Integrable derivations in the sense of Hasse-Schmidt for some binomial plane curves

María de la Paz Tirado Hernández^{∗†}

Abstract

We describe the module of integrable derivations in the sense of Hasse-Schmidt of the quotient of the polinomial ring in two variables over an ideal generated by the equation $x^n - y^q$. Keywords: Hasse-Schmidt derivation, Integrability, Plane curve.

MSC 2010: 13N15, 14H50.

INTRODUCTION

Let k be a commutative ring and A a commutative k-algebra. A Hasse-Schmidt derivation of A over k of length $m \in \mathbb{N}$ or $m = \infty$ is a sequence $D = (D_i)_{i \geq 0}^m$ such that:

$$
D_0 = \text{Id}_A
$$
, $D_i(xy) = \sum_{a+b=n} D_a(x)D_b(y)$

for all $x, y \in A$. We denote by $\text{HS}_k(A; m)$ the set of Hasse-Schmidt derivations of A of length m. The component D_i of a Hasse-Schmidt derivation is a differential operator of order $\leq i$, in particular D_1 is a k-derivation.

The Hasse-Schmidt derivations of length m, also called higher derivation of order m (see [\[Ma\]](#page-12-0)), were introduced by H.Hasse and F.K. Schmidt ([\[H-S\]](#page-12-1)) and they have been used by several authors in different contexts (see [\[Na1\]](#page-12-2), [\[Se\]](#page-12-3) or [\[Tr\]](#page-12-4)). An important notion related with Hasse-Schmidt derivations is integrability. Let $m \in \mathbb{N}$ or $m = \infty$, then we say that $\delta \in \text{Der}_k(A)$ is m-integrable if there exists $D \in \text{HS}_k(A; m)$ such that $\delta = D_1$. The set of all m-integrable k-derivations is an A-submodule of $Der_k(A)$ for all m, which is denoted by $IDer_k(A;m)$.

If k has characteristic 0 or A is 0-smooth over k, then any k-derivation is ∞ -integrable ([\[Ma\]](#page-12-0)), that means that $Der_k(A) = IDer_k(A; \infty)$. If we consider k a ring of positive characteristic and A any commutative k-algebra, the modules $\text{IDer}_k(A;m)$ have better properties than $\text{Der}_k(A)$ (see [\[Mo\]](#page-12-5)). So exploring these modules seems interesting to better understand singularities in positive characteristic.

The aim of this paper is to describe the modules of m-integrable derivations, for $m > 1$ and $m = \infty$, of the quotient of the polynomial ring in two variables over an ideal generated by an equation of type $x^n - y^q$.

This paper is organized as follows: In section 1 we recall the definition of Hasse-Schmidt derivations and give some known properties that will be useful in later sections. In section 2 we focus on the integrability of derivations in the sense of Hasse-Schmidt in quotients of polynomial rings in two variables over the ideal generated by the equation $x^n - y^q$. Namely, we calculate the module of integrable k-derivations when k is a reduced ring of characteristic $p > 0$ and n or q are not multiple of p. In section 2.1, we assume that k is a unique factorization domain and we see the relationship between integrable derivations of the quotient of a polynomial ring over $\langle f \rangle$ and over $\langle f^p \rangle$ where f is a polynomial. Thanks to this relationship, we can describe the integrable derivations of $k[x, y]/\langle x^n - y^q \rangle$ when n and q are both multiples of p. In section 3, we calculate the module of integrable derivations in some examples taken from [\[Gr\]](#page-12-6).

Acknowledgment. The author thanks Professor Luis Narváez Macarro for their careful reading of this paper with numerous useful comments.

[∗]Partially supported by MTM2016-75027, P12-FQM-2696 and FEDER.

[†]Departamento de Álgebra e Instituto de Matemáticas (IMUS), Universidad de Sevilla, España.

1 Hasse-Schmidt derivations

Let k be any commutative ring and A a commutative k-algebra. In this section we will define Hasse-Schmidt derivations and we will give some of their properties, ending with the case where A is a polynomial ring. We denote $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$. For each integer $m \geq 1$, we will write $A[|\mu|]_m := A[|\mu|]/\langle \mu^{m+1} \rangle$ and $A[|\mu|]_{\infty} := A[|\mu|]$.

Definition 1.1 A Hasse-Schmidt derivation (over k) of A of length $m \geq 1$ (resp. of length ∞) is a sequence $D := (D_0, D_1, \ldots, D_m)$ (or resp. $D = (D_0, D_1, \ldots)$) of k-linear maps $D_i : A \rightarrow A$, satisfying the conditions:

$$
D_0 = \text{Id}_A
$$
, $D_i(xy) = \sum_{a+b=n} D_a(x)D_b(y)$

for all $x, y \in A$ and for all i. We write $\text{HS}_k(A; m)$ (resp. $\text{HS}_k(A)$) for the set of Hasse-Schmidt derivations (over k) of A of length m (resp. ∞).

Remark 1.2 ([\[Ma\]](#page-12-0); cf. [\[Na2\]](#page-12-7)) 1. Any Hasse-Schmidt derivation $D \in HS_k(A;m)$ is determined by the k-algebra homomorphism

$$
\varphi_D: A \to A[|\mu|]_m
$$

$$
a \mapsto \sum_{i\geq 0}^m D_i(a)\mu^i
$$

satisfying $\varphi_D(x) = x \mod \mu$. φ_D can be uniquely extended to a k-algebra automorphism $\widetilde{\varphi}_D : A[|\mu|]_m \to$ $A[|\mu|]_m$ with $\widetilde{\varphi}_D(\mu) = \mu$. So, $\text{HS}_k(A;m)$ has a canonical group structure. Namely, $D \circ D' = D'' \in$ $\overline{\text{HS}}_k(A;m)$ with $D''_n = \sum_{i+j=n} D_i \circ D'_j$ for $n \leq m$. Moreover, the component D_1 is a k-derivation. So, the map $(\text{Id}, D_1) \in \text{HS}_k(A; 1) \mapsto D_1 \in \text{Der}_k(A)$ is a group isomorphism.

- 2. For any $a \in A$ and any $D \in \text{HS}_k(A; m)$, the sequence $a \bullet D = (a^i D_i) \in \text{HS}_k(A; m)$.
- 3. For any $1 \le n \le m$ and any $D \in \text{HS}_k(A; m)$, we define the truncation map by $\tau_{mn}(D) = (\text{Id}, D_1, \ldots, D_n) \in$ $\text{HS}_k(A; n)$.

Definition 1.3 Let $D \in \text{HS}_k(A; m)$ where $m \in \overline{\mathbb{N}}$ and $n \geq m$. Let I be an ideal of A.

- We say that D is I-logarithmic if $D_i(I) \subseteq I$ for all i. The set of I-logarithmic Hasse-Schmidt derivations is denoted by $\text{HS}_k(\log I; m)$, $\text{HS}_k(\log I) := \text{HS}_k(\log I; \infty)$ and $\text{Der}_k(\log I) := \text{HS}_k(\log I; 1)$.
- We say that D is n-integrable if there exists $E \in HS_k(A,n)$ such that $\tau_{nm}(E) = D$. Any such E will be called a n-integral of D. If D is ∞ -integrable we say that D is integrable. If $m = 1$, we write $\text{IDer}_k(A; n)$ for the set of n-integrable derivations and $\text{IDer}_{k}(A) := \text{IDer}_{k}(A; \infty)$.
- We say that D is I-logarithmically n-integrable if there exists $E \in \text{HS}_k(\log I; n)$ such that E is a nintegral of D. We put $\text{IDer}_k(\log I; n)$ for the set of I-logarithmically n-integrable derivations when $m = 1$ and $\text{IDer}_k(\log I) := \text{IDer}_k(\log I, \infty)$.

Remark 1.4 IDer_k $(A; n)$ is an A-submodule of $\text{Der}_k(A)$ thanks to the group structure of $\text{HS}_k(A; n)$ and operation [2.](#page-1-0)

Definition 1.5 A has a leap on $s > 1$ if the inclusion IDer_k(A; s − 1) \supseteq IDer_k(A; s) is proper.

