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Abstract

We describe the module of integrable derivations in the sense of Hasse-Schmidt of the quotient of the
polinomial ring in two variables over an ideal generated by the equation z" — y?.
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INTRODUCTION

Let k be a commutative ring and A a commutative k-algebra. A Hasse-Schmidt derivation of A over k of
length m € N or m = oo is a sequence D = (D;)%, such that:

Do =1da, Dji(zy)= > Da(x)Ds(y)
a+b=n

for all z,y € A. We denote by HS;(A;m) the set of Hasse-Schmidt derivations of A of length m. The component
D; of a Hasse-Schmidt derivation is a differential operator of order < i, in particular D; is a k-derivation.

The Hasse-Schmidt derivations of length m, also called higher derivation of order m (see [Ma]), were intro-
duced by H.Hasse and F.K. Schmidt ([I1-5]) and they have been used by several authors in different contexts
(see [Nal], [Se] or [Tr]). An important notion related with Hasse-Schmidt derivations is integrability. Let m € N
or m = 0o, then we say that § € Dery(A) is m-integrable if there exists D € HS(A;m) such that § = D;. The
set of all m-integrable k-derivations is an A-submodule of Dery(A) for all m, which is denoted by IDery(A;m).

If k& has characteristic 0 or A is 0-smooth over k, then any k-derivation is co-integrable ([Ma]), that means
that Dery (A) = IDery (4; 00). If we consider k a ring of positive characteristic and A any commutative k-algebra,
the modules IDery (A;m) have better properties than Derg(A) (see [Mo]). So exploring these modules seems
interesting to better understand singularities in positive characteristic.

The aim of this paper is to describe the modules of m-integrable derivations, for m > 1 and m = oo, of the
quotient of the polynomial ring in two variables over an ideal generated by an equation of type ™ — y4.

This paper is organized as follows: In section 1 we recall the definition of Hasse-Schmidt derivations and
give some known properties that will be useful in later sections. In section 2 we focus on the integrability
of derivations in the sense of Hasse-Schmidt in quotients of polynomial rings in two variables over the ideal
generated by the equation ™ — y?. Namely, we calculate the module of integrable k-derivations when k is a
reduced ring of characteristic p > 0 and n or ¢ are not multiple of p. In section 2.1, we assume that k is a unique
factorization domain and we see the relationship between integrable derivations of the quotient of a polynomial
ring over (f) and over (f?) where f is a polynomial. Thanks to this relationship, we can describe the integrable
derivations of k[x,y]/{z™ — y?) when n and ¢ are both multiples of p. In section 3, we calculate the module of
integrable derivations in some examples taken from [Gr].
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1 Hasse-Schmidt derivations

Let k£ be any commutative ring and A a commutative k-algebra. In this section we will define Hasse-Schmidt
derivations and we will give some of their properties, ending with the case where A is a polynomial ring. We
denote N = NU {oc}. For each integer m > 1, we will write A[|p|]m := A[lp|]/{(n™F) and A[|p|]eo := A[|pu]]-

Definition 1.1 A Hasse-Schmidt derivation (over k) of A of length m > 1 (resp. of length o0) is a sequence
D :=(Dy,D,...,Dy,) (or resp. D = (Dgy,D1,...)) of k-linear maps D; : A — A, satisfying the conditions:

Do =1da, Di(zy) = Z Da(x) Dy (y)
a+b=n

for all x,y € A and for all i. We write HSk(A;m) (resp. HSk(A)) for the set of Hasse-Schmidt derivations
(over k) of A of length m (resp. o).

Remark 1.2 ([Ma]; cf. [Na2]) 1. Any Hasse-Schmidt derivation D € HSi(A;m) is determined by the
k-algebra homomorphism
ep: A = Allullm

a — ZDi(a)ui
i>0

satisfying op(x) = x mod p. wp can be uniquely extended to a k-algebra automorphism op : Al|p|]m —
Allpl]m with @p(p) = p. So, HSE(A;m) has a canonical group structure. Namely, D o D' = D" €
HSk(A;m) with Dy = 2, ;_, Dio D} for n < m. Moreover, the component D1 is a k-derivation. So,
the map (Id, D1) € HSg(A;1) — Dy € Dery(A) is a group isomorphism.

