvious A-linear maps &, (h) : &, (B) = &,,,(C). In this way we obtain
functors &, from the category of commutative A-algebras to the category of A-modules.
For 1 < m < ¢ < oo, the projections Bl[t]]; — B|[t]]m induce natural truncation maps
&, — &, and we have (see (@)):

&(B) = lim &,,(B).

s
meN

When Q C B, any r = Y." (rit'" € &,,(B) is determined by ry, since r; = TZ—, for all
i=0...,m, and so all truncation maps &,(B) — &,,(B), 1 < m < ¢ < oo, are isomorphisms
and B ~ &(B) ~ &,,(B) ~ &(B).

The following result is proven in [I6, Chap. III] in the case m = co. The proof for any
integer m > 1 is completely similar.

Proposition 1.4.2. For each A-module M and each m > 1 there is an universal pair
(Ta,mM,va,m), where T' 4 ;M is a commutative A-algebra and Ya,m : M — & (TamM) is
an A-linear map, satisfying the following universal property: for any commutative A-algebra
B and any A-linear map H : M — &,,(B) there is a unique homomorphism of A-algebras
h:TamM — B such that H =&, (h)ova,m, or equivalently, the map

h e HomA—alg(FA,mM, B) — gm(h) °YA,m (S HOIDA(M, %m(B))
is bijective.

The pair (I'a ;m M, v4,m) is unique up to a unique isomorphism. For m = 1, we have a
canonical isomorphism Sym, M = T'4 1 M.

Definition 1.4.3. The A-algebra I' 4, M is called the algebra of m-divided powers of M
and it is canonically N-graded with F%ﬁmM = A, FkymM = M. In the case m = oo,
(Ta,00M,7v4,00) is simply denoted by (T aM,~v4) and it is called the algebra of divided powers
of M.

In this way I' 4 ,, becomes a functor from the category of A-modules to the category of
(N-graded) commutative A-algebras, which is left adjoint to &,,. For 1 < m < ¢ < oo the
truncations &, — &,, induce natural transformations I'4 ,, =+ I'4 g and I'y = 1131 | R

meN

When Q C A, we have Sym , —» Tan = Tam =5 T'4 for all m > 1. For instance, for
A =7 and M = Zz a free abelian group of rank 1, the algebra I'y, ,, M is the Z-subalgebra
Z[2'/i!,1 <i<m] C Q[z] and

m .
YA,m T € Ly — Znij—:ti €E&m (Z [mi/i!,l <1< m]) )
i=0 ’
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2 Hasse—Schmidt derivations

2.1 Definitions and first results

In this section we recall some notions and results of the theory of Hasse-Schmidt derivations
[5] as developed in [13]. See also [6].

From now on k will be a commutative ring, A a commutative k-algebra, s = {s1,...,5,}
a set of variables and A C NP a non-empty co-ideal.

Definition 2.1.1. A (p, A)-variate Hasse-Schmidt derivation, or a (p, A)-variate HS-deri-
vation for short, of A over k is a family D = (Dy)aca of k-linear maps D, : A — A, with
Do = 1d 4 and satisfying the following Leibniz type identities:

Da(zy) = Y Dg(z)Dy(y)

Bt+y=a

for all x,y € A and for all o € A. We denote by HSY(A; A) the set of all (p, A)-variate
HS-derivations of A over k and HSY(A) for A = NP. When A = t,, we will simply denote
HSY?(A;m) = HSY(A;t,). For p = 1, a l-variate HS-derivation will be simply called a
Hasse—Schmidt derivation (a HS-derivation for short), or a higher derivatiorE, and we will
simply write HSy(A;m) := HS(A;A) for A = t,, = {g € N | ¢ < mA and HS,(A) =
HS;.(A).

Any (p, A)-variate HS-derivation D of A over k can be understood as a power series

> Das® € R[s]la, R =Endi(A),

and so we consider HS? (4; A) C R([s|]a. Actually HS?(A; A) is a (multiplicative) sub-group
of #P(R; A). The group operation in HS} (A; A) is explicitly given by:

(D,E) € HS}(A; A) x HSJ(A;A) — Do E € HSY(A; A)

with
(DoE)o = > DsoE,,

Bty=a

and the identity element of HS}(A;A) is T with Iy = Id and I, = 0 for all & # 0. The
inverse of a D € HS?(A; A) will be denoted by D*.

For A’ ¢ A C NP non-empty co-ideals, we have truncations
Taar  HSP(A; A) — HSP(A; A'),

which obviously are group homomorphisms. For m > n we will denote 7,,,, : HS} (A;m) —
HS?(A;n) the truncation map. Since any D € HS}(A4; A) is determined by its finite trun-
cations, we have a natural group isomorphism

HSP(A) = lim HSJ(4; A). (24)
Alca
#A’ < oo

The proof of the following proposition is clear and is left to the reader.

2This terminology is used for instance in [9].
3These HS-derivations are called of length m in [12].
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Proposition 2.1.2. Let t = {t1,...,t4} be another set of variables, V.C N? a non-empty
co-tdeal, and D € HS}(A;A), E € HS}(A; V) HS-deriwations. Then its external product
DX E (see Definition[.23) is a (p + ¢,V X A)-variate HS-derivation.

Definition 2.1.3. For each a € AP and for each D € HS}(A; A), we define aeD as
(@aeD)y :=a%D,, Vae€A.
It is clear that ae D € HS}(A; A), a’e(aeD) = (a’a)eD, 1eD =D and 0D =1

If A’ C A C NP are non-empty co-ideals, we have Taa/(ae D) = aeTan/(D). In particu-
lar, the image of 7,,1 : HSk(A;m) — HSk(A;1) = Derg(A) is an A-submodule.

Notation 2.1.4. Let us denote:
Homy ., (A, Al[s]]a) := {f € Homy_aig(A, A[[s]]a), f(a)=a mod (ng), Vac A},
Autigig s —ag(Alls]]a) = {f € Autys,—ag(Allsl]a) | f(a) = ao mod (no), Ya € Alls]]a}.
It is clear that Hom_,,, (A, A[[s]]a) C Homy (4, A[[s]]a) and
Autyga—atg(Alls]]la) C Autgyg, (Alls]]a)

(see Notation [LZTT]) are subgroups and we have group isomorphisms (see (I2) and (II))):

HS}(4;8) P25 Aut ), —ag(Alls]la) “2% Homg_y, (4, Alls]]a). (25)

The composition of the above isomorphisms is given by:

D € HS(A;A) 5 ®p = [a € A > Dofa)s®

acA

€ Homy_ 1, (4, Afls]]a)- (26)

Notice that the identity Dy = Id corresponds to the fact that ®p(a) = a modulo (ng),
for all a € A, Leibniz identities in Definition 2 1.0] correspond to the fact that ®p is a ring
homomorphism, and k-linearity of the D, correspond to k-linearity of ®p.

For each HS-derivation D € HS}(A; A) we have D= (®p)" ie.:

D (Z aas”‘> = Z Dp(an)s®

a€A acA

for all 3~ aas® € A[[s]]a, and for any E € HSY(A; A) we have Ppop = Do®p. If A/ C A
is another non-empty co-ideal and we denote by maas : A[s]]a — A[[s]]a’ the projection
(or truncation), one has ®,, ,(py = Taaro®p.

Definition 2.1.5. For each HS-derivation E € HS}(A; A), we denotd]
UE) =min{r>1|3Jac Ao =rFE,#0}>1
if E#1 and ((E) = oo if E =1. In other words, ¢{(E) = ord(E —I).

We obviously have £(E o E') > min{{(E),{(E")} and ¢(E*) = ¢{(E). Moreover, if {(E’) >
((E), then {(Eo E’) = £(F). The next two results are proven in Propositions 7 and 8 of [13].

4This definition changes slightly with respect to Definition (1.2.7) in [12].
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Proposition 2.1.6. For each D € HSY(A; A) we have that Dy is a k-linear differential
operator of order < L%J for all a € A.

As a consequence of the above proposition we have HS} (A; A) C %(Daji; A).

Lemma 2.1.7. For any D, E € HS}(4; A) we have £([D, E]) > (D) + ¢(E).

Proof. Tt is a consequence of the identity [D, E] — 1= [(D —1I),(E —I)] D*E*. O
Proposition can be improved in the following way.