Lemma 1.6 Let k be a ring of characteristic $p > 0$ and $h \in A$. Consider $D \in HS_k(A; m)$ with $m \in \overline{\mathbb{N}}$ and $\tau \geq 0$. Then, for all $i \leq m$,

$$
D_i\left(h^{p^{\tau}}\right) = \begin{cases} 0 & \text{if } p^{\tau} \nmid i \\ D_{i/p^{\tau}}(h)^{p^{\tau}} & \text{if } p^{\tau}|i \end{cases}
$$

Proof.

Let $\varphi: A \to A[[\mu]]_m$ be the k-algebra homomorphism determined by D. Then,

$$
\sum_{i\geq 0}^{m} D_i\left(h^{p^{\tau}}\right)\mu^i = \varphi\left(h^{p^{\tau}}\right) = \varphi(h)^{p^{\tau}} = \sum_{j\geq 0}^{m} D_j(h)^{p^{\tau}}\mu^{jp^{\tau}} \mod \langle \mu^{m+1} \rangle
$$

and we obtain the result by equating the coefficients in the above equation.

Lemma 1.7 Consider $q \in A$ and $D \in \text{HS}_k(A; m)$. Suppose that $D_i(q) \in \langle q \rangle$ for all $0 \leq j \leq m$. Then, for all $r \geq 1$,

$$
D_m(g^r) \in rg^{r-1}D_m(g) + \langle g^r \rangle.
$$

Proof.

We will prove that $D_j(g^r) \in \langle g^r \rangle$ for all $j < m$ and $r \ge 1$. We proceed by induction on j. For $j = 0$ the result is clear since $D_0 = \text{Id}$. Let us assume that $D_a(g^r) \in \langle g^r \rangle$ for all $a < j$ and all r. We will show the result for j by induction on r. When $r = 1$, it's obvious from the hypothesis. Let us suppose that $D_j(g^{r-1}) \in \langle g^{r-1} \rangle$. From the definition of Hasse-Schmidt derivation,

$$
D_j(g^r) = D_j(g^{r-1}) g + \sum_{\substack{a+b=j\\a,b \neq 0}} D_a(g^{r-1}) D_b(g) + g^{r-1} D_j(g) \in \langle g^r \rangle.
$$

Now, we will prove the lemma by induction on $r \geq 1$. It is obvious for $r = 1$, let us suppose that $D_m(g^{r-1}) \in$ $(r-1)g^{r-2}D_m(g) + \langle g^{r-1} \rangle$. From the definition of Hasse-Schmidt derivation,

$$
D_m(g^r) = D_m(g^{r-1}) g + D_m(g)g^{r-1} + \sum_{\substack{a+b=m\\a,b \neq 0}} D_a(g^{r-1}) D_b(g) \in rg^{r-1}D_m(g) + \langle g^r \rangle
$$

and the lemma is proved. \square

1.1 Polynomial ring and integrability

Consider $R = k[x_1, \ldots, x_d]$ the polynomial ring over a commutative ring k. In this section, we recall, for the ease of the reader, some results related with the integrability of k-derivation in a polynomial ring.

Theorem 1.8 [\[Ma,](#page-12-0) Th. 27.1] Let $R = k[x_1, \ldots, x_d]$ the polynomial ring over k, then $\text{IDer}_k(R) = \text{Der}_k(R)$.

Corollary 1.9 Any Hasse-Schmidt derivation of R over k of length $m \geq 1$ is integrable.

Proof. This is consequence of Theorem [1.8](#page-2-0) and Proposition 2.1.5 of $[Na2]$.

Corollary 1.10 [\[Na2,](#page-12-7) Corollary. 2.1.10] The map $\Pi : \text{IDer}_k(\log I; m) \to \text{IDer}_k(R/I; m)$ defined by $\Pi(D) =$ \overline{D} where $\overline{D_i}(a+I) = D_i(a) + I$ is a surjective group homomorphism.

Corollary 1.11 Let $I \subset R$ be an ideal and $A = R/I$. Then, A has a leap on $s \ge 1$ if and only if the inclusion $\text{IDer}_k(\log I; s - 1) \supsetneq \text{IDer}_k(\log I; s)$ is proper.

Proposition 1.12 [\[Na2,](#page-12-7) Prop. 2.2.4] Let $f \in R$, $I = \langle f \rangle$, and $J^0 = \langle \partial_1(f), \ldots, \partial_d(f) \rangle$ the gradient ideal. If $\delta: R \to R$ is an I-logarithmic k-derivation with $\delta \in J^0 \operatorname{Der}_k(R)$, then δ admits an I-logarithmic integral $D \in \text{HS}_k(\log I)$ with $D_i(f) = 0$ for all $i > 1$. In particular, if $\delta(f) = 0$, the integral D can be taken with $\varphi_D(f) = f$.

$$
\overline{}
$$

2 Integrable derivations for $x^n - y^q$

Let $R = k[x, y]$ be the polynomial ring in two variables over a reduced ring k of characteristic $p > 0$ and $h = x^n - y^q \in R$. In this section we will study the modules of *n*-integrable derivations of $A = R/\langle h \rangle$ of length $n \in \overline{\mathbb{N}}$.

In this section we will follow the following notation: Let $\alpha := \text{val}_n(n)$ be the p-adic valuation of n and $s = n/p^{\alpha}$. We will denote by m the remainder of the division of q by p and $\beta := \text{val}_p(q-m)$. We write

$$
\gamma := \min\{i|ip^{\alpha} \ge q - 1\} = \lceil (q - 1)/p^{\alpha} \rceil.
$$

Proposition 2.1 Let k be a commutative reduced ring of characteristic $p > 0$ and $R = k[x, y]$ the polynomial ring over k. We set $A = R/\langle h \rangle$ where $h = x^n - y^q$. For $\delta \in \text{Der}_k(\log h)$, we denote $\overline{\delta} = \Pi(\delta)$ (Corollary [1.10\)](#page-2-1).

• If $n, q \neq 0$, then

$$
\text{IDer}_k(A) = \text{Der}_k(A) = \langle \delta_1, \delta_2 \rangle
$$

where $\delta_1 = qx\partial_x + ny\partial_y$ and $\delta_2 = qy^{q-1}\partial_x + nx^{n-1}\partial_y$.

• If $n = 0 \mod p$ and $q = 1$, then

$$
\operatorname{IDer}_k(A) = \operatorname{Der}_k(A) = \langle \overline{\partial_x} \rangle
$$

• If $\alpha, m \geq 1$ and $q \geq 2$, then

$$
\text{IDer}_k(A; i) = \begin{cases} \begin{cases} \frac{\langle \overline{\partial_x} \rangle}{\langle x \partial_x, y \gamma \partial_x \rangle} & 1 \leq i < p^{\alpha} \\ \frac{\langle x \partial_x, y \gamma \partial_x \rangle}{\langle x \partial_x, y \gamma + 1 \partial_x \rangle} & i \geq p^{\alpha + \beta} \quad \text{or } i = \infty \end{cases} & \text{if } s = 1, \ \alpha \leq \beta, \ m = 1 \\ \begin{cases} \frac{\langle \overline{\partial_x} \rangle}{\langle x \partial_x, y \gamma \partial_x \rangle} & 1 \leq i < p^{\alpha} \\ \frac{\langle \overline{\partial_x} \rangle}{\langle x \partial_x, y \gamma \partial_x \rangle} & i \geq p^{\alpha} \quad \text{or } i = \infty \end{cases} & \text{otherwise} \end{cases}
$$

Proof.

Let $\delta = u\partial_x + v\partial_y$ be a k-derivation of R. To prove this result it is enough to show which derivations are h-logarithmically *i*-integrable for $i \in \overline{\mathbb{N}}$ (Corollary [1.10\)](#page-2-1).

• $n, q \neq 0 \mod p$.