2. For any a € A and any D € HSy(A;m), the sequence a® D = (a'D;) € HSy(A;m).

3. Foranyl <n <m and any D € HSy(A;m), we define the truncation map by Tpn (D) = (Id, Dy, ..., D,) €
HSk (A, 7’L)

Definition 1.3 Let D € HSy(A;m) where m € N and n > m. Let I be an ideal of A.

o We say that D is I-logarithmic if D;(I) C I for alli. The set of I-logarithmic Hasse-Schmidt derivations
is denoted by HSy(log I;m), HSi(log I) := HSy(log I'; 00) and Dery(log I) :== HSi(log I;1).

o We say that D is n-integrable if there exists E € HSk(A,n) such that 7,,(E) = D. Any such E will be
called a n-integral of D. If D is oo-integrable we say that D is integrable. If m = 1, we write IDery(A;n)
for the set of n-integrable derivations and IDery(A) := IDery(A; c0).

o We say that D is I-logarithmically n-integrable if there exists E € HSy(logI;n) such that E is a n-
integral of D. We put IDery(log I;n) for the set of I-logarithmically n-integrable derivations when m = 1
and IDerg (log I) := IDerg(log I, 00).

Remark 1.4 IDeri(A;n) is an A-submodule of Dery(A) thanks to the group structure of HSy(A;n) and oper-
ation 2.

Definition 1.5 A has a leap on s > 1 if the inclusion IDerg(A; s — 1) 2 IDery(A; s) is proper.
Lemma 1.6 Let k be a ring of characteristic p > 0 and h € A. Consider D € HSy(A;m) with m € N and

7> 0. Then, for alli <m,
- 0 if pT fi
D’L (hp ) = { T . T
Dijpr ()P if  pTi




Proof.
Let ¢ : A — A[|p|]m be the k-algebra homomorphism determined by D. Then,

> D (hpT) ©= (h”T) = ()" => D)’ W mod (u")
i>0 7>0

and we obtain the result by equating the coefficients in the above equation. 0

Lemma 1.7 Consider g € A and D € HSi(A;m). Suppose that D;(g) € (g) for all 0 < j < m. Then, for all
r =1,
Di(9") € 79" Din(g) +{g")-

Proof.

We will prove that D;(g") € (¢") for all j < m and r > 1. We proceed by induction on j. For j = 0 the
result is clear since Dy = Id. Let us assume that D,(g") € (g") for all a < j and all . We will show the result
for j by induction on 7. When r = 1, it’s obvious from the hypothesis. Let us suppose that D;(g" ') € (¢"~1).
From the definition of Hasse-Schmidt derivation,

Di(g")=D; (9" ) g+ > Dalg"") Dylg)+9 ' Djlg) € (g").
a+b=j
a,b#0

Now, we will prove the lemma by induction on 7 > 1. It is obvious for 7 = 1, let us suppose that D,,(¢" 1) €
(r —1)g" 2Dy, (g) + (¢"!). From the definition of Hasse-Schmidt derivation,

Dy (9") = D (") g+ Dim(9)g" "+ Y Dalg"") Dilg) € 74" 'Dinlg) + (9")
ai,z’i#g‘
and the lemma is proved. O

1.1 Polynomial ring and integrability

Consider R = k[x1,...,24] the polynomial ring over a commutative ring k. In this section, we recall, for the
ease of the reader, some results related with the integrability of k-derivation in a polynomial ring.

Theorem 1.8 [Ma, Th. 27.1] Let R = k[x1,...,2q4] the polynomial ring over k, then IDer,(R) = Dery(R).

Corollary 1.9 Any Hasse-Schmidt derivation of R over k of length m > 1 is integrable.

Proof. This is consequence of Theorem 1.8 and Proposition 2.1.5 of [Na2]. O

Corollary 1.10 [Na2, Corollary. 2.1.10] The map 11 : IDery(log I;m) — IDery(R/I;m) defined by I1(D) =
D where D;(a+I) = D;(a) + I is a surjective group homomorphism.

Corollary 1.11 Let I C R be an ideal and A = R/I. Then, A has a leap on s > 1 if and only if the inclusion
IDery(log I;s — 1) 2 IDery (log I; s) is proper.