Definition 2.1.8. For each HS-derivation E € HS}(A; A) and each o € A, we denote
lo(E) =L (tan, (F)), ie.

lo(E) :=min{r>1|3<a,|fl=r,Es#0}>1
if Tan, (E) #1 and £o(E) = 00 if TA n, (E) =L

It is clear that £(E) < {,(E) for all & € A. Replacing D with 7a n, (D) makes obvious
the following proposition.

Proposition 2.1.9. For each D € HS}(A; A) we have that Dy is a k-linear differential

operator or order < L%J for all a € A.

2.2 The action of substitution maps on HS-derivations

In this section, k will be a commutative ring, A a commutative k-algebra, R = Endy(A),
s={s1,...,8p}, t = {t1,...,t,} sets of variables and A C N?, V C N7 non-empty co-ideals.
Let us recall Proposition 10 in [13].
Proposition 2.2.1. For any substitution map ¢ : A[[s]]a — A[[t]]v, we have:
1) . (Homg_yg(A, Allsl]a)) € Homg_ (4, Allt]lv),
2) e HS(A; A) C HSL(A; V),
3) @ Autya, —aig(Allslla) C Autipeo g (Allt]lv).

We have then a commutative diagram:

Homp . (A, Allslla) g5 HSL(A;A) —— Autyg), —aig(Alls]la)

w*l lw(*) lsa'(*) (27)

Homg_ (A, Allt]lv) 5 HSL(A V) — Aty . sl All)y):
In particular, for any HS-derivation D € HS} (A4; A) we have pe D € HS](A; V) (see [L37).
Moreover ®,ep = poPp.

It is clear that for any co-ideals A’ C A and V' C V with ¢ (A),/A4) C V/,/V4 we
have

Tvv/(gﬁoD):gﬁloTAA/(D), (28)
where ¢’ : A[[s]]ar — A[[t]]v’ is the substitution map induced by .
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Let us notice that any a € AP gives rise to a substitution map ¢ : A[[s]]a — A[[s]]a
given by o(s;) = a;s; for all i =1,...,p, and one has ae D = e D.

2.2.2 Let u = {uy,...,u,} be another set of variables, @ C N" a non-empty co-ideal,
o € Salp, ;A V), ¥ € Sa(q,;V,Q) substitution maps and D, D’ € HS}(A;A) HS-
derivations. From [[3.7 we deduce the following properties:

-) If we denote E := peD € HS}(A; V), we have
By=1d, E.= Y Cec(p,a)D,, Ve€V. (29)
aEA
la|<le]

-) If ¢ = 0 is the trivial substitution map or if D =1, then peD = 1.

-) If ¢ has constant coefficients, then (peD)* = e D* and pe(DoD’) = (peD)o(peD’).
The general case is treated in Proposition 2.2.3]

—) ﬂ)o(g?o])) :i(d)ogﬁ)ol).
-) £(pe D) > ord(p)¢(D).
The following result is proven in Propositions 11 and 12 of [I3].

Proposition 2.2.3. Let ¢ : A[[s]]a — A[[t]]v be a substitution map. Then, the following
assertions hold:

(i) For each D € HS}(A;A) there is a unique substitution map ©P : A[[s]]a — Al[t]]lv
such that ((p.D) 0P = @oD. Moreover, (peD)" = P e D*, ¢ = ¢ and:

Celp, f+v)= Y Calenf+9)Dy(Cy (0" 1))

Bt+y=e
I +al<IBLIvI<Iv]
for all e € A and for all f,v € V with |f + v| < |e].
g E

(ii) For each D,E € HS}(A;A), we have po(DoE) = (peD)o(pPeE) and (¢P)" =

P In particular, ((pD)D = .
(iii) If v is another composable substitution map, then (po1p)? = p¥*Poypl.
(iv) If o has constant coefficients then P = .

Definition 2.2.4. Let S be a k-algebra over A, D € HSY(A; A) and r € %P (S;A). We say
that r is a D-element if ra = D(a)r for all a € A[[s]]a.

Given D € %?(Endg(A); A), it is clear that:
D e HS}(A; A) <= D is a D-element.

For D = T the identity HS-derivation, a r € %?(S;A) is an I-element if and only if r
commutes with all a € A[[s]]a. If E € HS}(A; A) is another HS-derivation, r € %?(S; A) is
a D-element and s € %P(S; A) is an E-element, then rs is a (D o E)-element.

The proof of the following lemma is easy and it is left to the reader.
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Lemma 2.2.5. With the above notations, for each r =3 ros* € UP(S;A) the following
properties are equivalent:

-) ris a D-element.

-) br = rD*(b) for all b € A[ls]]a

-) r* is a D*-element.

) If =220 ras®, we have raa =3 5, Dg(a)ry for all a € A and for all a € A.
) ra = D(a)r for alla € A.

The following proposition generalizes Proposition [2.2.3]

Proposition 2.2.6. Let S be a k-algebra over A, D € HS}(A;A), ¢ : A[[s]la — Alt]lv a
substitution map and r € UP(S; A) a D-element. Then the following properties hold:

(a) per is a (peD)-element.

(b) e(rr') = (per)(pP er’) for all v' € S[[s|]a. In particular, (per)* = @
Moreover, if E is an A-module and S = Endy (FE), then the following identity holds:

(c) {per,oR(e)) = ¢ ({r,e)) for all e € E[[s]|a, i.e. (peT) ol =pproT.
Proof. (a) By Lemma 2225 we need to prove that pgr(r)b = (;—-\f))(b) wRr(r) for allb € A,
but we know that rb = D(b)r and so, from Lemma [[.3.8 and (I8), we deduce that

(per)b = @r(r)b = ¢r(rb) = pr (E(b)r) =
o (D)) rr) = (75D)0) on(r) = (2D)(b)(per).

(b) Since all the involved maps are k-linear and continuous, it is enough to prove the identity
in the case where r’ = r,s* with r/, € R and a € A. But, on one hand we have

po(rr') = or(rros®) = r(s®rry) = 0(s*)or(rry) = @(s")or(r)re, = ©(s)(wer)ry,
and on the other hand, by using (a), we have
(por)(#” o1') = (por)pR(rs%) = (por)pP (s°)r, = (20 D) (#P () (por)rh =
((#2D) o) (™) (wor)rt = (9o D) (*)(per)rt = w(s™)(per)1,

and we are done. For the last part, 1 = og(1) = pr(rr*) = pr(r)eR (r*).

(¢c) As in part (b), it is enough to prove the identity for e = e,s®, with & € A and e, € E.
By using the fact that

0 € Endy(E)[[s]]a — ¢ € Endys) (Ells]]a)
is an (A[[s]]a; A[[s]]a)-linear isomorphism compatible with the ¢ (—) operation (see Lemma
and (), we deduce from part (a) that (per)b = ((p.D)(b) (per) for all b € Aft]]v
and from Proposition 2223 (i) and (20) we obtain:

(por, R (€)) = (557) (9B (cas®)) = (#77) (¢” (s")ea) = (P4D) (9P(s7)) (757) (ea) =
P(D()¢r(i(ea)) = @(s™)pp(F(ea)) = p(s°T(ea)) = ¢u((s ea)) = ¢ (1))
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2.3 Integrable derivations and HS-smooth algebras

In this section we recall some notions and results of [I1, [12]. Let k& be a commutative ring
and A a commutative k-algebra. The following definition slightly changes with respect to
Definition (2.1.1) in [12].

Definition 2.3.1. (Cf. [2,[§]) Let m > 1 be an integer or m = oo, and § : A — A a k-
deriation. We say that § is m-integrable (over k) if there is a HS-derivation D € HSy(A;m)
such that D1 = 6. Any such D will be called an m-integral of 6. The set of m-integrable
k-derivations of A is denoted by IDery(A;m). We simply say that 0 is integrable if it is
oo-integrable and denote IDerg(A) := IDery(A; c0).

We say that 0 is f-integrable (finite integrable) if it is m-integrable for any integer m > 1.
The set of f-integrable k-derivations of A is denoted by IDeri(A).

