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Rings of differential operators as enveloping algebras of

Hasse–Schmidt derivations

Luis Narváez Macarro
∗

Il semble donc (et c’est le point de vue de
H. Hasse, F.K. Schmidt et O. Teichmüller)
que l’on ne puisse étudier les opérateurs ∆k

isolement, mais uniquement le système qu’ils
forment avec les relations qui les relient.

Jean Dieudonné [3]

Abstract

Let k be a commutative ring and A a commutative k-algebra. In this paper we
introduce the notion of enveloping algebra of Hasse–Schmidt derivations of A over k

and we prove that, under suitable smoothness hypotheses, the canonical map from the
above enveloping algebra to the ring of differential operators DA/k is an isomorphism.
This result generalizes the characteristic 0 case in which the ring DA/k appears as the
enveloping algebra of the Lie-Rinehart algebra of the usual k-derivations of A provided
that A is smooth over k.

Keywords: Hasse–Schmidt derivation, integrable derivation, differential operator, sub-
stitution map, power divided algebra.
MSC: 14F10, 13N10, 13N15.

Introduction

In classicalD-module theory, left DX -modules on a smooth spaceX (e.g. a smooth algebraic
variety over a field of characteristic 0, or a complex smooth analytic manifold, or a smooth
rigid analytic space over a complete ultrametric field of characteristic 0, etc.) are the same
as modules over the structure sheaf OX endowed with an integrable connection, which is
equivalent to an OX-linear action of the module of derivations Derk(OX) satisfying Leibniz
rule and compatible with Lie brackets. A similar result holds for right DX -modules. This
fact plays a basic role in classical D-module theory, for instance in the definition of various
operations or in the canonical right DX -module structure on top differential forms on X .
It can be conceptually stated as saying that the sheaf DX is the enveloping algebra of the
Lie algebroid Derk(OX) and it is strongly related with the canonical isomorphism of graded
OX -algebras:

Sym
OX

Derk(OX)
∼
−→ grDX/k . (1)

The main motivation of this paper is the existence of a canonical isomorphism:

ΓADerk(A)
∼
−→ grDA/k (2)

∗Partially supported by MTM2016-75027-P, P12-FQM-2696 and FEDER.
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for any commutative ring k (of arbitrary characteristic) and any HS-smooth k-algebra A
(see Definition 2.3.11), where ΓA denotes the power divided algebra functor (remember that
ΓA = SymA if Q ⊂ A). The proof of (2) in [11] depends on the fact that for a HS-smooth
k-algebra A, any k-derivation δ : A → A is integrable in the sense of Hasse–Schmidt (see
Definition 2.3.1). This result suggests that, under these hypotheses, the ring of differential
operators DA/k should be recovered in some canonical way from Hasse–Schmidt derivations.
This paper is devoted to answering this question.

The main difficulty is that Hasse–Schmidt derivations have a much less transparent
algebraic structure than usual derivations. The module of usual derivations Derk(A) carries
an A-module structure and a k-Lie algebra structure, and both are mixed on a Lie-Rinehart
algebra structure, enough to recover the ring of differential operators as its enveloping algebra
provided that Q ⊂ k and A is smooth over k (see [15]), although Hasse–Schmidt derivations
were only known to carry a (non-commutative) group structure. In our previous paper [13],
we introduced and studied the action of substitution maps (between power series rings) on
Hasse–Schmidt derivations, to be thought as a substitute of the A-module structure on usual
derivations.

In this paper we prove that both the group structure and the action of substitution maps
allow us to define the enveloping algebra of Hasse–Schmidt derivations and to prove that,
under smoothness hypotheses, this enveloping algebra is canonically isomorphic to the ring
of differential operators without any assumption on the characteristic of k. A key step in the
proof is the existence of a canonical map of graded algebras from the power divided algebra
of the module of integrable derivations (in the sense of Hasse–Schmidt) to the graded ring
of the enveloping algebra of Hasse–Schmidt derivations.

Let us now comment on the content of this paper.

In section 1 we recall and adapt, for the ease of the reader, the material in [13, §1, §2,
§3]. We will concentrate ourselves in the case of power series rings and modules in a finite
number of variables, which will be enough for our main results in section 3. In the last
sub-section we recall the notions of exponential type series and power divided algebras.

In section 2 first we recall the notion of Hasse–Schmidt derivation and its basic proper-
ties. As we already did in [13, §4], we need to study, not only uni-variate Hasse–Schmidt
derivations, but also multivariate ones: a (p,∆)-variate Hasse–Schmidt derivation of our
k-algebra A is a family D = (Dα)α∈∆ of k-linear endomorphisms of A such that D0 is the
identity map and

Dα(xy) =
∑

β+γ=α

Dβ(x)Dγ(y), ∀α ∈ ∆, ∀x, y ∈ A,

where ∆ ⊂ Np is a non-empty co-ideal, i.e. a subset of Np such that everytime α ∈ ∆ and
α′ ≤ α we have α′ ∈ ∆. An important idea is to think of Hasse–Schmidt derivations as series
D =

∑
α∈∆

Dαs
α in the quotient ring R[[s]]∆ of the power series ring R[[s]] = R[[s1, . . . , sp]],

R = Endk(A), by the two-sided monomial ideal generated by all sα with α ∈ Np \∆. In the
second sub-section we recall [13, §5] on the action of substitution maps on Hasse–Schmidt
derivations. The starting point is simple: given a substitution map ϕ : A[[s1, . . . , sp]]∆ →
A[[t1, . . . , tq]]∇ and a (p,∆)-variate Hasse–Schmidt derivation D =

∑
α∈∆

Dαs
α we may

consider a new (q,∇)-variate Hasse–Schmidt derivation given by:

ϕ•D :=
∑

α∈∆

ϕ(sα)Dα.
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In the last sub-section, we first recall the notion of integrable derivation: a k-derivation
δ : A → A is said to be m-integrable if there is a uni-variate Hasse–Schmidt derivation
D = (Di)

m
i=0 such that D1 = δ, and second we recall the main results in [11].

Section 3 contains the original results of this paper. First, we introduce the notion of HS-
module, as a generalization of the classical notion of module with an integrable connection.
Roughly speaking, a left HS-module is a module M over our k-algebra A on which Hasse–
Schmidt derivations act “globally”, in a compatible way with the group structure and the
action of substitution maps, and satisfying a Leibniz rule. More precisely, for each (p,∆)-
variate Hasse–Schmidt derivation D =

∑
α∈∆

Dαs
α of A, M is endowed with a k[[s]]∆-linear

automorphism Ψp∆(D) : M [[s]]∆ → M [[s]]∆ congruent to the identity modulo 〈s〉, in such a
way that:

-) The Ψp∆(−) are group homomorphism.

-) For each substitution map ϕ : A[[s]]∆ → A[[t]]∇ we have Ψq∇(ϕ•D) = ϕ•Ψp∆(D).

-) (Leibniz rule) For each a ∈ A we have Ψp∆(D)a = D(a)Ψp∆(D).

Any DA/k-module is obviously a HS-module, since Hasse–Schmidt derivations act through
their components, which are differential operators. Namely, if M is a left DA/k-module, for
each (p,∆)-variate Hasse–Schmidt derivation D =

∑
α∈∆

Dαs
α of A we define Ψp∆(D) as:

Ψp∆(D)(m) =
∑

α∈∆

(Dαm)sα, ∀m ∈M.

The basic question is whether a HS-module structure can be lifted to a DA/k-module struc-
ture or not.

To illustrate the notion of HS-module, or more precisely, the notion of pre-HS-module
structure (i.e. the compatibility with substitution maps only holds for substitution maps with
constant coefficients), we give natural actions of Hasse–Schmidt derivations on ΩA/k and on
Derk(A) generalizing, respectively, the classical Lie derivative and the adjoint representation
of classical derivations.

In the second sub-section we generalize the well known⊗ and Hom operations on modules
with an integrable connection to the setting of HS-modules. In the last two sub-sections we
define the enveloping algebra of Hasse–Schmidt derivations of a commutative algebra, and
we prove, by imitating [11], that there is a canonical map of graded algebras from the power
divided algebra of the module of integrable derivations to the graded ring of the enveloping
algebra of Hasse–Schmidt derivations. We finally prove that, under the HS-smoothness
hypothesis, the former map is an isomorphism and we deduce that the canonical map from
the enveloping algebra of Hasse–Schmidt derivations to the ring of differential operators is an
isomorphism. As a corollary, HS-modules coincide with D-modules for HS-smooth algebras.

I would like to thank the referee for the careful reading of the paper.

1 Notations and preliminaries

1.1 Notations

Throughout the paper we will use the following notations:

-) k is a commutative ring and A a commutative k-algebra.
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-) DA/k is the ring of k-linear differential operators of A (see [4]).

-) s = {s1, . . . , sp}, t = {t1, . . . , tq}, . . . are sets of variables.

-) k-algebra over A: see Definition 1.2.1.

-) nβ := {α ∈ Np | α ≤ β} ) for β ∈ Np.

-) tm := {α ∈ Np | |α| ≤ m} with m ≥ 0.

-) CI (Np) is the set of all non-empty co-ideals of Np: see Notation 1.2.3.

-) τ∆′∆ is a truncation map: see (4).

-) Up(R; ∆),Up
fil(R; ∆),Up

gr(R; ∆): see Notation 1.2.4.

-) r ⊠ r′: see Definition 1.2.5.

-) r 7→ r̃: see (7); g 7→ ge: see (8).

-) Hom ◦k (−,−), Aut ◦k[[s]]∆(−): see Notation 1.2.11.

-) SA(p, q; ∆,∇) is the set of substitution maps: see Definition 1.3.1.

-) Ce(ϕ, α): see (13).

-) ϕM , Mϕ: see 1.3.6; ϕ•r, r •ϕ: see 1.3.7.

-) ϕ∗, ϕ∗: see (16) and (17).

-) Em(B) is the set of exponential type series: see Definition 1.4.1.

-) SymAM is the symmetric algebra of the A-module M .

-) ΓAM is the power divided algebra of the A-module M : see Definition 1.4.3.

-) HSpk(A; ∆) is the set of (p,∆)-variate Hasse–Schmidt derivations: see Definition 2.1.1.

-) a•D: see Definition 2.1.3.

-) ϕD, for ϕ a substitution map and D a Hasse–Schmidt derivation: see Proposition 2.2.3.

-) UA/k = TA/k/I is the enveloping algebra of the Hasse–Schmidt derivations of A over k:
see Definition 3.3.7.

1.2 Rings and modules of power series

Throughout this section, k will be a commutative ring, A a commutative k-algebra and R a
ring, not-necessarily commutative.

Let p ≥ 0 be an integer and let us call s = {s1, . . . , sp} a set of p variables. The support
of each α ∈ Np is defined as suppα := {i | αi 6= 0}. The monoid Np is endowed with a
natural partial ordering. Namely, for α, β ∈ Np, we define

α ≤ β
def.
⇐⇒ ∃γ ∈ Np such that β = α+ γ ⇐⇒ αi ≤ βi ∀i = 1 . . . , p.

We denote |α| := α1 + · · ·+ αp. If α ≤ β then |α| ≤ |β|. Moreover, if α ≤ β and |α| = |β|,
then α = β.

LetM be an abelian group and M [[s]] the abelian group of power series with coefficients
in M . The support of a series m =

∑
αmαs

α ∈ M [[s]] is supp(m) := {α ∈ Np | mα 6= 0} ⊂
Np. It is clear that m = 0 ⇔ supp(m) = ∅. The order of a non-zero series m =

∑
αmαs

α ∈
M [[s]] is

ord(m) := min{|α| | α ∈ supp(m)} ∈ N.

If m = 0 we define ord(0) := ∞. If M is an A-module, then M [[s]] is naturally an A[[s]]-
module and for a ∈ A[[s]] and m,m′ ∈M [[s]] we have supp(m+m′) ⊂ supp(m)∪ supp(m′),
supp(am), supp(ma) ⊂ supp(m) + supp(a), ord(m + m′) ≥ min{ord(m), ord(m′)} and
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ord(am), ord(ma) ≥ ord(a) + ord(m). Moreover, if ord(m′) > ord(m), then ord(m+m′) =
ord(m).

The abelian group M [[s]] is the completion of the abelian group M [s] of polynomials
with coefficients in s with respect to the 〈s〉-adic topology, and its natural topology is also
the 〈s〉-adic topology.

When M = R is a ring, R[[s]] is a topological ring. If M is an A-module, there is a
natural A[[s]]-linear bicontinuous isomorphism:

A[[s]]⊗̂AM
∼
−→M [[s]], (3)

where ⊗̂A indicates the completed tensor product with respect to the natural topology on
A[[s]].

Definition 1.2.1. A k-algebra over A is a (not-necessarily commutative) k-algebra R en-
dowed with a map of k-algebras ι : A → R. A map between two k-algebras ι : A → R
and ι′ : A → R′ over A is a map g : R → R′ of k-algebras such that ι′ = g ◦ ι. A filtered
k-algebra over A is a k-algebra (R, ι) over A, endowed with a ring filtration (Rk)k≥0 such
that ι(A) ⊂ R0.

A k-algebra over A is obviously an (A;A)-bimodule. If R is a k-algebra over A, then the
power series ring R[[s]] is a k[[s]]-algebra over A[[s]].

Definition 1.2.2. We say that a subset ∆ ⊂ Np is an ideal (resp. a co-ideal) of Np if
everytime α ∈ ∆ and α ≤ α′ (resp. α′ ≤ α), then α′ ∈ ∆.

It is clear that ∆ is an ideal if and only if its complement ∆c is a co-ideal, and that the
union and the intersection of any family of ideals (resp. of co-ideals) of Np is again an ideal
(resp. a co-ideal) of Np. Examples of ideals (resp. of co-ideals) of Np are the β + Np (resp.
the nβ := {α ∈ Np | α ≤ β} ) with β ∈ Np. The tm defined as tm := {α ∈ Np | |α| ≤ m}
with m ≥ 0 are also co-ideals. Notice that a co-ideal ∆ ⊂ Np is non-empty if and only if
(t0 = n0 =){0} ⊂ ∆.

Notation 1.2.3. The set of all non-empty co-ideals of Np will be denoted by CI (Np).

For a co-ideal ∆ ⊂ NP and an integer m ≥ 0, we denote ∆m := ∆ ∩ tm. If ∆ ⊂ NP

is a finite non-empty co-ideal, we define its height as ht(∆) := min{m ∈ N | ∆ ⊂ tm} =
max{|α| | α ∈ ∆}.

Let M be an (A;A)-bimodule central over k. For each co-ideal ∆ ⊂ Np, we denote by
∆M the closed sub-(A[[s];A[[s]])-bimodule of M [[s]] whose elements are the formal power
series

∑
α∈Np mαs

α such that mα = 0 whenever α ∈ ∆, i.e.

∆M = {m ∈M [[s]], supp(m) ⊂ ∆c} =



m ∈M [[s]], supp(m) ⊂

⋂

β∈∆

n
c
β



 =

⋂

β∈∆

{
m ∈M [[s]], supp(m) ⊂ n

c
β

}
=
⋂

β∈∆

(nβ)M .

For m ∈ N we have (tm)M = 〈s〉m+1M [[s]]. Let us denote by M [[s]]∆ := M [[s]]/∆M

endowed with the quotient topology (it coincides with the 〈s〉-adic topology regarded as a
k[[s]]-module), for which it is a topological bimodule over (A[[s]]∆;A[[s]]∆).
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When ∆ = nα, for some α ∈ Np, we will simply denote M [[s]]α := M [[s]]nα . Similarly,
when ∆ = tm, for some m ≥ 0, we will simply denote M [[s]]m :=M [[s]]tm .

The elements in M [[s]]∆ are power series of the form
∑

α∈∆

mαs
α, mα ∈M.

The additive isomorphism
∑

α∈∆

mαs
α ∈M [[s]]∆ 7→ {mα}α∈∆ ∈M∆

is a homeomorphism, where M∆ is endowed with the product of discrete topologies on each
copy of M .

For ∆ ⊂ ∆′ co-ideals of Np, we have natural (A[[s]]∆′ ;A[[s]]∆′)-linear projections τ∆′∆ :
M [[s]]∆′ −→ M [[s]]∆, that we call truncations:

τ∆′∆ :
∑

α∈∆′

mαs
α ∈M [[s]]∆′ 7−→

∑

α∈∆

mαs
α ∈M [[s]]∆. (4)

When ∆ = tm,∆
′ = tm′ , m ≤ m′, we will simply denote τm′m := τtm′ tm . We have (A;A)-

linear scissions: ∑

α∈∆

mαs
α ∈M [[s]]∆ 7−→

∑

α∈∆

mαs
α ∈M [[s]]∆′

which are topological immersions. In particular we have natural (A;A)-linear topological
embeddings M [[s]]∆ →֒ M [[s]] and we define the support (resp. the order) of any element
in M [[s]]∆ as its support (resp. its order) as element of M [[s]]. We have a bicontinuous
isomorphism of (A[[s]]∆;A[[s]]∆)-bimodules

M [[s]]∆ = lim
←−
m∈N

M [[s]]∆m ,

where transition maps in the inverse system are given by truncations. For a ring R, the ∆R

are closed two-sided ideals of R[[s]] and we have a bicontinuous ring isomorphism

R[[s]]∆ = lim
←−

m∈N

R[[s]]∆m .