Proposition 1.12 [Na2, Prop. 2.2.4] Let f € R, I = (f), and J° = (01(f),...,0a(f)) the gradient ideal.
Ifo: R— Risan I- logarzthmzc k-derivation with § € J°Dery(R), then & admits an I-logarithmic integral
D € HSi(logI) with D;(f) = 0 for all i > 1. In particular, if 6(f) = 0, the integral D can be taken with

ep(f)=f.




2 Integrable derivations for x" — y¢

Let R = k[z,y] be the polynomial ring in two variables over a reduced ring k of characteristic p > 0 and
h =" —y? € R. In this section we will study the modules of n-integrable derivations of A = R/(h) of length
n € N.

In this section we will follow the following notation: Let o := val,(n) be the p-adic valuation of n and
s =n/p*. We will denote by m the remainder of the division of ¢ by p and § := val,(¢ — m). We write

7y := min{i|ip® > ¢ —1} = [(¢ — 1)/p*].

Proposition 2.1 Let k be a commutative reduced ring of characteristic p > 0 and R = klz,y] the polynomial
ring over k. We set A= R/(h) where h = 2™ — y?. For ¢ € Dery(logh), we denote 6 =TII(5) (Corollary 1.10).

e Ifn,qg#0, then o
IDerg(A) = Derg(A) = (01, 02)

where 61 = qdy + nyd, and &y = qy?~ 10, + na"19,.

e Ifn=0 modp and g =1, then o
IDery(A) = Dery(A) = (0:)

o Ifa,m>1 and q > 2, then

@) 1<i<p
(205, y70,)  p* <i<p*tP ifs=1a<B m=1
IDery(A;1) = <x8z,y7+1am> i>p*tP ori=oc0

<x_> 1<i<p®
<z3x,y78z> 1> pY ori=o0

otherwise

Proof.
Let 6 = ud, + vd, be a k-derivation of R. To prove this result it is enough to show which derivations are
h-logarithmically i-integrable for i € N (Corollary 1.10).

e n,q#0 mod p.

We have to find the pairs (u, v) such that 6(h) = nuaz™ "t —quy?=1 € (h). It easy to see that Dery(log h) = (d1, 2)
where §; = qzd,+nyd, and 52 = gy~ 10, +nx""19,. Note that h is a quasi-homogenous polynomial with respect
to the weights w(x) = ¢ and w(y) = n. By Theorem 1.2. of [T1], the Euler vector field, 01, is h-logarithmically
oo-integrable. On the other hand, the gradient of h is J° = (2"~ y971) so d € JDerg(R) and from
Proposition 1.12 we know that &, is h-logarithmically co-integrable too. So, IDery(A) = Dery,(A) = (01, da).

e n=0 modp and q=1.

The condition for § to be h-logarithmic is that v € (h), so Der(log h) = (0, hdy). In this case J = (1), hence
any (h)-logarithmic derivation is integrable (Prop. 1.12). Then, IDery(A) = Dery(A) = (0y).

e aym>1andq>2.

Note that n = sp®. In order for ¢ to be h-logarithmic, v € (h) so Dery(logh) = (05, h0,). Since hd, is the zero
derivation on A, we can focus on the h-logarithmically integrability of § = ud, with uw € R. Let u, € k[z,y]
and wu, € k[y] such that

U= Uy (2, y)T + uy(y) = 6 = udy = upxOy + UyOy.

Since h is a quasi-homogeneous polynomial with respect to the weights w(z) = ¢ and w(y) = sp®, the Euler
vector field, x = qz0,, is h-logarithmically integrable, and hence also u,x0, are. Since IDery(logh;i) is a
R-modules for all ¢,

0 € IDery(log h; i) < uy, 0, € IDery(log h; 1)




Let us consider § = ud, where u € k[y]. Let ¢ : R — RJ[|u|] be a k-algebra homomorphism:

¢: R — R[ul]
r z+uu+u2u2+~~~
y — Yy  + U?MQJF"'

To show that § is i-integrable it is enough to prove that there exist uj,v; for 2 < j < ¢ such that p(h) € (h)
mod 1 or, equivalently, the coefficients of y/ in ¢(h) belong to (h) for all j < i. We will denote by p; the
coefficient of 1/ in the equation

o(h) = (m”a P P b ) — (y +vop® + vz + )" (1)

Suppose that there exists i such that 2 < i < p®. Then, us = —qy? 've has to belong to (h). Hence,
vg € (h), so we can put vy = 0. Let us assume that v; = 0 for all 2 <[ < i < p®. In this case, u; = —qy? tv;
and, as the same before, we can put v; = 0. Then,

