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Abstract

We describe the module of integrable derivations in the sense of Hasse-Schmidt of the quotient of the

polinomial ring in two variables over an ideal generated by the equation x
n
− y

q.
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INTRODUCTION

Let k be a commutative ring and A a commutative k-algebra. A Hasse-Schmidt derivation of A over k of
length m ∈ N or m = ∞ is a sequence D = (Di)

m
i≥0 such that:

D0 = IdA, Di(xy) =
∑

a+b=n

Da(x)Db(y)

for all x, y ∈ A. We denote by HSk(A;m) the set of Hasse-Schmidt derivations of A of length m. The component
Di of a Hasse-Schmidt derivation is a differential operator of order ≤ i, in particular D1 is a k-derivation.

The Hasse-Schmidt derivations of length m, also called higher derivation of order m (see [Ma]), were intro-
duced by H.Hasse and F.K. Schmidt ([H-S]) and they have been used by several authors in different contexts
(see [Na1], [Se] or [Tr]). An important notion related with Hasse-Schmidt derivations is integrability. Let m ∈ N
or m = ∞, then we say that δ ∈ Derk(A) is m-integrable if there exists D ∈ HSk(A;m) such that δ = D1. The
set of all m-integrable k-derivations is an A-submodule of Derk(A) for all m, which is denoted by IDerk(A;m).

If k has characteristic 0 or A is 0-smooth over k, then any k-derivation is ∞-integrable ([Ma]), that means
that Derk(A) = IDerk(A;∞). If we consider k a ring of positive characteristic and A any commutative k-algebra,
the modules IDerk(A;m) have better properties than Derk(A) (see [Mo]). So exploring these modules seems
interesting to better understand singularities in positive characteristic.

The aim of this paper is to describe the modules of m-integrable derivations, for m ≥ 1 and m = ∞, of the
quotient of the polynomial ring in two variables over an ideal generated by an equation of type xn − yq.

This paper is organized as follows: In section 1 we recall the definition of Hasse-Schmidt derivations and
give some known properties that will be useful in later sections. In section 2 we focus on the integrability
of derivations in the sense of Hasse-Schmidt in quotients of polynomial rings in two variables over the ideal
generated by the equation xn − yq. Namely, we calculate the module of integrable k-derivations when k is a
reduced ring of characteristic p > 0 and n or q are not multiple of p. In section 2.1, we assume that k is a unique
factorization domain and we see the relationship between integrable derivations of the quotient of a polynomial
ring over 〈f〉 and over 〈fp〉 where f is a polynomial. Thanks to this relationship, we can describe the integrable
derivations of k[x, y]/〈xn − yq〉 when n and q are both multiples of p. In section 3, we calculate the module of
integrable derivations in some examples taken from [Gr].
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1 Hasse-Schmidt derivations

Let k be any commutative ring and A a commutative k-algebra. In this section we will define Hasse-Schmidt
derivations and we will give some of their properties, ending with the case where A is a polynomial ring. We
denote N = N ∪ {∞}. For each integer m ≥ 1, we will write A[|µ|]m := A[|µ|]/〈µm+1〉 and A[|µ|]∞ := A[|µ|].

Definition 1.1 A Hasse-Schmidt derivation (over k) of A of length m ≥ 1 (resp. of length ∞) is a sequence
D := (D0, D1, . . . , Dm) (or resp. D = (D0, D1, . . .)) of k-linear maps Di : A → A, satisfying the conditions:

D0 = IdA, Di(xy) =
∑

a+b=n

Da(x)Db(y)

for all x, y ∈ A and for all i. We write HSk(A;m) (resp. HSk(A)) for the set of Hasse-Schmidt derivations
(over k) of A of length m (resp. ∞).

Remark 1.2 ([Ma]; cf. [Na2]) 1. Any Hasse-Schmidt derivation D ∈ HSk(A;m) is determined by the
k-algebra homomorphism

ϕD : A → A[|µ|]m

a 7→
m∑

i≥0

Di(a)µ
i

satisfying ϕD(x) = x mod µ. ϕD can be uniquely extended to a k-algebra automorphism ϕ̃D : A[|µ|]m →
A[|µ|]m with ϕ̃D(µ) = µ. So, HSk(A;m) has a canonical group structure. Namely, D ◦ D′ = D′′ ∈
HSk(A;m) with D′′

n =
∑

i+j=n Di ◦ D′
j for n ≤ m. Moreover, the component D1 is a k-derivation. So,

the map (Id, D1) ∈ HSk(A; 1) 7→ D1 ∈ Derk(A) is a group isomorphism.

2. For any a ∈ A and any D ∈ HSk(A;m), the sequence a •D = (aiDi) ∈ HSk(A;m).

3. For any 1 ≤ n ≤ m and any D ∈ HSk(A;m), we define the truncation map by τmn(D) = (Id, D1, . . . , Dn) ∈
HSk(A;n).

Definition 1.3 Let D ∈ HSk(A;m) where m ∈ N and n ≥ m. Let I be an ideal of A.

• We say that D is I-logarithmic if Di(I) ⊆ I for all i. The set of I-logarithmic Hasse-Schmidt derivations
is denoted by HSk(log I;m), HSk(log I) := HSk(log I;∞) and Derk(log I) := HSk(log I; 1).

• We say that D is n-integrable if there exists E ∈ HSk(A, n) such that τnm(E) = D. Any such E will be
called a n-integral of D. If D is ∞-integrable we say that D is integrable. If m = 1, we write IDerk(A;n)
for the set of n-integrable derivations and IDerk(A) := IDerk(A;∞).

• We say that D is I-logarithmically n-integrable if there exists E ∈ HSk(log I;n) such that E is a n-
integral of D. We put IDerk(log I;n) for the set of I-logarithmically n-integrable derivations when m = 1
and IDerk(log I) := IDerk(log I,∞).

