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Abstract

We study the degrees of generators of the ideal of a projected Veronese variety v2(P3) ⊂
P
9 to P

6 depending on the center of projection. This is related to the geometry of zero
dimensional schemes of length 8 in A

4, Cremona transforms of P
6, and the geometry of

Tonoli Calabi-Yau threefolds of degree 17 in P
6.

MSc classes: primary: 14J32, 14E07, 14C05, secondary: 14J10.

1 Introduction

The aim of the paper is to find and investigate a relation between the following three a priori
distinct subjects:

• analysing smoothability of finite degree 8 subschemes in A
4.

• describing special projections of the double Veronese embedding of P3 to P
6,

• studying the action of special (2, 4) Cremona transformations P
6
99K P

6,

For a linear subspace L ⊂ Sym2 V let us denote by πL : P(Sym
2 V ) 99K P(Sym2 V/L) the pro-

jection. Let v2 : P(V ) → P(Sym2 V ) be the second Veronese embedding. We prove the following
theorem.

Theorem 1. Let V = A
4 and L ⊂ Sym2 V be a linear subspace of dimension 3. Assume that the

composition πL ◦ v2 : P(V ) 99K P(Sym2 V/L) is regular and an embedding. Let XL be its image.
Then the following are equivalent

(a) πL ◦ v2 : P3 → P
6 is a restriction of a Cremona transformation P

6
99K P

6 of type (2, 4)
based in a rational octic surface or a limit of such restrictions,

(b) XL is contained in a cubic hypersurface,

(c) XL is contained in a three-dimensional space of cubic hypersurfaces,

(d) the scheme R = SpecApolar(L) is smoothable,

(e) L is spanned by partial derivatives of a cubic form F ∈ Sym3 V .

The above equivalent conditions describe a closed, irreducible subset of Gr(3,Sym2 V ). For a
general L in this subset the space of cubics containing XL is exactly three-dimensional and it is
spanned by Segre cubics.
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Our original motivation for studying these projections is related to understanding the ge-
ometry of constructions of Calabi–Yau threefolds in P

6, some of which are related to special
projections of the Veronese embedding of P3. More precisely, in [KK16, KK18], the second and
third author study the projections

πL(v2(P
3)) = X8

L ⊂ P
6

from P(L) for L of dimension 3. For a generic L one has H0(IX8

L

(3)) = 0. However, using
Macaulay2 with a lot of random choices it was proven that one can find L such that X8

L is
smooth and H0(IX8

L

(3)) = 3. For such special projections, by the bilinkage construction one
can construct degenerated Tonoli Calabi-Yau threefolds of degree 17 in P

6 (cf. [KK16]). In
the present paper we explain the geometric meaning of these special exceptional centers. Our
problem is related to the following more general subject. Let X ⊂ P(W ) ≃ P

r be an algebraic
variety, consider the projection πL : X → XL ⊂ P

r−t from the center

P(L) = P
t−1 ⊂ P(W )

such that πL is an isomorphism.

Problem 2. What are the possible Betti numbers of the ideal of XL ⊂ P
r−t when we move the

center of projection L ∈ Gr(t,W )?

The study of the geometry of central projections is a classical topic that was widely studied for
generic projections [Rob71], [GP13], [BE12]. The study of Betti numbers of projected varieties
was discussed in [AK11], [HK12], [AR02]. Using the mapping cone construction the authors
were able under some conditions to relate the Betti numbers of the variety before and after the
projection. In particular in [AK11, Prop. 4.11] it is described how the number of quadrics in the
ideal of a centrally projected variety changes when we move the center of projection.

The case of projections with center being a point is also considered in [AR02]. The authors
describe sub-schemes Zk(X) ⊂ P

r being the loci of points such that the ideal of the projected
variety admits more generators of a given degree. The aim of this paper is to study the case
when the center of projection has dimension ≥ 1. The first case to consider are the projections
of the second Veronese embeddings v2(P2) ⊂ P

5 and its projections to smooth surfaces in P
4.