Dery,(A) = IDery(4; i) = (9,) Vi < p*
and we can write the equation (1) as:
o o o @ oo S o oy q q
(zp P ol P +) _ (ervpaMp +ope st +) e (h) 2)
Now, we have to see that there are upe,vpe € R such that

ppe = P CTDYPY gyt ly 0 € (h) (3)

Since u € k[y], the previous expression implies that u?” € (y9~1). Therefore, if we write u = Y ,o,u;y* with

u; € k, then ufa = 0 for all ¢ such that ip® < ¢ — 1, so u; = 0 because k is reduced. Hence, we can write
u = w(y)y” where v = min{i|ip® > ¢ — 1} and w(y) € kly]. Substituting the expression of u on (3), we can
deduce that

saP” (S0P P —la=1) _ qupe € (h) = vpa € (S/q)zp“(sfl)wp“y'vp“*(qfl) + (h) (4)
Therefore, A has a leap on p® and
IDery,(A; p®) = (20,47 0,) where v = min{i| ip® > ¢ — 1}.

Let us write ¢ = tp® +m. Note that the only case where yp® = ¢ — 1 is ¢ = tp® + 1 and a < . Let us focus
on this case when s = 1.

o Case q=1tp® +1, a < 8 and s = 1. Observe that t # 0 because ¢ > 2. It is easy to see that v = tp® 5.
We will study the integrability of w(y)y70, in this particular case.
Substituting the values of ¢ and s in the equation (2) and (4) we obtain:

o o o o 5o B o 8 o t o
(xp Y A +) B (ypa T R e +) (Y + vpesa?” +---) € (h)
and
Vpo = cw? + Fh
for ¢ = 1/q and some F € k[z,y]. Let us consider i such that p® < i < p®*t8. If i = jp® for some
J =2, then p; = uff — yt?"v;. Otherwise, y; = —y? v;. So, wy?d, is h-logarithmically i-integrable for
all i < p®™# (it’s enough to put u; = v; = 0 so that y; € (h)). Now,

B s
_ t—1)pP+1,p tp
Hpets = Ups — ty( ) Upa — Y Upa+s




has to belong to (h). So, substituting the value of vy, we have that
by —ctw?” I gty = G (zpa - ytpml)

for some G € k[x,y]. The coefficient of 3/ with j = (¢ — 1)p® + 1 in this equality is tcwga = 0 where wy is
the independent term of w. Since R is reduced, wy = 0. Hence, 470, is not p®+P-integrable. However, if
w = w'y with w’ € k[y], the previous equation is

p* petP 4P (p—1 tp? — “ tpP +1
upg—ctwp y P (" =1) g tp Vpats =G (aF" —y'P

. . . atB B pe_ . .
Then, there exists a solution, for instance uys = 0 and vje+s = —ctw  yP (" =1+1 In conclusion, in
this case A has a leap in p®*# and

IDery, (A;p*1F) = <E, yrt 10z>

Until now we saw that, for all ¢ > 2
IDery, (A;p®) = <E, y'Y—8I> where v = min{i| ip® > ¢ — 1}
and moreover, when ¢ = tp® + 1,1 < a < f and s = 1, y? 0, is not h-logarithmically integrable but
IDery, (A;p*1F) = <w—5z m>
Let us rewrite 7 := v + 1 in the latter case. We will see that y70, is integrable on A for all ¢ > 2. Consider

p: A — Allp]
r — x+y'u
y — y+uop? Fogu®t 4

where _
v; = CiaP" =)y =T+ for i — o4 o with 7 > 0and o =1,..., s,
1 s S e
Ci=—-11. —ZDj where | . | =0if ¢ > s,
g\ JEL !

i—1
k=1

and, for all j = (jo,j1,...,1) with I > 1,

. . |
J J Jol--- 1!