We have to find the pairs (u, v) such that $\delta(h) = nux^{n-1} - qvy^{q-1} \in \langle h \rangle$. It easy to see that $Der_k(\log h) = \langle \delta_1, \delta_2 \rangle$ where $\delta_1 = qx\partial_x + ny\partial_y$ and $\delta_2 = qy^{q-1}\partial_x + nx^{n-1}\partial_y$. Note that h is a quasi-homogenous polynomial with respect to the weights $w(x) = q$ and $w(y) = n$. By Theorem 1.2. of [\[Tr\]](#page-12-4), the Euler vector field, δ_1 , is h-logarithmically ∞ -integrable. On the other hand, the gradient of h is $J^0 = \langle x^{n-1}, y^{q-1} \rangle$, so $\delta_2 \in J^0 \text{Der}_k(R)$ and from Proposition [1.12](#page-2-2) we know that δ_2 is h-logarithmically ∞ -integrable too. So, IDer $_k(A) = \text{Der}_k(A) = \langle \overline{\delta_1}, \overline{\delta_2} \rangle$.

• $n = 0 \mod p$ and $q = 1$.

The condition for δ to be h-logarithmic is that $v \in \langle h \rangle$, so $\text{Der}_k(\log h) = \langle \partial_x, h\partial_y \rangle$. In this case $J^0 = \langle 1 \rangle$, hence any $\langle h \rangle$ -logarithmic derivation is integrable (Prop. [1.12\)](#page-2-2). Then, IDer $_k(A) = \text{Der}_k(A) = \langle \overline{\partial}_x \rangle$.

• $\alpha, m \geq 1$ and $q \geq 2$.

Note that $n = sp^{\alpha}$. In order for δ to be h-logarithmic, $v \in \langle h \rangle$ so $Der_k(log h) = \langle \partial_x, h \partial_y \rangle$. Since $h \partial_y$ is the zero derivation on A, we can focus on the h-logarithmically integrability of $\delta = u\partial_x$ with $u \in R$. Let $u_x \in k[x, y]$ and $u_y \in k[y]$ such that

$$
u = u_x(x, y)x + u_y(y) \Rightarrow \delta = u\partial_x = u_x x \partial_x + u_y \partial_x.
$$

Since h is a quasi-homogeneous polynomial with respect to the weights $w(x) = q$ and $w(y) = sp^{\alpha}$, the Euler vector field, $\chi = qx\partial_x$, is h-logarithmically integrable, and hence also $u_xx\partial_x$ are. Since IDer_k(log h;i) is a R -modules for all i ,

$$
\delta \in \text{IDer}_k(\log h; i) \Leftrightarrow u_y \partial_x \in \text{IDer}_k(\log h; i)
$$

Let us consider $\delta = u\partial_x$ where $u \in k[y]$. Let $\varphi : R \to R[|\mu|]$ be a k-algebra homomorphism:

$$
\varphi: R \longrightarrow R[|\mu|]
$$

\n
$$
x \longrightarrow x + u\mu + u_2\mu^2 + \cdots
$$

\n
$$
y \longrightarrow y + v_2\mu^2 + \cdots
$$

To show that δ is *i*-integrable it is enough to prove that there exist u_i, v_j for $2 \leq j \leq i$ such that $\varphi(h) \in \langle h \rangle$ mod μ^{i+1} , or, equivalently, the coefficients of μ^j in $\varphi(h)$ belong to $\langle h \rangle$ for all $j \leq i$. We will denote by μ_j the coefficient of μ^j in the equation

$$
\varphi(h) = \left(x^{p^{\alpha}} + u^{p^{\alpha}} \mu^{p^{\alpha}} + u^{p^{\alpha}} \mu^{2p^{\alpha}} + \cdots \right)^{s} - \left(y + v_{2} \mu^{2} + v_{3} \mu^{3} + \cdots \right)^{q}
$$
(1)

Suppose that there exists i such that $2 \leq i < p^{\alpha}$. Then, $\mu_2 = -qy^{q-1}v_2$ has to belong to $\langle h \rangle$. Hence, $v_2 \in \langle h \rangle$, so we can put $v_2 = 0$. Let us assume that $v_l = 0$ for all $2 \leq l \leq i \leq p^{\alpha}$. In this case, $\mu_i = -qy^{q-1}v_i$ and, as the same before, we can put $v_i = 0$. Then,

$$
\operatorname{Der}_k(A) = \operatorname{IDer}_k(A; i) = \langle \overline{\partial_x} \rangle \ \forall i < p^\alpha
$$

and we can write the equation (1) as:

$$
\left(x^{p^{\alpha}} + u^{p^{\alpha}} \mu^{p^{\alpha}} + u^{p^{\alpha}} \mu^{2p^{\alpha}} + \cdots \right)^{s} - \left(y + v_{p^{\alpha}} \mu^{p^{\alpha}} + v_{p^{\alpha}+1} \mu^{p^{\alpha}+1} + \cdots \right)^{q} \in \langle h \rangle
$$
 (2)

Now, we have to see that there are $u_{p^{\alpha}}, v_{p^{\alpha}} \in R$ such that

$$
\mu_{p^{\alpha}} = sx^{p^{\alpha}(s-1)}u^{p^{\alpha}} - qy^{q-1}v_{p^{\alpha}} \in \langle h \rangle
$$
\n(3)

Since $u \in k[y]$, the previous expression implies that $u^{p^{\alpha}} \in \langle y^{q-1} \rangle$. Therefore, if we write $u = \sum_{i \geq 0} u_i y^i$ with $u_i \in k$, then $u_i^{p^{\alpha}} = 0$ for all i such that $ip^{\alpha} < q - 1$, so $u_i = 0$ because k is reduced. Hence, we can write $u = w(y)y^{\gamma}$ where $\gamma = \min\{i|ip^{\alpha} \ge q-1\}$ and $w(y) \in k[y]$. Substituting the expression of u on [\(3\)](#page-4-1), we can deduce that

$$
sx^{p^{\alpha}(s-1)}w^{p^{\alpha}}y^{\gamma p^{\alpha}-(q-1)}-qv_{p^{\alpha}} \in \langle h \rangle \Rightarrow v_{p^{\alpha}} \in (s/q)x^{p^{\alpha}(s-1)}w^{p^{\alpha}}y^{\gamma p^{\alpha}-(q-1)}+\langle h \rangle
$$
 (4)

Therefore, A has a leap on p^{α} and

$$
\text{IDer}_k(A; p^{\alpha}) = \langle \overline{x \partial_x}, \overline{y^{\gamma} \partial_x} \rangle \text{ where } \gamma = \min\{i \mid ip^{\alpha} \ge q - 1\}.
$$

Let us write $q = tp^{\beta} + m$. Note that the only case where $\gamma p^{\alpha} = q - 1$ is $q = tp^{\beta} + 1$ and $\alpha \leq \beta$. Let us focus on this case when $s = 1$.

• Case $q = tp^{\beta} + 1$, $\alpha \leq \beta$ and $s = 1$. Observe that $t \neq 0$ because $q \geq 2$. It is easy to see that $\gamma = tp^{\alpha-\beta}$. We will study the integrability of $w(y)y^{\gamma}\partial_x$ in this particular case.