Remark 1.4 IDerk(A;n) is an A-submodule of Derk(A) thanks to the group structure of HSk(A;n) and oper-
ation 2.

Definition 1.5 A has a leap on s > 1 if the inclusion IDerk(A; s− 1) ) IDerk(A; s) is proper.

Lemma 1.6 Let k be a ring of characteristic p > 0 and h ∈ A. Consider D ∈ HSk(A;m) with m ∈ N and
τ ≥ 0. Then, for all i ≤ m,

Di

(
hpτ

)
=

{
0 if pτ 6 |i
Di/pτ (h)p

τ

if pτ |i
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Proof.
Let ϕ : A → A[|µ|]m be the k-algebra homomorphism determined by D. Then,

m∑

i≥0

Di

(
hpτ

)
µi = ϕ

(
hpτ

)
= ϕ(h)p

τ

=

m∑

j≥0

Dj(h)
pτ

µjpτ

mod
〈
µm+1

〉

and we obtain the result by equating the coefficients in the above equation.
�

Lemma 1.7 Consider g ∈ A and D ∈ HSk(A;m). Suppose that Dj(g) ∈ 〈g〉 for all 0 ≤ j < m. Then, for all
r ≥ 1,

Dm(gr) ∈ rgr−1Dm(g) + 〈gr〉.

Proof.
We will prove that Dj(g

r) ∈ 〈gr〉 for all j < m and r ≥ 1. We proceed by induction on j. For j = 0 the
result is clear since D0 = Id. Let us assume that Da(g

r) ∈ 〈gr〉 for all a < j and all r. We will show the result
for j by induction on r. When r = 1, it’s obvious from the hypothesis. Let us suppose that Dj(g

r−1) ∈ 〈gr−1〉.
From the definition of Hasse-Schmidt derivation,

Dj (g
r) = Dj

(
gr−1

)
g +

∑

a+b=j
a,b6=0

Da

(
gr−1

)
Db(g) + gr−1Dj(g) ∈ 〈gr〉.

Now, we will prove the lemma by induction on r ≥ 1. It is obvious for r = 1, let us suppose that Dm(gr−1) ∈
(r − 1)gr−2Dm(g) + 〈gr−1〉. From the definition of Hasse-Schmidt derivation,

Dm (gr) = Dm

(
gr−1

)
g +Dm(g)gr−1 +

∑

a+b=m
a,b6=0

Da

(
gr−1

)
Db(g) ∈ rgr−1Dm(g) + 〈gr〉

and the lemma is proved. �

1.1 Polynomial ring and integrability

Consider R = k[x1, . . . , xd] the polynomial ring over a commutative ring k. In this section, we recall, for the
ease of the reader, some results related with the integrability of k-derivation in a polynomial ring.

Theorem 1.8 [Ma, Th. 27.1] Let R = k[x1, . . . , xd] the polynomial ring over k, then IDerk(R) = Derk(R).

Corollary 1.9 Any Hasse-Schmidt derivation of R over k of length m ≥ 1 is integrable.

Proof. This is consequence of Theorem 1.8 and Proposition 2.1.5 of [Na2]. �

Corollary 1.10 [Na2, Corollary. 2.1.10] The map Π : IDerk(log I;m) → IDerk(R/I;m) defined by Π(D) =
D where Di(a+ I) = Di(a) + I is a surjective group homomorphism.

Corollary 1.11 Let I ⊂ R be an ideal and A = R/I. Then, A has a leap on s ≥ 1 if and only if the inclusion
IDerk(log I; s− 1) ) IDerk(log I; s) is proper.

Proposition 1.12 [Na2, Prop. 2.2.4] Let f ∈ R, I = 〈f〉, and J0 = 〈∂1(f), . . . , ∂d(f)〉 the gradient ideal.
If δ : R → R is an I-logarithmic k-derivation with δ ∈ J0 Derk(R), then δ admits an I-logarithmic integral
D ∈ HSk(log I) with Di(f) = 0 for all i > 1. In particular, if δ(f) = 0, the integral D can be taken with
ϕD(f) = f .
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2 Integrable derivations for xn − yq

Let R = k[x, y] be the polynomial ring in two variables over a reduced ring k of characteristic p > 0 and
h = xn − yq ∈ R. In this section we will study the modules of n-integrable derivations of A = R/〈h〉 of length
n ∈ N.

In this section we will follow the following notation: Let α := valp(n) be the p-adic valuation of n and
s = n/pα. We will denote by m the remainder of the division of q by p and β := valp(q −m). We write

γ := min{i|ipα ≥ q − 1} = ⌈(q − 1)/pα⌉.

Proposition 2.1 Let k be a commutative reduced ring of characteristic p > 0 and R = k[x, y] the polynomial
ring over k. We set A = R/〈h〉 where h = xn − yq. For δ ∈ Derk(log h), we denote δ = Π(δ) (Corollary 1.10).

• If n, q 6= 0, then
IDerk(A) = Derk(A) = 〈δ1, δ2〉

where δ1 = qx∂x + ny∂y and δ2 = qyq−1∂x + nxn−1∂y.

• If n = 0 mod p and q = 1, then
IDerk(A) = Derk(A) = 〈∂x〉

• If α,m ≥ 1 and q ≥ 2, then

IDerk(A; i) =











〈
∂x

〉
1 ≤ i < pα〈

x∂x, yγ∂x
〉

pα ≤ i < pα+β
〈
x∂x, yγ+1∂x

〉
i ≥ pα+β or i = ∞

if s = 1, α ≤ β, m = 1

{
〈∂x〉 1 ≤ i < pα〈
x∂x, yγ∂x

〉
i ≥ pα or i = ∞

otherwise

Proof.
Let δ = u∂x + v∂y be a k-derivation of R. To prove this result it is enough to show which derivations are

h-logarithmically i-integrable for i ∈ N (Corollary 1.10).