However, it is easy to see that all such projections give projectively isomorphic images. The
cases of projection of v2(P3) to P

8 and P
7 are treated in [AR02]. Our situation is hence the next

case to check.
The problem is unexpectedly related to the theory of zero-dimensional schemes, which seems

a purely algebraic one. For such a scheme R ⊂ A
n we say that R is smoothable if it is a

limit of smooth subschemes (tuples of points). More precisely, let Hilbd be the Hilbert scheme
of d points on A

n, so that (closed) points of Hilbd are finite degree d subschemes of A
n. Let

Hilb◦d ⊂ Hilbd be an open subset consisting of tuples of d distinct points on A
n. Let Hilbsmd be

the closure of Hilb◦d. Then R ⊂ A
n is smoothable if and only if the corresponding point lies in

Hilbsmd . Whether a given R is smoothable is a difficult question, see [CEVV09, EV10, CN09,
CN11, CJN15, DJNT17, Šiv12, BCR17a, BCR17b, BdSHJ13]. It is connected with the search
for equations of secant varieties [BB14, BGL13]. An important aspect of Theorem 1 is that it
gives a geometrical interpretation of smoothability, in a special case.

Our special projections are also related to the theory of Cremona transformations, i.e., bira-
tional self maps of the projective space. Such self maps are induced by systems of homogeneous
polynomials of equal degree called the degree of the Cremona transformation. These polynomials
define the indeterminacy of the map called the base of the Cremona transformation. One also
defines the type of a Cremona transformation as a pair consisting of its degree and the degree
of its inverse. The problem of classification of Cremona transformations with smooth base loci
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was considered in [CK89, PR14, HKS92, Sta18]. In particular, Cremona transformations with
base loci being smooth surfaces was classified in [CK89]. In this work we investigate and exploit
the geometry of one of the five types of transformations with base loci being smooth surfaces:
Cremona transformations of type (2, 4) in P

6 based in a rational surface embedded as a surface
of degree 8 and sectional genus 3 in P

6.
The paper is centered around the proof of Theorem 1. In Section 2 we discuss general results

on base loci and zero-dimensional schemes. Section 3 applies them to the special case of quadric
embeddings P

3 → P
6. In Subsection 3.1 we discuss deformations of zero-dimensional, degree 8

subschemes of A4 and give a geometric proof of the equivalence of Condition (e) and Condition (d)
from Theorem 1 (the equivalence was first proven in [CEVV09]). In Subsection 3.2 we prove
equivalence of Conditions (d), (b) and (c). Finally, in Subsection 3.3 we prove equivalence of
Conditions (a) and (d) and provide a formal proof of Theorem 1.

2 Preliminaries

We work over an algebraically closed base field k of characteristic 6= 2, 3. For a vector space
V , by P(V ) we mean the scheme Proj Sym(V ∨). Then the cone over P(V ) is identified with V .
When speaking about a rational map (or a morphism) ϕ : P(V ) 99K P(W ) we always implicitly
fix a morphism ϕ̂ : V →W inducing ϕ.

Definition 3. We define the jump locus inside the Grassmannian J l
k ⊂ Gr(t, r + 1) by the

following jump condition: a point L ∈ Gr(t, r+ 1) is in the set J l
k if H0(IXL

(k)) has dimension
higher then the generic value and the difference is l.

By the semicontinuity theorem we deduce that l ≥ 0.
It follows from [AK11, Prop. 4.1] that the isomorphic projection of a m-normal variety from a

center of dimension t−1 is still m-normal for m ≥ t+1. In the case where X ⊂ P
r is projectively

normal it follows from [AR02, Prop. 2.1] that the number of hypersurfaces of degree k ≥ t + 1
in the ideal of the projected variety is uniquely determined. So we are interested in the sets J l

k

for k ≤ t.
On the other hand from [AK11, Prop. 4.11], the number of generators of degree 2 of the

centrally projected variety (from a point) is uniquely determined by the dimension of the secant
locus of the projection in the case X ⊂ P

r.
Natural problems occur:

• Are the loci J l
k related to the secant loci of X ⊂ P

r,

• For a given X ⊂ P
r and 2 < k ≤ t what are the possible values of l such that J l

k is
non-empty.

• Are there jumps i.e 0 < l < p < m such that J l
k 6= ∅ and Jm

k 6= ∅ but Jp
k = ∅ for some k.

In this paper we address all those questions in our example.
Note that we cannot describe J l

k directly by induction using projections from points studied
in [AR02] since the schemes Zk(Xp) vary when we move the center p ∈ P

r − Sec(X).

2.1 Affine base loci

One of the main objects in our study of rational maps are the affine base loci, that we define
below. Recall that in our convention a rational map ϕ : P(V ) 99K P(W ) comes with a fixed map
ϕ̂ : V →W on the level of cones.
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Definition 4. Let ϕ : P(V ) 99K P(W ) be a rational map. The affine base locus is the affine
scheme ϕ̂−1(0) ⊂ V . We denote it by Bsaff(ϕ).