Substituting the values of q and s in the equation (2) and (4) we obtain:

$$
\left(x^{p^{\alpha}}+u^{p^{\alpha}}\mu^{p^{\alpha}}+u_2^{p^{\alpha}}\mu^{2p^{\alpha}}+\cdots\right)-\left(y^{p^{\beta}}+v_{p^{\alpha}}^{p^{\beta}}\mu^{p^{\alpha+\beta}}+v_{p^{\alpha}+1}^{p^{\beta}}\mu^{(p^{\alpha}+1)p^{\beta}}+\cdots\right)^{t}\left(y+v_{p^{\alpha}}\mu^{p^{\alpha}}+\cdots\right)\in\langle h\rangle
$$
 and

and

$$
v_{p^{\alpha}} = cw^{p^{\alpha}} + Fh
$$

for $c = 1/q$ and some $F \in k[x, y]$. Let us consider i such that $p^{\alpha} < i < p^{\alpha+\beta}$. If $i = jp^{\alpha}$ for some $j \geq 2$, then $\mu_i = u_j^{p^{\alpha}} - y^{tp^{\beta}}v_i$. Otherwise, $\mu_i = -y^{tp^{\beta}}v_i$. So, $wy^{\gamma}\partial_x$ is h-logarithmically *i*-integrable for all $i < p^{\alpha+\beta}$ (it's enough to put $u_j = v_i = 0$ so that $\mu_i \in \langle h \rangle$). Now,

$$
\mu_{p^{\alpha+\beta}}=u_{p^\beta}^{p^\alpha}-ty^{(t-1)p^\beta+1}v_{p^\alpha}^{p^\beta}-y^{tp^\beta}v_{p^{\alpha+\beta}}
$$

has to belong to $\langle h \rangle$. So, substituting the value of $v_{p^{\alpha}}$, we have that

$$
u_{p^\beta}^{p^\alpha} - c t w^{p^{\alpha+\beta}} y^{(t-1)p^\beta+1} - y^{tp^\beta} v_{p^{\alpha+\beta}} = G\left(x^{p^\alpha} - y^{tp^\beta+1}\right)
$$

for some $G \in k[x, y]$. The coefficient of y^j with $j = (t - 1)p^{\beta} + 1$ in this equality is $t c w_0^{p^{\alpha}} = 0$ where w_0 is the independent term of w. Since R is reduced, $w_0 = 0$. Hence, $y^{\gamma} \partial_x$ is not $p^{\alpha+\beta}$ -integrable. However, if $w = w'y$ with $w' \in k[y]$, the previous equation is

$$
u_{p^\beta}^{p^\alpha} - c t w'^{p^{\alpha+\beta}} y^{q+p^\beta(p^\alpha-1)} - y^{tp^\beta} v_{p^{\alpha+\beta}} = G\left(x^{p^\alpha} - y^{tp^\beta+1}\right)
$$

Then, there exists a solution, for instance $u_{p^{\beta}} = 0$ and $v_{p^{\alpha+\beta}} = -ctw'^{p^{\alpha+\beta}}y^{p^{\beta}(p^{\alpha}-1)+1}$. In conclusion, in this case A has a leap in $p^{\alpha+\beta}$ and

$$
\text{IDer}_k\left(A; p^{\alpha+\beta}\right) = \left\langle \overline{x\partial_x}, \overline{y^{\gamma+1}\partial_x} \right\rangle
$$

Until now we saw that, for all $q \geq 2$

$$
\text{IDer}_k\left(A; p^{\alpha}\right) = \left\langle \overline{x\partial_x}, \overline{y^{\gamma}\partial_x} \right\rangle \text{ where } \gamma = \min\{i \mid ip^{\alpha} \ge q - 1\}
$$

and moreover, when $q = tp^{\beta} + 1, 1 \leq \alpha \leq \beta$ and $s = 1, y^{\gamma} \partial_x$ is not h-logarithmically integrable but

$$
\text{IDer}_k\left(A; p^{\alpha+\beta}\right) = \left\langle \overline{x\partial_x}, \overline{y^{\gamma+1}\partial_x} \right\rangle
$$

Let us rewrite $\gamma := \gamma + 1$ in the latter case. We will see that $y^{\gamma} \partial_x$ is integrable on A for all $q \ge 2$. Consider

$$
\varphi: A \longrightarrow A[|\mu|] \nx \longmapsto x + y^{\gamma}\mu \ny \longmapsto y + v_1\mu^{p^{\alpha}} + v_2\mu^{2p^{\alpha}} + \cdots
$$

where

$$
v_i = C_i x^{p^{\alpha}(s-\sigma)} y^{i\gamma p^{\alpha} - (\tau+1)q+1} \text{ for } i = \tau s + \sigma \text{ with } \tau \ge 0 \text{ and } \sigma = 1, \dots, s,
$$

$$
C_i = \frac{1}{q} \left[\binom{s}{i} - \sum_{j \in I_i} D_j \right] \text{ where } \binom{s}{i} = 0 \text{ if } i > s,
$$

$$
I_i = \left\{ j = (j_0, j_1, \dots, j_{i-1}) \mid j_k \ge 0 \text{ } \forall k = 0, \dots, i-1, |j| = q, \sum_{k=1}^{i-1} k j_k = i \right\}
$$

and, for all $j = (j_0, j_1, \ldots, j_l)$ with $l \geq 1$,

$$
D_j = \binom{q}{j} C_1^{j_1} \cdots C_l^{j_l} \text{ with } \binom{q}{j} = \frac{q!}{j_0! \cdots j_l!}
$$

.

We have to prove that φ is well defined. First we see that $i\gamma p^{\alpha} - (\tau + 1)q + 1 \ge 0$, i.e., $(\tau s + \sigma)\gamma p^{\alpha} - \tau q \ge q - 1$.

• When $\gamma p^{\alpha} > q - 1$, then $\gamma p^{\alpha} \geq q$, but q is not multiple of p, so $\gamma p^{\alpha} \geq q + 1$ and therefore

$$
(\tau s + \sigma)\gamma p^{\alpha} - \tau q \geq (\tau s + \sigma)(q + 1) - \tau q = (\tau (s - 1) + \sigma)q + \tau s + \sigma \geq q - 1
$$

because $s - 1 \geq 0$ and $\sigma \geq 1$.

• Let us consider $\gamma p^{\alpha} = q - 1$. As we have seen before, the previous equality only hold if $q = tp^{\beta} + 1$ and $\alpha \leq \beta$. If $s = 1$, then we have considered $\gamma + 1$, so we are in the first point. Therefore, we have just considered $s \geq 2$. In this case, we have to prove that $(\tau s + \sigma)\gamma p^{\alpha} - \tau q = (\tau s + \sigma)(q - 1) - \tau q \geq q - 1$. Then

$$
(\tau s + \sigma)(q - 1) - \tau q \ge (2\tau + \sigma)(q - 1) - \tau q = (\tau + \sigma)q - (2\tau + \sigma)
$$

So,

$$
(\tau + \sigma)q - (2\tau + \sigma) \ge q - 1 \Leftrightarrow (\tau + \sigma - 1)q \ge 2\tau + \sigma - 1
$$

and this is true because $q \ge 2$ and $\tau + \sigma - 1 \ge 0$. Note that if $\tau + \sigma - 1 = 0$ then $\tau = 0$ and $\sigma = 1$, so $2\tau + \sigma - 1 = 0$ too.

Now, we have to show that $\varphi(h) = 0$ in $A[|\mu|]$. The equation is:

$$
\varphi(h) = \left(x^{p^{\alpha}} + y^{\gamma p^{\alpha}} \mu^{p^{\alpha}}\right)^{s} - \left(y + v_1 \mu^{p^{\alpha}} + v_2 \mu^{2p^{\alpha}} + \cdots\right)^{q}
$$

Since all degrees of the monomial which appeared in this equation are multiple of p^{α} , let us denote μ_i to the coefficient of degree ip^{α} . Then

$$
\mu_i = \binom{s}{i} x^{p^{\alpha}(s-i)} y^{i\gamma p^{\alpha}} - \tilde{\mu}_i
$$

where $\tilde{\mu}_i$ is the coefficient of $\mu^{ip^{\alpha}}$ from $(y + v_1\mu^{p^{\alpha}} + v_2\mu^{2p^{\alpha}} + \cdots)^q$. This coefficient can be found on

$$
\left(y + v_1 \mu^{p^{\alpha}} + \dots + v_i \mu^{ip^{\alpha}}\right)^q = \sum_{|j|=q} \binom{q}{j} y^{j_0} v_1^{j_1} \cdots v_i^{j_i} \mu^{p^{\alpha}(j_1 + \dots + j_i)}
$$

We just have to consider all j such that $j_1 + \ldots + i j_i = i$. Observe that there exists only one j holding this equation such that $j_i \neq 0$, This j is $(q - 1, 0, \ldots, 0, 1)$ where 1 is in the position i. So, we can identify the set of all these j with $I_i \cup (q-1,0,\ldots,0,1)$. Let us calculate a term of $\tilde{\mu}_i$. Fixed j, we have

$$
{q \choose j} y^{j_0} v_1^{j_1} \cdots v_i^{j_i} = {q \choose j} C_1^{j_1} \cdots C_i^{j_i} x^{ap^{\alpha}} y^b = D_j x^{ap^{\alpha}} y^b
$$

where

$$
a = \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma}(s - \sigma) \geq 0 \quad \text{and} \quad b = j_0 + \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} \left(\gamma p^{\alpha}(\tau s + \sigma) - (\tau + 1)q + 1\right) \geq 0
$$