• n, q 6= 0 mod p.

We have to find the pairs (u, v) such that δ(h) = nuxn−1−qvyq−1 ∈ 〈h〉. It easy to see that Derk(log h) = 〈δ1, δ2〉
where δ1 = qx∂x+ny∂y and δ2 = qyq−1∂x+nxn−1∂y. Note that h is a quasi-homogenous polynomial with respect
to the weights w(x) = q and w(y) = n. By Theorem 1.2. of [Tr], the Euler vector field, δ1, is h-logarithmically
∞-integrable. On the other hand, the gradient of h is J0 = 〈xn−1, yq−1〉, so δ2 ∈ J0 Derk(R) and from
Proposition 1.12 we know that δ2 is h-logarithmically ∞-integrable too. So, IDerk(A) = Derk(A) = 〈δ1, δ2〉.

• n = 0 mod p and q = 1.

The condition for δ to be h-logarithmic is that v ∈ 〈h〉, so Derk(log h) = 〈∂x, h∂y〉. In this case J0 = 〈1〉, hence
any 〈h〉-logarithmic derivation is integrable (Prop. 1.12). Then, IDerk(A) = Derk(A) = 〈∂x〉.

• α,m ≥ 1 and q ≥ 2.

Note that n = spα. In order for δ to be h-logarithmic, v ∈ 〈h〉 so Derk(log h) = 〈∂x, h∂y〉. Since h∂y is the zero
derivation on A, we can focus on the h-logarithmically integrability of δ = u∂x with u ∈ R. Let ux ∈ k[x, y]
and uy ∈ k[y] such that

u = ux(x, y)x + uy(y) ⇒ δ = u∂x = uxx∂x + uy∂x.

Since h is a quasi-homogeneous polynomial with respect to the weights w(x) = q and w(y) = spα, the Euler
vector field, χ = qx∂x, is h-logarithmically integrable, and hence also uxx∂x are. Since IDerk(log h; i) is a
R-modules for all i,

δ ∈ IDerk(log h; i) ⇔ uy∂x ∈ IDerk(log h; i)
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Let us consider δ = u∂x where u ∈ k[y]. Let ϕ : R → R[|µ|] be a k-algebra homomorphism:

ϕ : R −→ R[|µ|]
x 7−→ x+ uµ+ u2µ

2 + · · ·
y 7−→ y + v2µ

2 + · · ·

To show that δ is i-integrable it is enough to prove that there exist uj, vj for 2 ≤ j ≤ i such that ϕ(h) ∈ 〈h〉
mod µi+1, or, equivalently, the coefficients of µj in ϕ(h) belong to 〈h〉 for all j ≤ i. We will denote by µj the
coefficient of µj in the equation

ϕ(h) =
(
xpα

+ upα

µpα

+ upα

2 µ2pα

+ · · ·
)s

−
(
y + v2µ

2 + v3µ
3 + · · ·

)q
(1)

Suppose that there exists i such that 2 ≤ i < pα. Then, µ2 = −qyq−1v2 has to belong to 〈h〉. Hence,
v2 ∈ 〈h〉, so we can put v2 = 0. Let us assume that vl = 0 for all 2 ≤ l < i < pα. In this case, µi = −qyq−1vi
and, as the same before, we can put vi = 0. Then,

Derk(A) = IDerk(A; i) =
〈
∂x

〉
∀i < pα

and we can write the equation (1) as:

(
xpα

+ upα

µpα

+ upα

2 µ2pα

+ · · ·
)s

−
(
y + vpαµpα

+ vpα+1µ
pα+1 + · · ·

)q

∈ 〈h〉 (2)

Now, we have to see that there are upα , vpα ∈ R such that

µpα = sxpα(s−1)upα

− qyq−1vpα ∈ 〈h〉 (3)

Since u ∈ k[y], the previous expression implies that upα

∈ 〈yq−1〉. Therefore, if we write u =
∑

i≥0 uiy
i with

ui ∈ k, then upα

i = 0 for all i such that ipα < q − 1, so ui = 0 because k is reduced. Hence, we can write
u = w(y)yγ where γ = min{i|ipα ≥ q − 1} and w(y) ∈ k[y]. Substituting the expression of u on (3), we can
deduce that

sxpα(s−1)wpα

yγp
α−(q−1) − qvpα ∈ 〈h〉 ⇒ vpα ∈ (s/q)xpα(s−1)wpα

yγp
α−(q−1) + 〈h〉 (4)

Therefore, A has a leap on pα and

IDerk(A; p
α) = 〈x∂x, yγ∂x〉 where γ = min{i| ipα ≥ q − 1}.

Let us write q = tpβ +m. Note that the only case where γpα = q− 1 is q = tpβ +1 and α ≤ β. Let us focus
on this case when s = 1.

• Case q = tpβ + 1, α ≤ β and s = 1. Observe that t 6= 0 because q ≥ 2. It is easy to see that γ = tpα−β.
We will study the integrability of w(y)yγ∂x in this particular case.