It is clear (see Definition 2-T.3) that the IDery(A;m) and IDer£ (A) are A-submodules of
Dery(A) and that we have exact sequences of groups:

1 — ker 71 — HSi(A;m) — IDerg(A;m) — 0, m > 1, (30)
and
Dery(A) = IDerg(A; 1) D IDery(A;2) D IDerg(4;3) D -+,
IDery(A; 00) C IDeri(A) = ﬂ IDery(A; m). (31)
meEN
m>1

Example 2.3.2. Let m > 1 be an integer. If m! is invertible in A, then any k-derivation §
of A is m-integrable: we can take D € HSy(A;m) defined by D; = f.—; fori=0,....,m. If
Q C k, one proves in a similar way that any k-derivation of A is co-integrable.

Let us recall the following result ([9, Theorem 27.1]):

Proposition 2.3.3. Let us assume that A is a 0-smooth k-algebra. Then any k-derivation
of A is integrable.

Proposition 2.3.4. The following properties are equivalent:

(a) Dery(A) = IDerg(A;00).

(b) Dery(A) = IDery(A;m) for all integers m > 1 (< Derp(A) = IDerﬁ(A)).
Proof. The implication (a) = (b) is clear.

(b) = (a) Let § be a k-derivation of A. By hypothesis, there is a 2-integral D) =
(Id, D1, D3) € HSk(A;2) of 0, and by applying [13, Corollary 4] repeatedly we find a se-
quence D™ ¢ HSk(A;m), m > 2, such that Tmymle(m) = D=1 for each m > 2. We
can take D = lim D™ ¢ HS;,(A), that obviously is an co-integral of 4. O

Remark 2.3.5. In general, we know that

IDery(A; 00) C IDerﬁ(A) = ﬂ IDery(A;m) C Dery(A).

meN

Proposition[2.34) tells us that the above inclusion is an equality whenever all the k-derivations
of A are m-integrable for each m € N;. Otherwise, we do not know whether it is strict or
not, or in other words, whether a derivation which is m-integrable for each integer m > 1 is
oo-integrable or not.
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Definition 2.3.6. Let m be a non-negative integer or m = oco. For any HS-derivation

D € HSi(A;m) we define its total symbol by (see Notation [I.2.4):
Y (D) ZO‘Z Ot € Uge(8r D aj1sm).

The total symbol map %, : HSy(A4;m) — % g (gr D a/1; m) is a group homomorphism.
The following proposition is proven in [II, Proposition 2.5, Corollary 2.7].

Proposition 2.3.7. With the hypotheses above, the following properties hold:
(1) The image of Sy, is contained in &, (T Dayk)-
(2) For any D € HSi(A;m) and any a € A we have ., (a @ D) = aX,, (D).
(3) The map ., induces an A-linear map X : IDery(A;m) — &, (gr D ag).

It is clear that, for 1 < m < ¢ < oo, the following diagram is commutative:

IDerx(A;q) X, &q(8rDask)

inc.\[ ltrunc.

IDerg(A;m) 2 & (erDask)-

By taking the inverse limit of the y,, for 1 < m < oo we obtain an A-linear map x/ :
Der] (A) — &(gr D 41). Explicitly, if § € IDer] (A), then:

= i om (D) t
m=0

where D™ = (D" =371 Dj't) € HSk(A;m) is any m-integral of § for each integer

J )osmn
m>1(D°=1).

From the universal property of power divided algebras (see Proposition [[LZ4.2), we obtain

a canonical homomorphism of graded A-algebras:
19,{1/k FIDeri(A) —erDaj - (32)

It is clear that for each integer m > 1, the following diagram is commutative:

' IDery(A; 00) 22 FIDerk( 288, T IDery (A;m)
ﬁm J{ A/kAnl
8rDasks

where the 9 4 /5 m and ¥4/, have been defined in [IT} (2.6)]. The following two theorems
are proven in [11], Theorem (2.8) and Theorem (2.14), for IDery(4;00), U4 /k 0 instead of

IDer£ (4), ﬂﬁ /i but the proofs remain essentially the same.

Theorem 2.3.8. With the above notations, there are canonical maps 04,1, and ¢ such that
the following diagram of graded A-algebras is commutative:

a/n .
8Dk 2, (Sym4 QA/k)gT

ﬁi/kT Tqﬁ

[ IDer] (A) —22“ T Dery(A).
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Theorem 2.3.9. Assume that Der(A) is a projective A-module of finite rank. The following
properties are equivalent:

(a) The homomorphism of graded A-algebras O, : grDas, — (SymA QA/k) 18 an

*
qar
isomorphism.

(b) The homomorphism of graded A-algebras ﬂﬁ/k : FIDeri(A) — gr D4y 15 an isomor-
phism.

(¢c) IDer! (A) = Dery(A).

Remark 2.3.10. After Theorem (2.14) in [11] or Proposition[2.3.7) the equivalent proper-
ties in Theorem [2.3.9 are also equivalent to:

(b’) The homomorphism of graded A-algebras
VA k00 : ['IDerg(A;00) = gr D ayy,
s an isomorphism.
(¢’) IDery(A; 00) = Dery(A).

Definition 2.3.11. We say that a k-algebra A is HS-smooth if Dery(A) is a projective
A-module of finite rank and the equivalent properties (a), (b), (¢) of Theorem [2.3.9 hold.

Let us recall the following result ([II], Corollary (2.16)]).

Corollary 2.3.12. Assume that §) 4, is a projective A-module of finite rank and that A is
differentially smooth over k (in the sense of [4l, 16.10]). Then, A is a HS-smooth k-algebra.

In particular, after |4, Proposition 17.12.4], if A is a smooth finitely presented k-algebra,
then A is a HS-smooth k-algebra.

3 Main results

3.1 Hasse—Schmidt modules

Definition 3.1.1. Let R be a k-algebra over A. A pre-HS-structure on R over A/k is a
system of maps

Y= {WX : HSi(A; A) — P (R;A), pe N, A € 67 (NP)}
such thaﬁ'

(i) The WX are group homomorphisms.

(i) (Leibniz rule) For any D € HSY(A;A), YR (D) is a D-element, i.e. YR (D)a =
D(a)¥YA (D) for all a € A (see LemmalZ2.2).

(iii) For any substitution map ¢ € Sk(p,q;A,V) and for any D € HS}(A; A) we have
VG (pe D) = pe WL (D).

5 Actually, from (B) and ([@4) we could restrict ourselves to non-empty finite co-ideals.
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We say that a pre-HS-structure ¥ on R over A/k is a HS-structure if property (iii) above
holds for any substitution map ¢ € 8 a(p,q; A, V).

If R' is another k-algebra over A and f : R — R’ is a map of k-algebras over A, then any
(pre- ) HS-structure ¥ on R over A/k gives rise to a (pre-)HS-structure fo¥ on R’ over A/k
defined as _
(foW)X = fo¥R, peN,AcEs(N).
If R is filtered, we will say that a (pre-)HS-structure ¥ on R over A/k is filtered if
YR (HSL(A;A)) C %5, (R; A)
for allp € N and all A € €5 (NP).

Let us notice that if ¥ is a pre-HS-structure on R over A/k, then the system of maps
I'={IR : HSY(A; A) — %P (R°PP;A), p € N,A € €5 (NP)} defined as TR (D) = WX (D*)
for D € HS{(A; A) is a pre-structure on R°PP over A/k. However, if ¥ is a HS-structure
on R over A/k, the system I" defined above is not in general HS-structure on R°PP. More
precisely, we have the following proposition.

Proposition 3.1.2. Let ¥ be a pre-HS-structure on R over A/k and let us consider the
system of maps T = {TX : HS}(4;A) — %P(R°P?; A), p € N,A € €5 (NP)} defined as
IR (D) =YX (D*) for D € HS}(A; A). The following properties are equivalent:

(1) T is a HS-structure on R°PP over A/k.

(2) For each p,q € N, for each A € €5 (NP),V € €5 (N?), for each substitution map
0 € Sa(p,q¢; A, V) and for each D € HSY(A; A) we have YL (0o D) = YR (D)o P (see
Proposition [2.2.3).

Proof. (1) = (2): We know that for each E € HS}(A;A) and each ¢ € Sa(p,q; A, V) we
have TS (Yo E) = 1) ¥ TR(E), i.e. WL (Ve E)*) = WA (E*)et), and we conclude by taking
E = D* and ¢ = ¢P (see Proposition Z.2.3)):

W (paD) = WL ($F ) = WL (e B)") = WA (E) o) = WA (D) oip”.
(2) = (1): Properties (i) and (ii) are clear. For property (iii) we proceed asin (1) = (2). O
Example 3.1.3. The inclusions
HS})(A; A) = UP(D s A) C %P (Endi(A); A)
give rise to the “tautological” HS-structures on D4/, and on Endy(A) over A/k.