We are going to study these exponents.

$$
a = s \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} - \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} \sigma = s(q - j_0) - \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} \sigma
$$

On the other side, we have

$$
\sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma}(\tau s + \sigma) = s \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} + \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} = ls + r
$$

where $i = ls + r$ (remember: $l \geq 0$ and $1 \leq r \leq s$). Then, if we denote $T = \sum$ $\sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} \tau$ and we substitute on a, we have

$$
a = s(q - j_0) - ((l - T)s + r) = s(q - j_0 - l + T) - r \ge 0
$$

If $q - j_0 - l + T < 1$, then $a < 0$ so $q - j_0 - l + T \ge 1$ and we can write

$$
a = (q - j_0 - l + T - 1)s + s - r
$$

Observe that $s - r \geq 0$ because $1 \leq r \leq s$. Now,

$$
b = j_0 + \gamma p^{\alpha} \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma}(\tau s + \sigma) - q \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} - q \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma} + \sum_{1 \leq \tau s + \sigma \leq i} j_{\tau s + \sigma}
$$

= $\gamma p^{\alpha} i - qT - q(q - j_0) + (q - j_0) + j_0 = i\gamma p^{\alpha} - q(T + q - j_0 - 1)$

So,

$$
\binom{q}{j} y^{j_0} v_1^{j_1} \cdots v_i^{j_i} = D_j x^{(q-j_0-l+T-1)sp^{\alpha} + (s-r)p^{\alpha}} y^{i\gamma p^{\alpha} - q(T+q-j_0-1)}
$$

Since $x^{sp^{\alpha}} = y^q$ in A,

$$
\binom{q}{j} y^{j_0} v_1^{j_1} \cdots v_i^{j_i} = D_j x^{(s-r)p^{\alpha}} y^{i\gamma p^{\alpha} + q(q-j_0 - l + T - 1) - q(T + q - j_0 - 1)} = D_j x^{(s-r)p^{\alpha}} y^{i\gamma p^{\alpha} - lq}
$$

 \overline{a}

Hence,

$$
\widetilde{\mu}_{i} = \sum_{\substack{|j|=q \ j_1 + \ldots + i j_i = i}} D_j x^{p^{\alpha}(s-r)} y^{i \gamma p^{\alpha} - lq} = \left(\sum_{j \in I_i} D_j + D_{(q-1,0,\ldots,0,1)} \right) x^{p^{\alpha}(s-r)} y^{i \gamma p^{\alpha} - lq}
$$
\n
$$
= \left(\sum_{j \in I_i} D_j + q C_i \right) x^{p^{\alpha}(s-r)} y^{i \gamma p^{\alpha} - lq} = \left(\sum_{j \in I_i} D_j + q(1/q) \left[\binom{s}{i} - \sum_{j \in I_i} D_j \right] \right) x^{p^{\alpha}(s-r)} y^{i \gamma p^{\alpha} - lq}
$$
\n
$$
= \left(\binom{s}{i} x^{p^{\alpha}(s-r)} y^{i \gamma p^{\alpha} - lq} \right)
$$

So,

$$
\mu_i = \binom{s}{i} x^{p^{\alpha}(s-i)} y^{i\gamma p^{\alpha}} - \binom{s}{i} x^{p^{\alpha}(s-r)} y^{i\gamma p^{\alpha}-lq}
$$

If $i > s$, then $\binom{s}{i} = 0$, and hence $\mu_i = 0$.

If $i \leq s$, then $i = 0 \cdot s + i$, i.e., $l = 0$ and $r = i$, then

$$
\mu_i = \binom{s}{i} x^{p^{\alpha}(s-i)} y^{i\gamma p^{\alpha}} - \binom{s}{i} x^{p^{\alpha}(s-i)} y^{i\gamma p^{\alpha}} = 0
$$

so, φ is well defined and the proposition is proved.

 \Box

Examples 2.2 Let us consider k a reduced ring of characteristic $p = 3$ and $h = x^3 - y^4 \in k[x, y]$, then $\gamma = 1$ so, according with Proposition [2.1,](#page-3-0)

$$
\text{IDer}_k(A; i) = \begin{cases} \frac{\langle \overline{\partial}_x \rangle}{\langle x \partial_x, y \partial_x \rangle} & 1 \leq i < 3\\ \frac{\langle x \partial_x, y \partial_x \rangle}{\langle x \partial_x, y^2 \partial_x \rangle} & i \geq 9 \end{cases}
$$

Now, if we consider $h = x^3 - y^5$, then $\gamma = 2$ and

$$
\text{IDer}_k(A; i) = \begin{cases} \n\langle \overline{\partial}_x \rangle & 1 \le i < 3 \\ \n\langle x \partial_x, y^2 \partial_x \rangle & i \ge 3 \n\end{cases}
$$

Remark 2.3 Note that if k is not reduced, Proposition [2.1](#page-3-0) is not true. For example, if $k = \mathbb{F}_3[t]/\langle t^3 \rangle$ and $h = x^3 - y^5$, then $\overline{t \partial_x} \in \mathrm{IDer}_k(A)$ with the integral

$$
\begin{array}{rcl}\nA & \rightarrow & A[|\mu|] \\
x & \mapsto & x + t\mu \\
y & \mapsto & y\n\end{array}
$$

Corollary 2.4 Let k be a commutative reduced ring of characteristic $p > 0$ and $A = k[x, y]/\langle h \rangle$ where $h =$ $x^n - y^q$ such that $\alpha, m \ge 1$ and $q \ge 2$. We denote $B_i := \text{Ann}_A (\text{IDer}_k(A; i - 1) / \text{IDer}_k(A; i))$ for $i > 1$. Then,

$$
B_i = \begin{cases} \langle x, y^\gamma \rangle & \text{if } i = p^\alpha \\ \langle y \rangle & \text{if } i = p^{\alpha + \beta}, \ s = 1, \ \alpha \le \beta \ \text{and } m = 1 \end{cases}
$$

Moreover, $B_i \supseteq J^0 = \langle y^{q-1} \rangle$ where J^0 is the gradient ideal of h defined in Proposition [1.12.](#page-2-2)

Proof.

Let us start with $i = p^{\alpha}$. From Proposition [2.1,](#page-3-0) we can deduce that

$$
\text{IDer}_{k}(A; p^{\alpha} - 1) / \text{IDer}_{k}(A; p^{\alpha}) = \langle \partial_{x} \rangle / \langle x \partial_{x}, y^{\gamma} \partial_{x} \rangle
$$

where $\partial_x \in \text{Der}_k(A)$. By definition, $a \in B_i$ if $a\partial_x = 0 \mod \langle x\partial_x, y^{\gamma}\partial_x \rangle$, i.e, if there exist $F, G \in A$ such that $a\partial_x = Fx\partial_x + Gy^{\gamma}\partial_x$. Applying this derivation to x, we have that $a \in \langle x, y^{\gamma} \rangle$.

Now, when $\alpha \leq \beta$, $s = m = 1$ and $i = p^{\alpha + \beta}$, from Proposition [2.1,](#page-3-0)

$$
\text{IDer}_k\left(A; p^{\alpha+\beta}-1\right)/\text{IDer}_k\left(A; p^{\alpha+\beta}\right) = \langle x\partial_x, y^{\gamma}\partial_x \rangle / \langle x\partial_x, y^{\gamma+1}\partial_x \rangle = \langle y^{\gamma}\partial_x \rangle / \langle y^{\gamma+1}\partial_x \rangle
$$

In this case, $a \in B_{p^{\alpha}+\beta}$ if and only if $ay^{\gamma}\partial_x \in \langle y^{\gamma+1}\partial_x \rangle$, i.e, if $(a - Fy)y^{\gamma}\partial_x = 0$ for some $F \in A$. This implies that $a \in \langle y \rangle$ and we have proved the corollary.