For every ϕ, the affine base locus is invariant under homothety and its image in P(V ) is the
base locus for ϕ. If ϕ is regular, then Bsaff(ϕ) is supported at 0 ∈ V , hence it is zero-dimensional.
Note that Bsaff(ϕ) may be non-empty even for a regular ϕ.

Recall that each rational map between projective spaces is given by a d-th Veronese embed-
ding composed with a linear projection and that such map is regular (respectively, isomorphism
onto the image) if and only if the center of the linear projection does not intersect the image of
P(V ) in P(Symd V ) (respectively, the secant variety of the image).

Example 5. Let P3 → P
6 be a morphism given by seven quadrics. The algebra A = H0(OBsaff (ϕ)) =

k[x0, x1, x2, x3]/(q1, . . . , q7) is zero-dimensional and graded. For a general enough choice of
quadrics we have (x0, x1, x2, x3)(q1, . . . , q7) = (x0, x1, x2, x3)

3, hence A is spanned by unity, linear
forms and three complementary quadrics, so it has degree 1 + 4 + 3.

We now aim at describing the geometry behind the affine base locus of a morphism of pro-
jective spaces. This sends us to the world of finite schemes and Hilbert schemes of points.

2.2 Apolarity

Recall that we have assumed that k has characteristic not equal to two or three. For a characteristic-
free description of apolarity and further information see e.g. [IK99, Jel17].

We recall a very useful parameterization tool for finite schemes, called apolarity or Macaulay
inverse systems. Namely, SymV ∨ acts on SymV , where elements of V ∨ act as partial derivatives.
For a finite dimensional subspace L ⊂ SymV we may consider the ideal Ann (L) of all operators
from SymV ∨ annihilating L and the quotient

Apolar(L) = SymV ∨/Ann (L)

which is a local zero-dimensional k-algebra with residue field k and of rank equal to dimk(SymV ∨◦
L). We will be mostly interested in the case when dimV = 4 and L is a three-dimensional space
of quadrics.

Example 6. Let V = span (x, y, z, t) and L = span
(

x2, y2, z2 − t2
)

. Let V ∨ = span (∂x, ∂y, ∂z , ∂t)
be the dual basis. Then

Ann (L) = span
(

∂x∂y, ∂x∂z, ∂x∂t, ∂y∂z, ∂y∂t, ∂z∂t, ∂
2
z + ∂2t

)

+ Sym≥3 V ∨.

Consequently, Apolar(L) ≃ span
(

∂2x, ∂
2
y , ∂

2
z − ∂2t , ∂x, ∂y, ∂z, ∂t, 1

)

as linear spaces.

A theorem of Macaulay asserts that L 7→ Apolar(L) induces a bijection between zero-
dimensional subschemes of V supported at the origin and finite dimensional subspaces L′ ⊂
SymV which are closed under the action of SymV ∨, i.e., which are (SymV ∨)-submodules.
Clearly subspaces spanned by homogeneous elements give k

∗-invariant schemes and conversely.
Moreover, principal (SymV ∨)-submodules correspond precisely to Gorenstein schemes. For ex-
ample, a general cubic gives a graded Gorenstein subscheme with Hilbert function (1, n, n, 1),
where n = dimV . Note that Apolar(−) is order preserving: a subscheme corresponds to a
smaller linear space.
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2.3 Geometry of zero-dimensional schemes

For a zero-dimensional scheme, its length is the linear dimension of its algebra of global sections.
If the scheme is embedded into a projective space, then it is the same as its degree. In this sub-
section we fix the length d of considered schemes. If the scheme is irreducible, then it corresponds
to a local algebra (A,m,k). In this case by the Hilbert function we denote H(i) = dimkm

i/mi+1.
This function is usually written as a vector of its non-zero values, e.g. for a first infinitesi-
mal neighbourhood of a point in A

3 one gets (1, 3). For a general reference on finite schemes,
see [BJ17].

For a general reference on the Hilbert schemes of points, see [FGI+05, HS04, Har10].
The functor of embedded flat families of length d zero-dimensional subschemes of A

n is
represented by the Hilbert scheme of points of An, which we denote HilbdA

n or shortly Hilbd.
It is a connected, quasi-projective scheme; in fact it is an open subset of the Hilbert scheme of
points on n-dimensional projective space (working with an affine instead of a projective space is
natural, since we look towards analysing affine base loci). Closed points of Hilbd correspond to
zero-dimensional schemes; we will denote by [R] the point corresponding to a subscheme R ⊂ A

n.
The most natural zero-dimensional subscheme of An of length d is just a d-tuple of points.