Definition 3.1.4. (1) A left (pre-)HS-module (resp. a right (pre-)HS-module) over A/k is
an A-module E endowed with a (pre-)HS-structure on Endy(E) (resp. on the opposed ring
Endy (E)°PP) over A/k.

(2) A HS-map from a left (resp. a right) (pre-)HS-module (E,®) to a left (resp. to a right)
(pre-)HS-module (F,¥) is an A-linear map f : E — F such that fo®% (D) =YL (D)o f for
allp €N, for all A € €5 (NP), for all « € A and for all D € HS}(A; A).

Remark 3.1.5. Let E be an A-module and R = Endy(E). By using the canonical isomor-
phisms (I1l), we have the following:

(1) For each left (pre-)HS-module (E,Y), the (pre-)HS-structure ¥ may be considered as a
system of maps ¥ = {¥} : HS(A; A) — Autyq, (E[[s]]la), p € N,A € €7 (NP)}, with
s ={s1,...,8p}, such that:

[s]la
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(i) The Y% are group homomorphisms.
(ii) For any D € HS}(A; A) and any a € A[[s]|a, YA(D)a = D(a)¥& (D).

(iii) For any substitution map ¢ € Sa(p,q; A, V) (resp. for any substitution map ¢ €
Sk(p,q; A, V)) and for any D € HSY (A; A) we have Y& (pe D) = pe WA (D).

Moreover, property (ii) above is equivalent to:
(ii’) For any D € HS}(A; A) and any a € A[[s]]a, a WA (D) =YX (D) D*(a).

(2) For each right (pre-)HS-module (E,Y), the (pre-)HS-structure ¥ may be considered as
a system of maps ¥ = {W : HS}(A4; A) — Autyg, (Ells]]a), p € N,A € €5 (NP)} such
that:

(i) The Y\ are group anti-homomorphisms.
(i) For any D € HSY(A; A) and any a € A[[s]|a, a¥ (D) = VX (D) D(a).

(iii) For any substitution map ¢ € Sa(p,q; A, V) (resp. for any substitution map ¢ €
Sk(p,; A, V)) and for any D € HS}(A; A) we have Y& (9o D) =YX (D).

Moreover, property (ii) above is equivalent to:
(ii’) For any D € HSY(A; A) and any a € A[[s]]a, YA(D)a = B/*(a)‘i’pA(D).

Example 3.1.6. The underlying A-module of any left (resp. right) D 4/,-module E car-
ries an obvious left (resp. right) HS-module structure, namely ¥ = {W} : HS}(A; A) —
Autyga (E[[s]]a), p € N, A € €7 (NP)} given by:

YR (D)(e) := Z < Z Dg - e.y> s“ <T€Sp. YR (D)(e) := Z ( Z ey ~D5> so‘>

a€A \B+y=a a€A \B+y=a
for all D € HS} (A; A) and for all e = " eys € E[[s]]a.

When we consider the left D, -module E = A, then its left HS-module structure is
stmply given by the injective group homomorphisms

D € HSP(A; A) — D € Autyyg, (Alls]]a)-

Proposition 3.1.7. Under the above hypotheses, the A-module §24,) has a unique left pre-
HS-module structure over A/k for which the differential d : A — Q4. is a HS-map.

Proof. For each p € N, each A € €5 (NP) and each D € HS}(A;A), let us consider
Qa/kl[s]la as an A-module through the k-algebra map ®p : A — A[[s]]a (see (E8)). It
is clear that the map

do Op:x € Ar— Zd(Da(:C))Sa € QA/k[[S]]A

is a k-derivation. So, there is a unique A-linear map Zzely (D) : Q4 — Qayi[[s]]a such
that the following diagram is commutative:

CDDJ J{ZL’@Z(D)

Allslla —*= Qasllsla-
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If write ZZe (D) = Y, Ziel\ (D)as®, each Ziel} (D) is k-linear, Zie\ (D)god = doDg,
for all @ € A and the A-linearity of Z7e!y (D) means that

Ziel\ (D)o (aw) = Z Dy (a) Zief (D)o (w) Ya € AVw € Qg p,Va € A, (33)

a'+a'' =a

In particular, Zze! (D)o = Id. In order to simplify, the canonical k[[s]]a-linear extension
of Zzel} (D) to Qayills]]a (see @) will be also denoted by Zreli (D). We have then a
commutative diagram:

Allslla —% Qapllslla

El L%eg (D)

Allsl]la —= Qaslls)la-
Let us see that the system:
Fie = {ZLiely HSH(A;A) — Autyg, (Qasrllslla), p € N,A € €7 (NP)}

is a left pre-HS-module structure on 2,4/, over A/k:

(i) The uniqueness property defining Zze’X (D) implies that the #z¢X are group homomor-
phisms.

(ii) Property (B3) can be translated into % ek (D)a = D(a) Zieh (D).
(ii) Let ¢ € Sk(p,q; A, V) be a substitution map with constant coefficients and D €
HS?(A; A). To prove the equality Zred (peD) = peo Lie!s (D), it is enough to prove that
the restrictions to €245, of both terms coincide (see Lemma [[28)), and this is a consequence
of the identity

(‘P' 3;6;2(1))) |QA/k = Pqao gigi(D)’

where pq = @@Idm/k :Qaskllsl]a — Qa/k[[t]]v is the @-linear map induced by ¢ (see[L3.6]
and (200)), the identity ®y,ep = @o®p (see 7)), and the commutativity of the following
diagram:

A— 5 Qup

@DJ lfé’iez (D)

Allslla —2= Qai[[s]]a
Altlly —2 Qaslltllv-

Let us notice that the commutativity of the bottom square depends on ¢ being with constant
coeflicients. O

Remark 3.1.8. With the notations of the above proposition, for each a € A with |o| = 1,
the map Ziel\ (D)q : Qa/ — Qayi coincides with the classical Lie derivative Liep, :
Qasr — Qayp with respect to the derivation D, .

Proposition 3.1.9. The following properties hold:

1) For each p € N, each A € €5 (N?), each D € HS}(A; A) and each & € Dery(A)[[s]]a
we have D § D* € Dery(A)[[s]]a-

27



2) The system dd = {ddy : HS;(A4;A) — Autyg, (Derr(A)[s]]a), p € N,A €

€7 (NP)}, defined as
AddY (D)(d) :== D D*

is a left pre-HS-module structure on Dery(A) over A/k

VD € HSL(A; A), V6 € Dery(A)[[s]]a,

Proof. 1) For each a € A[[s]]a we have
[D/gﬁ*,a] =DéD*a—aDsD* =
D6 D*(a) D* —a D 6§ D* = D D*(a) 6 D* + D §(D*(a)) D* —a D6 D* =
D(D*(a)) D6 D* + D(5(D*(a))) D D* — a D §D* =
a D3 D* + D6D*(a) — a D§ D* = D6D*(a)
A. Actually, this result can

and so by Lemma[[L2Zg c¢), we deduce that D § D* € Dery(A)][s]]
be simply understood as the fact that the conjugation of any k[[s]]a-derivation of A[[s]]

by any automorphism of the k[[s]]a-algebra A[[s]]a is again a k[[s]]a-derivation.
) For each 6 € Dery(A) we have A2} (D)(8) =, dd\ (D)o (0)s* with

dd® (D Z Do/ 8 D%,

a+a '=a

and so Hd'} (D)o = Id and oy (D) € Autyy);, (Derg(A)[[s]]a)-

(i) Since the 'y are defined as a conjugation, they are group homomorphisms
(ii) For any D € HS?(A; A), for any a € A[[s]]a and for any § € Derg(A)[[s]]a we have

(4 (D) a) () = Dad D* = D(a) D& D* = D(a) s’ (D)(5).
(iii) Let ¢ € Sk(p,q;A,V) be a substitution map with constant coefficients and D €
HS?(A; A) a HS-derivation. Let us denote E := ¢ ¢ D. We know from that:

Ec= Y Culp,a)Da, VeeNie#0 (Eo=Id)

aEA
lal el
and E* = ¢ e D*. So, for each € € V and for each ¢ € Dery(A) we have
dd" (pe D). ( Z E.0E; = Z Celp, a)Cy(p,7) Do 6 DI =
et f=e et f=e

aEA,yEA
la|<lel,|vI<If]
*

ZZ Z Celp,@)Cy(p,7)Da 6 D &

acA «,
\a\<\6\a+7 fl\ \<\ H’Y\<\f\

Z Z Cg(go,a)DaéD*

pasg

Zc (p.a) | > DadD:| =

aEA a,yEA a,YEA
la|<le] atv=a la \<\ | aty=a
> Celp,a) ddy (D)a(6) = (pe dd'i (D)), (9),
aEA

lal<lel
where the equality (x) comes from the fact that ¢ is an A-algebra map (see [I3, Proposition
O

3]).
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Remark 3.1.10. With the notations of the above proposition, for each o € A with |a| =1,
the map A"\ (D) : Dery(A) — Derg(A) coincides with the classical adjoint representation

Adp, : 6 € Derg(A) — [D,, 0] € Deri(A)
associated with the derivation D,,.