Substituting the values of q and s in the equation (2) and (4) we obtain:

(
xpα

+ upα

µpα

+ upα

2 µ2pα

+ · · ·
)
−
(
yp

β

+ vp
β

pαµpα+β

+ vp
β

pα+1µ
(pα+1)pβ

+ · · ·
)t (

y + vpαµpα

+ · · ·
)
∈ 〈h〉

and
vpα = cwpα

+ Fh

for c = 1/q and some F ∈ k[x, y]. Let us consider i such that pα < i < pα+β . If i = jpα for some

j ≥ 2, then µi = upα

j − ytp
β

vi. Otherwise, µi = −ytp
β

vi. So, wyγ∂x is h-logarithmically i-integrable for

all i < pα+β (it’s enough to put uj = vi = 0 so that µi ∈ 〈h〉). Now,

µpα+β = upα

pβ − ty(t−1)pβ+1vp
β

pα − ytp
β

vpα+β
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has to belong to 〈h〉. So, substituting the value of vpα , we have that

upα

pβ − ctwpα+β

y(t−1)pβ+1 − ytp
β

vpα+β = G
(
xpα

− ytp
β+1

)

for some G ∈ k[x, y]. The coefficient of yj with j = (t− 1)pβ +1 in this equality is tcwpα

0 = 0 where w0 is
the independent term of w. Since R is reduced, w0 = 0. Hence, yγ∂x is not pα+β-integrable. However, if
w = w′y with w′ ∈ k[y], the previous equation is

upα

pβ − ctw′pα+β

yq+pβ(pα−1) − ytp
β

vpα+β = G
(
xpα

− ytp
β+1

)

Then, there exists a solution, for instance upβ = 0 and vpα+β = −ctw′pα+β

yp
β(pα−1)+1. In conclusion, in

this case A has a leap in pα+β and

IDerk
(
A; pα+β

)
=

〈
x∂x, yγ+1∂x

〉

Until now we saw that, for all q ≥ 2

IDerk (A; p
α) =

〈
x∂x, yγ∂x

〉
where γ = min{i| ipα ≥ q − 1}

and moreover, when q = tpβ + 1, 1 ≤ α ≤ β and s = 1, yγ∂x is not h-logarithmically integrable but

IDerk
(
A; pα+β

)
=

〈
x∂x, yγ+1∂x

〉

Let us rewrite γ := γ + 1 in the latter case. We will see that yγ∂x is integrable on A for all q ≥ 2. Consider

ϕ : A −→ A[|µ|]
x 7−→ x+ yγµ
y 7−→ y + v1µ

pα

+ v2µ
2pα

+ · · ·

where
vi = Cix

pα(s−σ)yiγp
α−(τ+1)q+1 for i = τs+ σ with τ ≥ 0 and σ = 1, . . . , s,

Ci =
1

q




(
s

i

)
−

∑

j∈Ii

Dj



 where

(
s

i

)
= 0 if i > s,

Ii =

{
j = (j0, j1, . . . , ji−1) | jk ≥ 0 ∀k = 0, . . . , i− 1, |j| = q,

i−1∑

k=1

kjk = i

}

and, for all j = (j0, j1, . . . , jl) with l ≥ 1,

Dj =

(
q

j

)
Cj1

1 · · ·Cjl
l with

(
q

j

)
=

q!

j0! · · · jl!
.

We have to prove that ϕ is well defined. First we see that iγpα− (τ +1)q+1 ≥ 0, i.e., (τs+σ)γpα − τq ≥ q− 1.

• When γpα > q − 1, then γpα ≥ q, but q is not multiple of p, so γpα ≥ q + 1 and therefore

(τs+ σ)γpα − τq ≥ (τs + σ)(q + 1)− τq = (τ(s − 1) + σ)q + τs+ σ ≥ q − 1

because s− 1 ≥ 0 and σ ≥ 1.
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• Let us consider γpα = q − 1. As we have seen before, the previous equality only hold if q = tpβ + 1 and
α ≤ β. If s = 1, then we have considered γ + 1, so we are in the first point. Therefore, we have just
considered s ≥ 2. In this case, we have to prove that (τs + σ)γpα − τq = (τs + σ)(q − 1) − τq ≥ q − 1.
Then

(τs+ σ)(q − 1)− τq ≥ (2τ + σ)(q − 1)− τq = (τ + σ)q − (2τ + σ)

So,
(τ + σ)q − (2τ + σ) ≥ q − 1 ⇔ (τ + σ − 1)q ≥ 2τ + σ − 1

and this is true because q ≥ 2 and τ + σ − 1 ≥ 0. Note that if τ + σ − 1 = 0 then τ = 0 and σ = 1, so
2τ + σ − 1 = 0 too.

Now, we have to show that ϕ(h) = 0 in A[|µ|]. The equation is:

ϕ(h) =
(
xpα

+ yγp
α

µpα
)s

−
(
y + v1µ

pα

+ v2µ
2pα

+ · · ·
)q

Since all degrees of the monomial which appeared in this equation are multiple of pα, let us denote µi to the
coefficient of degree ipα. Then

µi =

(
s

i

)
xpα(s−i)yiγp

α

− µ̃i

where µ̃i is the coefficient of µipα

from
(
y + v1µ

pα

+ v2µ
2pα

+ · · ·
)q
. This coefficient can be found on

(
y + v1µ

pα

+ · · ·+ viµ
ipα

)q

=
∑

|j|=q

(
q

j

)
yj0vj11 · · · vjii µpα(j1+...+iji)

We just have to consider all j such that j1 + . . . + iji = i. Observe that there exists only one j holding this
equation such that ji 6= 0, This j is (q − 1, 0, . . . , 0, 1) where 1 is in the position i. So, we can identify the set
of all these j with Ii ∪ (q − 1, 0, . . . , 0, 1). Let us calculate a term of µ̃i. Fixed j, we have

(
q

j

)
yj0vj11 · · · vjii =

(
q

j

)
Cj1

1 . . . Cji
i xapα

yb = Djx
apα

yb

where

a =
∑

1≤τs+σ≤i

jτs+σ(s− σ) ≥ 0 and b = j0 +
∑

1≤τs+σ≤i

jτs+σ (γp
α(τs + σ)− (τ + 1)q + 1) ≥ 0

We are going to study these exponents.