2.1 I ^{*p*}-logarithmic derivations

In this section, we want to calculate the m-integrable derivations of $A = k[x, y]/\langle h \rangle$ where k is a unique factorization domain (UFD) of characteristic $p > 0$ and $h = xⁿ - y^q$ with $n, q = 0 \mod p$. We start with some general results about the relationship between $\langle f \rangle$ -logarithmic and $\langle f^p \rangle$ -logarithmic derivations. In this section, we denote $R = k[x_1, \ldots, x_d]$.

Proposition 2.5 If $f, g \in R = k[x_1, \ldots, x_d]$ are coprime, then, for all $n \in \overline{\mathbb{N}}$, we have:

$$
HS_k(\log fg; n) = HS_k(\log f; n) \cap HS_k(\log g; n).
$$

Proof.

- \supseteq . Let $D \in \text{HS}_k(\log f; n) \cap \text{HS}_k(\log g; n)$. By definition, $D_i(f) \in \langle f \rangle$ and $D_i(g) \in \langle g \rangle$ for all $i \leq n$. Then $D_i(fg) = \sum_{a+b=i} D_a(f)D_b(g) \in \langle fg \rangle$, so $D \in \text{HS}_k(\log fg; n)$.
- \subseteq . Let $D \in \text{HS}_k(\log fg; n)$. This implies that $D_i(fg) \in \langle fg \rangle$ for all $i \leq n$. We will prove the result by induction on *i*. When $i = 1$, then $D_1(fg) = D_1(f)g + D_1(g)f \in \langle fg \rangle \subseteq \langle f \rangle, \langle g \rangle$. So, $D_1(f)g \in \langle f \rangle$. Since g and f are coprime, $D_1(f) \in \langle f \rangle$. For g is analogous.

Now let us assume that $D_i(f) \in \langle f \rangle$ and $D_i(g) \in \langle g \rangle$ for all $i < n$. By definition,

$$
D_n(fg) = D_n(f)g + D_n(g)f + \sum_{\substack{a+b=n\\a,b\neq 0}} D_a(f)D_b(g) \in \langle fg \rangle \Rightarrow D_n(f)g + D_n(g)f \in \langle fg \rangle
$$

and we can proceed like case $i = 1$.

Corollary 2.6 If $f, g \in R$ are coprime, then $\text{IDer}_k(\log fg; n) \subseteq \text{IDer}_k(\log f; n) \cap \text{IDer}_k(\log g; n)$ for all $n \in \overline{\mathbb{N}}$.

Proof. If $\delta \in \text{IDer}_k(\log fg; n)$ then, there exists $D \in \text{HS}_k(\log fg; n)$ a n-integral of δ . By Proposition [2.5,](#page-8-0) $D \in \text{HS}_k(\log f; n) \cap \text{HS}_k(\log g; n)$ so, $\delta \in \text{IDer}_k(\log f; n) \cap \text{IDer}_k(\log g; n)$.

 \Box

Remark 2.7 In general, equality in Proposition 2.5 does not hold. For example: Let $k = \mathbb{F}_2$ and $f = y^2$ and $g = x^2 - y$ two polynomial of $k[x, y]$. Then $\partial_x \in \text{IDer}_k(\log f; 4) \cap \text{IDer}_k(\log g; 4)$. However $\partial_x \notin \text{IDer}_k(\log fg; 4)$.

Corollary 2.8 Let $f_1, \ldots, f_m \in R$. If f_i, f_j are coprime whenever $i \neq j$, then, for all $\overline{\mathbb{N}}$ we have:

$$
HS_k(\log f_1 \cdots f_m; n) = \bigcap_i HS_k(\log f_i; n) \quad and \quad IDer_k(\log f_1 \cdots f_m; n) \subseteq \bigcap_i IDer_k(\log f_i; n)
$$

Proof. The result is obtained thanks to Proposition [2.5](#page-8-0) and Corollary [2.6](#page-8-1) by induction on m.

 \Box

Lemma 2.9 Let f be an irreducible polynomial, $a \ge 1$ and $n \in \overline{\mathbb{N}}$. Consider $D \in \text{HS}_k(R; n)$. Suppose that $D_i(f^a)^p \in \langle f^{ap} \rangle$ for all $i \leq n$. Then, $D \in \text{HS}_k(\log f^a; n)$.

Proof.

We write $a = sp^{\alpha}$ where $\alpha = val_n(a) \geq 0$ and $s \geq 1$. By Lemma [1.6,](#page-1-1)

$$
D_i\left(f^{sp^{\alpha}}\right) = \begin{cases} 0 & \text{if } p^{\alpha} \nmid i \\ D_{i/p^{\alpha}}(f^s)^{p^{\alpha}} & \text{if } p^{\alpha}|i \end{cases}
$$

Hence, we can focus on the case $n \geq p^{\alpha}$ and $i = jp^{\alpha} \leq n$. It's enough to show that $D_j(f) \in \langle f \rangle$ because, if this is true, we have that $D_j(f^s) \in \langle f^s \rangle$ by Lemma [1.7,](#page-2-3) and $D_i(f^{sp^{\alpha}}) = D_j(f^s)^{p^{\alpha}} \in \langle f^{sp^{\alpha}} \rangle$ so we would have the result.

Since $i = jp^{\alpha} \leq n$,

$$
D_j \left(f^s\right)^{p^{\alpha+1}} = D_{jp^{\alpha}} \left(f^{sp^{\alpha}}\right)^p \in \left\langle f^{sp^{\alpha+1}}\right\rangle \tag{5}
$$

When $j = 1, D_1(f^s) = sf^{s-1}D_1(f)$. Substituting in the previous expression, we have that

$$
D_1(f^s)^{p^{\alpha+1}} = sf^{(s-1)p^{\alpha+1}} D_1(f)^{p^{\alpha+1}} \in \left\langle f^{sp^{\alpha+1}} \right\rangle \tag{6}
$$

Since R is UFD and $f, s \neq 0$, $D_1(f)^{p^{\alpha+1}} \in \left\langle f^{p^{\alpha+1}} \right\rangle \subseteq \left\langle f \right\rangle$ and hence $D_1(f) \in \left\langle f \right\rangle$.

Let us assume that $D_l(f) \in \langle f \rangle$ for all $l < j$ with $jp^{\alpha} \leq n$. Thanks to the hypothesis, we can use Lemma [1.7,](#page-2-3) and we have

$$
D_j(f^s) = sf^{s-1}D_j(f) + Ff^s
$$

for some $F \in R$. Substituting this expression in [\(5\)](#page-9-0),

$$
sf^{(s-1)p^{\alpha+1}}D_j(f)^{p^{\alpha+1}} + F^{p^{\alpha+1}}f^{sp^{\alpha+1}} \in \left\langle f^{sp^{\alpha+1}} \right\rangle \Rightarrow sf^{(s-1)p^{\alpha+1}}D_j(f)^{p^{\alpha+1}} \in \left\langle f^{sp^{\alpha+1}} \right\rangle
$$

Observe that it is the same condition that [\(6\)](#page-9-1), so we can deduce that $D_j(f) \in \langle f \rangle$.

Proposition 2.10 Let k be an UFD of characteristic $p > 0$ and $R = k[x_1, \ldots, x_d]$ the polynomial ring over k. Let h be a polynomial of R. For all $n \in \overline{\mathbb{N}}$, we have:

$$
\mathrm{IDer}_k(\log h; n) = \mathrm{IDer}_k(\log h^p, np).
$$

Proof.

 \subseteq . Let $D_1 \in \text{IDer}_k(\log h; n)$ and $D \in \text{HS}_k(\log h; n)$ an integral. If $n < \infty$, from Corollary [1.9,](#page-2-4) D is np-integrable, so let D' be a np-integral of D. If $n = \infty$, we put $D' = D$. Observe that $D'_1 = D_1$ so, if $D' \in \text{HS}_k(\log h^p; np)$ then $D_1 \in \text{IDer}_k(\log h^p; np)$. We have to see that $D'_i(h^p) \in \langle h^p \rangle$ for all $i \leq np$.