Denote by Hilb◦d ⊂ Hilbd the subset corresponding to all tuples of points. A scheme is a tuple of
points precisely when it is smooth, hence Hilb◦d is open in Hilbd. Its closure is then an irreducible
component of Hilbd, denoted by Hilbsmd . The points of Hilbsmd are limits of smooth schemes, hence
are called smoothable schemes and Hilbsmd is called the smoothable component. This component
has dimension nd.

Smoothability has a down-to-earth characterisation, at least in the graded case and gener-
ically. For a scheme R ⊂ A

n we say that it is a k
∗-limit if R = limt→0 tΓ for a tuple Γ of d

points of An. Then R is k∗-invariant and smoothable. The notion of k∗-limits may be formulated
differently as follows. Fix a k

∗-limit R = limt→0 tΓ. Compactify A
n to a P

n by adding a “time
coordinate”. Then Γ becomes as a set of d points of Pn and R is the hyperplane section of the
cone over Γ by the hyperplane corresponding to t = 0. We say that an irreducible scheme R ⊂ A

n

is compressed if there is an s such that the Hilbert function of R satisfies H(i) = dimSymi
k
n

for all i < s and H(i) = 0 for all i > s. For example if R ⊂ A
3 is an irreducible scheme of length

12, then it is compressed if and only if its Hilbert function is (1, 3, 6, 2).

Corollary 7. The set of smoothable compressed subschemes of An is irreducible and its general
member is a k

∗-limit.

Proof. This follows from [CEVV09, Lemma 5.4].

Corollary 8. Let ϕ : P(V ) → P(W ) be a morphism and R ⊂ V be its affine base locus. If R is
a k

∗-limit then there exists an inclusion V ⊂ V ′ with one dimensional cokernel and an extension
ψ : P(V ′) 99K P(W ). Conversely, if ψ exists and its base locus Γ is non-empty and smooth of
degree degR, then R is k

∗-limit.

Proof. If R ⊂ V is a k
∗-limit of Γ then one may compactify V to P(V ′) by adding a “time

coordinate” as above. Then R is a hyperplane section of the cone over Γ and the equations
of ϕ defining Γ lift to equations of Γ, which induce a rational map ψ : P(V ′) 99K P(W ) with
base locus Γ. Conversely, if ψ exists and its base locus Γ is smooth non empty, then it is also
zero-dimensional. Let Γ̂ be the affine base locus of ψ. Then Γ̂ is cone over Γ, perhaps with some
embedded component at the origin (due to lack of saturation). Let Γ̂′ ⊂ Γ̂ be the cone given by
saturation I(Γ). The scheme R′ = Γ̂′ ∩ V is a hyperplane section of Γ̂′, hence has degree deg Γ,
which is equal to degR by assumption. The scheme R′ is a k

∗-limit of the affine scheme Γ in
P(V ′) \ P(V ). By definition, R = V ∩ Γ̂, thus R′ ⊂ R are two zero-dimensional schemes of the
same degree, so R′ = R.
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For n ≤ 2 the smoothable component is the unique component and in fact Hilbd is smooth [Fog68].
This is no longer the case for n ≥ 3. If the dimension is at least three and d is large enough,
then the Hilbert scheme is reducible and singular ([CEVV09, Erm12, Iar84] and also [IE78]1).
Not much is known about the additional components of the Hilbert scheme, in fact their mere
presence seems to discourage investigators.

It is known that for d ≤ 7, any n or for d = 8, n ≤ 3 the Hilbert scheme is irre-
ducible [CEVV09]. This scheme is reducible for d = 8 and n ≥ 4. In this paper we are interested
in the “smallest” reducible example: the Hilbert scheme of d = 8 points on A

4.

3 Projections of v2(P
3)

In this section we study the geometry of projections of v2(P3) ⊂ P
9 to P

6. Let us introduce some
useful tools.

3.1 Hilbert scheme of eight points on affine four-space

The paper by Cartwright, Erman, Velasco and Viray [CEVV09] is devoted to the analysis of the
Hilbert scheme of eight points on affine 4-space. Most of the facts below are found there; our
contributions are Proposition 9 and Remark 10.