It is clear that left (resp. right) (pre-)HS-modules with HS-maps form an abelian category
admitting a conservative additive exact functor (the forgetful functor) to the category of A-
modules.

3.2 Operations on Hasse—Schmidt modules

In this section, starting with two left (pre-)HS-modules (E,V¥), (F, ‘?) over A/k and two

right (pre-)HS-modules (P,T), (Q,T) over A/k, we will see how to construct natural left
(pre-)HS-modules structures on E ®4 F, Homa(E, F), Homa (P, Q) and right (pre-)HS-
modules structures on P ® 4 E, Homy4(E, P). Let us notice that similar constructions
have been studied in [10, §2.2] in the particular case of iterative uni-variate Hasse—Schmidt
derivations over a field.

Proposition 3.2.1. Under the above hypotheses, the following properties hold:

(1) For any p € N, for any A € €5 (NP) and for any D € HS}(A; A) there is a unique
WA (D) € Autyyg, (E ®@a F)[[s]]a) such that the following diagram is commutative:

E[[s]]a ®k(sa Flislla —— (E ®a F)[[s]a
?2(D>®¢Z<D)l l‘yi(D)
E[[s]]a ®x(sa Flislla —— (E®a F)[[s]]a,

where p is the natural (A[[s]]a; A[[s]]a)-linear map

() e (2o)) 2L o)

(2) The system ¥ = {¥,p € N,A € €5 (NP)} defines a left (pre-)HS-module structure
over Ak on E®y F.

Proof. (1) Since we have canonical isomorphisms E[s]|a @ afis)ja Fl[sl]a ~ (E ®4 F)[[s]]a,
the result comes from the following equality:

i ((Ya(D) @ WA(D)) ((ae) @ ) = i (Pa(D)(ae) @ VA(D)(/) ) =
i (D@ PA(D)(©)) @ TA(D)(N) = 1 (VA(D)(e) @ (D(a) PA(D)()) ) =
i (Pa(D)(e) 2 Ta(D)(af)) = p ((Pa(D) @ Tn (D)) (e ® (af)))

for all e € E[[s]]a, for all f € F[[s]]a and for all a € A[[s]]a.
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(2) We have to check properties (i), (ii) and (iii) of Remark B.IH (1). Property (i) is clear
from the uniqueness of Y2\ (D) in part (1). Property (ii) follows from

(YA (D) >< (e®f))= <D>< << )®f))
i (PA(D)(ae) @ TA(D)(F)) = 1 ((D(@) PA(D)(e)) & Wa(D)(f)) =
D(a) 11 (YA(D)(e) © YA(D)()) = D(a) YA (D) (ule & f)

for all e € E[[s]]a, for all f € F[[s]]a and for all a € A][s]]a. Property (iii) follows from (I9)
and the commutativity of the following diagram:

Ells)a ©xqsjs Fllsla —— (E@a F)[[s]la
@E@LPF\L LPE@@AF

E[[t]]v ®uye Flitllv —— (E®4 F)[[t]]v

for each substitution map ¢ € Sa(p,q; A, V) (resp. v € Sk(p,q; A, V)). O

For any maps f : E[[s]|]a — F[[s]]a, g : F[[s]]a — F|[[s]]a and h : E[[s]]a — F[[s]]a, let
us denote:
f*(h‘) = ho f, g*(h) :=goh.

Proposition 3.2.2. Under the above hypotheses, the following properties hold:

(1) For any p € N, for any A € €5 (NP) and for any D € HS}(A; A) there is a unique
YA (D) € Autyq, (Homa(E, F)[[s]]a) such that the following diagram is commuta-
tive:

Hom 4 (E, F)[[s]]a —— Homy), (E[[s]]a, F[[s]]a)

(D)J{ l@’;(p)* o Wi (D*)*
Hom(E, F)([s]]a —— Homys)), (E[[s]]a, F[[s]]a),
where v is the natural (A[[s)|a; A[[s]|a)-linear map defined as v(h) = h (see (@)

(2) The system ¥ = {WY,p € N,A € €5 (NP)} defines a left (pre-)HS-module structure
over A/k on Homu(E, F).

Proof. (1) Since we have canonical isomorphisms
h € Homa(E, F)[[s]]a ~ h € Hom g (E[[s]]a, F[[s]]a),

the result comes from the fact that (@Z (D), o ¥ (D*)*) (h') is A[[s]]a-linear for each b’ €
Hom 414 (E[[s]]a, F'[[s]]a), namely:

(VA (D)o WA (D)) () (am) = (Va(D)oh' o Th(D")) (am) =
WA (D) (1 (D* () Pa(D*)(m)) ) = Ta(D) (D*(a) W' (Ta(D")(m))) =

D(D* () WA (D) (1 (YA(D*)(m))) = a (Va(D).o WA (D)) (W) (m)

for all m € E[[s]]a and for all a € A[[s]]a.
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(2) As in Proposition B2 we have to check properties (i), (ii) and (iii) of Remark
(1). Property (i) comes from the fact that the map

D € HSD(A; A) —
VA (D). o Pa(D)* € Autys)s (Homggpes (Ells]a, Flls]]a))
is a group homomorphism:
YA (DoE)yo WA((DoE) ) = =
VA (D), o Ua(E). o Tr (D7) o Ta(E7)* =
VA (D)wo WA(D*)* 0 Uy (E). 0 T (E)".

Property (ii) follows from the following equality:

(VA (D)o WA (D)) (ah) = Wp (D)o (ak')o Wy (D*) =
(Va(D)a) o/ o Wa(D") = (D(a) YA (D)) oh'e Wa(D") =
D(a) (Va(D).o TA(D")") (A)
for all b’ € Hom i), (E[[s]]a, F[[s]]a) and for all a € A[[s]]a

To finish, let us prove property (iii). Let us write M = Homu(E, F). It is enough to
prove that W& (peD)|ar = (pe WA (D)) | for all p,g € N, for all A C NP,V € .57 (N?), for
all substitution map ¢ € S4(p,q; A, V) (resp. ¢ € Sk(p,q; A, V)) and for all HS-derivation

D e HSY(A; A). For each h € M we have v(h) = h =h with & (ZB eatﬁ) =25 h(ep)t?
for each >4 est? € E[[t]]v. So:

(voW (e D)) (W] = [Ty (e D)ov(h)o Pe((e D)) [ 2
(00 WA(D)) ol [Ty (e e D*)]5| = (00 Wa(D)) oo [ (9P« WA (D)) |n] &
(0 YA (D)) oFe [(¢7) 5 o (Pa(D")]s)] =
(e TAD)) o (¢7) 5 oTie (TAD ) 2 e Ta(D)or(h)o (TA(D")]) =

pro (VWA (D)) (W)]E] = ro [v (YA(D)(R) 8] 2 v (o (YA (D)) | =
v((em o WA (D)) (h)) & = v ((pe WA (D)) (h) |2 = (vo (peWA(D))) (h)| e,

where equality (1) comes from Proposition 2.23] equality (2) comes from (20)), equality (3)
comes from Proposition 222:6 (c), and equality (4) comes from ([I8). We first deduce that
(voWl(peD)) (h) = (Vo (peWA(D))) (h) for all h € M, i.e.

vo (WG (we D)) =vo ((peWA(D)) ),

second, from the injectivity of v, that W& (¢eD)|y = (9o WA (D)) |ar, and we conclude that
VG (peD) = peWR(D). O

The proofs of the following three propositions are completely similar to the proofs of
Propositions [3.2.2] and B.2.11

31



Proposition 3.2.3. Under the above hypotheses, the following properties hold:
(1) For any p € N, for any A € €5 (NP) and for any D € HS}(A; A) there is a unique
MR (D) € Autyyg, (P ®a E)[s]]a) such that the following diagram is commutative:
P([s]]a @xiis))s Ellsla —— (P ®4 E)[[s]]a
FADISTL (D) | [z
P(slla @u(s))a Ellslla —— (P @a E)[[s]]a,

where p is the natural (A[[s]]a; A[[s]]a)-linear map

((Bre)e (o)) -2 Lm o)

(2) The system T' = {TR,p € N,A € €5 (NP)} defines a right (pre-)HS-module structure
over AJ/k on P®y E.