As in (3), for A[[s]]∆ ⊗A M (resp. M ⊗A A[[s]]∆) endowed with the natural topology, we
have that the natural map A[[s]]∆ ⊗A M → M [[s]]∆ (resp. M ⊗A A[[s]]∆ → M [[s]]∆) is
continuous and gives rise to a (A[[s]]∆;A)-linear (resp. to a (A;A[[s]]∆)-linear) isomorphism

A[[s]]∆⊗̂AM
∼
−→M [[s]]∆ (resp. M⊗̂AA[[s]]∆

∼
−→M [[s]]∆).

Each (A;A)-linear map h : M → M ′ between two bimodules induces a linear map (over
((A[[s]]∆;A[[s]]∆))

h :
∑

α∈∆

mαs
α ∈M [[s]∆ 7−→

∑

α∈∆

h(mα)s
α ∈M [[s]∆. (5)

We have a commutative diagram

A[[s]]∆⊗̂AM M [[s]]∆ M⊗̂AA[[s]]∆

A[[s]]∆⊗̂AM ′ M ′[[s]]∆ M ′⊗̂AA[[s]]∆.

≃

Id⊗̂h h

≃

h⊗̂Id

≃ ≃

Clearly, if R is a k-algebra over A, then R[[s]]∆ is a k[[s]]∆-algebra over A[[s]]∆.
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Notation 1.2.4. Let R be a ring, p ≥ 1 and ∆ ⊂ Np a non-empty co-ideal. We de-
note by U

p(R; ∆) the multiplicative sub-group of the units of R[[s]]∆ whose 0-degree coeffi-
cient is 1. The multiplicative inverse of a unit r ∈ R[[s]]∆ will be denoted by r∗. Clearly,
U
p(R; ∆)opp = U

p(Ropp; ∆). For ∆ ⊂ ∆′ co-ideals we have τ∆′∆ (Up(R; ∆′)) ⊂ U
p(R; ∆)

and the truncation map τ∆′∆ : Up(R; ∆′) → U
p(R; ∆) is a group homomorphism. Clearly,

we have:
U
p(R; ∆) = lim

←−
m∈N

U
p(R; ∆m) = lim

←−
∆′⊂∆

♯∆′<∞

U
p(R; ∆′). (6)

If p = 1 and ∆ = tm = {i ∈ N | i ≤ m} we will simply denote U(R;m) := U
1(R; tm).

If R = ∪d≥0Rd is a filtered ring, we denote:

U
p
fil(R; ∆) :=

{
∑

α∈∆

rαs
α ∈ U

p(R; ∆)
∣∣ rα ∈ R|α| ∀α ∈ ∆

}
.

It is clear that Up
fil(R; ∆) is a subgroup of Up(R; ∆).

If R =
⊕

d∈NRd is a graded ring, we denote:

U
p
gr(R; ∆) :=

{
∑

α∈∆

rαs
α ∈ U

p(R; ∆)
∣∣ rα ∈ R|α| ∀α ∈ ∆

}
.

It is clear that Up
gr(R; ∆) is a subgroup of Up(R; ∆).

If R be a filtered ring, we will denote by σ : Up
fil(R; ∆) −→ U

p
gr(grR; ∆) the total symbol

map defined as:

σ

(
∑

α∈∆

rαs
α

)
:=
∑

α∈∆

σ|α|(rα)s
α.

It is clear that σ is a group homomorphism compatible with truncations.

For any ring homomorphism f : R → R′, the induced ring homomorphism f : R[[s]]∆ →
R′[[s]]∆ sends U

p(R; ∆) into U
p(R′; ∆) and so it induces natural group homomorphisms

U
p(R; ∆) → U

p(R′; ∆). Similar results hold for the filtered or graded cases.

Definition 1.2.5. Let R be a ring, p, q ≥ 0, s = {s1, . . . , sp}, t = {t1, . . . , tq} disjoint sets
of variables and ∇ ⊂ Np,∆ ⊂ Nq non-empty co-ideals. For each r ∈ R[[s]]∇, r

′ ∈ R[[t]]∆,
the external product r ⊠ r′ ∈ R[[s ⊔ t]]∇×∆ (notice that ∇ × ∆ ⊂ Np+q is a non-empty
co-ideal) is defined as

r ⊠ r′ :=
∑

(α,β)∈∇×∆

rαr
′
βs
αtβ .

The above definition is consistent with the existence of natural isomorphism of (R;R)-
bimodules R[[s]]∇⊗̂RR[[t]]∆ ≃ R[[s ⊔ t]]∇×∆ ≃ R[[t ⊔ s]]∆×∇ ≃ R[[t]]∆⊗̂RR[[s]]∇. Let
us also notice that 1 ⊠ 1 = 1 and r ⊠ r′ = (r ⊠ 1)(1 ⊠ r′). Moreover, if r ∈ U

p(R;∇),
r′ ∈ U

q(R; ∆), then r ⊠ r′ ∈ U
p+q(R;∇×∆) and (r ⊠ r′)∗ = r′

∗
⊠ r∗.

Let E,F be two A-modules and ∆ ⊂ Np a non-empty co-ideal. The proof of the following
proposition is straightforward.
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Proposition 1.2.6. Under the above hypotheses, any k[[s]]∆-linear map f : E[[s]]∆ →
F [[s]]∆ is continuous for the natural topologies, and for any co-ideal ∆′ ⊂ Np with ∆′ ⊂ ∆
we have f (∆′E/∆E) ⊂ ∆′F /∆F and so there is a unique k[[s]]∆′-linear map f : E[[s]]∆′ →
F [[s]]∆′ such that the following diagram is commutative:

E[[s]]∆ F [[s]]∆

E[[s]]∆′ F [[s]]∆′ .

f

trunc. trunc.

f

1.2.7 For each r =
∑

β rβs
β ∈ Homk(E,F )[[s]]∆ we define r̃ : E[[s]]∆ → F [[s]]∆ by

r̃

(
∑

α∈∆

eαs
α

)
:=
∑

α∈∆

(
∑

β+γ=α

rβ(eγ)

)
sα,

which is obviously a k[[s]]∆-linear map.

Let us notice that r̃ =
∑
β s

β r̃β . It is clear that the map

r ∈ Homk(E,F )[[s]]∆ 7−→ r̃ ∈ Homk[[s]]∆(E[[s]]∆, F [[s]]∆) (7)

is (A[[s]]∆;A[[s]]∆)-linear.

If f : E[[s]]∆ → F [[s]]∆ is a k[[s]]∆-linear map, let us denote by fα : E → F , α ∈ ∆, the
k-linear maps defined by

f(e) =
∑

α∈∆

fα(e)s
α, ∀e ∈ E.

If g : E → F [[s]]∆ is a k-linear map, we denote by ge : E[[s]]∆ → F [[s]]∆ the unique
k[[s]]∆-linear map extending g to E[[s]]∆ = k[[s]]∆⊗̂kE. It is given by

ge

(
∑

α

eαs
α

)
:=
∑

α

g(eα)s
α. (8)

We have a k[[s]]∆-bilinear and A[[s]]∆-balanced map

〈−,−〉 : (r, e) ∈ Homk(E,F )[[s]]∆ × E[[s]]∆ 7−→ 〈r, e〉 := r̃(e) ∈ F [[s]]∆.

Lemma 1.2.8. With the above hypotheses, the following properties hold:

1) The map (7) is an isomorphism of (A[[s]]∆;A[[s]]∆)-bimodules. When E = F it is an
isomorphism of k[[s]]∆-algebras over A[[s]]∆.

2) The restriction map

f ∈ Homk[[s]]∆(E[[s]]∆, F [[s]]∆) 7→ f |E ∈ Homk(E,F [[s]]∆)

is an isomorphism of (A[[s]]∆;A)-bimodules.

3) For r ∈ Homk(A,F )[[s]]∆, we have

r ∈ Derk(A,F )[[s]]∆ ⇐⇒ r̃ ∈ Derk[[s]]∆(A[[s]]∆, F [[s]]∆),

and so the map (7) for E = A induces an isomorphism of A[[s]]∆-modules

Derk(A,F )[[s]]∆
∼
−→ Derk[[s]]∆(A[[s]]∆, F [[s]]∆).
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Proof. Parts 1) and 2) are proven in [13, Lemma 3]. For part 3), let us write r =
∑

β rβs
β .

(⇒) For all a =
∑

α, b =
∑

α ∈ A[[s]]∆ we have:

r̃(ab) = · · · =
∑

α∈∆

(
∑

β+γ+δ=α

rβ(aγbδ)

)
sα =

∑

α∈∆

(
∑

β+γ+δ=α

(bδrβ(aγ) + aγrβ(bδ))

)
sα = · · · = b r̃(a) + a r̃(b).

(⇐) For all a, b ∈ A we have:
∑

β∈∆

rβ(ab)s
β = r̃(ab) = b r̃(a) + a r̃(b) = · · · =

∑

β∈∆

(b rβ(a) + a rβ(b))s
β

and so rβ ∈ Derk(A,F ) for all β ∈ ∆.

Let us call R = Endk(E). As a consequence of the above lemma, the composition of the
maps

R[[s]]∆
r 7→r̃
−−−→ Endk[[s]]∆(E[[s]]∆)

f 7→f |E
−−−−→ Homk(E,E[[s]]∆) (9)

is an isomorphism of (A[[s]]∆;A)-bimodules, and so Homk(E,E[[s]]∆) inherits a natural
structure of k[[s]]∆-algebra over A[[s]]∆. Namely, if g, h : E → E[[s]]∆ are k-linear maps
with

g(e) =
∑

α∈∆

gα(e)s
α, h(e) =

∑

α∈∆

hα(e)s
α, ∀e ∈ E, gα, hα ∈ Homk(E,E),

then the product hg ∈ Homk(E,E[[s]]∆) is given by

(hg)(e) =
∑

α∈∆

(
∑

β+γ=α

(hβ ◦gγ)(e)

)
sα. (10)

Definition 1.2.9. Let p, q ≥ 0, s = {s1, . . . , sp}, t = {t1, . . . , tq} disjoint sets of variables
and ∆ ⊂ Np,∇ ⊂ Nq non-empty co-ideals. For each f ∈ Endk[[s]]∆(E[[s]]∆) and each
g ∈ Endk[[t]]∇(E[[t]]∇), with

f(e) =
∑

α∈∆

fα(e)s
α, g(e) =

∑

β∈∇

gβ(e)t
β ∀e ∈ E,

we define f ⊠ g ∈ Endk[[s⊔t]]∆×∇(E[[s ⊔ t]]∆×∇) as f ⊠ g := he, with:

h(x) :=
∑

(α,β)∈∆×∇

(fα ◦ gβ)(x)s
αtβ ∀x ∈ E.

The proof of the following lemma is clear and it is left to the reader.

Lemma 1.2.10. With the above hypotheses, for each r ∈ R[[s]]∆, r
′ ∈ R[[t]]∇, we have

r̃ ⊠ r′ = r̃ ⊠ r̃′ (see Definition 1.2.5).

Notation 1.2.11. We denote :

Hom ◦k (E,E[[s]]∆) := {f ∈ Homk(E,E[[s]]∆), f(e) ≡ e mod (n0)E ∀e ∈ E} ,

Aut ◦k[[s]]∆(E[[s]]∆) :=
{
f ∈ Autk[[s]]∆(E[[s]]∆), f(e) ≡ e0mod (n0)E ∀e ∈ E[[s]]∆

}
.

Let us notice that a f ∈ Homk(E,E[[s]]∆), given by f(e) =
∑

α∈∆ fα(e)s
α, belongs to

Hom ◦k (E,E[[s]]∆) if and only if f0 = IdE.

9



The isomorphism in (9) gives rise to a group isomorphism

r ∈ U
p(Endk(E);∆)

∼
7−→ r̃ ∈ Aut ◦k[[s]]∆(E[[s]]∆) (11)

and to a bijection

f ∈ Aut ◦k[[s]]∆(E[[s]]∆)
∼
7−→ f |E ∈ Hom ◦k (E,E[[s]]∆). (12)

So, Hom ◦k (E,E[[s]]∆) is naturally a group with the product described in (10).

1.3 Substitution maps

In this section we give a summary of sections 2 and 3 of [13]. Let k be a commutative
ring, A a commutative k-algebra, s = {s1, . . . , sp}, t = {t1, . . . , tq} two sets of variables and
∆ ⊂ Np,∇ ⊂ Nq non-empty co-ideals.

Definition 1.3.1. An A-algebra map ϕ : A[[s]]∆ −→ A[[t]]∇ will be called a substitution
map whenever ord(ϕ(si)) ≥ 1 for all i = 1, . . . , p. A such map is continuous and uniquely
determined by the family c = {ϕ(ti), i = 1, . . . , p}.

If ϕ : A[[s]]∆ −→ A[[t]]∇ is a substitution map, its order is defined as

ord(ϕ) := min{ord(ϕ(si)) | i = 1, . . . , p} ≥ 1.

The set of substitution maps A[[s]]∆ −→ A[[t]]∇ will be denoted by SA(p, q; ∆,∇). The trivial
substitution map A[[s]]∆ −→ A[[t]]∇ is the one sending any si to 0 (ord(0) = ∞). It will be
denoted by 0.

The composition of substitution maps is obviously a substitution map. Any substitution
map ϕ : A[[s]]∆ −→ A[[t]]∇ determines and is determined by a family

{Ce(ϕ, α), e ∈ ∇, α ∈ ∆, |α| ≤ |e|} ⊂ A, with C0(ϕ, 0) = 1,

such that:

ϕ

(
∑

α∈∆

aαs
α

)
=
∑

e∈∇



∑

α∈∆
|α|≤|e|

Ce(ϕ, α)aα


 te. (13)

In section 3, 2. of [13] the reader can find the explicit expression of the Ce(ϕ, α) in terms
of the ϕ(si). The following lemma is clear.

Lemma 1.3.2. If ∆ ⊂ ∆′ ⊂ Np are non-empty co-ideals, the truncation τ∆′∆ : A[[s]]∆′ →
A[[s]]∆ is clearly a substitution map and Cβ (τ∆′∆, α) = δαβ for all α ∈ ∆ and for all β ∈ ∆′

with |α| ≤ |β|.

Definition 1.3.3. We say that a substitution map ϕ : A[[s]]∆ −→ A[[t]]∇ has constant coef-
ficients if ϕ(si) ∈ k[[t]]∇ for all i = 1, . . . , p. This is equivalent to saying that Ce(ϕ, α) ∈ k
for all e ∈ ∇ and for all α ∈ ∆ with |α| ≤ |e|. Substitution maps with constant coefficients
are induced by substitution maps k[[s]]∆ −→ k[[t]]∇.

We say that a substitution map ϕ : A[[s]]∆ −→ A[[t]]∇ is combinatorial if ϕ(si) ∈ t for all
i = 1, . . . , p. A combinatorial substitution map has constant coefficients and is determined
by (and determines) a map s → t. If ι : s → t is such a map, we will also denote by
ι : A[[s]]∆ −→ A[[t]]∇ the corresponding substitution map, for any non-empty co-ideal ∇ ⊂
ι∗(∆) := {β ∈ Nq | β ◦ ι ∈ ∆} (here multi-indexes in Nq or Np are considered as maps t → N
or s → N respectively).
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Definition 1.3.4. Let u = {u1, . . . , um},v = {v1, . . . , vn} be another sets of variables. The
tensor product of two substitution maps ϕ : A[[s]]∇ → A[[t]]∆, ψ : A[[u]]∇′ → A[[v]]∆′ is
the unique substitution map

ϕ⊗ ψ : A[[s ⊔ u]]∇×∇′ −→ A[[t ⊔ v]]∆×∆′

making commutative the following diagram:

A[[s]]∇ A[[s ⊔ u]]∇×∇′ A[[u]]∇′

A[[t]]∆ A[[t ⊔ v]]∆×∆′ A[[v]]∆′ ,

ϕ ϕ⊗ψ ψ

where the horizontal arrows are the combinatorial substitution maps induced by the inclusions
s,u →֒ s ⊔ u, t,v →֒ t ⊔ v1.

For all (α, β) ∈ ∇×∇′ ⊂ Np × Nm ≡ Np+m we have

(ϕ⊗ ψ)(sαuβ) = ϕ(sα)ψ(uβ) = · · · =
∑

e∈∆,f∈∆′

|e|≥|α|
|f|≥|β|

Ce(ϕ, α)Cf (ψ, β)t
evf

and so, for all (e, f) ∈ ∆ ×∆′ and all (α, β) ∈ ∇ ×∇′ with |e|+ |f | = |(e, f)| ≥ |(α, β)| =
|α|+ |β| we have

C(e,f)(ϕ⊗ ψ, (α, β)) =

{
Ce(ϕ, α)Cf (ψ, β) if |α| ≤ |e| and |β| ≤ |f |,
0 otherwise.

Proposition 1.3.5. Let ϕ ∈ SA(p, q; ∆,∇) be a substitution map and ϕ(si) =
∑

|β|>0

ciβt
β ∈

A[[t]]∇, i = 1, . . . , p. Let us denote inϕ(si) :=
∑

|β|=1

ciβt
β ∈ A[[t]]∇, i = 1, . . . , p and ψ :

A[[s]] → A[[t]]∇ the substitution map determined by ψ(si) = inϕ(si) for i = 1, . . . , p. Then,
ψ(∆A) = {0} and there is a unique induced substitution map inϕ : A[[s]]∆ → A[[t]]∇
satisfying (inϕ)(si) = inϕ(si), i = 1, . . . , p.