By Lemma [1.6,](#page-1-1)

$$
D_i'(h^p) = \begin{cases} 0 & \text{if } p \nmid i \\ D_{i/p}'(h)^p & \text{if } p \mid i \end{cases}
$$

Then, we can focus on $i = jp$ where $1 \leq j \leq n$. Note that $D'_j = D_j$ for all $1 \leq j \leq n$, so

$$
D_i'(h^p) = D_j'(h)^p = D_j(h)^p \in \langle h^p \rangle.
$$

Therefore, $D_i'(h^p) \in \langle h^p \rangle$ for all $i \leq np$ and we have the inclusion.

 \supseteq . Let $D_1 \in \text{IDer}_k(\log h^p; np)$ and $D \in \text{HS}_k(\log h^p; np)$ a np-integral of D_1 . Let $h = h_1^{a_1} \cdots h_m^{a_m}$ be the factorization of h in irreducible factors, i.e, h_i is irreducible and $a_i \geq 1$ for all $i = 1, \ldots, m$ and $h_i \neq h_j$ if $i \neq j$. Then $h_i^{a_i}$ and $h_j^{a_j}$ are coprime whenever $i \neq j$, and therefore, $h_1^{a_1p}, \ldots, h_m^{a_mp}$ are coprime too. By Corollary [2.8,](#page-9-2)

$$
D \in \text{HS}_k(\log h^p; np) = \bigcap_i \text{HS}_k(\log h_i^{a_i p}; np).
$$

Hence, $D_j(h_i^{a_i})^p = D_{jp}(h_i^{a_ip}) \in \langle h_i^{a_ip} \rangle$ for $j \leq n$. By Lemma [2.9,](#page-9-3) $D_j(h_i^{a_i}) \in \langle h_i^{a_i} \rangle$ for all $i = 1, \ldots, m$, and $j \leq n$. So, $\tau_{np,n}(D) \in \bigcap \text{HS}_k(\log h_i^n; n) = \text{HS}_k(\log h; n) \Rightarrow D_1 \in \text{IDer}_k(\log h; n).$

Corollary 2.11 For all $\tau \geq 0$ and $n \in \overline{\mathbb{N}}$, $\text{IDer}_k(\log h; n) = \text{IDer}_k(\log h^{p^{\tau}}; np^{\tau})$.

Proof. By induction on τ using Proposition [2.10.](#page-9-4)

Proposition 2.12 Let k be a UFD of characteristic $p > 0$, $R = k[x_1, \ldots, x_d]$ the polynomial ring over k, $h \in R$ and $\tau \geq 1$. Then the set of the leaps of $A := R / \langle h^{p^{\tau}} \rangle$ is

$$
\begin{cases} \n\{np^{\tau} \mid n \text{ leap of } R/\langle h \rangle\} & \text{if } \text{Der}_k (\log h) = \text{Der}_k(R) \\
\{np^{\tau} \mid n \text{ leap of } R/\langle h \rangle\} \cup p^{\tau} & \text{if } \text{Der}_k (\log h) \neq \text{Der}_k(R)\n\end{cases}
$$

Proof.

By Corollary [1.11,](#page-2-5) A has a leap on $s > 1$ if and only if the inclusion IDer_k $(\log h^{p^{\tau}}; s - 1) \supsetneq \text{IDer}_k(\log h^{p^{\tau}}; s)$ is proper. First of all, we will prove the next two equalities:

1. For $s < p^{\tau}$, IDer_k (log $h^{p^{\tau}}$; s) = Der_k(R).

 \subseteq is always true. Let $D_1 \in \text{Der}_k(R) = \text{IDer}_k(R)$ and $D \in \text{HS}_k(R)$ an integral. Since $s < p^{\tau}$, for all $j \leq s, p^{\tau} \nmid j$. By Lemma [1.6,](#page-1-1) $D_j(h^{p^{\tau}}) = 0 \in \langle h^{p^{\tau}} \rangle$ for all $j \leq s$. Then, any derivation D_1 has a $h^{p^{\tau}}$ -logarithmic s-integral and the other inclusion holds. So, A does not have a leap on s.

2. Let s be an integer such that $np^{\tau} < s < (n+1)p^{\tau}$ for some $n \geq 1$. Then IDer_k $(\log h^{p^{\tau}}; s)$ = IDer_k $(\log h^{p^{\tau}}; np^{\tau}).$

Since $s > np^{\tau}$, the inclusion \subseteq is true. Let $D_1 \in \mathrm{IDer}_k$ (log $h^{p^{\tau}}; np^{\tau}$). By definition there exists an integral $D \in \text{HS}_k$ (log $h^{p^{\tau}}; np^{\tau}$). By Corollary [1.9,](#page-2-4) we can consider $D' \in \text{HS}_k(R; s)$ an integral of D. Hence, for all j such that $np^{\tau} < j \leq s < (n+1)p^{\tau}$, $p^{\tau} \not|j$ and, by Lemma [1.6,](#page-1-1) $D'_{j}(h^{p^{\tau}}) = 0 \in \langle h^{p^{\tau}} \rangle$. Since $D'_{l} = D_{l}$ for all $l \leq np^{\tau}, D' \in \text{HS}_k \left(\log h^{p^{\tau}}; s \right)$. Therefore, $D_1 \in \text{IDer}_k \left(\log h^{p^{\tau}}; s \right)$ and A does not have a leap on s.

Thanks to these two equalities we know that the leaps are given on $s = np^{\tau}$ for some $n \ge 1$. Let us suppose that $s = p^{\tau}$. By Corollary [2.11](#page-10-0) and the point 1.,

$$
\operatorname{Der}_{k}(R) = \operatorname{IDer}_{k}\left(\log h^{p^{\tau}}; s-1\right) \supseteq \operatorname{IDer}_{k}\left(\log h^{p^{\tau}}; p^{\tau} = s\right) = \operatorname{Der}_{k}\left(\log h\right)
$$

Hence, A has a leap on p^{τ} if and only if $Der_k(\log h) \neq Der_k(R)$. Now, let us consider $s = np^{\tau}$ for $n \geq 2$. By Corollary [2.11](#page-10-0) and the point 2.

$$
\text{IDer}_k\left(\log h; n-1\right) = \text{IDer}_k\left(\log h^{p^{\tau}}; (n-1)p^{\tau}\right) = \text{IDer}_k\left(\log h^{p^{\tau}}; np^{\tau} - 1\right)
$$
\n
$$
\supseteq \text{IDer}_k\left(\log h^{p^{\tau}}; np^{\tau}\right) = \text{IDer}_k\left(\log h; n\right)
$$

Then, A has a leap on $s = np^{\tau}$ if and only if n is a leap on $R/\langle h \rangle$ and we have proved the result.

Proposition 2.13 Let k be a UFD of characteristic $p > 0$ and $h = x^n - y^q \in k[x, y]$. Suppose $\alpha := \text{val}_p(n) \ge 1$ and $\beta := \text{val}_p(q) \ge 1$. We write $\tau = \min \alpha, \beta \ge 1$, $s = n/p^{\tau}$ and $t = q/p^{\tau}$. Then,

$$
\text{IDer}_k(k[x, y]/\langle h \rangle; np) = \{ \overline{\delta} | \delta \in \text{IDer}_k(\log \langle x^s - y^t \rangle, n) \}
$$

where the leaps occur in $\{np^{\tau} \mid n \text{ is a leap of } k[x,y]/\langle H \rangle\} \cup p^{\tau}$.

Proof. Using Corollary [2.11](#page-10-0) and Proposition [2.1.](#page-3-0) □

3 Other examples

We are going to calculate the integrable derivations of the quotient of a polynomial ring over some non-binomial equations. These examples have been taken from the article [\[Gr\]](#page-12-6).

Example 1.