Proposition 3.2.4. Under the above hypotheses, the following properties hold:

(1) For any p € N, for any A € €5 (NP) and for any D € HS}(A; A) there is a unique
YA (D) € Autyg, (Homa(P,Q)[[slla) such that the following diagram is commuta-
tive:

Hom (P, Q)[[s]]a —— Homy), (P[[s]]a, Q[ls]]a)

‘PZ(D)j F’;w*)* o TA(D)*
Homa (P, Q)[[s]]a —— Homyq, (P[[s]]a; Qllslla),
where v is the natural (A[[s]|a; A[[s]]a)-linear map defined as v(h) = h (see @)

(2) The system ¥ = {¥X,p € NA € €5 (NP)} defines a left (pre-)HS-module structure
over A/k on Homa (P, Q).

Proposition 3.2.5. Under the above hypotheses, the following properties hold:

(1) For any p € N, for any A € €5 (NP) and for any D € HS}(A; A) there is a unique
FR(D) € Autyy, (Homa(E, P)[[s]]a) such that the following diagram is commuta-
tive:

Homa (E, P)[[s]]a —— Homyj), (E[[s]]a, P[[s]]a)

rzw{ |Fa(D). 0 P (D) =FA (D) 0 TR (D).

Hom(E, P)([s]]a —— Homys)), (E£[[s]]a, P([s]]a),

where v is the natural (A[[s]|a; A[[s]]a)-linear map defined as v(h) = h (see @)

(2) The system T'={TR,p € N,A € €5 (NP)} defines a right (pre-)HS-module structure
over A/k on Homu(E, P).

The following proposition easily follows from Proposition 32T and its proof is left to the
reader.
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Proposition 3.2.6. Under the above hypotheses, the left (pre-)HS-module structure over
Ak on E®? = E®@4 E®4 ---®4 E defined in Proposition [3.2.1] induces:

1) A unique (pre-)HS-module structure over A/k on Sym% E such that the natural map
E®d Symfl4 E is a HS-map.

2) A unique (pre-)HS-module structure over Ak on /\iE such that the natural map
E®d /\iE is a HS-map.

3.3 The enveloping algebra of Hasse—Schmidt derivations

Let T 4/ be the free k-algebra
Tk :=k{Sa,TpaDa;a € ApeN,A €@ (N),a € A, D e HS)(A; A))

and let us consider the two-sided ideal I C T 4/, with generators:

(0 —C, Sa-i—a’ - Sa - Sa’; Saa’ - SaSa’;

)
(i)
(i)
(i) Tpapoma— Y, TpansTpams,

Bty=a

(iv) Tp,a,p,0 Sa — Z Sps()Tp.a.Ds

Bty=a

(V) Tl]av7‘10°D7ﬂ - Z SCg(«p,a)T A D

aEA
| <|B]

forcek,a,a € A, pge NN ACN,Ve®s(NY),acA, eV, D, EcHS (A A) and
€ Salp, ;A V).

We consider the N-grading in T 4 /5, given by (see Definition ZT.8):

Scl
Ty qoy,1,0 — 1,
T,

p.ALa for |a > dﬁ,

deg(k) = 0, deg(S,) =0, deg (Tpa p.0) = |71t

forac A,peN, A e &5 (NP), « € A and D € HS}(A; A). This grading is motivated by
Proposition 2.1.9] Let us notice that

deg (Tp,a,p.0) = deg (Tp,nmm,na(D),a) .

We will denote ’]I‘ifl /k the homogeneous component of degree d and ’]I‘fl;lk =, <a TS Ik

Let us call Uy := Ta/p/I and write S, := Sq + 1, Tp A Do := Tpa,p,a + 1 for the
generators of the k-algebra U, /;. The grading in T 4/, induces a filtration on U 45, and let
us also call deg : U,/ — N the corresponding map:

deg(P) := min{deg(p) | p € Ta/p, P =p+1} for Pc Uy, P#0,

and deg(0) = —oo, with U4, = {P € Uy, | deg(P) < d} = T3, (11 N Tijk).

6 Actually, generators (ii) can be avoided since they are deduced from generators (i) and (iii).
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The generators of type (0) of I give rise to a natural k-algebra map a € A+ S, € Uy,
and so Uy, is a k-algebra over A.

3.3.1 We first collect some direct consequences of the above definitions. For p € N, s =
{s1,...,8p}, A€ €5 (NP), o € A and D € HS}(A; A) we have:

(a) Since the quotient map 7 : A[[s]]a — A[[s]]n, is a substitution map (actually, a

truncation map) and the action

o4

me(—) : HSP(A; A) — HSY(A4;n4)

coincides with the truncation 7a n, (see Lemma [[3.2), by using the generators of
type (v) and the fact that Cg(m,a) = dap, we obtain Ty A Do = Tpu, ran. (D)a
(remember that deg (Tp A, p,o) = deg (Tp,na,m,na(D),a))-

(b) From (a) and the generators of type (i) of I we deduce: Tp A, 0,0 = T (0},7a (0} (D).0 =
1.

(c) If 0 < |a| < £o(D), then 7o n, (D) =T and so from (a) and the generators of type (ii)
of I we have Ty A p.o = Tpn, 1o =0.

Lemma 3.3.2. The term U%/k is the k-module generated by the S,, a € A, and coincides
with the image of the natural map A — U 4.

Proof. By definition, U% Jk is the k-module generated by the monomials in the S,, a € A,
and the Ty A p,o With

deg (Tp7A,D,o¢) - \_eala[‘))J = 0)

ie. |a| < £y(D). So, by (b) and (c) and the generators of type (0) of I we deduce that U%/k
is the k-module generated by the S, and coincides with the image of A — U 4 ;.

The proof of the following proposition is clear (see Proposition [ZT.6]).
Proposition 3.3.3. There is a unique k-algebra map v : Uy, — Doy sending
Se—a, TpaDpar— Da.
Moreover, it is filtered.

Corollary 3.3.4. The natural map A — U 4y, is injective and A ~ U%/k.

Proposition 3.3.5. The k-algebra U,y over A is endowed with a natural HS-structure
Y over A/k. Moreover, the pair (U4, Y) is universal among HS-structures, i.e. for any
k-algebra R over A and any HS-structure ¥ on R over A/k, there is a unique map f :
Uk — R of k-algebras over A such that foY =V.

Proof. We consider the system of maps Y given by:

YR : D € HSJ(A;A) — > Tpa p,as® € %P (Uas; A)
aEA
for p e N, A € €5 (NP). It is straightforward to see that properties in Definition BT
hold for Y. Namely, property 1) follows from the generators of type (i), (ii) and (iii) of T,

property 2) follows from the generators of type (iv) of I, and finally the generators of type
(v) of I guarantee property 3).
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For the universal property, let fo : T 4/, — R be the k-algebra map determined by
fo(Sa) = al, fo(Tpa,p,a) =YA(D)a

for all a € A, for all p € N, for all A € €7 (NP), for all & € A and for all D € HS}(4; A). Tt
is clear that fo vanishes on I and gives rise to our wanted map f: Ua/, — R of k-algebras
over A. The uniqueness of f is clear. o

Let us notice that the HS-structure Y in the above proposition is filtered.

Corollary 3.3.6. The abelian category of left (resp. right) HS-modules over A/k is iso-
morphic to the category of left (resp. right) U 4 /p-modules.

Definition 3.3.7. The enveloping algebra of the Hasse—Schmidt derivations of A over k is
the k-algebra U 4/, = T 41 /1 defined above. It is a filtered k-algebra over A.

Theorem 3.3.8. The graded ring grU 4, is commutative.