Proof. First, let us prove that suppψ(sα) ⊂ suppϕ(sα) for all α ∈ Np. Since the inϕ(si) are
homogeneous of degree 1, we deduce that ψ(sα) is homogeneous of degree |α| for all α ∈ Np.
So, if e ∈ suppψ(sα), then |e| = |α| and Ce(ψ, α) 6= 0, but from [13, Lemma 6, (2)] we have
Ce(ϕ, α) = Ce(ψ, α) 6= 0 and we deduce e ∈ suppϕ(sα).

The substitution map ϕ : A[[s]] → A[[t]]∇ obtained by composing ϕ with the projection
A[[s]] → A[[s]]∆ satisfies ϕ(∆A) = {0}, i.e. for all α /∈ ∆ we have ϕ(sα) = 0, and so
ψ(sα) = 0. We deduce that ψ(∆A) = {0} and so it induces a unique substitution map
inϕ : A[[s]]∆ → A[[t]]∇ as required.

Let us notice that, with the notations of Proposition 1.3.5, we have ordϕ > 1 if and only
if inϕ = 0.

1Let us notice that there are canonical continuous isomorphisms of A-algebras A[[s ⊔ u]]∇×∇′ ≃

A[[s]]∇⊗̂AA[[u]]∇′ , A[[t ⊔ v]]∆×∆′ ≃ A[[t]]∆⊗̂AA[[v]]∆′ .
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1.3.6 Let M be an (A;A)-bimodule. Any substitution map ϕ : A[[s]]∆ → A[[t]]∇ induces
(A;A)-linear maps:

ϕM := ϕ⊗̂IdM :M [[s]]∆ ≡ A[[s]]∆⊗̂AM −→M [[t]]∇ ≡ A[[t]]∇⊗̂AM

and

Mϕ := IdM ⊗̂ϕ :M [[s]]∆ ≡M⊗̂AA[[s]]∆ −→M [[t]]∇ ≡M⊗̂AA[[t]]∇.

We have:

ϕM

(
∑

α∈∆

mαs
α

)
=
∑

α∈∆

ϕ(sα)mα =
∑

e∈∇



∑

α∈∆
|α|≤|e|

Ce(ϕ, α)mα


 te,

Mϕ

(
∑

α∈∆

mαs
α

)
=
∑

α∈∆

mαϕ(s
α) =

∑

e∈∇



∑

α∈∆
|α|≤|e|

mαCe(ϕ, α)


 te

for all m ∈M [[s]]∆. If M is a trivial bimodule, then ϕM = Mϕ. If ϕ
′ : A[[t]]∇ → A[[u]]Ω is

another substitution map and ϕ′′ = ϕ ◦ ϕ′, we have ϕ′′M = ϕM ◦ϕ
′
M , Mϕ

′′ = Mϕ ◦ Mϕ
′.

For all m ∈M [[s]]∆ and all a ∈ A[[s]]∇, we have

ϕM (am) = ϕ(a)ϕM (m), Mϕ(ma) = Mϕ(m)ϕ(a),

i.e. ϕM is (ϕ;A)-linear and Mϕ is (A;ϕ)-linear. Moreover, ϕM and Mϕ are compatible
with the augmentations, i.e.

ϕM (m) ≡ m0 mod (n0)M /∇M , Mϕ(m) ≡ m0 mod (n0)M /∇M , m ∈M [[s]]∆. (14)

If ϕ is the trivial substitution map (i.e. ϕ(si) = 0 for all si ∈ s), then ϕM : M [[s]]∆ →
M [[t]]∇ and Mϕ : M [[s]]∆ → M [[t]]∇ are also trivial, i.e. ϕM (m) = Mϕ(m) = m0, for all
m ∈M [[s]]∇.

1.3.7 The above constructions apply in particular to the case of any k-algebra R over A,
for which we have two induced continuous maps: ϕR = ϕ⊗̂IdR : R[[s]]∆ → R[[t]]∇, which is
(A;R)-linear, and Rϕ = IdR⊗̂ϕ : R[[s]]∆ → R[[t]]∇, which is (R;A)-linear. For r ∈ R[[s]]∆
we will denote ϕ•r := ϕR(r), r •ϕ := Rϕ(r). Explicitly, if r =

∑
α rαs

α with α ∈ ∆, then:

ϕ•r =
∑

e∈∇



∑

α∈∆
|α|≤|e|

Ce(ϕ, α)rα


 te, r •ϕ =

∑

e∈∇



∑

α∈∆
|α|≤|e|

rαCe(ϕ, α)


 te. (15)

From (14), we deduce that:

ϕ• Up(R; ∆) ⊂ U
q(R;∇), U

p(R; ∆)•ϕ ⊂ U
q(R;∇),

and if R is a filtered k-algebra over A, then ϕ• Up
fil(R; ∆) ⊂ U

q
fil(R;∇) and U

p
fil(R; ∆)•ϕ ⊂

U
q
fil(R;∇). We also have ϕ•1 = 1•ϕ = 1.

If ϕ is a substitution map with constant coefficients, then ϕR = Rϕ is a ring homomorphism
over ϕ. In particular, ϕ•r = r •ϕ and ϕ•(rr′) = (ϕ•r)(ϕ•r′).

12



If ϕ = 0 : A[[s]]∆ → A[[t]]∇ is the trivial substitution map, then 0•r = r •0 = r0 for all
r ∈ R[[s]]∆. In particular, 0•r = r •0 = 1 for all r ∈ U

p(R; ∆).

If u = {u1, . . . , ur} is another set of variables, Ω ⊂ Nr is a non-empty co-ideal and ψ :
R[[t]]∇ → R[[u]]Ω is another substitution map, one has:

ψ •(ϕ•r) = (ψ ◦ϕ)•r, (r •ϕ)•ψ = r •(ψ ◦ϕ).

Since (R[[s]]∆)
opp

= Ropp[[s]]∆, for any substitution map ϕ : A[[s]]∆ → A[[t]]∇ we have
(ϕR)

opp = Roppϕ and (Rϕ)
opp = ϕRopp .

The proof of the following lemma is straightforward and it is left to the reader.

Lemma 1.3.8. If ϕ : A[[s]]∆ → A[[t]]∇ is a substitution map, then:

(i) ϕR is left ϕ-linear, i.e. ϕR(ar) = ϕ(a)ϕR(r) for all a ∈ A[[s]]∆ and for all r ∈ R[[s]]∆.

(ii) Rϕ is right ϕ-linear, i.e. Rϕ(ra) = Rϕ(r)ϕ(a) for all a ∈ A[[s]]∆ and for all r ∈
R[[s]]∆.

For each substitution map ϕ : A[[s]]∆ → A[[t]]∇ we define the (A;A)-linear map:

ϕ∗ : f ∈ Homk(A,A[[s]]∆) 7−→ ϕ∗(f) = ϕ ◦f ∈ Homk(A,A[[t]]∇) (16)

which induces another one ϕ∗ : Endk[[s]]∆(A[[s]]∆) −→ Endk[[t]]∇(A[[t]]∇) given by:

ϕ∗(f) := (ϕ∗ (f |A))
e = (ϕ ◦f |A)

e ∀f ∈ Endk[[s]]∆(A[[s]]∆). (17)

More generally, for any left A-modules E,F we have (A;A)-linear maps:

(ϕF )∗ : f ∈ Homk(E,F [[s]]∆) 7−→ (ϕF )∗(f) = ϕF ◦f ∈ Homk(E,F [[t]]∇),

(ϕF )∗ : Homk[[s]]∆(E[[s]]∆, F [[s]]∆) −→ Homk[[t]]∇(E[[t]]∇, F [[t]]∇),

(ϕF )∗(f) := (ϕF ◦f |E)
e
.

Let us consider the (A;A)-bimodule M = Homk(E,F ). For each m ∈M [[s]]∆ and for each

e ∈ E we have ϕ̃M (m)(e) = ϕF (m̃(e)), i.e.

ϕ̃M (m)|E = ϕF ◦ (m̃|E) , (18)

or more graphically, the following diagram is commutative (see (9)):

M [[s]]∆ Homk[[s]]∆(E[[s]]∆, F [[s]]∆) Homk(E,F [[s]]∆)

M [[t]]∇ Homk[[t]]∇(E[[t]]∇, F [[t]]∇) Homk(E,F [[t]]∇).

ϕM

∼

m 7→m̃

∼

restr.

(ϕF )∗ (ϕF )∗

∼

m 7→m̃

∼

restr.

(19)

In order to simplify notations, we will also write:

ϕ•f := (ϕF )∗(f) ∀f ∈ Homk[[s]]∆(E[[s]]∆, F [[s]]∆),

and so we have ϕ̃•m = ϕ•m̃ for all m ∈M [[s]]∆. Let us notice that (ϕ•f)(e) = (ϕF ◦f)(e)
for all e ∈ E, i.e.

(ϕ•f)|E = (ϕF ◦f)|E = ϕF ◦ (f |E), but in general ϕ•f 6= ϕF ◦f . (20)
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If ϕ = 0 is the trivial substitution map, then for each f =
∑

α fαs
α ∈ Homk(E,E[[s]]∆)

(resp. f =
∑

α fαs
α ∈ Endk(E)[[s]]∆ ≡ Endk[[s]]∆(E[[s]]∆)), we have 0•f = f •0 = f0 ∈

Endk(E) ⊂ Homk(E,E[[s]]∆) (resp. 0•f = f •0 = fe0 = f0 ∈ Endk[[s]]∆(E[[s]]∆)).

If ϕ : A[[s]]∆ → A[[t]]∇ is a substitution map, we have:

ϕ•(af) = ϕ(a) (ϕ•f) , (fa)•ϕ = (f •ϕ)ϕ(a)

for all a ∈ A[[s]]∆ and for all f ∈ Homk(E,E[[s]]∆) (or f ∈ Endk[[s]]∆(E[[s]]∆)).

Moreover:

(ϕE)∗(Hom
◦
k (E,M [[s]]∆)) ⊂ Hom ◦k (E,E[[t]]∇),

ϕ•
(
Aut ◦k[[s]]∆(E[[s]]∆)

)
⊂ Aut ◦k[[t]]∇(E[[t]]∇)

and so we have a commutative diagram:

U
p(R; ∆) Aut ◦k[[s]]∆(E[[s]]∆) Hom ◦k (E,E[[s]]∆)

U
q(R;∇) Aut ◦k[[t]]∇(E[[t]]∇) Homk(E,F [[t]]∇).

∼

r 7→r̃

ϕ• (−) ϕ• (−)

∼

restr.

(ϕE)∗

∼

r 7→r̃

∼

restr.

(21)

1.3.9 Let us denote ι : A[[s]]∆ → A[[s⊔t]]∆×∇, κ : A[[t]]∇ → A[[s⊔t]]∆×∇ the combinatorial
substitution maps given by the inclusions s →֒ s ⊔ t, t →֒ s ⊔ t.

Let us notice that for r ∈ R[[s]]∆ and r′ ∈ R[[t]]∇, we have (see Definition 1.2.5)
r ⊠ r′ = (ι•r)(κ•r′) ∈ R[[s ⊔ t]]∆×∇. If ∆′ ⊂ ∆ ⊂ Np, ∇′ ⊂ ∇ ⊂ Nq are non-empty
co-ideals, we have

τ∆×∇,∆′×∇′(r ⊠ r′) = τ∆,∆′(r)⊠ τ∇,∇′ (r
′).

If we denote by Σ : R[[s ⊔ s]]∇×∇ → R[[s]]∇ the combinatorial substitution map given by
the co-diagonal map s ⊔ s → s, it is clear that for each r, r′ ∈ R[[s]]∇ we have

rr′ = Σ•(r ⊠ r′). (22)

If ϕ : A[[s]]∆ → A[[u]]Ω and ψ : A[[t]]∇ → A[[v]]Ω′ are substitution maps, we have new
substitution maps ϕ ⊗ Id : A[[s ⊔ t]]∆×∇ → A[[u ⊔ t]]Ω×∇ and Id ⊗ ψ : A[[s ⊔ t]]∆×∇ →
A[[s ⊔ v]]∆×Ω′ (see Definition 1.3.4) taking part in the following commutative diagrams of
(A;A)-bimodules:

R[[s]]∆ ⊗R R[[t]]∇ R[[u]]Ω ⊗R R[[t]]∇

R[[s ⊔ t]]∆×∇ R[[u ⊔ t]]Ω×∇

ϕR⊗Id

can. can.

(ϕ⊗Id)R

and

R[[s]]∆ ⊗R R[[t]]∇ R[[s]]∆ ⊗R R[[v]]Ω′

R[[s ⊔ t]]∆×∇ R[[s ⊔ v]]∆×Ω′ .

Id⊗ψ

can. can.

(Id⊗ϕ)R

We deduce that (ϕ•r)⊠ r′ = (ϕ⊗ Id)•(r ⊠ r′) and r ⊠ (r′ •ψ) = (r ⊠ r′)•(Id⊗ ψ).
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Proposition 1.3.10. Let R be a filtered k-algebra over A and ϕ ∈ SA(p, q; ∆,∇) a substi-
tution map. The following diagram is commutative:

U
p
fil(R; ∆) U

p
gr(grR; ∆)

U
q
fil(R;∇) U

q
gr(grR;∇),

ϕ• (−)

σ

(inϕ)• (−)

σ

where inϕ has been defined in Proposition 1.3.5.

Proof. For any element r =
∑

α
rαs

α ∈ U
p
fil(R; ∆) we have:

σ (ϕ•r) = σ



∑

e∈∇



∑

α∈∆
|e|≥|α|

Ce(ϕ, α)rα


 te


 =

∑

e∈∇

σ|e|



∑

α∈∆
|e|≥|α|

Ce(ϕ, α)rα


 te =

∑

e∈∇

σ|e|



∑

α∈∆
|e|=|α|

Ce(ϕ, α)rα


 te =

∑

e∈∇

σ|e|



∑

α∈∆
|e|=|α|

Ce(inϕ, α)rα


 te =

∑

e∈∇



∑

α∈∆
|e|=|α|

Ce(inϕ, α)σ|α| (rα)


 te = (inϕ)•σ(r).

1.4 Exponential type series and divided power algebras

General references for the notions and results in this section are [16, 17], [1] and [7]. In this
section, A will be a fixed commutative ring.

For a given integer m ≥ 1 or m = ∞, we consider the following substitution maps:

ϕ : A[[t]]m −→ A[[t, t′]]m, ϕ(t) = t+ t′,

ι : A[[t]]m −→ A[[t, t′]]m, ι(t) = t,

ι′ : A[[t]]m −→ A[[t, t′]]m, ι′(t) = t′.

For each commutative A-algebra B, the above substitution maps induce homomorphisms of
A-algebras (actually, they are the “same” substitution maps over B):

ϕ•(−) : r(t) ∈ B[[t]]m 7−→ r(t + t′) ∈ B[[t, t′]]m,

ι•(−) : r(t) ∈ B[[t]]m 7−→ r(t) ∈ B[[t, t′]]m,

ι′ •(−) : r(t) ∈ B[[t]]m 7−→ r(t′) ∈ B[[t, t′]]m.

Definition 1.4.1. An element r = r(t) =
∑m

i=0 rit
i in B[[t]]m is said to be of exponential

type if r0 = 1 and r(t + t′) = r(t)r(t′), i.e. ϕ•r = (ι•r) (ι′ •r), or equivalently, if

(
i+ j

i

)
ri+j = rirj , whenever i+ j < m+ 1.

The set of elements in B[[t]]m of exponential type will be denoted by Em(B). The set E∞(B)
will be simply denoted by E(B).
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The set Em(B) is a subgroup U(B;m) and the external operation

(
a,

m∑

i=0

rit
i

)
∈ B ×Em(B) 7→

m∑

i=0

ri(at)
i =

m∑

i=0

ria
iti ∈Em(B) (23)

defines a natural B-module structure on Em(B). It is clear that E1(B) is canonically iso-
morphic to B (as B-module).

Let C be another commutative A-algebra. For each m ≥ 1, any A-algebra map h :
B → C induces obvious A-linear maps Em(h) : Em(B) → Em(C). In this way we obtain
functors Em from the category of commutative A-algebras to the category of A-modules.
For 1 ≤ m ≤ q ≤ ∞, the projections B[[t]]q → B[[t]]m induce natural truncation maps
Eq → Em and we have (see (6)):

E(B) = lim
←−

m∈N

Em(B).

When Q ⊂ B, any r =
∑m
i=0 rit

i ∈ Em(B) is determined by r1, since ri = ri

i! for all
i = 0 . . . ,m, and so all truncation mapsEq(B) → Em(B), 1 ≤ m ≤ q ≤ ∞, are isomorphisms
and B ≃E1(B) ≃ Em(B) ≃E(B).

The following result is proven in [16, Chap. III] in the case m = ∞. The proof for any
integer m ≥ 1 is completely similar.

Proposition 1.4.2. For each A-module M and each m ≥ 1 there is an universal pair
(ΓA,mM,γA,m), where ΓA,mM is a commutative A-algebra and γA,m : M → Em(ΓA,mM) is
an A-linear map, satisfying the following universal property: for any commutative A-algebra
B and any A-linear map H : M → Em(B) there is a unique homomorphism of A-algebras
h : ΓA,mM → B such that H =Em(h) ◦γA,m, or equivalently, the map

h ∈ HomA−alg(ΓA,mM,B) 7→ Em(h) ◦γA,m ∈ HomA(M,Em(B))

is bijective.

The pair (ΓA,mM,γA,m) is unique up to a unique isomorphism. For m = 1, we have a

canonical isomorphism SymAM
∼
−→ ΓA,1M .