Let k be a domain of characteristic $p > 0$ and $h = x^p + tx^{p+1} \in R = k[x]$ with $t \in k$. Let $A = R/\langle h \rangle$. The module of $\text{Der}_k(\log h)$ is generated by $(1 + tx)\partial_x$. From Example (2.1.2) of [\[Na2\]](#page-12-7), we have that $(1 + tx)\partial_x$ is h-logarithmically $(p-1)$ -integrable. So, let us consider $E \in HS_k(\log h; p-1)$ an integral of $u(1+tx)\partial_x$ where $u \in R$. From Corollary [1.9,](#page-2-4) there exists $D \in HS_k(R)$ an integral of E. In order for D to be h-logarithmic,

$$
D_p(x^p + tx^{p+1}) = D_1(x)^p + t(xD_1(x)^p + D_p(x)x^p) = u^p(1+tx)^{p+1} + tD_p(x)x^p \in \langle h \rangle
$$

So, $u \in \langle x \rangle$ and $\text{IDer}_k(\log h; p) = \langle x(1 + tx)\partial_x \rangle$. Observe that this generator is ∞ -integrable, for example $x \in A \mapsto x + x(1 + tx)\mu \in A[[\mu]]$ is an integral. In conclusion,

$$
\text{IDer}_k(A; i) = \begin{cases} \frac{\langle \overline{(1+tx)\partial_x} \rangle}{\langle x(1+tx)\partial_x \rangle} & \text{if } i \leq p-1 \\ \end{cases}
$$

Example 2.

Let k be a domain of characteristic $p = 2$ and $h = x^4 + y^6 + y^7 \in R = k[x, y]$. Let $A = R/\langle h \rangle$. In this case, the module of h-logarithmic derivations is generated by ∂_x and $h\partial_y$. Since $h\partial_y$ is h-logarithmically ∞ -integrable, we can focus on the h-logarithmically integrability of $u\partial_x$ where $u \in k[x, y]$. Let $\varphi : R \to R[|\mu|]$ a k-algebra homomorphism:

$$
\varphi: R \longrightarrow R[|\mu|] \nx \longmapsto x + u\mu + u_2\mu^2 + \cdots \ny \longmapsto y + v_2\mu^2 + \cdots
$$

We want to see that there exist $u_i, v_i \in R$ for $i \geq 2$ such that φ is h-logarithmic. The coefficient of μ^i for $i = 2, 3$ in $\varphi(h)$ is y^6v_i . In order for φ to be h-logarithmic, $v_i \in \langle h \rangle$, so we can put $v_i = 0$. In fact, we can put $v_i = 0$ for all i such that 4 $\hat{\mu}$. Thanks to this, we can write:

$$
\varphi(h) = (x + u\mu + u_2\mu^2 + \ldots)^4 + (y + v_4\mu^4 + v_8\mu^8 \ldots)^6(1 + y + v_4\mu^4 + v_8\mu^8 \ldots)
$$
\n(7)

The coefficient of μ^4 in [\(7\)](#page-11-0) is $\mu_4 := u^4 + y^6 v_4$ and it has to belong to $\langle h \rangle$. Hence, $u \in \langle x, y^2 \rangle$ and IDer_k(log h; 4) = $\langle x\partial_x, y^2\partial_x, h\partial_y\rangle$. It's easy to proof the following lemma through the calculation of a term in the equation [\(7\)](#page-11-0):

Lemma 3.1 Suppose that $u_j = 0$ for all $j \geq 2$ and $v_{4n} \in \langle y^2 \rangle$ for all $n < i$, then there exists $v_{4i} \in \langle y^2 \rangle$ such that the coefficient of μ^{4i} in [\(7\)](#page-11-0) belongs to $\langle h \rangle$.

Using this lemma repeatedly we deduce that $y^2\partial_x$ and $xy\partial_x$ are h-logarithmically integrable since a possible solution so that μ_4 is h-logarithmic is $v_4 = y^2$ and $v_4 = (1 + y)y^4$ respectively. Therefore, we need to see the h-logarithmically integrability of $ux\partial_x$ where $u \in k[x]$. In this case, $v_4 \in (1+y)u^4 + \langle h \rangle$. Calculating the coefficient of μ^8 in [\(7\)](#page-11-0), we obtain $\mu_8 := u_2^4 + y^6 v_8 + v_4^2 (1 + y) y^4$. In order for μ_8 to be in $\langle h \rangle$, $u \in \langle x \rangle$. Hence, $v_4 \in \langle x^4, h \rangle$. We deduce that $x^2 \partial_x$ is h-logarithmically integrable by the following lemma:

In conclusion,

$$
\text{IDer}_k(A; i) = \begin{cases} \frac{\langle \overline{\partial_x} \rangle}{\langle x \partial_x, y^2 \partial_x \rangle} & \text{if } 1 \le i < 4\\ \frac{\langle x \partial_x, y^2 \partial_x \rangle}{\langle x^2 \partial_x, xy \partial_x, y^2 \partial_x \rangle} & \text{if } i \ge 8 \end{cases}
$$

Example 3.

Let k be a domain of characteristic $p = 3$ and $h = x^3 + y^5 + x^2y^2 \in R = k[x, y]$. Let $A = R/\langle h \rangle$. The module of h-logarithmic derivation is generated by $\delta_1 := x^2 \partial_x + y^3 \partial_y$ and $\delta_2 := 2y^2 \partial_x + (x + y^2) \partial_y$. These two derivations are h-logarithmically integrable. To verify this claim, let us consider $\varphi: R \to R[|\mu|]$ a homomorphism of k-algebras

$$
\varphi: R \longrightarrow R[[\mu]]\nx \longmapsto x + u_1\mu + u_2\mu^2 + \cdots\ny \longmapsto y + v_1\mu + v_2\mu^2 + \cdots
$$

As in the previous example, we want to prove that there exist $u_i, v_i \in R$ for $i \geq 2$ such that $\varphi(h) \in \langle h \rangle$ where u_1 and v_1 are determined by δ_1 or δ_2 . By calculating a generic term of $\varphi(h)$, we can show the following lemmas:

Lemma 3.3 Let $u_1 = x^2$ and $v_1 = y^3$. Suppose that $v_j = 0$ for all $j \ge 2$ and $u_n \in \langle x^2 \rangle$ for all $n < i$. Then, there exists $u_i \in \langle x^2 \rangle$ such that the coefficient of μ^i in $\varphi(h)$ belongs to $\langle h \rangle$.

Lemma 3.4 Let $u_1 = 2y^2$ and $v_1 = x + y^2$. Suppose $u_n \in \langle xy, y^3 \rangle$ and $v_n \in \langle y^2 \rangle$ for all $2 \le n < i$. Then, there exist $u_i \in \langle xy, y^3 \rangle$ and $v_i \in \langle y^2 \rangle$ such that the coefficient of μ^i in $\varphi(h)$ belongs to $\langle h \rangle$.

Using Lemma [3.3](#page-12-8) for the integrability of δ_1 and Lemma [3.4](#page-12-9) for the integrability of δ_2 , we can deduce that

$$
\text{IDer}_k(A) = \langle \overline{\delta_1}, \overline{\delta_2} \rangle.
$$

References

- [Gr] G.M. Greuel, Singularities in Positive Characteristic, arXiv:1711.03453v1 [math.AG] (2017).
- [H-S] H. Hasse, F.K. Schmidt, Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenk¨orper einer Unbestimmten, J. Reine Angew. Math. 177 (1937), 223-239.
- [Ma] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math., vol. 8, Cambridge Univ. Press, Cambridge, (1986).
- [Mo] S. Molinelli, Sul modulo delle derivazioni integrabili in caratteristica positiva, Ann. Mat. Pura Appl. 121 (1979), 25-38.
- [Na1] L. Narváez Macarro, Hasse-Schmidt derivations, divided powers and differential smoothness, Ann. Inst. Fourier (Grenoble) 59 (7) (2009), 2979-3014.
- [Na2] L. Narváez Macarro, On the modules of m-integrable derivations in non-zero characteristic, Adv. Math, 229 (2012), 2712-2740.
- [Se] A. Seidenberg, Derivations and integral closure, Pacif of Math. Vol 16, No 1, (1966).
- [Tr] W. Traves, Tight closure and differential simplicity, Jour. of Alg. 228 (2000) 457-476.