Proof. We need to prove that the degree of the bracket of the classes in Uy, of any two
variables generating T 4, is strictly less than the sum of the degrees of these variables.

-) For the variables S, the result is clear since S;Sy — S4/Sq = Saar — Sara = 0.

-) Let us see the case of one variable S, and one variable T) A p o, With a € A, p € N,
A€ %7 (NP), € Aand D € HSY(A; A), and set £ = (D).

We know from (b) that T, A po = 1, and from (c) that whenever 0 < |a| < ¢, then
Tp.A.D.a = 0, and of course D, = 0. So, if |o] < ¢ then Ty A p.aSa — SaTpa,p,a = 0.
Otherwise |a| > £ and, by using the generators of type (iv) of I, we have:

Tp,A,D,a Sa - Sa Tp,A,D,a = Z SDB(a)Tp,A,D,'y - Z SDB(a)Tp,A,D,'y-

B+y=a Bty=a
1B81>0 1Bl=¢

We conclude that:
deg (T;DA,D,a Sa —Sa Tp,A,D@) < max {deg (TILA,D,V) | B+v=aq, |6| > E} <
max {| 2351 |7 < o, byl < laf - ¢} < max{|72;) 17 < @l < la] - £} <

[1ol] = deg (T},a,p,0) = deg (Tpa,p,a) + deg(Sa)-

-) It remains to treat the case of two variables T A p.o and T v g,3. We need to prove that:

deg (Tpa.p,0a Tgv.Es —Tov.EsTpanpa) <deg(Tpapa)+deg(Tyves). (34)

From (b), we may assume «, 8 # 0; by taking into account generators of I of type (ii),
we may assume D, E # [; from (c), we may assume {o(D) < |a| and {g(E) < |B]; and
finally, from (a), we may assume that A = n, and V = ng. Let us denote s = {s1,...,p},
t={t1,...,%},

v Alls]]n, = Alls U t]]n,xns = A[[s U t] K Alft]lv — A[[s U t]]

N(a,B)? Ma,B)

the combinatorial substitution maps given by the inclusions s,t < sUt, F := teD, G :=
KkeE, 1 :=L4(D) =Ly(D), b2 := L(E) = £3(E). From Proposition 223l we have F* = 1e D*
and G* = ke E™.
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We will proceed in several steps. First, by using the generators of type (v) of I and the fact
that:

1 if y=0' and 0=0
C(%g)(l,,o/) { v

0 otherwise,

1 if y=0 and o=p
C('y,a)(“aﬂ/) = { 7

0 otherwise,

we deduce that:

f(aryo)(F) = Lo (D), 5(075/)(6') = lg/(E) (in particular, {(F) = f(a,o)(F) = 4o(D) =
DY= 1, UG) = t0.5)(G) = 5 (E) = (E) = £3) and

a’,0 _ o _
deg (TP+Q1n(a,ﬂ)1F1(a,7O)) = u(‘i/,o)()})J = LZJ/(‘D)J = deg (Tp,na,0,00)

I (=30 I R I _
deg (Tp+q,n<a,5>,G,(0ﬁ’)) = Le((,(ﬂ,)()c)J = Leﬂ,(g)J = deg (Tyny..00) -

(4) From [[130 and the generators of type (iii) and (v) of I we have:
Tptanos DRE(.8) = Tptgn s .roc.(a.6) = Tpne,Dor Tong, 5,60,
Tp+q7“(a,ﬂ) ZEXD,(a’,5") = TP""Qun(a,ﬂ)uGo F,(a/,') = T’L“Bvaﬁ' Tpn.,Dar-

Let us write H = [F,G] = F oG o F* o G*. From Lemma 2.7 we know that ¢(H) > {1 + 2.
Let us prove that:

(5) Tptanap.H.(uxn =0 whenever (u,A) # (0,0) and |u| < 1 or [A[ < Lo
By using (1), (2) and the generators of type (iii) of I again, we obtain:

TP+q,"(a,ﬂ)7Ha(H1>‘) =

E :Terq,n(a,qu,(u’,O) Terq,n(a,B),G,(OJ\’) Tp+q7n<a,g),F*7(u”,0) Tp+q7n<a,qu*q(07>\”) =

E Tp,na,D,u’ Tq,n;aﬂ)x’ Tp,na7D*7u” Tq,na,E*J\”a (35)

where both sums are indexed by the (¢, u”, X', \’) such that ¢/ + ¢/ = pand N + X' =\
If £ =0 and 0 < |\ then

TP+Q1"(Q,L3)1H7(01>\) ==

E Tq,nB,E,N TQ7“L‘31E*1>\” = TqmmEOE*J\ = T‘L“L%Ha)\ =0,
A4 =X

by using generators of type (iii), (ii) of I. In a similar way, we have that T}y g n ., 4 .#,(u,0) =0
whenever 0 < |u|. Assume now that g # 0 and A # 0. If |u] < €1 or |A| < £, then all the
summands in [B5) vanish by (¢) (remember that ¢(D*) = ¢(D) and ¢(E*) = ¢(E)) and so
TP+q,"(a,ﬁ)1H7(N‘7)‘) =0.
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(6) By using FoG = Ho(GoF) and the generators of type (iii) of T we have:

Tp+q N(a,p),F oG, (a,8) E : Tp+q "o p).H,(a/,3) Tp+q7n(a,g),GoF,(a”,ﬁ”)-
oY +a =«

B'+8"=8

Hence:

Tp+q7n(a,g)7F0G7(04,B) - Tp-i-q,n(a,ﬂ),GOR(Oz,B) =

(c)
Z Tp+q7n(a gy H,(a,B") Tp+q7n(a 8),Go Fy(a”,B") =

la|+18"1>0

(4),(5)
E : Tp+q7n(a,g)7H,(0/7ﬂ')Tp+q7n(a,g)7G0F7(04”7,5’”) =

la |48 |>€(H)

E : Tp+Q7n(a,B)7H1(O‘/716/) qu“ﬂﬁEﬁ” pran,a”’

la’|>e1,|8"| >3

where all the indexes (¢/, o, 8, ") in the above sums satisfy o/ + o = o and '+ " = 8,
and so, by (4):

deg (Tp,na,D,a Tq,nB,E,ﬁ - Tq,nB,E,ﬁ Tp,na,D,a) =
deg (Tp+q7“(a,ﬂ)7F0G,(0¢7ﬂ) - TP+Q1n(a,ﬂ)1GOF1(O‘7ﬂ)) <
max {deg ( P+, 0(a,8)s JH,(af )) + deg( q,ng, E,@//) + deg( pa,D, a”)} =

max{u(l: l:)‘B‘ J Leﬂ,, 31+ Lz //([‘))J} =

|| 418’ 18" le”|
lo 18]}y | 127 o' [+ | (1871 4 fle”
maX{Ung‘ez J+U }Smax{ 21‘+€2 J+\-TJ+LT‘J}<

L|a+a |J+|ﬁ+ﬁ \J L‘%'J_H%J = deg (Tpn.,p,0) + deg (Tyn,.E,8)

where the max’s are taken over the o/,a” € NP and ', 8" € N? such that o/ + o = «,
B+ 8" =8, |d| > ¢ and |B'| > £, and the last (strict) inequality comes from Lemma
19.3.9 O

Lemma 3.3.9. Let ¢1,05 > 1 be integers. For any integers a’,b',a”,b" > 0 with o’ > {1,

b > 0y we have: ) , ;
L2 [ ]+ [ ) < [958+ |22

Proof. We have

[+ 5+ L) < ax{uf—’J,L%J} 5]+ 5] <
L)+ L)+ 4]+ L5 < [2520) + [ 252,

3.4 The case of HS-smooth algebras

Our first goal is to define a canonical map of graded A-algebras from the divided power
algebra of the module of f-integrable k-derivations (see Definitions [[43] and 23.1]) of A to
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the graded ring of U, /. We will closely follow the procedure in [IT], §2.2] (see also section

23).

Proposition 3.4.1. For each integer m > 1 the group homomorphism
0o, t HSp(A;m) — Ugr(gr U p;m)

vanishes on ker 7,1 and its image is contained in &, (gr U4 /,).