Definition 1.4.3. The A-algebra ΓA,mM is called the algebra of m-divided powers of M
and it is canonically N-graded with Γ0

A,mM = A, Γ1
A,mM = M . In the case m = ∞,

(ΓA,∞M,γA,∞) is simply denoted by (ΓAM,γA) and it is called the algebra of divided powers
of M .

In this way ΓA,m becomes a functor from the category of A-modules to the category of
(N-graded) commutative A-algebras, which is left adjoint to Em. For 1 ≤ m ≤ q ≤ ∞ the
truncations Eq → Em induce natural transformations ΓA,m → ΓA,q and ΓA = lim

−→

m∈N

ΓA,m.

When Q ⊂ A, we have SymA
∼
−→ ΓA,1

∼
−→ ΓA,m

∼
−→ ΓA for all m ≥ 1. For instance, for

A = Z and M = Zx a free abelian group of rank 1, the algebra ΓZ,mM is the Z-subalgebra
Z
[
xi/i!, 1 ≤ i ≤ m

]
⊂ Q[x] and

γA,m : nx ∈ Zx 7−→
m∑

i=0

ni
xi

i!
ti ∈Em

(
Z
[
xi/i!, 1 ≤ i ≤ m

])
.
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2 Hasse–Schmidt derivations

2.1 Definitions and first results

In this section we recall some notions and results of the theory of Hasse–Schmidt derivations
[5] as developed in [13]. See also [6].

From now on k will be a commutative ring, A a commutative k-algebra, s = {s1, . . . , sp}
a set of variables and ∆ ⊂ Np a non-empty co-ideal.

Definition 2.1.1. A (p,∆)-variate Hasse–Schmidt derivation, or a (p,∆)-variate HS-deri-
vation for short, of A over k is a family D = (Dα)α∈∆ of k-linear maps Dα : A −→ A, with
D0 = IdA and satisfying the following Leibniz type identities:

Dα(xy) =
∑

β+γ=α

Dβ(x)Dγ(y)

for all x, y ∈ A and for all α ∈ ∆. We denote by HSpk(A; ∆) the set of all (p,∆)-variate
HS-derivations of A over k and HSpk(A) for ∆ = Np. When ∆ = tm we will simply denote
HSpk(A;m) := HSpk(A; tm). For p = 1, a 1-variate HS-derivation will be simply called a
Hasse–Schmidt derivation (a HS-derivation for short), or a higher derivation2, and we will
simply write HSk(A;m) := HS1k(A; ∆) for ∆ = tm = {q ∈ N | q ≤ m}3 and HSk(A) :=
HS1k(A).

Any (p,∆)-variate HS-derivation D of A over k can be understood as a power series

∑

α∈∆

Dαs
α ∈ R[[s]]∆, R = Endk(A),

and so we consider HSpk(A; ∆) ⊂ R[[s]]∆. Actually HSpk(A; ∆) is a (multiplicative) sub-group
of Up(R; ∆). The group operation in HSpk(A; ∆) is explicitly given by:

(D,E) ∈ HSpk(A; ∆) ×HSpk(A; ∆) 7−→ D ◦E ∈ HSpk(A; ∆)

with
(D ◦E)α =

∑

β+γ=α

Dβ ◦Eγ ,

and the identity element of HSpk(A; ∆) is I with I0 = Id and Iα = 0 for all α 6= 0. The
inverse of a D ∈ HSpk(A; ∆) will be denoted by D∗.

For ∆′ ⊂ ∆ ⊂ Np non-empty co-ideals, we have truncations

τ∆∆′ : HS
p
k(A; ∆) −→ HSpk(A; ∆

′),

which obviously are group homomorphisms. For m ≥ n we will denote τmn : HSpk(A;m) →
HSpk(A;n) the truncation map. Since any D ∈ HSpk(A; ∆) is determined by its finite trun-
cations, we have a natural group isomorphism

HSpk(A) = lim
←−

∆′⊂∆

♯∆′<∞

HSpk(A; ∆
′). (24)

The proof of the following proposition is clear and is left to the reader.

2This terminology is used for instance in [9].
3These HS-derivations are called of length m in [12].
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Proposition 2.1.2. Let t = {t1, . . . , tq} be another set of variables, ∇ ⊂ Nq a non-empty
co-ideal, and D ∈ HSpk(A; ∆), E ∈ HSqk(A;∇) HS-derivations. Then its external product
D ⊠ E (see Definition 1.2.5) is a (p+ q,∇×∆)-variate HS-derivation.

Definition 2.1.3. For each a ∈ Ap and for each D ∈ HSpk(A; ∆), we define a•D as

(a•D)α := aαDα, ∀α ∈ ∆.

It is clear that a•D ∈ HSpk(A; ∆), a′ •(a•D) = (a′a)•D, 1•D = D and 0•D = I.

If ∆′ ⊂ ∆ ⊂ Np are non-empty co-ideals, we have τ∆∆′(a•D) = a•τ∆∆′(D). In particu-
lar, the image of τm1 : HSk(A;m) → HSk(A; 1) ≡ Derk(A) is an A-submodule.

Notation 2.1.4. Let us denote:

Hom ◦k−alg(A,A[[s]]∆) := {f ∈ Homk−alg(A,A[[s]]∆), f(a) ≡ a mod (n0)A ∀a ∈ A} ,

Aut ◦k[[s]]∆−alg(A[[s]]∆) :=
{
f ∈ Autk[[s]]∆−alg(A[[s]]∆) | f(a) ≡ a0 mod (n0)A ∀a ∈ A[[s]]∆

}
.

It is clear that Hom ◦k−alg(A,A[[s]]∆) ⊂ Hom ◦k (A,A[[s]]∆) and

Aut ◦k[[s]]∆−alg(A[[s]]∆) ⊂ Aut ◦k[[s]]∆(A[[s]]∆)

(see Notation 1.2.11) are subgroups and we have group isomorphisms (see (12) and (11)):

HSpk(A; ∆) Aut ◦k[[s]]∆−alg(A[[s]]∆) Hom ◦k−alg(A,A[[s]]∆).D 7→D̃
≃

restr.
≃ (25)

The composition of the above isomorphisms is given by:

D ∈ HSpk(A; ∆)
∼
7−→ ΦD :=

[
a ∈ A 7→

∑

α∈∆

Dα(a)s
α

]
∈ Hom ◦k−alg(A,A[[s]]∆). (26)

Notice that the identity D0 = Id corresponds to the fact that ΦD(a) ≡ a modulo (n0)A
for all a ∈ A, Leibniz identities in Definition 2.1.1 correspond to the fact that ΦD is a ring
homomorphism, and k-linearity of the Dα correspond to k-linearity of ΦD.

For each HS-derivation D ∈ HSpk(A; ∆) we have D̃ = (ΦD)
e, i.e.:

D̃

(
∑

α∈∆

aαs
α

)
=
∑

α∈∆

ΦD(aα)s
α

for all
∑

α aαs
α ∈ A[[s]]∆, and for any E ∈ HSpk(A; ∆) we have ΦD◦E = D̃ ◦ΦE . If ∆′ ⊂ ∆

is another non-empty co-ideal and we denote by π∆∆′ : A[[s]]∆ → A[[s]]∆′ the projection
(or truncation), one has Φτ∆∆′(D) = π∆∆′ ◦ΦD.

Definition 2.1.5. For each HS-derivation E ∈ HSpk(A; ∆), we denote4

ℓ(E) := min{r ≥ 1 | ∃α ∈ ∆, |α| = r, Eα 6= 0} ≥ 1

if E 6= I and ℓ(E) = ∞ if E = I. In other words, ℓ(E) = ord(E − I).

We obviously have ℓ(E ◦E′) ≥ min{ℓ(E), ℓ(E′)} and ℓ(E∗) = ℓ(E). Moreover, if ℓ(E′) >
ℓ(E), then ℓ(E ◦E′) = ℓ(E). The next two results are proven in Propositions 7 and 8 of [13].

4This definition changes slightly with respect to Definition (1.2.7) in [12].
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Proposition 2.1.6. For each D ∈ HSpk(A; ∆) we have that Dα is a k-linear differential

operator of order ≤ ⌊ |α|ℓ(D)⌋ for all α ∈ ∆.

As a consequence of the above proposition we have HSpk(A; ∆) ⊂ U
p
fil(DA/k; ∆).

Lemma 2.1.7. For any D,E ∈ HSs

k(A; ∆) we have ℓ([D,E]) ≥ ℓ(D) + ℓ(E).

Proof. It is a consequence of the identity [D,E]− I = [(D − I), (E − I)]D∗E∗.

Proposition 2.1.6 can be improved in the following way.

Definition 2.1.8. For each HS-derivation E ∈ HSpk(A; ∆) and each α ∈ ∆, we denote
ℓα(E) := ℓ (τ∆,nα(E)), i.e.

ℓα(E) := min{r ≥ 1 | ∃β ≤ α, |β| = r, Eβ 6= 0} ≥ 1

if τ∆,nα(E) 6= I and ℓα(E) = ∞ if τ∆,nα(E) = I.

It is clear that ℓ(E) ≤ ℓα(E) for all α ∈ ∆. Replacing D with τ∆,nα(D) makes obvious
the following proposition.

Proposition 2.1.9. For each D ∈ HSpk(A; ∆) we have that Dα is a k-linear differential

operator or order ≤ ⌊ |α|
ℓα(D)⌋ for all α ∈ ∆.

2.2 The action of substitution maps on HS-derivations

In this section, k will be a commutative ring, A a commutative k-algebra, R = Endk(A),
s = {s1, . . . , sp}, t = {t1, . . . , tp} sets of variables and ∆ ⊂ Np, ∇ ⊂ Nq non-empty co-ideals.

Let us recall Proposition 10 in [13].

Proposition 2.2.1. For any substitution map ϕ : A[[s]]∆ → A[[t]]∇, we have:

1) ϕ∗
(
Hom ◦k−alg(A,A[[s]]∆)

)
⊂ Hom ◦k−alg(A,A[[t]]∇),

2) ϕ• HSpk(A; ∆) ⊂ HSqk(A;∇),

3) ϕ• Aut ◦k[[s]]∆−alg(A[[s]]∆) ⊂ Aut ◦k[[t]]∇−alg(A[[t]]∇).

We have then a commutative diagram:

Hom ◦k−alg(A,A[[s]]∆) HSpk(A; ∆) Aut ◦k[[s]]∆−alg(A[[s]]∆)

Hom ◦k−alg(A,A[[t]]∇) HSqk(A;∇) Aut ◦k[[t]]∇−alg(A[[t]]∇).

ϕ∗

∼

ΦD←[D

∼

ϕ• (−) ϕ• (−)

∼

ΦD←[D

∼

(27)

In particular, for any HS-derivation D ∈ HSpk(A; ∆) we have ϕ•D ∈ HSqk(A;∇) (see 1.3.7).
Moreover Φϕ•D = ϕ ◦ΦD.

It is clear that for any co-ideals ∆′ ⊂ ∆ and ∇′ ⊂ ∇ with ϕ (∆′A/∆A) ⊂ ∇′A/∇A we
have

τ∇∇′(ϕ•D) = ϕ′ •τ∆∆′(D), (28)

where ϕ′ : A[[s]]∆′ → A[[t]]∇′ is the substitution map induced by ϕ.
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Let us notice that any a ∈ Ap gives rise to a substitution map ϕ : A[[s]]∆ → A[[s]]∆
given by ϕ(si) = aisi for all i = 1, . . . , p, and one has a•D = ϕ•D.

2.2.2 Let u = {u1, . . . , ur} be another set of variables, Ω ⊂ Nr a non-empty co-ideal,
ϕ ∈ SA(p, q; ∆,∇), ψ ∈ SA(q, r;∇,Ω) substitution maps and D,D′ ∈ HSpk(A; ∆) HS-
derivations. From 1.3.7 we deduce the following properties:

-) If we denote E := ϕ•D ∈ HSqk(A;∇), we have

E0 = Id, Ee =
∑

α∈∆
|α|≤|e|

Ce(ϕ, α)Dα, ∀e ∈ ∇. (29)

-) If ϕ = 0 is the trivial substitution map or if D = I, then ϕ•D = I.

-) If ϕ has constant coefficients, then (ϕ•D)∗ = ϕ•D∗ and ϕ•(D ◦D′) = (ϕ•D) ◦ (ϕ•D′).
The general case is treated in Proposition 2.2.3.

-) ψ •(ϕ•D) = (ψ ◦ϕ)•D.

-) ℓ(ϕ•D) ≥ ord(ϕ)ℓ(D).

The following result is proven in Propositions 11 and 12 of [13].

Proposition 2.2.3. Let ϕ : A[[s]]∆ → A[[t]]∇ be a substitution map. Then, the following
assertions hold:

(i) For each D ∈ HSpk(A; ∆) there is a unique substitution map ϕD : A[[s]]∆ → A[[t]]∇

such that
(
ϕ̃•D

)
◦ϕD = ϕ ◦ D̃. Moreover, (ϕ•D)∗ = ϕD •D∗, ϕI = ϕ and:

Ce(ϕ, f + ν) =
∑

β+γ=e
|f+g|≤|β|,|ν|≤|γ|

Cβ(ϕ, f + g)Dg(Cγ(ϕ
D, ν))

for all e ∈ ∆ and for all f, ν ∈ ∇ with |f + ν| ≤ |e|.

(ii) For each D,E ∈ HSpk(A; ∆), we have ϕ•(D ◦E) = (ϕ•D) ◦ (ϕD •E) and
(
ϕD
)E

=

ϕD ◦E. In particular,
(
ϕD
)D∗

= ϕ.

(iii) If ψ is another composable substitution map, then (ϕ ◦ψ)D = ϕψ •D ◦ψD.

(iv) If ϕ has constant coefficients then ϕD = ϕ.

Definition 2.2.4. Let S be a k-algebra over A, D ∈ HSpk(A; ∆) and r ∈ U
p(S; ∆). We say

that r is a D-element if ra = D̃(a)r for all a ∈ A[[s]]∆.

Given D ∈ U
p(Endk(A);∆), it is clear that:

D ∈ HSpk(A; ∆) ⇐⇒ D is a D-element.

For D = I the identity HS-derivation, a r ∈ U
p(S; ∆) is an I-element if and only if r

commutes with all a ∈ A[[s]]∆. If E ∈ HSpk(A; ∆) is another HS-derivation, r ∈ U
p(S; ∆) is

a D-element and s ∈ U
p(S; ∆) is an E-element, then rs is a (D ◦E)-element.

The proof of the following lemma is easy and it is left to the reader.
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Lemma 2.2.5. With the above notations, for each r =
∑

α rαs
α ∈ U

p(S; ∆) the following
properties are equivalent:

-) r is a D-element.

-) br = rD̃∗(b) for all b ∈ A[[s]]∆.

-) r∗ is a D∗-element.

-) If r =
∑

α rαs
α, we have rαa =

∑
β+γ=αDβ(a)rγ for all a ∈ A and for all α ∈ ∆.

-) ra = D̃(a)r for all a ∈ A.

The following proposition generalizes Proposition 2.2.3.

Proposition 2.2.6. Let S be a k-algebra over A, D ∈ HSpk(A; ∆), ϕ : A[[s]]∆ → A[t]]∇ a
substitution map and r ∈ U

p(S; ∆) a D-element. Then the following properties hold:

(a) ϕ•r is a (ϕ•D)-element.

(b) ϕ•(rr′) = (ϕ•r)(ϕD •r′) for all r′ ∈ S[[s]]∆. In particular, (ϕ•r)∗ = ϕD •r∗.

Moreover, if E is an A-module and S = Endk(E), then the following identity holds:

(c) 〈ϕ•r, ϕDE (e)〉 = ϕE (〈r, e〉) for all e ∈ E[[s]]∆, i.e. (ϕ• r̃) ◦ϕDE = ϕE ◦ r̃.

Proof. (a) By Lemma 2.2.5 we need to prove that ϕR(r)b =
(
ϕ̃•D

)
(b)ϕR(r) for all b ∈ A,

but we know that rb = D̃(b)r and so, from Lemma 1.3.8 and (18), we deduce that

(ϕ•r)b = ϕR(r)b = ϕR(rb) = ϕR

(
D̃(b)r

)
=

ϕ
(
D̃(b)

)
ϕR(r) =

(
ϕ̃•D

)
(b)ϕR(r) =

(
ϕ̃•D

)
(b)(ϕ•r).

(b) Since all the involved maps are k-linear and continuous, it is enough to prove the identity
in the case where r′ = r′αs

α with r′α ∈ R and α ∈ ∆. But, on one hand we have

ϕ•(rr′) = ϕR(rr
′
αs
α) = ϕR(s

αrr′α) = ϕ(sα)ϕR(rr
′
α) = ϕ(sα)ϕR(r)r

′
α = ϕ(sα)(ϕ•r)r′α,

and on the other hand, by using (a), we have

(ϕ•r)(ϕD •r′) = (ϕ•r)ϕDR (r
′
αs
α) = (ϕ•r)ϕD(sα)r′α =

(
ϕ̃•D

)
(ϕD(sα))(ϕ•r)r′α =

((
ϕ̃•D

)
◦ϕD

)
(sα)(ϕ•r)r′α =

(
ϕ ◦ D̃

)
(sα)(ϕ•r)r′α = ϕ(sα)(ϕ•r)r′α

and we are done. For the last part, 1 = ϕR(1) = ϕR(rr
∗) = ϕR(r)ϕ

D
R (r
∗).

(c) As in part (b), it is enough to prove the identity for e = eαs
α, with α ∈ ∆ and eα ∈ E.