The Hilbert scheme of 8 points on V := A
4 has two irreducible components. The smoothable

component has dimension 8 · 4 = 32. The other component, Hilb143, has dimension 25 and is
isomorphic to V ×Gr(7,Sym2 V ∨). The isomorphism is given by sending (p,N) to the irreducible
scheme SymV ∨/(N)+(V ∨)3 translated so that its support is p. Hence the schemes corresponding
to points of Hilb143 are irreducible and have Hilbert function (1, 4, 3). By apolarity we may
equivalently parameterise this component as V ×Gr(3,Sym2 V ), by sending (p, L) to Apolar(L+
V ) supported at p. Note that if Apolar(L+V ) 6= Apolar(L), then the partials of forms of L span
a proper subspace W of V , hence L ⊂ Sym2W . In this case P(L) intersects the secant variety
of v2(P(W )). Thus, for our purposes, the difference between Apolar(L) and Apolar(L + V ) is
negligible.

The two components intersect along an irreducible 24-dimensional set, which has the form
V ×D, where D ⊂ Gr(3,Sym2 V ) is a divisor of degree two on the Grassmannian, which we call
the smoothable divisor. Hence smoothability is independent of the embedding (this is true for all
finite schemes [BJ17, Theorem 1.1]). The equation of D is obtained as follows: let W ⊂ Sym2 V
be a 3-dimensional space spanned by q1, q2, q3 that correspond to 4 × 4 matrices A1, A2, A3.
Then the equation is the Pfaffian of the 12× 12 matrix





0 A1 −A2

−A1 0 A3

A2 −A3 0



 . (1)

Salmon gave a geometric description of the smoothable divisor, by showing that its equation
vanishes on q1, q2, q3 if and only if there exists a cubic F and linear differential operators d1, d2, d3
such that diF = qi. Below we give another proof of this fact.

Proposition 9. Let L ⊂ Sym2 V be 3-dimensional and R = SpecApolar(L + V ) be the corre-
sponding zero-dimensional scheme of degree eight. The following conditions are equivalent:

1. there is a cubic F such that L is spanned by three partial derivatives of F ,

2. the scheme R is smoothable.

1Note: there is a known numerical mistake in the computation on page 169, compare [CN09].
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Proof. The implication 1 =⇒ 2 is noted in [CEVV09, Rmk 5.9] and we refer to this work for
details (see also Remark 10).

We will prove the implication 2 =⇒ 1. By the obvious parameterisation, the set of L
satisfying Condition 1 is closed. Thus it is enough to show that each point [R] is a limit of points
in the smoothable divisor satisfying 1. By Corollary 7 the set of smoothable, irreducible schemes
with Hilbert function (1, 4, 3) is irreducible and the set of k∗-limits is dense inside it. Hence we
may consider only k

∗-limits.
Let R = limt→0 tΓ be a k

∗-limit in A
4 with Hilbert function (1, 4, 3). Compactify A

4 to P
4

and consider Γ ⊂ P
4. By [EP00, Theorem 8.6] this set can be enlarged to a tuple Γ′ of ten

arithmetically Gorenstein points of P4. Since R = Γ̂∩H is a hyperplane section of the cone over
Γ, it lies in a hyperplane section S = Γ̂′∩H of the cone over Γ′. This section is zero-dimensional
Gorenstein with Hilbert series (1, 4, 4, 1), provided that H intersects Γ′ properly. This condition
can be always achieved by perturbing H, which perturbs R in the smoothable divisor. Hence, at
least in any neighbourhood of R, we get a point Rε ⊂ Sε, where Sε is Gorenstein with Hilbert
function (1, 4, 4, 1). We conclude that Sε = Apolar(Fε) for some cubic and that Lε is contained
in the partials of this cubic.

Remark 10. In the proof of Proposition 9 we got an inclusion of R into S whose Hilbert function
is (1, 4, 4, 1) and even an inclusion of curves whose hyperplane sections are R and S. Moreover,
Condition 1 asserts that for a given S every R ⊂ S is smoothable. But for a given S and a curve
CS smoothing it as above R is not necessarily smoothed by a sub-curve CR. Indeed, for a fixed
CS the existence of CR is equivalent to the existence of CR′ , where R′ ⊂ S is the residuum of
R in S. In our case R′ is a tangent vector in S. One sees immediately that the tangent vectors
which do lift lie in the planes spanned by the two of the 10 points of CS. In particular not all
tangent vectors lift.

3.2 Smoothable schemes of degree 8 and special quadric morphisms P
3 → P

6

Let V have dimension four. In this section we consider morphisms P(V ) → P
6 given by quadrics.