Proof. Let us consider the combinatorial substitution maps ¢1, 12 : A[[s]]m — A[[s1, 52]](m,m)
given by ¢;(s) = s;, ¢ = 1,2, and the substitution map ¢ : A[[s]];, — A[[s1, S2]]m given by
©(s) = s1 + s2. Notice that in¢; = ¢; and inp = ¢ (see Proposition [[3H]). An element
r € %(grU4;m) belongs to &, (gr Ugayy) if and only if (11 e7)(t2e7) = @er (see [LAT).

Let D € HSj(A4;m) be a HS-derivation, and let us denote 7 = (0o Y},)(D), E = peD,
F = (t1eD)o(1zeD) and H = EoF*. It is clear that H(y 0y = H(g,1) = 0 and so £(H) > 1.
Then,

deg (Tv.v,,.m1,0.0) < deg (Th,.m.6.0) = Lo ) < Lah) <i+i
for all (¢,7) with 0 < i+ j <m, and so
(GO’Y\}H)(H) =0 < Z Tl,tm,H,(i,j) SiS%) = Z Ui+j (Tl,tm,H,(i,j)) 5115% =1. (36)
i+j<m i+i<m
We deduce that:
. *)
per = (inp)e (0‘ (Y}n (D))) =0 (gaoY}n (D)) =0 an(E)) =0 (an(HoF)) =
o (Y2,(H) Y7, (F)) o

(
o (11 Y4,(D)) (120 Y (D)) = & ((1+Y4(D))) & ((1207,(D))) &
((ineg)er) (

where equalities (x) come from Proposition L3I0, and so r = (00 Y} )(D) € &n(grUgayk).

On the other hand, if D € ker 7, 1, then £(D) > 1 and we can proceed as before with H
and deduce that (ooY})(D) = 1. O

Corollary 3.4.2. There is a natural system of A-linear maps
Xom  IDerg(A;m) — &n(gr Ugjp), m>1,

such that for m’ > m the following diagram is commutative:

IDery (A;m') RSN (grUayw)
incli ltrunc. (37)

IDer, (A;m) —2 &, (gr Ua/g)-

Moreover, the system above induces a natural A-linear map X : IDer£ (A) — &(gr Uap).
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Proof. Since IDerg(A;m) is by definition the image of the group homomorphism
1: HSk(A;m) — HSk(A;1) = Der(A4),

we deduce from Proposition B4l that the group homomorphism o oY} induces a natu-
ral group homomorphism x,, : [Dery(4;m) — & (grlUA/k) If 6 € IDery(A;m), then
Xm(0) = > 03 (T1,m,p,i) s where D € HS(A;m) is any m-integral of §, i.e. Dy = 6.
Then, for each a € A, ae D is an m-integral of ad and

Xm (a6) = Zai (T1,m,aeD,i) s' w Zai ZajTl,m7D7j st =

=0

ZUZ aTlsz S *Zo—z Tlsz)(as) *aXm(é)
1=0

=0

where equality (x) comes from generators of type (v) of I, and so x,,, is A-linear (remember
that the A-action on exponential type series is given by substitutions s — as, a € A, see
23)). The commutativity of (87) comes from the commutativity of the following diagram
(o and the Y\ are compatible with truncations):

oYl
HSk(A;m/) = & (gr Uy 1)

truncl ltrunc.
ool

HSk(A;m) — Em(grUayp).
The map x is simply the inverse limit of the x,,,. O

Corollary 3.4.3. There is a natural map & : T 4 IDeri(A) — grUa of graded A-algebras
such that the following diagram is commutative:

]."AIDerk( *>gr1UA/k

\ Jgrv (38)

8rDask,

where 19A/k is the map defined in (32) and v is defined in Proposition [3.3.3.
Proof. Let us denote

v:6 € Derf(A) — Y n(0)s" € &(I's IDerf (A))
n=0
the canonical map (see [[43). The existence of 8 comes from the universal property of
~. Namely, there is a unique map of A-algebras & : I'y IDeri(A) — grUy y, such that
X = &(9)oy. More explicitly, for each ¢ € IDer£ (A) and for each D € HS(A;m) such that
Dy =9, we have (v, (0)) = 0m (T1,m.D,m)- In particular, & is graded.
The commutativity of the diagram (B8] is a consequence of the commutativity of the
diagram

IDerk( X (grUa/k)

\ l%’(grv)

&(gr Dask),
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where x is the inverse limit of the maps X, : IDery,(A;m) — & (gr Dayi), m > 1, defined
in [I1l, Corollary (2.7)]. O

Proposition 3.4.4. Assume that IDer{(A) = Dery(A). Then, the map
9 : T4 Der] (A) — gr Uy

18 surjective.

Proof. The A-algebra grU , is generated by the 04 (Ty v gpg) for ¢ > 1, V € €5 (N9),
BeV,EecHS](AV), E#IL d= L%J After B3] we may assume that V = ng and
so ¢g(E) = ((E). Let us call m = ht(V).

Let {45, s € s} be a system of generators of the A-module Dery(A4). Since IDery(A4;m) =
Dery(A), for each s € s there exists D® € HSi(A;m) which is an m-integral of 5. By
considering some total ordering < on s, we can define D € HS}(A4;m) as the external
product (see Definition [L25) of the ordered family {D?®, s € s}, i.e. Dy =1Id and for each
ae NG o0,

Do =Dg. o+ oDy with suppa={s; < - <sc}.

After [I3] Theorem 1], there exists a substitution map oo : A[[s]]m — Al[t1,. .., t¢]]v such
that E = @pgeD. Moreover, it is clear that we can take ord(yg) = £(E).

Since V is finite, condition (17) in [I3, Proposition 2] implies that the set {s € s | o(s) #

0} is finite. Let us call {s; < --- < s,} this set. We have a factorization of substitution
maps:
Al[s])m = Afftr, - tgllv
©
N /
Alls1,- -+, Spllm

where ¢1(s) = 0if s # 85, p1(s;) = s; and p(s;) = o(si). Then we have E = @ge D = pe F'
with F = ¢@1eD = D** W -.. W D% € HS}(A; (m,...,m)).

We obviously have ord(y) = ord(po) = ¢(F) and so Cg(p, ) = 0 whenever |a|¢(E) >
|Bl. So,

Tov.es= Z Cs(p, ) Tpm,Fa =

[a|<m
|| <81
Y Cu(e, ) T1m 0ot .00 T1m D520 Tl Dy
|| <m
[ele(E)<|B]

p p
04(Tyvm8) =Y Cslp,a) [ 0a; (Trmpa,) =9 | Y. Cale,a) [ 7a,(55)
=1

ol =d j=1 la|=d
and we deduce that 1 is surjective. o

Remark 3.4.5. In the proof of the above proposition we have used the Aziom of Choice in
order to consider a total ordering on s. This could be avoided when Derp(A) is a finitely
generated A-module. In general, we could also avoid the Axiom of Choice by proving directly
a convenient variant of Theorem 1 of [13].
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Theorem 3.4.6. If A is a HS-smooth k-algebra, then the natural map v : Uy — Dasi
is an isomorphism of filtered k-algebras.

Proof. Tt is enough to prove that grv : grUy,, — grP,4y; is an isomorphism of graded
A-algebras. Since A is a HS-smooth k-algebra, we have 0£/k : Ty IDeri(A) = gr Dask
and from Corollary we deduce that ¥ is injective. The surjectivity of & comes from
Proposition B.4.4] O

Corollary 3.4.7. If A is a HS-smooth k-algebra, then the category of left (resp. right)
HS-modules over A/k is isomorphic to the category of left (resp. right) D p-modules.

3.5 Further developments and questions

Question 3.5.1. With the hypotheses of the preceding section, it is easy to see that the map
Y% : HS;(A;1) = Deri(4) — %(UA/]C; 1= IUA/k

is k-linear, compatible with Lie brackets and satisfies Leibniz rule. So, it induces a k-algebra
map from the enveloping algebra of the Lie-Rinehart algebra Dery(A) ([15]) to Uyyy. The
paper [T])] is devoted to prove that this map is an isomorphism whenever Q C k, and so
HS-modules and classical integrable connections coincide in characteristic 0.

Question 3.5.2. Assume that A is a HS-smooth k-algebra and Q4 is a projective A-
module of rank d. In an article in preparation we study how the operations in Proposition
[3.2.8, the pre-HS-module structure on Q4 (see Proposition [3.1.7) and Proposition

give rise to a right HS-module structure on the dualizing module w4/, = fo‘/k.
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