By using the fact that

̺ ∈ Endk(E)[[s]]∆ 7−→ ˜̺∈ Endk[[s]]∆ (E[[s]]∆)

is an (A[[s]]∆;A[[s]]∆)-linear isomorphism compatible with the ϕ•(−) operation (see Lemma

1.2.8 and (19)), we deduce from part (a) that (ϕ̃•r) b =
(
ϕ̃•D

)
(b) (ϕ̃•r) for all b ∈ A[t]]∇,

and from Proposition 2.2.3, (i) and (20) we obtain:

〈ϕ•r, ϕDE (e)〉 = (ϕ̃•r)
(
ϕDE (eαs

α)
)
= (ϕ̃•r)

(
ϕD(sα)eα

)
=
(
ϕ̃•D

) (
ϕD(sα)

)
(ϕ̃•r) (eα) =

ϕ(D̃(sα))ϕE(r̃(eα)) = ϕ(sα)ϕE(r̃(eα)) = ϕE(s
αr̃(eα)) = ϕE(r̃(s

αeα)) = ϕE (〈r, e〉) .
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2.3 Integrable derivations and HS-smooth algebras

In this section we recall some notions and results of [11, 12]. Let k be a commutative ring
and A a commutative k-algebra. The following definition slightly changes with respect to
Definition (2.1.1) in [12].

Definition 2.3.1. (Cf. [2, 8]) Let m ≥ 1 be an integer or m = ∞, and δ : A → A a k-
derivation. We say that δ is m-integrable (over k) if there is a HS-derivation D ∈ HSk(A;m)
such that D1 = δ. Any such D will be called an m-integral of δ. The set of m-integrable
k-derivations of A is denoted by IDerk(A;m). We simply say that δ is integrable if it is
∞-integrable and denote IDerk(A) := IDerk(A;∞).

We say that δ is f-integrable (finite integrable) if it is m-integrable for any integer m ≥ 1.

The set of f-integrable k-derivations of A is denoted by IDerfk(A).

It is clear (see Definition 2.1.3) that the IDerk(A;m) and IDerfk(A) are A-submodules of
Derk(A) and that we have exact sequences of groups:

1 → ker τm1 −→ HSk(A;m) → IDerk(A;m) → 0, m ≥ 1, (30)

and
Derk(A) = IDerk(A; 1) ⊃ IDerk(A; 2) ⊃ IDerk(A; 3) ⊃ · · · ,

IDerk(A;∞) ⊂ IDerfk(A) =
⋂

m∈N
m≥1

IDerk(A;m). (31)

Example 2.3.2. Let m ≥ 1 be an integer. If m! is invertible in A, then any k-derivation δ

of A is m-integrable: we can take D ∈ HSk(A;m) defined by Di =
δi

i! for i = 0, . . . ,m. If
Q ⊂ k, one proves in a similar way that any k-derivation of A is ∞-integrable.

Let us recall the following result ([9, Theorem 27.1]):

Proposition 2.3.3. Let us assume that A is a 0-smooth k-algebra. Then any k-derivation
of A is integrable.

Proposition 2.3.4. The following properties are equivalent:

(a) Derk(A) = IDerk(A;∞).

(b) Derk(A) = IDerk(A;m) for all integers m ≥ 1 (⇔ Derk(A) = IDerfk(A)).

Proof. The implication (a) ⇒ (b) is clear.

(b) ⇒ (a) Let δ be a k-derivation of A. By hypothesis, there is a 2-integral D(2) =
(Id, D1, D2) ∈ HSk(A; 2) of δ, and by applying [13, Corollary 4] repeatedly we find a se-
quence D(m) ∈ HSk(A;m), m ≥ 2, such that τm,m−1D

(m) = D(m−1) for each m ≥ 2. We

can take D = lim
←−
m

D(m) ∈ HSk(A), that obviously is an ∞-integral of δ.

Remark 2.3.5. In general, we know that

IDerk(A;∞) ⊂ IDerfk(A) =
⋂

m∈N+

IDerk(A;m) ⊂ Derk(A).

Proposition 2.3.4 tells us that the above inclusion is an equality whenever all the k-derivations
of A are m-integrable for each m ∈ N+. Otherwise, we do not know whether it is strict or
not, or in other words, whether a derivation which is m-integrable for each integer m ≥ 1 is
∞-integrable or not.
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Definition 2.3.6. Let m be a non-negative integer or m = ∞. For any HS-derivation
D ∈ HSk(A;m) we define its total symbol by (see Notation 1.2.4):

Σm(D) := σ(D) =

m∑

i=0

σi(Di)t
i ∈ Ugr(grDA/k;m).

The total symbol map Σm : HSk(A;m) −→ Ugr(grDA/k;m) is a group homomorphism.
The following proposition is proven in [11, Proposition 2.5, Corollary 2.7].

Proposition 2.3.7. With the hypotheses above, the following properties hold:

(1) The image of Σm is contained in Em

(
grDA/k

)
.

(2) For any D ∈ HSk(A;m) and any a ∈ A we have Σm(a •D) = aΣm(D).

(3) The map Σm induces an A-linear map χm : IDerk(A;m) → Em(grDA/k).

It is clear that, for 1 ≤ m ≤ q ≤ ∞, the following diagram is commutative:

IDerk(A; q) Eq(grDA/k)

IDerk(A;m) Em(grDA/k).

χq

inc. trunc.

χm

By taking the inverse limit of the χm for 1 ≤ m < ∞ we obtain an A-linear map χf :
IDerfk(A) → E(grDA/k). Explicitly, if δ ∈ IDerfk(A), then:

χf (δ) =

∞∑

m=0

σm (Dm
m) tm

where Dm =
(
Dm
j

)
0≤j≤m

≡
∑m

j=0D
m
j t

j ∈ HSk(A;m) is any m-integral of δ for each integer

m ≥ 1 (D0 = I).

From the universal property of power divided algebras (see Proposition 1.4.2), we obtain
a canonical homomorphism of graded A-algebras:

ϑfA/k : Γ IDerfk(A) → grDA/k . (32)

It is clear that for each integer m ≥ 1, the following diagram is commutative:

Γ IDerk(A;∞) Γ IDerfk(A) Γ IDerk(A;m)

grDA/k,

nat.

ϑA/k,∞

nat.

ϑf
A/k ϑA/k,m

where the ϑA/k,m and ϑA/k,∞ have been defined in [11, (2.6)]. The following two theorems
are proven in [11], Theorem (2.8) and Theorem (2.14), for IDerk(A;∞), ϑA/k,∞ instead of

IDerfk(A), ϑ
f
A/k, but the proofs remain essentially the same.

Theorem 2.3.8. With the above notations, there are canonical maps θA/k and φ such that
the following diagram of graded A-algebras is commutative:

grDA/k

(
SymA ΩA/k

)∗
gr

Γ IDerfk(A) ΓDerk(A).

θA/k

ϑf
A/k

nat.

φ
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Theorem 2.3.9. Assume that Derk(A) is a projective A-module of finite rank. The following
properties are equivalent:

(a) The homomorphism of graded A-algebras θA/k : grDA/k −→
(
SymA ΩA/k

)∗
gr

is an

isomorphism.

(b) The homomorphism of graded A-algebras ϑfA/k : Γ IDerfk(A) −→ grDA/k is an isomor-

phism.

(c) IDerfk(A) = Derk(A).

Remark 2.3.10. After Theorem (2.14) in [11] or Proposition 2.3.4, the equivalent proper-
ties in Theorem 2.3.9 are also equivalent to:

(b’) The homomorphism of graded A-algebras

ϑA/k,∞ : Γ IDerk(A;∞) −→ grDA/k

is an isomorphism.

(c’) IDerk(A;∞) = Derk(A).

Definition 2.3.11. We say that a k-algebra A is HS-smooth if Derk(A) is a projective
A-module of finite rank and the equivalent properties (a), (b), (c) of Theorem 2.3.9 hold.

Let us recall the following result ([11, Corollary (2.16)]).

Corollary 2.3.12. Assume that ΩA/k is a projective A-module of finite rank and that A is
differentially smooth over k (in the sense of [4, 16.10]). Then, A is a HS-smooth k-algebra.

In particular, after [4, Proposition 17.12.4], if A is a smooth finitely presented k-algebra,
then A is a HS-smooth k-algebra.

3 Main results

3.1 Hasse–Schmidt modules

Definition 3.1.1. Let R be a k-algebra over A. A pre-HS-structure on R over A/k is a
system of maps

Ψ = {Ψp∆ : HSpk(A; ∆) −→ U
p(R; ∆), p ∈ N,∆ ∈ CI (Np)}

such that5:

(i) The Ψ
p
∆ are group homomorphisms.

(ii) (Leibniz rule) For any D ∈ HSpk(A; ∆), Ψ
p
∆(D) is a D-element, i.e. Ψ

p
∆(D) a =

D̃(a)Ψp∆(D) for all a ∈ A (see Lemma 2.2.5).

(iii) For any substitution map ϕ ∈ Sk(p, q; ∆,∇) and for any D ∈ HSpk(A; ∆) we have
Ψ
q
∇(ϕ•D) = ϕ•Ψp∆(D).

5Actually, from (6) and (24) we could restrict ourselves to non-empty finite co-ideals.
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We say that a pre-HS-structure Ψ on R over A/k is a HS-structure if property (iii) above
holds for any substitution map ϕ ∈ SA(p, q; ∆,∇).

If R′ is another k-algebra over A and f : R → R′ is a map of k-algebras over A, then any
(pre-)HS-structure Ψ on R over A/k gives rise to a (pre-)HS-structure f ◦Ψ on R′ over A/k
defined as

(f ◦Ψ)
p
∆ := f ◦Ψp∆, p ∈ N,∆ ∈ CI (Np) .

If R is filtered, we will say that a (pre-)HS-structure Ψ on R over A/k is filtered if

Ψ
p
∆(HS

p
k(A; ∆)) ⊂ U

p
fil(R; ∆)

for all p ∈ N and all ∆ ∈ CI (Np).

Let us notice that if Ψ is a pre-HS-structure on R over A/k, then the system of maps
Γ = {Γp∆ : HSpk(A; ∆) −→ U

p(Ropp; ∆), p ∈ N,∆ ∈ CI (Np)} defined as Γ
p
∆(D) = Ψ

p
∆(D

∗)
for D ∈ HSpk(A; ∆) is a pre-structure on Ropp over A/k. However, if Ψ is a HS-structure
on R over A/k, the system Γ defined above is not in general HS-structure on Ropp. More
precisely, we have the following proposition.

Proposition 3.1.2. Let Ψ be a pre-HS-structure on R over A/k and let us consider the
system of maps Γ = {Γp∆ : HSpk(A; ∆) −→ U

p(Ropp; ∆), p ∈ N,∆ ∈ CI (Np)} defined as
Γ
p
∆(D) = Ψ

p
∆(D

∗) for D ∈ HSpk(A; ∆). The following properties are equivalent:

(1) Γ is a HS-structure on Ropp over A/k.

(2) For each p, q ∈ N, for each ∆ ∈ CI (Np) ,∇ ∈ CI (Nq), for each substitution map
ϕ ∈ SA(p, q; ∆,∇) and for each D ∈ HSpk(A; ∆) we have Ψ

q
∇(ϕ•D) = Ψ

p
∆(D)•ϕD (see

Proposition 2.2.3).

Proof. (1) ⇒ (2): We know that for each E ∈ HSpk(A; ∆) and each ψ ∈ SA(p, q; ∆,∇) we
have Γ

q
∇(ψ •E) = ψ

opp
• Γ

p
∆(E), i.e. Ψ

q
∇ ((ψ •E)∗) = Ψ

p
∆(E

∗)•ψ, and we conclude by taking
E = D∗ and ψ = ϕD (see Proposition 2.2.3):

Ψ
q
∇(ϕ•D) = Ψ

q
∇

(
ψE •E∗

)
= Ψ

q
∇ ((ψ •E)∗) = Ψ

p
∆(E

∗)•ψ = Ψ
p
∆(D)•ϕD.

(2) ⇒ (1): Properties (i) and (ii) are clear. For property (iii) we proceed as in (1) ⇒ (2).

Example 3.1.3. The inclusions

HSpk(A; ∆) →֒ U
p(DA/k; ∆) ⊂ U

p(Endk(A);∆)

give rise to the “tautological” HS-structures on DA/k and on Endk(A) over A/k.

Definition 3.1.4. (1) A left (pre-)HS-module (resp. a right (pre-)HS-module) over A/k is
an A-module E endowed with a (pre-)HS-structure on Endk(E) (resp. on the opposed ring
Endk(E)opp) over A/k.
(2) A HS-map from a left (resp. a right) (pre-)HS-module (E,Φ) to a left (resp. to a right)
(pre-)HS-module (F,Ψ) is an A-linear map f : E → F such that f ◦Φp∆(D) = Ψ

p
∆(D) ◦f for

all p ∈ N, for all ∆ ∈ CI (Np), for all α ∈ ∆ and for all D ∈ HSpk(A; ∆).

Remark 3.1.5. Let E be an A-module and R = Endk(E). By using the canonical isomor-
phisms (11), we have the following:

(1) For each left (pre-)HS-module (E,Ψ), the (pre-)HS-structure Ψ may be considered as a
system of maps Ψ = {Ψp∆ : HSpk(A; ∆) −→ Aut◦k[[s]]∆(E[[s]]∆), p ∈ N,∆ ∈ CI (Np)}, with
s = {s1, . . . , sp}, such that:
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(i) The Ψ
p
∆ are group homomorphisms.

(ii) For any D ∈ HSpk(A; ∆) and any a ∈ A[[s]]∆, Ψ
p
∆(D) a = D̃(a)Ψp∆(D).

(iii) For any substitution map ϕ ∈ SA(p, q; ∆,∇) (resp. for any substitution map ϕ ∈
Sk(p, q; ∆,∇)) and for any D ∈ HSpk(A; ∆) we have Ψ

q
∇(ϕ•D) = ϕ•Ψp∆(D).

Moreover, property (ii) above is equivalent to:

(ii’) For any D ∈ HSpk(A; ∆) and any a ∈ A[[s]]∆, aΨ
p
∆(D) = Ψ

p
∆(D) D̃∗(a).

(2) For each right (pre-)HS-module (E,Ψ), the (pre-)HS-structure Ψ may be considered as
a system of maps Ψ = {Ψp∆ : HSpk(A; ∆) −→ Aut◦k[[s]]∆(E[[s]]∆), p ∈ N,∆ ∈ CI (Np)} such
that:

(i) The Ψ
p
∆ are group anti-homomorphisms.

(ii) For any D ∈ HSpk(A; ∆) and any a ∈ A[[s]]∆, aΨ
p
∆(D) = Ψ

p
∆(D) D̃(a).

(iii) For any substitution map ϕ ∈ SA(p, q; ∆,∇) (resp. for any substitution map ϕ ∈
Sk(p, q; ∆,∇)) and for any D ∈ HSpk(A; ∆) we have Ψ

q
∇(ϕ•D) = Ψ

p
∆(D)•ϕ.

Moreover, property (ii) above is equivalent to:

(ii’) For any D ∈ HSpk(A; ∆) and any a ∈ A[[s]]∆, Ψ
p
∆(D) a = D̃∗(a)Ψp∆(D).

Example 3.1.6. The underlying A-module of any left (resp. right) DA/k-module E car-
ries an obvious left (resp. right) HS-module structure, namely Ψ = {Ψp∆ : HSpk(A; ∆) −→
Aut◦k[[s]]∆(E[[s]]∆), p ∈ N,∆ ∈ CI (Np)} given by:

Ψ
p
∆(D)(e) :=

∑

α∈∆

(
∑

β+γ=α

Dβ · eγ

)
sα

(
resp. Ψ

p
∆(D)(e) :=

∑

α∈∆

(
∑

β+γ=α

eγ ·Dβ

)
sα

)

for all D ∈ HSpk(A; ∆) and for all e =
∑
eγs

γ ∈ E[[s]]∆.

When we consider the left DA/k-module E = A, then its left HS-module structure is
simply given by the injective group homomorphisms

D ∈ HSpk(A; ∆) 7−→ D̃ ∈ Aut◦k[[s]]∆(A[[s]]∆).

Proposition 3.1.7. Under the above hypotheses, the A-module ΩA/k has a unique left pre-
HS-module structure over A/k for which the differential d : A −→ ΩA/k is a HS-map.

Proof. For each p ∈ N, each ∆ ∈ CI (Np) and each D ∈ HSsk(A; ∆), let us consider
ΩA/k[[s]]∆ as an A-module through the k-algebra map ΦD : A → A[[s]]∆ (see (26)). It
is clear that the map

d ◦ΦD : x ∈ A 7−→
∑

α

d(Dα(x))s
α ∈ ΩA/k[[s]]∆

is a k-derivation. So, there is a unique A-linear map Lie
p
∆(D) : ΩA/k −→ ΩA/k[[s]]∆ such

that the following diagram is commutative:

A ΩA/k

A[[s]]∆ ΩA/k[[s]]∆.

d

ΦD Lie
p
∆(D)

d
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If write Lie
p
∆(D) =

∑
αLie

p
∆(D)αs

α, each Lie
p
∆(D)α is k-linear, Lie

p
∆(D)α ◦d = d ◦Dα

for all α ∈ ∆ and the A-linearity of Lie
p
∆(D) means that

Lie
p
∆(D)α(aω) =

∑

α′+α′′=α

Dα′(a)Lie
p
∆(D)α′′ (ω) ∀a ∈ A, ∀ω ∈ ΩA/k, ∀α ∈ ∆. (33)

In particular, Lie
p
∆(D)0 = Id. In order to simplify, the canonical k[[s]]∆-linear extension

of Lie
p
∆(D) to ΩA/k[[s]]∆ (see (8)) will be also denoted by Lie

p
∆(D). We have then a

commutative diagram:

A[[s]]∆ ΩA/k[[s]]∆

A[[s]]∆ ΩA/k[[s]]∆.

d

D̃ Lie
p
∆(D)

d

Let us see that the system:

Lie := {Lie
p
∆ : HSs

k(A; ∆) → Aut◦k[[s]]∆(ΩA/k[[s]]∆), p ∈ N,∆ ∈ CI (Np)}

is a left pre-HS-module structure on ΩA/k over A/k:

(i) The uniqueness property defining Lie
p
∆(D) implies that the Lie

p
∆ are group homomor-

phisms.