a = s
∑

1≤τs+σ≤i

jτs+σ −
∑

1≤τs+σ≤i

jτs+σσ = s(q − j0)−
∑

1≤τs+σ≤i

jτs+σσ

On the other side, we have

∑

1≤τs+σ≤i

jτs+σ(τs + σ) = s
∑

1≤τs+σ≤i

jτs+στ +
∑

1≤τs+σ≤i

jτs+σσ = ls+ r

where i = ls+ r (remember: l ≥ 0 and 1 ≤ r ≤ s). Then, if we denote T =
∑

1≤τs+σ≤i

jτs+στ and we substitute

on a, we have
a = s(q − j0)− ((l − T )s+ r) = s(q − j0 − l + T )− r ≥ 0

If q − j0 − l + T < 1, then a < 0 so q − j0 − l + T ≥ 1 and we can write

a = (q − j0 − l + T − 1)s+ s− r
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Observe that s− r ≥ 0 because 1 ≤ r ≤ s. Now,

b = j0 + γpα
∑

1≤τs+σ≤i

jτs+σ(τs+ σ)− q
∑

1≤τs+σ≤i

jτs+στ − q
∑

1≤τs+σ≤i

jτs+σ +
∑

1≤τs+σ≤i

jτs+σ

= γpαi− qT − q(q − j0) + (q − j0) + j0 = iγpα − q(T + q − j0 − 1)

So, (
q

j

)
yj0vj11 · · · vjii = Djx

(q−j0−l+T−1)spα+(s−r)pα

yiγp
α−q(T+q−j0−1)

Since xspα

= yq in A,
(
q

j

)
yj0vj11 · · · vjii = Djx

(s−r)pα

yiγp
α+q(q−j0−l+T−1)−q(T+q−j0−1) = Djx

(s−r)pα

yiγp
α−lq

Hence,

µ̃i =
∑

|j|=q
j1+...+iji=i

Djx
pα(s−r)yiγp

α−lq =



∑

j∈Ii

Dj +D(q−1,0,...,0,1)


xpα(s−r)yiγp

α−lq

=




∑

j∈Ii

Dj + qCi



xpα(s−r)yiγp
α−lq =




∑

j∈Ii

Dj + q(1/q)




(
s

i

)
−

∑

j∈Ii

Dj







 xpα(s−r)yiγp
α−lq

=

(
s

i

)
xpα(s−r)yiγp

α−lq

So,

µi =

(
s

i

)
xpα(s−i)yiγp

α

−

(
s

i

)
xpα(s−r)yiγp

α−lq

If i > s, then
(
s
i

)
= 0, and hence µi = 0.

If i ≤ s, then i = 0 · s+ i, i.e., l = 0 and r = i, then

µi =

(
s

i

)
xpα(s−i)yiγp

α

−

(
s

i

)
xpα(s−i)yiγp

α

= 0

so, ϕ is well defined and the proposition is proved.

�

Examples 2.2 Let us consider k a reduced ring of characteristic p = 3 and h = x3 − y4 ∈ k[x, y], then γ = 1
so, according with Proposition 2.1,

IDerk(A; i) =





〈∂x〉 1 ≤ i < 3

〈x∂x, y∂x〉 3 ≤ i < 9

〈x∂x, y2∂x〉 i ≥ 9

Now, if we consider h = x3 − y5, then γ = 2 and

IDerk(A; i) =

{
〈∂x〉 1 ≤ i < 3

〈x∂x, y2∂x〉 i ≥ 3

Remark 2.3 Note that if k is not reduced, Proposition 2.1 is not true. For example, if k = F3[t]/〈t
3〉 and

h = x3 − y5, then t∂x ∈ IDerk(A) with the integral

A → A[|µ|]
x 7→ x+ tµ
y 7→ y
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Corollary 2.4 Let k be a commutative reduced ring of characteristic p > 0 and A = k[x, y]/〈h〉 where h =
xn − yq such that α,m ≥ 1 and q ≥ 2. We denote Bi := AnnA (IDerk(A; i − 1)/ IDerk(A; i)) for i > 1. Then,

Bi =

{
〈x, yγ〉 if i = pα

〈y〉 if i = pα+β, s = 1, α ≤ β and m = 1

Moreover, Bi ⊇ J0 = 〈yq−1〉 where J0 is the gradient ideal of h defined in Proposition 1.12.

Proof.
Let us start with i = pα. From Proposition 2.1, we can deduce that

IDerk (A; p
α − 1) / IDerk (A; p

α) = 〈∂x〉/〈x∂x, y
γ∂x〉

where ∂x ∈ Derk(A). By definition, a ∈ Bi if a∂x = 0 mod 〈x∂x, y
γ∂x〉, i.e, if there exist F,G ∈ A such that

a∂x = Fx∂x +Gyγ∂x. Applying this derivation to x, we have that a ∈ 〈x, yγ〉.
Now, when α ≤ β, s = m = 1 and i = pα+β , from Proposition 2.1,

IDerk
(
A; pα+β − 1

)
/ IDerk

(
A; pα+β

)
= 〈x∂x, y

γ∂x〉/〈x∂x, y
γ+1∂x〉 = 〈yγ∂x/y

γ+1∂x〉

In this case, a ∈ Bpα+β if and only if ayγ∂x ∈ 〈yγ+1∂x〉, i.e, if (a− Fy)yγ∂x = 0 for some F ∈ A. This implies
that a ∈ 〈y〉 and we have proved the corollary.