They factor as second Veronese v2 composed with a projection

πL : P(Sym
2 V ) 99K P

6

from an L ⊂ Sym2 V . Let XL = πL(v2(P
3)). A general P(L) does not intersect the secant variety

of v2(P3), hence for such L the variety XL is isomorphic to P(V ) via πL ◦ v2.
Denote by L⊥ ⊂ Sym2 V ∨ the space perpendicular to L, then naturally P

6 = P((L⊥)∨). The
pullback of sections from P

6 to XL and then to P(V ) gives a restriction map H0(OP6(3)) →
H0(OP(V )(3)), which algebraically reads

Sym3 L⊥ → Sym6 V ∨. (2)

The spaces on both sides of this map have dimension 84 and in fact for a general choice of L this
morphism is an isomorphism. Let Gr := Gr(3,Sym2 V ) be the parameter space for such L. The
above discussion globalises as follows: the tautological sequence

0 → T → OGr ⊗ Sym2 V → Q → 0

dualises to 0 → Q∨ → OGr ⊗ Sym2 V ∨ → T ∨ → 0. The multiplication Sym3 Sym2 V ∨ →
Sym6 V ∨ induces a map

µ : Sym3Q∨ → OGr ⊗ Sym6 V ∨, (3)

whose restriction to a point [P(L)] ∈ Gr is exactly (2). Thus the jump locus has a natural scheme
structure at the degeneracy locus of µ. A Schubert calculation shows that the degree of the jump
locus is 36.
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As described in Section 2.2, a point [P(L)] of Gr(3,Sym2 V ) has an associated zero-dimensional
scheme R = SpecApolar(L + V ), which is of length 8 and for a general L it is equal to
SpecApolar(L) (so that adding V may be thought of as stabilisation of length).

Now comes the Leitmotiv of this work: we show that smoothability implies the jump and
even more. The authors discussed the problem just before the conference dinner at Schreyerfest
and the first computational evidence for Theorem 11 was obtained just before the dessert. Hence
we call the following Schreyerfest-dinner theorem.

For a three-dimensional L ⊂ Sym2 V we say that L satisfies the jump condition if the image
XL of v2P(V ) under the projection from P(L) lies on a cubic. We say that the jump is at least
by l if XL lies on an (at least) l-dimensional space of cubics.

Theorem 11 (Schreyerfest-dinner). Let L ⊂ Sym2 V be a linear subspace of dimension three.
Suppose that R = SpecApolar(L+ V ) is smoothable. The P(L) satisfies the jump condition and
the jump is at least by three.

Proof. The jump condition is closed, so it is enough to prove it for a general L. Hence, by
Corollary 7 we may assume that R is a k

∗-limit and that its ideal is generated by quadrics. By
Corollary 8 the map πL ◦ v2 : P(V ) = P

3 → P
6 extends to a rational map P

4
99K P

6 whose base
locus Γ8 is a tuple of 8 points. Since a general tuple of such 8 points gives R as above, we may
assume that Γ8 is general. Also the ideal of Γ8 is generated by seven quadrics.

Now we apply Gale duality. We refer the reader to the beautiful paper [EP00]. Since Γ8 ⊂ P
4

is general, its Gale dual exists by [EP00, Corollary 2.4] and is a 8-tuple Γ′
8 ⊂ P

2, which we may
also assume to be general. Hence, there exists q ∈ P

2 such that Γ′
8∪{q} is a complete intersection

of two elliptic curves. Also, in this case the Gale duality can be made explicit: starting from
Γ′
8 ⊂ P

2 one takes the second Veronese reembedding and projects from q, obtaining Γ8 ⊂ P
4,

see [EP00, Corollary 2.6 and p. 138-9]. In any case, the pencil of elliptic curves passing through
Γ′
8 gives a pencil E of projectively normal elliptic curves through Γ8, [EP00, Corollary 3.2].