(ii) Property (33) can be translated into Lie
p
∆(D)a = D̃(a)Lie

p
∆(D).

(iii) Let ϕ ∈ Sk(p, q; ∆,∇) be a substitution map with constant coefficients and D ∈
HSpk(A; ∆). To prove the equality Lie

q
∇(ϕ•D) = ϕ•Lie

p
∆(D), it is enough to prove that

the restrictions to ΩA/k of both terms coincide (see Lemma 1.2.8), and this is a consequence
of the identity

(ϕ• Lie
p
∆(D)) |ΩA/k

= ϕΩ ◦ Lie
p
∆(D),

where ϕΩ = ϕ⊗̂IdΩA/k
: ΩA/k[[s]]∆ → ΩA/k[[t]]∇ is the ϕ-linear map induced by ϕ (see 1.3.6

and (21)), the identity Φϕ•D = ϕ ◦ΦD (see (27)), and the commutativity of the following
diagram:

A ΩA/k

A[[s]]∆ ΩA/k[[s]]∆

A[[t]]∇ ΩA/k[[t]]∇.

d

ΦD Lie
p
∆(D)

d

ϕ ϕΩ

d

Let us notice that the commutativity of the bottom square depends on ϕ being with constant
coefficients.

Remark 3.1.8. With the notations of the above proposition, for each α ∈ ∆ with |α| = 1,
the map Lie

p
∆(D)α : ΩA/k → ΩA/k coincides with the classical Lie derivative LieDα :

ΩA/k → ΩA/k with respect to the derivation Dα.

Proposition 3.1.9. The following properties hold:

1) For each p ∈ N, each ∆ ∈ CI (Np), each D ∈ HSpk(A; ∆) and each δ ∈ Derk(A)[[s]]∆
we have DδD∗ ∈ Derk(A)[[s]]∆.
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2) The system Ad := {Adp
∆ : HSpk(A; ∆) → Aut◦k[[s]]∆(Derk(A)[[s]]∆), p ∈ N,∆ ∈

CI (Np)}, defined as

Ad
p
∆(D)(δ) := D δD∗ ∀D ∈ HSpk(A; ∆), ∀δ ∈ Derk(A)[[s]]∆,

is a left pre-HS-module structure on Derk(A) over A/k.

Proof. 1) For each a ∈ A[[s]]∆ we have

[D̃ δ D∗, a] = D̃ δ̃ D̃∗ a− a D̃ δ̃ D̃∗ =

D̃ δ̃ D̃∗(a) D̃∗ − a D̃ δ̃ D̃∗ = D̃ D̃∗(a) δ̃ D̃∗ + D̃ δ̃(D̃∗(a)) D̃∗ − a D̃ δ̃ D̃∗ =

D̃(D̃∗(a)) D̃ δ̃ D̃∗ + D̃(δ̃(D̃∗(a))) D̃ D̃∗ − a D̃ δ̃D̃∗ =

a D̃ δ̃ D̃∗ + D̃δD∗(a)− a D̃ δ̃ D̃∗ = D̃δD∗(a)

and so by Lemma 1.2.8, c), we deduce that D δD∗ ∈ Derk(A)[[s]]∆. Actually, this result can
be simply understood as the fact that the conjugation of any k[[s]]∆-derivation of A[[s]]∆
by any automorphism of the k[[s]]∆-algebra A[[s]]∆ is again a k[[s]]∆-derivation.

2) For each δ ∈ Derk(A) we have Ad
p
∆(D)(δ) =

∑
αAd

p
∆(D)α(δ) s

α with

Ad
p
∆(D)α(δ) =

∑

α′+α′′=α

Dα′ δ D
∗
α′′ ,

and so Ad
p
∆(D)0 = Id and Ad

p
∆(D) ∈ Aut◦k[[s]]∆(Derk(A)[[s]]∆).

(i) Since the Ad
p
∆ are defined as a conjugation, they are group homomorphisms.

(ii) For any D ∈ HSpk(A; ∆), for any a ∈ A[[s]]∆ and for any δ ∈ Derk(A)[[s]]∆ we have

(Adp
∆(D) a) (δ) = Da δD∗ = D̃(a)D δD∗ = D̃(a)Adp

∆(D)(δ).

(iii) Let ϕ ∈ Sk(p, q; ∆,∇) be a substitution map with constant coefficients and D ∈
HSpk(A; ∆) a HS-derivation. Let us denote E := ϕ •D. We know from 2.2.2 that:

Ee =
∑

α∈∆
|α|≤|e|

Ce(ϕ, α)Dα, ∀e ∈ Nq, e 6= 0 (E0 = Id)

and E∗ = ϕ •D∗. So, for each ε ∈ ∇ and for each δ ∈ Derk(A) we have:

Ad
p
∆(ϕ •D)ε(δ) =

∑

e+f=ε

Ee δ E
∗
f =

∑

e+f=ε
α∈∆,γ∈∆

|α|≤|e|,|γ|≤|f|

Ce(ϕ, α)Cf (ϕ, γ)Dα δ D
∗
γ =

∑

a∈∆
|a|≤|ε|

∑

α,γ∈∆
α+γ=a

∑

e+f=ε
|α|≤|e|,|γ|≤|f|

Ce(ϕ, α)Cf (ϕ, γ)Dα δ D
∗
γ

(⋆)
=

∑

a∈∆
|a|≤|ε|

∑

α,γ∈∆
α+γ=a

Cε(ϕ, a)Dα δ D
∗
γ =

∑

a∈∆
|a|≤|ε|

Cε(ϕ, a)



∑

α,γ∈∆
α+γ=a

Dα δ D
∗
γ


 =

∑

a∈∆
|a|≤|ε|

Cε(ϕ, a)Ad
p
∆(D)a(δ) = (ϕ• Adp

∆(D))ε (δ),

where the equality (⋆) comes from the fact that ϕ is an A-algebra map (see [13, Proposition
3]).
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Remark 3.1.10. With the notations of the above proposition, for each α ∈ ∆ with |α| = 1,
the map Ad

p
∆(D)α : Derk(A) → Derk(A) coincides with the classical adjoint representation

AdDα : δ ∈ Derk(A) 7−→ [Dα, δ] ∈ Derk(A)

associated with the derivation Dα.

It is clear that left (resp. right) (pre-)HS-modules with HS-maps form an abelian category
admitting a conservative additive exact functor (the forgetful functor) to the category of A-
modules.

3.2 Operations on Hasse–Schmidt modules

In this section, starting with two left (pre-)HS-modules (E,Ψ), (F,Ψ) over A/k and two

right (pre-)HS-modules (P, Γ ), (Q, Γ) over A/k, we will see how to construct natural left
(pre-)HS-modules structures on E ⊗A F , HomA(E,F ), HomA(P,Q) and right (pre-)HS-
modules structures on P ⊗A E, HomA(E,P ). Let us notice that similar constructions
have been studied in [10, §2.2] in the particular case of iterative uni-variate Hasse–Schmidt
derivations over a field.

Proposition 3.2.1. Under the above hypotheses, the following properties hold:

(1) For any p ∈ N, for any ∆ ∈ CI (Np) and for any D ∈ HSpk(A; ∆) there is a unique
Ψ
p
∆(D) ∈ Aut◦k[[s]]∆((E ⊗A F )[[s]]∆) such that the following diagram is commutative:

E[[s]]∆ ⊗k[[s]]∆ F [[s]]∆ (E ⊗A F )[[s]]∆

E[[s]]∆ ⊗k[[s]]∆ F [[s]]∆ (E ⊗A F )[[s]]∆,

µ

Ψ
p
∆(D)⊗Ψ

p

∆(D) Ψ
p
∆(D)

µ

where µ is the natural (A[[s]]∆;A[[s]]∆)-linear map

µ

((
∑

α

eαs
α

)
⊗

(
∑

α

fαs
α

))
=
∑

α

(
∑

α′+α′′=α

eα′ ⊗ fα′′

)
sα.

(2) The system Ψ = {Ψp∆, p ∈ N,∆ ∈ CI (Np)} defines a left (pre-)HS-module structure
over A/k on E ⊗A F .

Proof. (1) Since we have canonical isomorphisms E[[s]]∆ ⊗A[[s]]∆ F [[s]]∆ ≃ (E ⊗A F )[[s]]∆,
the result comes from the following equality:

µ
((

Ψ
p

∆(D)⊗ Ψ
p

∆(D)
)
((ae)⊗ f)

)
= µ

(
Ψ
p

∆(D)(ae)⊗ Ψ
p

∆(D)(f)
)
=

µ
((
D̃(a)Ψ

p

∆(D)(e)
)
⊗ Ψ

p

∆(D)(f)
)
= µ

(
Ψ
p

∆(D)(e)⊗
(
D̃(a)Ψ

p

∆(D)(f)
))

=

µ
(
Ψ
p

∆(D)(e) ⊗ Ψ
p

∆(D)(af)
)
= µ

((
Ψ
p

∆(D)⊗ Ψ
p

∆(D)
)
(e⊗ (af))

)

for all e ∈ E[[s]]∆, for all f ∈ F [[s]]∆ and for all a ∈ A[[s]]∆.
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(2) We have to check properties (i), (ii) and (iii) of Remark 3.1.5 (1). Property (i) is clear
from the uniqueness of Ψp∆(D) in part (1). Property (ii) follows from

(Ψp∆(D) a) (µ(e ⊗ f)) = Ψ
p
∆(D)(µ((ae) ⊗ f)) =

µ
(
Ψ
p

∆(D)(ae) ⊗ Ψ
p

∆(D)(f)
)
= µ

((
D̃(a)Ψ

p

∆(D)(e)
)
⊗ Ψ

p

∆(D)(f)
)
=

D̃(a)µ
(
Ψ
p

∆(D)(e) ⊗ Ψ
p

∆(D)(f)
)
= D̃(a)Ψp∆(D)(µ(e ⊗ f))

for all e ∈ E[[s]]∆, for all f ∈ F [[s]]∆ and for all a ∈ A[[s]]∆. Property (iii) follows from (19)
and the commutativity of the following diagram:

E[[s]]∆ ⊗k[[s]]∆ F [[s]]∆ (E ⊗A F )[[s]]∆

E[[t]]∇ ⊗k[[t]]∇ F [[t]]∇ (E ⊗A F )[[t]]∇

µ

ϕE⊗ϕF
ϕE⊗AF

µ

for each substitution map ϕ ∈ SA(p, q; ∆,∇) (resp. ϕ ∈ Sk(p, q; ∆,∇)).

For any maps f : E[[s]]∆ → E[[s]]∆, g : F [[s]]∆ → F [[s]]∆ and h : E[[s]]∆ → F [[s]]∆, let
us denote:

f⋆(h) := h ◦f, g⋆(h) := g ◦h.

Proposition 3.2.2. Under the above hypotheses, the following properties hold:

(1) For any p ∈ N, for any ∆ ∈ CI (Np) and for any D ∈ HSpk(A; ∆) there is a unique
Ψ
p
∆(D) ∈ Aut◦k[[s]]∆ (HomA(E,F )[[s]]∆) such that the following diagram is commuta-

tive:
HomA(E,F )[[s]]∆ Homk[[s]]∆(E[[s]]∆, F [[s]]∆)

HomA(E,F )[[s]]∆ Homk[[s]]∆(E[[s]]∆, F [[s]]∆),

ν

Ψ
p
∆(D) Ψ

p

∆(D)⋆ ◦ Ψ
p
∆(D∗)⋆

ν

where ν is the natural (A[[s]]∆;A[[s]]∆)-linear map defined as ν(h) = h̃ (see (7)).

(2) The system Ψ = {Ψp∆, p ∈ N,∆ ∈ CI (Np)} defines a left (pre-)HS-module structure
over A/k on HomA(E,F ).

Proof. (1) Since we have canonical isomorphisms

h ∈ HomA(E,F )[[s]]∆
∼
7−→ h̃ ∈ HomA[[s]]∆(E[[s]]∆, F [[s]]∆),

the result comes from the fact that
(
Ψ
p

∆(D)⋆ ◦ Ψ
p

∆(D
∗)⋆
)
(h′) is A[[s]]∆-linear for each h

′ ∈

HomA[[s]]∆(E[[s]]∆, F [[s]]∆), namely:

(
Ψ
p

∆(D)⋆ ◦ Ψ
p

∆(D
∗)⋆
)
(h′)(am) =

(
Ψ
p

∆(D) ◦h′ ◦ Ψ
p

∆(D
∗)
)
(am) =

Ψ
p

∆(D)
(
h′
(
D̃∗(a) Ψ

p

∆(D
∗)(m)

))
= Ψ

p

∆(D)
(
D̃∗(a)h′

(
Ψ
p

∆(D
∗)(m)

))
=

D̃(D̃∗(a))Ψ
p

∆(D)
(
h′
(
Ψ
p

∆(D
∗)(m)

))
= a

(
Ψ
p

∆(D)⋆ ◦ Ψ
p

∆(D
∗)⋆
)
(h′)(m)

for all m ∈ E[[s]]∆ and for all a ∈ A[[s]]∆.
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(2) As in Proposition 3.2.1, we have to check properties (i), (ii) and (iii) of Remark 3.1.5
(1). Property (i) comes from the fact that the map

D ∈ HSpk(A; ∆) 7−→

Ψ
p

∆(D)⋆ ◦ Ψ
p

∆(D
∗)⋆ ∈ Autk[[s]]∆

(
Homk[[s]]∆(E[[s]]∆, F [[s]]∆)

)

is a group homomorphism:

Ψ
p

∆(D ◦E)⋆ ◦ Ψ
p

∆((D ◦E)∗)⋆ = · · · =

Ψ
p

∆(D)⋆ ◦ Ψ
p

∆(E)⋆ ◦ Ψ
p

∆(D
∗)⋆ ◦ Ψ

p

∆(E
∗)⋆ =

Ψ
p

∆(D)⋆ ◦ Ψ
p

∆(D
∗)⋆ ◦ Ψ

p

∆(E)⋆ ◦ Ψ
p

∆(E
∗)⋆.

Property (ii) follows from the following equality:

(
Ψ
p

∆(D)⋆ ◦ Ψ
p

∆(D
∗)⋆
)
(ah′) = Ψ

p

∆(D) ◦ (ah′) ◦ Ψ
p

∆(D
∗) =

(
Ψ
p

∆(D) a
)
◦h′ ◦ Ψ

p

∆(D
∗) =

(
D̃(a)Ψ

p

∆(D)
)
◦h′ ◦ Ψ

p

∆(D
∗) =

D̃(a)
(
Ψ
p

∆(D)⋆ ◦ Ψ
p

∆(D
∗)⋆
)
(h′)

for all h′ ∈ HomA[[s]]∆(E[[s]]∆, F [[s]]∆) and for all a ∈ A[[s]]∆.

To finish, let us prove property (iii). Let us write M = HomA(E,F ). It is enough to
prove that Ψq∇(ϕ•D)|M = (ϕ•Ψp∆(D)) |M for all p, q ∈ N, for all ∆ ⊂ Np,∇ ∈ CI (Nq), for
all substitution map ϕ ∈ SA(p, q; ∆,∇) (resp. ϕ ∈ Sk(p, q; ∆,∇)) and for all HS-derivation

D ∈ HSpk(A; ∆). For each h ∈ M we have ν(h) = h̃ = h with h
(∑

β eαt
β
)
=
∑

β h(eβ)t
β

for each
∑

β eβt
β ∈ E[[t]]∇. So:

(ν ◦Ψq∇(ϕ•D)) (h)|E =
[
Ψ
q

∇(ϕ•D) ◦ν(h) ◦ Ψ
q

∇((ϕ•D)∗)
]
|E

(1)
=

(
ϕ• Ψ

p

∆(D)
)
◦ h̃ ◦

[
Ψ
q

∇(ϕ
D
•D∗)|E

]
=
(
ϕ• Ψ

p

∆(D)
)
◦ h̃ ◦

[(
ϕD • Ψ

p

∆(D
∗)
)
|E
]

(2)
=

(
ϕ• Ψ

p

∆(D)
)
◦h ◦

[(
ϕD
)
E
◦

(
Ψ
p

∆(D
∗)|E

)]
=

(
ϕ• Ψ

p

∆(D)
)
◦
(
ϕD
)
F
◦h ◦

(
Ψ
p

∆(D
∗)|E

)
(3)
= ϕF ◦ Ψ

p

∆(D) ◦ν(h) ◦
(
Ψ
p

∆(D
∗)|E

)
=

ϕF ◦ [(ν ◦Ψ
p
∆(D)) (h)|E ] = ϕF ◦ [ν (Ψ

p
∆(D)(h)) |E ]

(4)
= ν (ϕM (Ψp∆(D)(h))) |E =

ν ((ϕM ◦Ψ
p
∆(D)) (h)) |E = ν ((ϕ•Ψp∆(D)) (h)) |E = (ν ◦ (ϕ•Ψp∆(D))) (h)|E ,

where equality (1) comes from Proposition 2.2.3, equality (2) comes from (20), equality (3)
comes from Proposition 2.2.6, (c), and equality (4) comes from (18). We first deduce that
(ν ◦Ψq∇(ϕ•D)) (h) = (ν ◦ (ϕ•Ψp∆(D))) (h) for all h ∈M , i.e.