�

2.1 Ip-logarithmic derivations

In this section, we want to calculate the m-integrable derivations of A = k[x, y]/〈h〉 where k is a unique
factorization domain (UFD) of characteristic p > 0 and h = xn − yq with n, q = 0 mod p. We start with some
general results about the relationship between 〈f〉-logarithmic and 〈fp〉-logarithmic derivations. In this section,
we denote R = k[x1, . . . , xd].

Proposition 2.5 If f, g ∈ R = k[x1, . . . , xd] are coprime, then, for all n ∈ N, we have:

HSk(log fg;n) = HSk(log f ;n) ∩ HSk(log g;n).

Proof.

⊇. Let D ∈ HSk(log f ;n) ∩ HSk(log g;n). By definition, Di(f) ∈ 〈f〉 and Di(g) ∈ 〈g〉 for all i ≤ n. Then
Di(fg) =

∑
a+b=i Da(f)Db(g) ∈ 〈fg〉, so D ∈ HSk(log fg;n).

⊆. Let D ∈ HSk(log fg;n). This implies that Di(fg) ∈ 〈fg〉 for all i ≤ n. We will prove the result by
induction on i. When i = 1, then D1(fg) = D1(f)g +D1(g)f ∈ 〈fg〉 ⊆ 〈f〉, 〈g〉. So, D1(f)g ∈ 〈f〉. Since
g and f are coprime, D1(f) ∈ 〈f〉. For g is analogous.

Now let us assume that Di(f) ∈ 〈f〉 and Di(g) ∈ 〈g〉 for all i < n. By definition,

Dn(fg) = Dn(f)g +Dn(g)f +
∑

a+b=n
a,b6=0

Da(f)Db(g) ∈ 〈fg〉 ⇒ Dn(f)g +Dn(g)f ∈ 〈fg〉

and we can proceed like case i = 1. �

Corollary 2.6 If f, g ∈ R are coprime, then IDerk(log fg;n) ⊆ IDerk(log f ;n) ∩ IDerk(log g;n) for all n ∈ N.

Proof. If δ ∈ IDerk(log fg;n) then, there exists D ∈ HSk(log fg;n) a n-integral of δ. By Proposition 2.5,
D ∈ HSk(log f ;n) ∩HSk(log g;n) so, δ ∈ IDerk(log f ;n) ∩ IDerk(log g;n).

�
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Remark 2.7 In general, equality in Proposition 2.5 does not hold. For example: Let k = F2 and f = y2 and
g = x2−y two polynomial of k[x, y]. Then ∂x ∈ IDerk(log f ; 4)∩ IDerk(log g; 4). However ∂x 6∈ IDerk(log fg; 4).

Corollary 2.8 Let f1, . . . , fm ∈ R. If fi,fj are coprime whenever i 6= j, then, for all N we have:

HSk(log f1 · · · fm;n) =
⋂

iHSk(log fi;n) and IDerk(log f1 · · · fm;n) ⊆
⋂

i IDerk(log fi;n)

Proof. The result is obtained thanks to Proposition 2.5 and Corollary 2.6 by induction on m.

�

Lemma 2.9 Let f be an irreducible polynomial, a ≥ 1 and n ∈ N. Consider D ∈ HSk(R;n). Suppose that
Di(f

a)p ∈ 〈fap〉 for all i ≤ n. Then, D ∈ HSk(log f
a;n).

Proof.
We write a = spα where α = valp(a) ≥ 0 and s ≥ 1. By Lemma 1.6,

Di

(
f spα

)
=

{
0 if pα 6 |i
Di/pα(f s)p

α

if pα|i

Hence, we can focus on the case n ≥ pα and i = jpα ≤ n. It’s enough to show that Dj(f) ∈ 〈f〉 because, if this
is true, we have that Dj(f

s) ∈ 〈f s〉 by Lemma 1.7, and Di

(
f spα)

= Dj(f
s)p

α

∈
〈
f spα〉

so we would have the
result.

Since i = jpα ≤ n,

Dj (f
s)p

α+1

= Djpα

(
f spα

)p

∈
〈
f spα+1

〉
(5)

When j = 1, D1 (f
s) = sf s−1D1(f). Substituting in the previous expression, we have that

D1 (f
s)

pα+1

= sf (s−1)pα+1

D1(f)
pα+1

∈
〈
f spα+1

〉
(6)

Since R is UFD and f, s 6= 0, D1(f)
pα+1

∈
〈
fpα+1

〉
⊆ 〈f〉 and hence D1(f) ∈ 〈f〉.

Let us assume that Dl(f) ∈ 〈f〉 for all l < j with jpα ≤ n. Thanks to the hypothesis, we can use Lemma
1.7, and we have

Dj (f
s) = sf s−1Dj(f) + Ff s

for some F ∈ R. Substituting this expression in (5),

sf (s−1)pα+1

Dj(f)
pα+1

+ F pα+1

f spα+1

∈
〈
f spα+1

〉
⇒ sf (s−1)pα+1

Dj(f)
pα+1

∈
〈
f spα+1

〉

Observe that it is the same condition that (6), so we can deduce that Dj(f) ∈ 〈f〉.
�

Proposition 2.10 Let k be an UFD of characteristic p > 0 and R = k[x1, . . . , xd] the polynomial ring over k.
Let h be a polynomial of R. For all n ∈ N, we have:

IDerk(log h;n) = IDerk (log h
p, np) .

Proof.
⊆. Let D1 ∈ IDerk(log h;n) and D ∈ HSk(log h;n) an integral. If n < ∞, from Corollary 1.9, D is

np-integrable, so let D′ be a np-integral of D. If n = ∞, we put D′ = D. Observe that D′
1 = D1 so, if

D′ ∈ HSk (log h
p;np) then D1 ∈ IDerk(log h

p;np). We have to see that D′
i(h

p) ∈ 〈hp〉 for all i ≤ np.
By Lemma 1.6,

D′
i (h

p) =

{
0 if p 6 |i
D′

i/p(h)
p if p|i
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Then, we can focus on i = jp where 1 ≤ j ≤ n. Note that D′
j = Dj for all 1 ≤ j ≤ n, so

D′
i (h

p) = D′
j(h)

p = Dj(h)
p ∈ 〈hp〉.