Each curve E in this pencil is arithmetically Gorenstein and cut out by 5 quadrics. These
quadrics define a rational map cE : P

4
99K P

4 which is birational with inverse c′E given by
cubics [CK89]. Now the image c′E(cE(P

3)) spans at most a P
3, hence the coordinates of c′E give

a cubic equation between five of the quadrics defining P(V ) = P
3 → P

6. Such relation gives a
cubic equation CE ∈ P

(

Sym3 L⊥
)

of the image. The situation is summarised in the following
diagram

P
3 πL◦v2

//

lin
��

P
6

lin
��
✤

✤

✤

P
4 cE

//❴❴❴ P
4

(4)

The argument can be made global to obtain a map syz : P1 → P
(

Sym3 L⊥
)

.
It remains to show that there are at least three linearly independent cubic equations. We

will do this by showing that syz is not constant or a line. This requires working with all curves
from the pencil E . These curves sweep out a rational cubic scroll which is the image of P2. The
ideal of this scroll is generated by three quadrics — maximal minors of a 2 × 3 matrix. Hence
the containments between the quadrics are as follows:

{3 in the ideal of scroll} ⊂ {5 cutting out an elliptic curve} ⊂ {7 defining the 8-points}.

Then any elliptic curve defines a point in Gr(2, 4) corresponding to the space of its quadric
equations modulo the quadrics vanishing on the scroll. We obtain a map eq : P1 → Gr(2, 4).

If syz was constant, there would be a cubic relation between the three quadrics defining the
scroll. But no such relation exists. Clearly syz factors through eq. If the image of syz was a line,
also the image of eq would be a line in the Plücker embedding. But such a line corresponds to a
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family of projective lines on a plane passing through a point. Such a point would give a quadric
not in the ideal of the scroll but vanishing on all elliptic curves. This contradicts the fact that
the elliptic curves fill the scroll.

Remark 12. The cubics CE appearing in the proof of Theorem 11 are called Segre cubics,
see [Dol16, p. 4].

One wonders to what extent the statement of Theorem 11 can be reversed. For this consider
first the P(L) ⊂ P(Sym2 V ) which intersect the secant (then Sym3 L⊥ → Sym6 V ∨ is not an
isomorphism).

Lemma 13. Let P(L) be a projective plane intersecting the second secant of v2(P(V )). Then XL

lies on an at least three dimensional space of cubics.

Proof. The secant is the locus of quadrics of rank at most two. The jump locus is closed,
so we may assume that P(L) intersects the secant in a rank two quadric xy. Then no form
of L⊥ contains the monomial ∂x∂y. Enlarge x, y to a basis x, y, z, t of V . Then L⊥ ⊂
span

(

∂2x, ∂
2
y

)

+ span (∂z , ∂t) · V
∨. Observe that (L⊥)3 ⊂ Sym6 V ⊥ annihilates the forms x5y,

x3y3 and xy5. Hence,

dim((L⊥)3) ≤ dim(Sym6 V ⊥)− 3 = dim(Sym3 L⊥)− 3

and we obtain an (at least) three dimensional space of cubics containing XL.

Example 14. Note that when L ⊂ Sym2W for some three-dimensional subspace W ⊂ V , then
P(L) insersects the secant variety of v2(P(W )), because the latter is a divisor in P(Sym2W ).
Thus, P(L) intersects the secant variety of v2(P(V )).

Now we prove a stronger form of Theorem 11. For the definition of jump condition, see the
paragraph above Theorem 11.

Theorem 15. Let [P(L)] ∈ Gr(3,Sym2 V ) be a projective plane. The following conditions are
equivalent:

1. P(L) satisfies the jump condition,

2. P(L) satisfies the jump condition and the jump is at least by three,

3. either P(L) intersects the secant variety of v2(P(V )) or the zero-dimensional scheme asso-
ciated to L is smoothable.

Proof. Clearly, (2) implies (1). By Theorem 11 and Lemma 13 we have (3) implies (2). It
remains to prove that (1) implies (3). These conditions are both divisorial (for smoothability,
see Section 3.1), so it remains to check their degrees.

The (Plücker) degree of the locus of spaces intersecting the secant variety is 10 and the degree
of the smoothable divisor is 2, see (1). By the discussion below Map (3) (before Theorem 11)
, the jump locus has degree 36. The jump on the secant and smoothable parts is both at least
by three, so these divisors contribute to the jump locus with multiplicity at least three, hence
in total they contribute by 3 · (10 + 2) = 36 to the degree. Thus the jump locus is equal to the
union of those divisors.

9



3.3 Cremona transformations associated to octic surfaces

Let us describe further the geometry of the Cremona transformations described in the proof of
Theorem 11. We claim that these transformations can be lifted to the Cremona transformations
defined by octic surfaces, which we now recall. Consider a set Z ⊂ P

2 of eight points. The
quartics through Z define an embedding BlZ P

2 → P
6. The embedded surface S8 = S8(Z) ⊂ P

6

is a rational octic surface. One checks that S8 is contained in a singular scroll X and in fact
S8 = D1∩D2 is a complete intersection of two linearly equivalent divisors inside the scroll [HKS92,
Section 3].