ν ◦ (Ψq∇(ϕ•D)|M ) = ν ◦ ((ϕ•Ψp∆(D)) |M ) ,

second, from the injectivity of ν, that Ψq∇(ϕ•D)|M = (ϕ•Ψp∆(D)) |M , and we conclude that
Ψ
q
∇(ϕ•D) = ϕ•Ψp∆(D).

The proofs of the following three propositions are completely similar to the proofs of
Propositions 3.2.2 and 3.2.1.
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Proposition 3.2.3. Under the above hypotheses, the following properties hold:

(1) For any p ∈ N, for any ∆ ∈ CI (Np) and for any D ∈ HSpk(A; ∆) there is a unique
Γ
p
∆(D) ∈ Aut◦k[[s]]∆((P ⊗A E)[[s]]∆) such that the following diagram is commutative:

P [[s]]∆ ⊗k[[s]]∆ E[[s]]∆ (P ⊗A E)[[s]]∆

P [[s]]∆ ⊗k[[s]]∆ E[[s]]∆ (P ⊗A E)[[s]]∆,

µ

Γ
p
∆(D)⊗Ψ

p
∆(D∗) Γ

p
∆(D)

µ

where µ is the natural (A[[s]]∆;A[[s]]∆)-linear map

µ

((
∑

α

pαs
α

)
⊗

(
∑

α

eαs
α

))
=
∑

α

(
∑

α′+α′′=α

pα′ ⊗ eα′′

)
sα.

(2) The system Γ = {Γp∆, p ∈ N,∆ ∈ CI (Np)} defines a right (pre-)HS-module structure
over A/k on P ⊗A E.

Proposition 3.2.4. Under the above hypotheses, the following properties hold:

(1) For any p ∈ N, for any ∆ ∈ CI (Np) and for any D ∈ HSpk(A; ∆) there is a unique
Ψ
p
∆(D) ∈ Aut◦k[[s]]∆ (HomA(P,Q)[[s]]∆) such that the following diagram is commuta-

tive:
HomA(P,Q)[[s]]∆ Homk[[s]]∆(P [[s]]∆, Q[[s]]∆)

HomA(P,Q)[[s]]∆ Homk[[s]]∆(P [[s]]∆, Q[[s]]∆),

ν

Ψ
p
∆(D) Γ

p

∆(D∗)⋆ ◦ Γ
p
∆(D)⋆

ν

where ν is the natural (A[[s]]∆;A[[s]]∆)-linear map defined as ν(h) = h̃ (see (7)).

(2) The system Ψ = {Ψp∆, p ∈ N,∆ ∈ CI (Np)} defines a left (pre-)HS-module structure
over A/k on HomA(P,Q).

Proposition 3.2.5. Under the above hypotheses, the following properties hold:

(1) For any p ∈ N, for any ∆ ∈ CI (Np) and for any D ∈ HSpk(A; ∆) there is a unique
Γ
p
∆(D) ∈ Aut◦k[[s]]∆ (HomA(E,P )[[s]]∆) such that the following diagram is commuta-
tive:

HomA(E,P )[[s]]∆ Homk[[s]]∆(E[[s]]∆, P [[s]]∆)

HomA(E,P )[[s]]∆ Homk[[s]]∆(E[[s]]∆, P [[s]]∆),

ν

Γ
p
∆(D) Γ

p
∆(D)∗ ◦ Ψ

p
∆(D)⋆=Ψ

p
∆(D)⋆ ◦ Γ

p
∆(D)∗

ν

where ν is the natural (A[[s]]∆;A[[s]]∆)-linear map defined as ν(h) = h̃ (see (7)).

(2) The system Γ = {Γp∆, p ∈ N,∆ ∈ CI (Np)} defines a right (pre-)HS-module structure
over A/k on HomA(E,P ).

The following proposition easily follows from Proposition 3.2.1 and its proof is left to the
reader.
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Proposition 3.2.6. Under the above hypotheses, the left (pre-)HS-module structure over
A/k on E⊗d = E ⊗A E ⊗A · · · ⊗A E defined in Proposition 3.2.1 induces:

1) A unique (pre-)HS-module structure over A/k on Symd
AE such that the natural map

E⊗d → Symd
AE is a HS-map.

2) A unique (pre-)HS-module structure over A/k on
∧d
AE such that the natural map

E⊗d →
∧d
AE is a HS-map.

3.3 The enveloping algebra of Hasse–Schmidt derivations

Let TA/k be the free k-algebra

TA/k := k〈Sa, Tp,∆,D,α; a ∈ A, p ∈ N,∆ ∈ CI (Np) , α ∈ ∆, D ∈ HSpk(A; ∆)〉

and let us consider the two-sided ideal I ⊂ TA/k with generators:

(0) Sc1 − c, Sa+a′ − Sa − Sa′ , Saa′ − SaSa′ ,

(i) Tp,{0},I,0 − 1,

(ii) Tp,∆,I,α for |α| > 06,

(iii) Tp,∆,D ◦E,α −
∑

β+γ=α

Tp,∆,D,β Tp,∆,E,γ,

(iv) Tp,∆,D,α Sa −
∑

β+γ=α

SDβ(a)Tp,∆,D,γ,

(v) Tq,∇,ϕ•D,β −
∑

α∈∆
|α|≤|β|

SCβ(ϕ,α)Tp,∆,D,α,

for c ∈ k, a, a′ ∈ A, p, q ∈ N, ∆ ⊂ Np,∇ ∈ CI (Nq), α ∈ ∆, β ∈ ∇, D,E ∈ HSpk(A; ∆) and
ϕ ∈ SA(p, q; ∆,∇).

We consider the N-grading in TA/k given by (see Definition 2.1.8):

deg(k) = 0, deg(Sa) = 0, deg (Tp,∆,D,α) = ⌊ |α|
ℓα(D)⌋

for a ∈ A, p ∈ N, ∆ ∈ CI (Np), α ∈ ∆ and D ∈ HSpk(A; ∆). This grading is motivated by
Proposition 2.1.9. Let us notice that

deg (Tp,∆,D,α) = deg
(
Tp,nα,τ∆,nα(D),α

)
.

We will denote T
d
A/k the homogeneous component of degree d and T

≤d
A/k :=

⊕
e≤dT

e
A/k.

Let us call UA/k := TA/k/I and write Sa := Sa + I,Tp,∆,D,α := Tp,∆,D,α + I for the
generators of the k-algebra UA/k. The grading in TA/k induces a filtration on UA/k and let
us also call deg : UA/k → N the corresponding map:

deg(P ) := min{deg(p) | p ∈ TA/k, P = p+ I} for P ∈ UA/k, P 6= 0,

and deg(0) = −∞, with U
d
A/k = {P ∈ UA/k | deg(P ) ≤ d} = T

≤d
A/k/

(
I ∩ T

≤d
A/k

)
.

6Actually, generators (ii) can be avoided since they are deduced from generators (i) and (iii).
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The generators of type (0) of I give rise to a natural k-algebra map a ∈ A 7→ Sa ∈ UA/k

and so UA/k is a k-algebra over A.

3.3.1 We first collect some direct consequences of the above definitions. For p ∈ N, s =
{s1, . . . , sp}, ∆ ∈ CI (Np), α ∈ ∆ and D ∈ HSpk(A; ∆) we have:

(a) Since the quotient map π : A[[s]]∆ → A[[s]]nα is a substitution map (actually, a
truncation map) and the action

π •(−) : HSpk(A; ∆) −→ HSpk(A; nα)

coincides with the truncation τ∆,nα (see Lemma 1.3.2), by using the generators of
type (v) and the fact that Cβ(π, α) = δαβ , we obtain Tp,∆,D,α = Tp,nα,τ∆,nα(D),α

(remember that deg (Tp,∆,D,α) = deg
(
Tp,nα,τ∆,nα(D),α

)
).

(b) From (a) and the generators of type (i) of I we deduce: Tp,∆,D,0 = Tp,{0},τ∆,{0}(D),0 =
1.

(c) If 0 < |α| < ℓα(D), then τ∆,nα(D) = I and so from (a) and the generators of type (ii)
of I we have Tp,∆,D,α = Tp,nα,I,α = 0.

Lemma 3.3.2. The term U
0
A/k is the k-module generated by the Sa, a ∈ A, and coincides

with the image of the natural map A→ UA/k.

Proof. By definition, U0
A/k is the k-module generated by the monomials in the Sa, a ∈ A,

and the Tp,∆,D,α with

deg (Tp,∆,D,α) = ⌊ |α|
ℓα(D)⌋ = 0,

i.e. |α| < ℓα(D). So, by (b) and (c) and the generators of type (0) of I we deduce that U0
A/k

is the k-module generated by the Sa and coincides with the image of A→ UA/k.

The proof of the following proposition is clear (see Proposition 2.1.6).

Proposition 3.3.3. There is a unique k-algebra map υ : UA/k −→ DA/k sending

Sa 7−→ a, Tp,∆,D,α 7−→ Dα.

Moreover, it is filtered.

Corollary 3.3.4. The natural map A→ UA/k is injective and A ≃ U
0
A/k.

Proposition 3.3.5. The k-algebra UA/k over A is endowed with a natural HS-structure
Υ over A/k. Moreover, the pair (UA/k,Υ) is universal among HS-structures, i.e. for any
k-algebra R over A and any HS-structure Ψ on R over A/k, there is a unique map f :
UA/k → R of k-algebras over A such that f ◦Υ = Ψ.

Proof. We consider the system of maps Υ given by:

Υ
p
∆ : D ∈ HSpk(A; ∆) 7−→

∑

α∈∆

Tp,∆,D,αs
α ∈ U

p(UA/k; ∆)

for p ∈ N, ∆ ∈ CI (Np). It is straightforward to see that properties in Definition 3.1.1
hold for Υ. Namely, property 1) follows from the generators of type (i), (ii) and (iii) of I,
property 2) follows from the generators of type (iv) of I, and finally the generators of type
(v) of I guarantee property 3).
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For the universal property, let f0 : TA/k → R be the k-algebra map determined by

f0(Sa) = a1, f0(Tp,∆,D,α) = Ψ
p
∆(D)α

for all a ∈ A, for all p ∈ N, for all ∆ ∈ CI (Np), for all α ∈ ∆ and for all D ∈ HSpk(A; ∆). It
is clear that f0 vanishes on I and gives rise to our wanted map f : UA/k → R of k-algebras
over A. The uniqueness of f is clear.

Let us notice that the HS-structure Υ in the above proposition is filtered.

Corollary 3.3.6. The abelian category of left (resp. right) HS-modules over A/k is iso-
morphic to the category of left (resp. right) UA/k-modules.

Definition 3.3.7. The enveloping algebra of the Hasse–Schmidt derivations of A over k is
the k-algebra UA/k = TA/k/I defined above. It is a filtered k-algebra over A.

Theorem 3.3.8. The graded ring grUA/k is commutative.

Proof. We need to prove that the degree of the bracket of the classes in UA/k of any two
variables generating TA/k is strictly less than the sum of the degrees of these variables.

-) For the variables Sa the result is clear since SaSa′ − Sa′Sa = Saa′ − Sa′a = 0.

-) Let us see the case of one variable Sa and one variable Tp,∆,D,α, with a ∈ A, p ∈ N,
∆ ∈ CI (Np), α ∈ ∆ and D ∈ HSpk(A; ∆), and set ℓ = ℓα(D).

We know from (b) that Tp,∆,D,0 = 1, and from (c) that whenever 0 < |α| < ℓ, then
Tp,∆,D,α = 0, and of course Dα = 0. So, if |α| < ℓ then Tp,∆,D,αSa − SaTp,∆,D,α = 0.
Otherwise |α| ≥ ℓ and, by using the generators of type (iv) of I, we have:

Tp,∆,D,α Sa − SaTp,∆,D,α =
∑

β+γ=α
|β|>0

SDβ(a)Tp,∆,D,γ =
∑

β+γ=α
|β|≥ℓ

SDβ(a)Tp,∆,D,γ .

We conclude that:

deg (Tp,∆,D,α Sa − SaTp,∆,D,α) ≤ max {deg (Tp,∆,D,γ) | β + γ = α, |β| ≥ ℓ} ≤

max
{
⌊ |γ|
ℓγ(D)⌋ | γ ≤ α, |γ| ≤ |α| − ℓ

}
≤ max

{
⌊ |γ|
ℓα(D)⌋ | γ ≤ α, |γ| ≤ |α| − ℓ

}
<

⌊ |α|ℓ ⌋ = deg (Tp,∆,D,α) = deg (Tp,∆,D,α) + deg(Sa).

-) It remains to treat the case of two variables Tp,∆,D,α and Tq,∇,E,β. We need to prove that:

deg (Tp,∆,D,αTq,∇,E,β −Tq,∇,E,β Tp,∆,D,α) < deg (Tp,∆,D,α) + deg (Tq,∇,E,β) . (34)

From (b), we may assume α, β 6= 0; by taking into account generators of I of type (ii),
we may assume D,E 6= I; from (c), we may assume ℓα(D) ≤ |α| and ℓβ(E) ≤ |β|; and
finally, from (a), we may assume that ∆ = nα and ∇ = nβ . Let us denote s = {s1, . . . , sp},
t = {t1, . . . , tq},

ι : A[[s]]nα → A[[s ⊔ t]]nα×nβ
= A[[s ⊔ t]]n(α,β)

, κ : A[[t]]∇ → A[[s ⊔ t]]n(α,β)

the combinatorial substitution maps given by the inclusions s, t →֒ s ⊔ t, F := ι•D, G :=
κ•E, ℓ1 := ℓ(D) = ℓα(D), ℓ2 := ℓ(E) = ℓβ(E). From Proposition 2.2.3 we have F ∗ = ι•D∗

and G∗ = κ•E∗.
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We will proceed in several steps. First, by using the generators of type (v) of I and the fact
that:

C(γ,σ)(ι, α
′) =

{
1 if γ = α′ and σ = 0
0 otherwise,

C(γ,σ)(κ, β
′) =

{
1 if γ = 0 and σ = β′

0 otherwise,

we deduce that:

(1) Tp+q,n(α,β),F,(α′,0) = Tp,nα,D,α′ , Tp+q,n(α,β),G,(0,β′) = Tq,nβ ,E,β′ .

(2) Tp+q,n(α,β),F,(α′,β′) = 0 for β′ 6= 0 and Tp+q,n(α,β),G,(α′,β′) = 0 for α′ 6= 0.

(3) ℓ(α′,0)(F ) = ℓα′(D), ℓ(0,β′)(G) = ℓβ′(E) (in particular, ℓ(F ) = ℓ(α,0)(F ) = ℓα(D) =
ℓ(D) = ℓ1, ℓ(G) = ℓ(0,β)(G) = ℓβ(E) = ℓ(E) = ℓ2) and

deg
(
Tp+q,n(α,β),F,(α′,0)

)
= ⌊ |(α

′,0)|
ℓ(α′,0)(F )⌋ = ⌊ |α′|

ℓα′(D)⌋ = deg (Tp,nα,D,α′) ,

deg
(
Tp+q,n(α,β),G,(0,β′)

)
= ⌊ |(0,β

′)|
ℓ(0,β′)(G)⌋ = ⌊ |β

′|
ℓβ′(E)⌋ = deg

(
Tq,nβ ,E,β′

)
.

(4) From 1.3.9 and the generators of type (iii) and (v) of I we have:

Tp+q,n(α,β),D⊠E,(α′,β′) = Tp+q,n(α,β) ,F ◦G,(α′,β′) = Tp,nα,D,α′ Tq,nβ ,E,β′,

Tp+q,n(α,β) ,E⊠D,(α′,β′) = Tp+q,n(α,β),G ◦F,(α′,β′) = Tq,nβ ,E,β′ Tp,nα,D,α′ .

Let us write H = [F,G] = F ◦G ◦F ∗ ◦G∗. From Lemma 2.1.7 we know that ℓ(H) ≥ ℓ1 + ℓ2.
Let us prove that:

(5) Tp+q,n(α,β),H,(µ,λ) = 0 whenever (µ, λ) 6= (0, 0) and |µ| < ℓ1 or |λ| < ℓ2.