Therefore, D′
i(h

p) ∈ 〈hp〉 for all i ≤ np and we have the inclusion.
⊇. Let D1 ∈ IDerk (log h

p;np) and D ∈ HSk (log h
p;np) a np-integral of D1. Let h = ha1

1 · · ·ham
m be the

factorization of h in irreducible factors, i.e, hi is irreducible and ai ≥ 1 for all i = 1, . . . ,m and hi 6= hj if i 6= j.
Then hai

i and h
aj

j are coprime whenever i 6= j, and therefore, ha1p
1 , . . . , hamp

m are coprime too. By Corollary 2.8,

D ∈ HSk(log h
p;np) =

⋂

i

HSk (log h
aip
i ;np) .

Hence, Dj(h
ai

i )p = Djp(h
aip
i ) ∈ 〈haip

i 〉 for j ≤ n. By Lemma 2.9, Dj(h
ai

i ) ∈ 〈hai

i 〉 for all i = 1, . . . ,m, and
j ≤ n. So, τnp,n(D) ∈ ∩HSk(log h

ai

i ;n) = HSk(log h;n) ⇒ D1 ∈ IDerk(log h;n).
�

Corollary 2.11 For all τ ≥ 0 and n ∈ N, IDerk(log h;n) = IDerk
(
log hpτ

;npτ
)
.

Proof. By induction on τ using Proposition 2.10. �

Proposition 2.12 Let k be a UFD of characteristic p > 0, R = k[x1, . . . , xd] the polynomial ring over k, h ∈ R
and τ ≥ 1. Then the set of the leaps of A := R/

〈
hpτ 〉

is

{
{npτ | n leap of R/〈h〉} if Derk (log h) = Derk(R)
{npτ | n leap of R/〈h〉} ∪ pτ if Derk (log h) 6= Derk(R)

Proof.
By Corollary 1.11, A has a leap on s > 1 if and only if the inclusion IDerk

(
log hpτ

; s− 1
)
) IDerk

(
log hpτ

; s
)

is proper. First of all, we will prove the next two equalities:

1. For s < pτ , IDerk
(
log hpτ

; s
)
= Derk(R).

⊆ is always true. Let D1 ∈ Derk(R) = IDerk(R) and D ∈ HSk(R) an integral. Since s < pτ , for all j ≤ s, pτ ∤ j.
By Lemma 1.6, Dj

(
hpτ )

= 0 ∈
〈
hpτ 〉

for all j ≤ s. Then, any derivation D1 has a hpτ

-logarithmic s-integral
and the other inclusion holds. So, A does not have a leap on s.

2. Let s be an integer such that npτ < s < (n + 1)pτ for some n ≥ 1. Then IDerk
(
log hpτ

; s
)

=

IDerk
(
log hpτ

;npτ
)
.

Since s > npτ , the inclusion ⊆ is true. Let D1 ∈ IDerk
(
log hpτ

;npτ
)
. By definition there exists an integral

D ∈ HSk

(
log hpτ

;npτ
)
. By Corollary 1.9, we can consider D′ ∈ HSk(R; s) an integral of D. Hence, for all j

such that npτ < j ≤ s < (n + 1)pτ , pτ 6 |j and, by Lemma 1.6, D′
j

(
hpτ )

= 0 ∈
〈
hpτ 〉

. Since D′
l = Dl for all

l ≤ npτ , D′ ∈ HSk

(
log hpτ

; s
)
. Therefore, D1 ∈ IDerk

(
log hpτ

; s
)
and A does not have a leap on s.

Thanks to these two equalities we know that the leaps are given on s = npτ for some n ≥ 1. Let us suppose
that s = pτ . By Corollary 2.11 and the point 1.,

Derk (R) = IDerk

(
log hpτ

; s− 1
)
⊇ IDerk

(
log hpτ

; pτ = s
)
= Derk (log h)

Hence, A has a leap on pτ if and only if Derk(log h) 6= Derk(R). Now, let us consider s = npτ for n ≥ 2. By
Corollary 2.11 and the point 2.

IDerk (log h;n− 1) = IDerk
(
log hpτ

; (n− 1)pτ
)
= IDerk

(
log hpτ

;npτ − 1
)

⊇ IDerk
(
log hpτ

;npτ
)
= IDerk (log h;n)

Then, A has a leap on s = npτ if and only if n is a leap on R/〈h〉 and we have proved the result.
�
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Proposition 2.13 Let k be a UFD of characteristic p > 0 and h = xn− yq ∈ k[x, y]. Suppose α := valp(n) ≥ 1
and β := valp(q) ≥ 1. We write τ = minα, β ≥ 1, s = n/pτ and t = q/pτ . Then,

IDerk(k[x, y]/〈h〉;np) =
{
δ| δ ∈ IDerk(log〈x

s − yt〉, n)
}

where the leaps occur in {npτ | n is a leap of k[x, y]/〈H〉} ∪ pτ .

Proof. Using Corollary 2.11 and Proposition 2.1.
�

3 Other examples

We are going to calculate the integrable derivations of the quotient of a polynomial ring over some non-binomial
equations. These examples have been taken from the article [Gr].

Example 1.