Moreover [HKS92, Thm 3.2], the quadrics through S8 define a Cremona transformation
cS8

: P6
99K P

6, whose inverse is given by quartics through a model of P4 blown in 8 points [ST70].
If one takes a general P4-section in P

6 then S8 ∩ P
4 is a tuple of eight points lying on a pencil

of elliptic normal curves generated by D1 ∩ P
4 and D2 ∩ P

4 and this pencil fills a cubic scroll
X ∩P

4. Each Cremona transformation related to an elliptic curve in this pencil is obtained from
P
6
99K P

6 by composing with a linear embedding and a linear projection. In consequence we
obtain a further geometric description of our projection from L.

Proposition 16. Let P(L) ⊂ P(Sym2 V ) be a P
2 corresponding to a general element of the

smoothable divisor. Then there exists an octic surface S8 and a linear embedding ℓ : P3 → P
6

such that πL = ℓ ◦ cS8
:

P
3 πL◦v2

//

lin
��

P
6

P
6

cS8
//❴❴❴ P

6

Proof. Since P(L) corresponds to a general element of the smoothable divisor, there is a (suitably
general) set of eight points Γ ⊂ P

4 such that πL ◦ v2 lifts to a map P
4
99K P

6 given by quartics
through Γ, see Corollaries 7-8. The claim follows if we prove that Γ is a linear section of an
octic surface S8, which we do below. Let Γ′ ⊂ P

2 be the Gale transform of Γ ⊂ P
4. By Gale

duality [EP00, Corollary 3.2], the cubics containing Γ′ ⊂ P
2 give a pencil of elliptic normal curves

containing Γ, which fill a smooth cubic scroll X ⊂ P
4 containing Γ. The Picard group of X is

generated by the hyperplane section of the scroll H and the fiber R of the scroll. From the
adjunction formula, the pencil of elliptic curves is a subsystem the system |2H −R|. Let D1, D2

be two elements from this subsystem. Since D1.D2 = 8 we infer that D1 ∩D2 = Γ.
Let us consider cubic scrolls Y ⊂ P

5 and Z ⊂ P
6 such that Z restricts to Y and Y to X. We

can assume that Y is smooth and Z is a cone over Y . From the restriction exact sequence

0 → OY (H −R) → OY (2H −R) → OX(2H −R) → 0

and the fact that h1(OY (H − R)) = h1(OZ(H − R)) = 0 we find divisors B1 and B2 on Z in
the linear system |2H − R| such that B1|X = D1 and B2|X = D2 (in fact we have a freedom of
choice of B1 and B2). Then B1∩B2∩P

4 = Γ, so B1∩B2 is a complete intersection. By [HKS92,
Section 3], the intersection of two divisors from |2H − R| is a rational octic surface S8 ⊂ P

6.
Now, Γ is the intersection of this S8 with the linear subspace spanned by X.

Remark 17. By Proposition 16 the elliptic curves E constructed in the proof of Theorem 11
appear as linear sections of S8 and the corresponding Cremona transformations cE come from
cS8

composed with a linear embedding and projection. Note that cS8
has type (2, 4) while all cE

have type (2, 3).

Now we formally summarize how do the previous results add up to give our main result.
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Proof of Theorem 1. First, since L does not intersect the secant of v2(P(V )), by Subsection 3.1 we
have Apolar(L) = Apolar(L+V ). Let us recapitulate the proof of equivalence of Conditions (a)-
(e). The equivalence of (d) and (e) is proven in 9. The equivalence of Conditions (b), (c) and (d)
is given in Theorem 15. By Proposition 16, Condition (d) implies Condition (a). Finally, if πL◦v2
is a general restriction of a Cremona based in a rational octic surface, then Spec(Apolar(L)) is
a section of a cone over 8 points of that surface, hence is smoothable. Thus, Condition (a)
implies (d) and the proof of equivalences is concluded. The irreducibility of the smoothable
divisor follows from the parametrization from (e) and was proven in [CEVV09]. For a general L
in this divisor, the existence of a three-dimensional space of Segre cubics follows from Remark 12.
If I(XL)3 was at least four-dimensional for all L in the smoothable divisor, then the contribution
of the smoothable divisor to the jump locus would be higher than allowed, see the proof of
Theorem 15.
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