By using (1), (2) and the generators of type (iii) of I again, we obtain:

Tp+q,n(α,β) ,H,(µ,λ) = · · · =
∑

Tp+q,n(α,β),F,(µ′,0) Tp+q,n(α,β),G,(0,λ′) Tp+q,n(α,β),F∗,(µ′′,0)Tp+q,n(α,β) ,G∗,(0,λ′′) =

∑
Tp,nα,D,µ′ Tq,nβ ,E,λ′ Tp,nα,D∗,µ′′ Tq,nβ ,E∗,λ′′ , (35)

where both sums are indexed by the (µ′, µ′′, λ′, λ′′) such that µ′ + µ′′ = µ and λ′ + λ′′ = λ.
If µ = 0 and 0 < |λ| then

Tp+q,n(α,β),H,(0,λ) = · · · =
∑

λ′+λ′′=λ

Tq,nβ ,E,λ′ Tq,nβ ,E∗,λ′′ = Tq,nβ ,E◦E∗,λ = Tq,nβ ,I,λ = 0,

by using generators of type (iii), (ii) of I. In a similar way, we have thatTp+q,n(α,β),H,(µ,0) = 0
whenever 0 < |µ|. Assume now that µ 6= 0 and λ 6= 0. If |µ| < ℓ1 or |λ| < ℓ2, then all the
summands in (35) vanish by (c) (remember that ℓ(D∗) = ℓ(D) and ℓ(E∗) = ℓ(E)) and so
Tp+q,n(α,β),H,(µ,λ) = 0.
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(6) By using F ◦G = H ◦ (G ◦F ) and the generators of type (iii) of I we have:

Tp+q,n(α,β),F ◦G,(α,β) =
∑

α′+α′′=α

β′+β′′=β

Tp+q,n(α,β),H,(α′,β′) Tp+q,n(α,β) ,G ◦F,(α′′,β′′).

Hence:

Tp+q,n(α,β),F ◦G,(α,β) −Tp+q,n(α,β),G ◦F,(α,β) =
∑

|α′|+|β′|>0

Tp+q,n(α,β),H,(α′,β′) Tp+q,n(α,β) ,G ◦F,(α′′,β′′)
(c)
=

∑

|α′|+|β′|≥ℓ(H)

Tp+q,n(α,β),H,(α′,β′) Tp+q,n(α,β),G ◦F,(α′′,β′′)
(4),(5)
=

∑

|α′|≥ℓ1,|β′|≥ℓ2

Tp+q,n(α,β),H,(α′,β′) Tq,nβ ,E,β′′ Tp,nα,D,α′′ ,

where all the indexes (α′, α′′, β′, β′′) in the above sums satisfy α′+α′′ = α and β′+β′′ = β,
and so, by (4):

deg
(
Tp,nα,D,αTq,nβ ,E,β −Tq,nβ ,E,β Tp,nα,D,α

)
=

deg
(
Tp+q,n(α,β),F ◦G,(α,β) −Tp+q,n(α,β),G ◦F,(α,β)

)
≤

max
{
deg

(
Tp+q,n(α,β),H,(α′,β′)

)
+ deg

(
Tq,nβ ,E,β′′

)
+ deg (Tp,nα,D,α′′)

}
=

max
{
⌊ |α

′|+|β′|
ℓ(α′,β′)(H) ⌋+ ⌊ |β

′′|
ℓβ′′ (E)⌋+ ⌊ |α′′|

ℓα′′(D)⌋
}
≤

max
{
⌊ |α
′|+|β′|
ℓ(H) ⌋+ ⌊ |β

′′|
ℓ(E)⌋+ ⌊ |α

′′|
ℓ(D)⌋

}
≤

max
{
⌊ |α
′|+|β′|
ℓ1+ℓ2

⌋+ ⌊ |β
′′|
ℓ2

⌋+ ⌊ |α
′′|
ℓ1

⌋
}
≤ max

{
⌊ |α
′|+|β′|
ℓ1+ℓ2

⌋+ ⌊ |β
′′|
ℓ2

⌋+ ⌊ |α
′′|
ℓ1

⌋
}
<

⌊ |α
′+α′′|
ℓ1

⌋+ |β
′+β′′|
ℓ2

⌋ = ⌊ |α|ℓ1 ⌋+
|β|
ℓ2
⌋ = deg (Tp,nα,D,α) + deg

(
Tq,nβ ,E,β

)
,

where the max’s are taken over the α′, α′′ ∈ Np and β′, β′′ ∈ Nq such that α′ + α′′ = α,
β′ + β′′ = β, |α′| ≥ ℓ1 and |β′| ≥ ℓ2, and the last (strict) inequality comes from Lemma
3.3.9.

Lemma 3.3.9. Let ℓ1, ℓ2 ≥ 1 be integers. For any integers a′, b′, a′′, b′′ ≥ 0 with a′ ≥ ℓ1,
b′ ≥ ℓ2 we have:

⌊ a
′+b′

ℓ1+ℓ2
⌋+ ⌊a

′′

ℓ1
⌋+ ⌊ b

′′

ℓ2
⌋ < ⌊a

′+a′′

ℓ1
⌋+ ⌊ b

′+b′′

ℓ2
⌋.

Proof. We have

⌊ a
′+b′

ℓ1+ℓ2
⌋+ ⌊a

′′

ℓ1
⌋+ ⌊ b

′′

ℓ2
⌋ ≤ max

{
⌊ a
′

ℓ1
⌋, ⌊ b

′

ℓ2
⌋
}
+ ⌊a

′′

ℓ1
⌋+ ⌊ b

′′

ℓ2
⌋ <

⌊ a
′

ℓ1
⌋+ ⌊ b

′

ℓ2
⌋+ ⌊a

′′

ℓ1
⌋+ ⌊ b

′′

ℓ2
⌋ ≤ ⌊a

′+a′′

ℓ1
⌋+ ⌊ b

′+b′′

ℓ2
⌋.

3.4 The case of HS-smooth algebras

Our first goal is to define a canonical map of graded A-algebras from the divided power
algebra of the module of f-integrable k-derivations (see Definitions 1.4.3 and 2.3.1) of A to
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the graded ring of UA/k. We will closely follow the procedure in [11, §2.2] (see also section
2.3).

Proposition 3.4.1. For each integer m ≥ 1 the group homomorphism

σ ◦Υ1
m : HSk(A;m) −→ Ugr(grUA/k;m)

vanishes on ker τm,1 and its image is contained in Em(grUA/k).

Proof. Let us consider the combinatorial substitution maps ι1, ι2 : A[[s]]m → A[[s1, s2]](m,m)

given by ιi(s) = si, i = 1, 2, and the substitution map ϕ : A[[s]]m → A[[s1, s2]]m given by
ϕ(s) = s1 + s2. Notice that in ιi = ιi and inϕ = ϕ (see Proposition 1.3.5). An element
r ∈ U(grUA/k;m) belongs to Em(grUA/k) if and only if (ι1 •r)(ι2 •r) = ϕ•r (see 1.4.1).

Let D ∈ HSk(A;m) be a HS-derivation, and let us denote r = (σ ◦Υ1
m)(D), E = ϕ•D,

F = (ι1 •D) ◦ (ι2 •D) and H = E ◦F ∗. It is clear that H(1,0) = H(0,1) = 0 and so ℓ(H) > 1.
Then,

deg
(
T1,tm,H,(i,j)

)
≤ deg

(
T1,tm,H,(i,j)

)
= ⌊ i+j

ℓ(i,j)(H) ⌋ ≤ ⌊ i+jℓ(H) ⌋ < i+ j

for all (i, j) with 0 < i+ j ≤ m, and so

(σ ◦Υ1
m)(H) = σ

(
∑

i+j≤m

T1,tm,H,(i,j) s
i
1s
j
2

)
=
∑

i+j≤m

σi+j
(
T1,tm,H,(i,j)

)
si1s

j
2 = 1. (36)

We deduce that:

ϕ•r = (inϕ)•
(
σ
(
Υ

1
m (D)

)) (⋆)
= σ

(
ϕ•Υ1

m (D)
)
= σ

(
Υ

2
m(E)

)
= σ

(
Υ

2
m(H ◦F )

)
=

σ
(
Υ

2
m(H)Υ2

m(F )
) (36)

= σ
(
Υ

2
m(F )

)
= σ

(
Υ

2
m(ι1 •D) Υ2

m(ι2 •D)
)
=

σ
(
(ι1 •Υ

1
m(D)) (ι2 •Υ

1
m(D))

)
= σ

(
(ι1 •Υ

1
m(D))

)
σ
(
(ι2 •Υ

1
m(D))

) (⋆)
=

((in ι1)•r) ((in ι2)•r) = (ι1 •r)(ι2 •r),

where equalities (⋆) come from Proposition 1.3.10, and so r = (σ ◦Υ1
m)(D) ∈Em(grUA/k).

On the other hand, if D ∈ ker τm,1, then ℓ(D) > 1 and we can proceed as before with H
and deduce that (σ ◦Υ1

m)(D) = 1.

Corollary 3.4.2. There is a natural system of A-linear maps

χm : IDerk(A;m) −→ Em(grUA/k), m ≥ 1,

such that for m′ ≥ m the following diagram is commutative:

IDerk(A;m
′) Em′(grUA/k)

IDerk(A;m) Em(grUA/k).

χm′

incl. trunc.

χm

(37)

Moreover, the system above induces a natural A-linear map χ : IDerfk(A) −→ E(grUA/k).
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Proof. Since IDerk(A;m) is by definition the image of the group homomorphism

τm,1 : HSk(A;m) → HSk(A; 1) ≡ Derk(A),

we deduce from Proposition 3.4.1 that the group homomorphism σ ◦Υ1
m induces a natu-

ral group homomorphism χm : IDerk(A;m) −→ Em(grUA/k). If δ ∈ IDerk(A;m), then
χm(δ) =

∑m
i=0 σi (T1,m,D,i) s

i where D ∈ HSk(A;m) is any m-integral of δ, i.e. D1 = δ.
Then, for each a ∈ A, a•D is an m-integral of aδ and

χm(aδ) =

m∑

i=0

σi (T1,m,a•D,i) s
i (⋆)
=

m∑

i=0

σi




i∑

j=0

ajT1,m,D,j


 si =

=

m∑

i=0

σi
(
aiT1,m,D,i

)
si =

m∑

i=0

σi (T1,m,D,i) (as)
i = aχm(δ),

where equality (⋆) comes from generators of type (v) of I, and so χm is A-linear (remember
that the A-action on exponential type series is given by substitutions s 7→ as, a ∈ A, see
(23)). The commutativity of (37) comes from the commutativity of the following diagram
(σ and the Υ

p
∆ are compatible with truncations):

HSk(A;m
′) Em′(grUA/k)

HSk(A;m) Em(grUA/k).

σ ◦Υ1
m′

trunc. trunc.

σ ◦Υ1
m

The map χ is simply the inverse limit of the χm.

Corollary 3.4.3. There is a natural map ϑ : ΓA IDerfk(A) −→ grUA/k of graded A-algebras
such that the following diagram is commutative:

ΓA IDerfk(A) grUA/k

grDA/k,

ϑ

ϑf
A/k

grυ (38)

where ϑfA/k is the map defined in (32) and υ is defined in Proposition 3.3.3.

Proof. Let us denote

γ : δ ∈ IDerfk(A) 7−→
∞∑

n=0

γn(δ)s
n ∈E(ΓA IDerfk(A))

the canonical map (see 1.4.3). The existence of ϑ comes from the universal property of

γ. Namely, there is a unique map of A-algebras ϑ : ΓA IDerfk(A) −→ grUA/k such that

χ = E(ϑ) ◦γ. More explicitly, for each δ ∈ IDerfk(A) and for each D ∈ HSk(A;m) such that
D1 = δ, we have ϑ(γm(δ)) = σm (T1,m,D,m). In particular, ϑ is graded.

The commutativity of the diagram (38) is a consequence of the commutativity of the
diagram

IDerfk(A) E(grUA/k)

E(grDA/k),

χ

χ E(grυ)
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where χ is the inverse limit of the maps χm : IDerk(A;m) → Em(grDA/k), m ≥ 1, defined
in [11, Corollary (2.7)].

Proposition 3.4.4. Assume that IDerfk(A) = Derk(A). Then, the map

ϑ : ΓA IDerfk(A) −→ grUA/k

is surjective.

Proof. The A-algebra grUA/k is generated by the σd (Tq,∇,E,β) for q ≥ 1, ∇ ∈ CI (Nq),

β ∈ ∇, E ∈ HSqk(A;∇), E 6= I, d = ⌊ |β|ℓβ(E)⌋. After 3.3.1, we may assume that ∇ = nβ and

so ℓβ(E) = ℓ(E). Let us call m = ht(∇).

Let {δs, s ∈ s} be a system of generators of the A-module Derk(A). Since IDerk(A;m) =
Derk(A), for each s ∈ s there exists Ds ∈ HSk(A;m) which is an m-integral of δs. By
considering some total ordering < on s, we can define D ∈ HSsk(A;m) as the external
product (see Definition 1.2.5) of the ordered family {Ds, s ∈ s}, i.e. D0 = Id and for each
α ∈ N(s), α 6= 0,

Dα = Ds1
αs1
◦ · · · ◦Dse

αse
with suppα = {s1 < · · · < se}.

After [13, Theorem 1], there exists a substitution map ϕ0 : A[[s]]m → A[[t1, . . . , tq]]∇ such
that E = ϕ0 •D. Moreover, it is clear that we can take ord(ϕ0) = ℓ(E).

Since ∇ is finite, condition (17) in [13, Proposition 2] implies that the set {s ∈ s | ϕ0(s) 6=
0} is finite. Let us call {s1 < · · · < sp} this set. We have a factorization of substitution
maps:

A[[s]]m A[[t1, . . . , tq]]∇

A[[s1, . . . , sp]]m

ϕ0

ϕ1

ϕ

where ϕ1(s) = 0 if s 6= si, ϕ1(si) = si and ϕ(si) = ϕ0(si). Then we have E = ϕ0 •D = ϕ•F
with F = ϕ1 •D = Ds1 ⊠ · · ·⊠Dsp ∈ HSpk(A; (m, . . . ,m)).

We obviously have ord(ϕ) = ord(ϕ0) = ℓ(E) and so Cβ(ϕ, α) = 0 whenever |α|ℓ(E) >
|β|. So,

Tq,∇,E,β =
∑

|α|≤m
|α|≤|β|

Cβ(ϕ, α)Tp,m,F,α =

∑

|α|≤m
|α|ℓ(E)≤|β|

Cβ(ϕ, α)T1,m,Ds1 ,α1T1,m,Ds2 ,α2 · · ·T1,m,Dsp ,αp ,

σd (Tq,∇,E,β) =
∑

|α|=d

Cβ(ϕ, α)

p∏

j=1

σαj

(
T1,m,Dsj ,αj

)
= ϑ


∑

|α|=d

Cβ(ϕ, α)

p∏

j=1

γαj (δj)




and we deduce that ϑ is surjective.

Remark 3.4.5. In the proof of the above proposition we have used the Axiom of Choice in
order to consider a total ordering on s. This could be avoided when Derk(A) is a finitely
generated A-module. In general, we could also avoid the Axiom of Choice by proving directly
a convenient variant of Theorem 1 of [13].
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Theorem 3.4.6. If A is a HS-smooth k-algebra, then the natural map υ : UA/k −→ DA/k

is an isomorphism of filtered k-algebras.

Proof. It is enough to prove that grυ : grUA/k −→ grDA/k is an isomorphism of graded

A-algebras. Since A is a HS-smooth k-algebra, we have ϑfA/k : ΓA IDerfk(A)
∼
−→ grDA/k

and from Corollary 3.4.3 we deduce that ϑ is injective. The surjectivity of ϑ comes from
Proposition 3.4.4.

Corollary 3.4.7. If A is a HS-smooth k-algebra, then the category of left (resp. right)
HS-modules over A/k is isomorphic to the category of left (resp. right) DA/k-modules.

3.5 Further developments and questions

Question 3.5.1. With the hypotheses of the preceding section, it is easy to see that the map

Υ
1
1 : HSk(A; 1) ≡ Derk(A) −→ U(UA/k; 1) ≡ UA/k

is k-linear, compatible with Lie brackets and satisfies Leibniz rule. So, it induces a k-algebra
map from the enveloping algebra of the Lie-Rinehart algebra Derk(A) ([15]) to UA/k. The
paper [14] is devoted to prove that this map is an isomorphism whenever Q ⊂ k, and so
HS-modules and classical integrable connections coincide in characteristic 0.

Question 3.5.2. Assume that A is a HS-smooth k-algebra and ΩA/k is a projective A-
module of rank d. In an article in preparation we study how the operations in Proposition
3.2.6, the pre-HS-module structure on ΩA/k (see Proposition 3.1.7) and Proposition 3.1.2

give rise to a right HS-module structure on the dualizing module ωA/k = ΩdA/k.
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[5] H. Hasse and F. K. Schmidt. Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten.
J. Reine U. Angew. Math. 177 (1937), 223-239.

[6] D. Hoffmann and P. Kowalski. Existentially closed fields with G-derivations. Journal
of the London Mathematical Society. Second Series, 93 (3) (2016), 590–618.

[7] D. Laksov. Divided powers. Unpublished notes, 2006.

[8] H. Matsumura. Integrable derivations. Nagoya Math. J. 87 (1982), 227–245.

[9] H. Matsumura. Commutative Ring Theory. Vol. 8 of Cambridge studies in advanced
mathematics, Cambridge Univ. Press, Cambridge, 1986.

41

https://www.jstor.org/stable/j.ctt130hk6f
https://projecteuclid.org/euclid.ojm/1200771280
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1954.1/ICM1954.1.ocr.pdf
http://www.numdam.org/item/PMIHES_1967__32__5_0
https://doi.org/10.1515/crll.1937.177.215
https://doi.org/10.1112/jlms/jdw009
https://people.kth.se/~laksov/notes/divpotensall.pdf
https://projecteuclid.org/euclid.nmj/1118786907
https://doi.org/10.1017/CBO9781139171762


[10] B. H. Matzat andM. van der Put. Iterative differential equations and the Abhyankar conjecture.
J. Reine Angew. Math. 557 (2003), 1–52.
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