Let k be a domain of characteristic p > 0 and h = xp + txp+1 ∈ R = k[x] with t ∈ k. Let A = R/〈h〉. The
module of Derk(log h) is generated by (1 + tx)∂x. From Example (2.1.2) of [Na2], we have that (1 + tx)∂x is
h-logarithmically (p− 1)-integrable. So, let us consider E ∈ HSk(log h; p− 1) an integral of u(1 + tx)∂x where
u ∈ R. From Corollary 1.9, there exists D ∈ HSk(R) an integral of E. In order for D to be h-logarithmic,

Dp(x
p + txp+1) = D1(x)

p + t(xD1(x)
p +Dp(x)x

p) = up(1 + tx)p+1 + tDp(x)x
p ∈ 〈h〉

So, u ∈ 〈x〉 and IDerk(log h; p) = 〈x(1 + tx)∂x〉. Observe that this generator is ∞-integrable, for example
x ∈ A 7→ x+ x(1 + tx)µ ∈ A[|µ|] is an integral. In conclusion,

IDerk(A; i) =

{
〈(1 + tx)∂x〉 if i ≤ p− 1

〈x(1 + tx)∂x〉 if i ≥ p

Example 2.

Let k be a domain of characteristic p = 2 and h = x4 + y6 + y7 ∈ R = k[x, y]. Let A = R/〈h〉. In this case,
the module of h-logarithmic derivations is generated by ∂x and h∂y. Since h∂y is h-logarithmically∞-integrable,
we can focus on the h-logarithmically integrability of u∂x where u ∈ k[x, y]. Let ϕ : R → R[|µ|] a k-algebra
homomorphism:

ϕ : R −→ R[|µ|]
x 7−→ x+ uµ+ u2µ

2 + · · ·
y 7−→ y + v2µ

2 + · · ·

We want to see that there exist ui, vi ∈ R for i ≥ 2 such that ϕ is h-logarithmic. The coefficient of µi for i = 2, 3
in ϕ(h) is y6vi. In order for ϕ to be h-logarithmic, vi ∈ 〈h〉, so we can put vi = 0. In fact, we can put vi = 0
for all i such that 4 6 |i. Thanks to this, we can write:

ϕ(h) = (x+ uµ+ u2µ
2 + . . .)4 + (y + v4µ

4 + v8µ
8 . . .)6(1 + y + v4µ

4 + v8µ
8 . . .) (7)

The coefficient of µ4 in (7) is µ4 := u4 + y6v4 and it has to belong to 〈h〉. Hence, u ∈ 〈x, y2〉 and
IDerk(log h; 4) = 〈x∂x, y

2∂x, h∂y〉. It’s easy to proof the following lemma through the calculation of a term in
the equation (7):

Lemma 3.1 Suppose that uj = 0 for all j ≥ 2 and v4n ∈ 〈y2〉 for all n < i, then there exists v4i ∈ 〈y2〉 such
that the coefficient of µ4i in (7) belongs to 〈h〉.

Using this lemma repeatedly we deduce that y2∂x and xy∂x are h-logarithmically integrable since a possible
solution so that µ4 is h-logarithmic is v4 = y2 and v4 = (1 + y)y4 respectively. Therefore, we need to see the
h-logarithmically integrability of ux∂x where u ∈ k[x]. In this case, v4 ∈ (1 + y)u4 + 〈h〉. Calculating the
coefficient of µ8 in (7), we obtain µ8 := u4

2 + y6v8 + v24(1 + y)y4. In order for µ8 to be in 〈h〉, u ∈ 〈x〉. Hence,
v4 ∈ 〈x4, h〉. We deduce that x2∂x is h-logarithmically integrable by the following lemma:
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Lemma 3.2 Suppose that uj = 0 for all j ≥ 2 and v4n ∈ 〈x4〉 for all n < i, then there exists v4i ∈ 〈x4〉 such
that the coefficient of µ4i in (7) belongs to 〈h〉.

In conclusion,

IDerk(A; i) =






〈∂x〉 if 1 ≤ i < 4

〈x∂x, y2∂x〉 if 4 ≤ i < 8

〈x2∂x, xy∂x, y2∂x〉 if i ≥ 8

Example 3.

Let k be a domain of characteristic p = 3 and h = x3 + y5 + x2y2 ∈ R = k[x, y]. Let A = R/〈h〉. The
module of h-logarithmic derivation is generated by δ1 := x2∂x + y3∂y and δ2 := 2y2∂x + (x+ y2)∂y . These two
derivations are h-logarithmically integrable. To verify this claim, let us consider ϕ : R → R[|µ|] a homomorphism
of k-algebras

ϕ : R −→ R[|µ|]
x 7−→ x+ u1µ+ u2µ

2 + · · ·
y 7−→ y + v1µ+ v2µ

2 + · · ·

As in the previous example, we want to prove that there exist ui, vi ∈ R for i ≥ 2 such that ϕ(h) ∈ 〈h〉 where
u1 and v1 are determined by δ1 or δ2. By calculating a generic term of ϕ(h), we can show the following lemmas:

Lemma 3.3 Let u1 = x2 and v1 = y3. Suppose that vj = 0 for all j ≥ 2 and un ∈ 〈x2〉 for all n < i. Then,
there exists ui ∈ 〈x2〉 such that the coefficient of µi in ϕ(h) belongs to 〈h〉.

Lemma 3.4 Let u1 = 2y2 and v1 = x+ y2. Suppose un ∈ 〈xy, y3〉 and vn ∈ 〈y2〉 for all 2 ≤ n < i. Then, there
exist ui ∈ 〈xy, y3〉 and vi ∈ 〈y2〉 such that the coefficient of µi in ϕ(h) belongs to 〈h〉.

Using Lemma 3.3 for the integrability of δ1 and Lemma 3.4 for the integrability of δ2, we can deduce that

IDerk(A) = 〈δ1, δ2〉.
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