We have to prove that ¢ is well defined. First we see that iyp® — (7+1)g+1 >0, i.e., (ts+0)yp* —7¢ > qg— 1.
e When vp® > g — 1, then yp® > ¢, but ¢ is not multiple of p, so yp® > ¢ + 1 and therefore
(ts+o)yw*—1¢>(ts+o)(g+1)—1qg=(1(s—1)4+o)g+T7s+0>q—1

because s —1 >0 and o > 1.




e Let us consider yp® = g — 1. As we have seen before, the previous equality only hold if ¢ = tp® + 1 and
a < 8. If s =1, then we have considered v + 1, so we are in the first point. Therefore, we have just
considered s > 2. In this case, we have to prove that (78 + o)yp* —17q = (1s+o0)(¢—1) — 7179 > q— 1.
Then

(rs+o)lg—1)—1q= (27 +0)(¢—1)—T¢=(T+0)g— (27 +0)

So,
(t+0)g—214+0)>q-1e(T+0—-1)g>214+0—1

and this is true because ¢ > 2 and 7+ 0 —1 > 0. Note that if 7T+ 0 —1 =0 then 7 =0 and ¢ = 1, so
21 +o0 —1 =0 too.

Now, we have to show that p(h) =0 in A[|y|]. The equation is:

e o a\ s a @ q
cp(h):(xp +y7P up) —(y—i—mup + vop®? +)

Since all degrees of the monomial which appeared in this equation are multiple of p®, let us denote u; to the
coefficient of degree ip®. Then
pi = <S> ey ie”
i

where [I; is the coefficient of ;" from (y + v P 4 v 4 )q. This coefficient can be found on
o o\ o o
<y+vlﬂp + ...+vi‘u1p ) — Z <§>y‘70v‘{1 ...vg"up (]1+---+U‘L)
lil=q

We just have to consider all j such that j; + ...+ ij; = i. Observe that there exists only one j holding this
equation such that j; # 0, This j is (¢ — 1,0,...,0,1) where 1 is in the position i. So, we can identify the set
of all these j with I; U (¢ —1,0,...,0,1). Let us calculate a term of ;. Fixed j, we have

(;],)yjov{1 . vfl = <j> oo C’Z-jizapayb = Djxapayb

where

a= > jrete(s—0)=0 and b=jo+ Y Jrape (W (rs+0) = (r+1)g+1)>0
1<7s4+0<1i 1<7s+o0<i

We are going to study these exponents.
a =S5 Z j‘rs+a - Z st-l-UU = S(q - ]0) - Z j‘rs-i—aa
1<7s4+0<i 1<7s+0<1i 1<7s4+0<i
On the other side, we have
Z jTS-'rO'(TS + U) =S Z st—i—a'T + Z st-i—aU =ls+r
1<7s4+0<i 1<7s4+0<i 1<7rs4+0<1i
where i = ls 4+ r (remember: [ > 0 and 1 <7 < s). Then, if we denote T'= > j;s1,7 and we substitute

1<7s54+0<i
on a, we have

a=s(qg—jo) = ((I=T)s+r)=s(g—jo—l+T)=r=0
Ifg—jo—1l+T <1,thena<0soq—jo—I1+T >1and we can write

a=(q—Jo—l+T—-1Ds+s—r




Observe that s — r > 0 because 1 < r < s. Now,

b= jo+p° Z Jrsto (TS =+ U) —4q Z Jrs+oT — 4 Z Jrs+o + Z Jrs+o

1<7s+o0<1i 1<7s4+0<1i 1<7s4+0<1i 1<7s+o0<i

= p*i—qT —q(q — jo) + (¢ — jo) + jo = ivp* —q(T +q—jo— 1)
So,

<q> yjov{i ol = Djx(q*jo*lJrT*l)SP“Jr(sfr)p“yivp“*q(TJrquO*l)
y K2

. (3 .
Since z°7" = y? in A,

<q> yloudt .yl = Djx(sfr)p y P tala—do -+ T-1)=q(T+a—jo—1) — Djx(sfr)p y Pl

J
Hence,
[ = Z Dja?” (st =l Z D+ Dy 10, 01 " (57r) g ivp” ~la
o lil=a JEL;
Jit..tigi=t
_ Z Dj +qC; xpa(s—r)yi'yp“—lq — Z Dj + q(l/q) (j) _ Z Dj xpa(s—r)yivpa—lq
JEL; JE€L; JEL;
- (° gP” (=) et —la
i
So

i = <‘j) P“(S*i)yiw" _ (‘j) zp“(sfr)yiw“*lq

If i > s, then (f) =0, and hence p; = 0.
Ifi <s,theni=0-s-+1,i.e., ! =0and r =1, then

i = (8) p“(s—i)yivp“ _ (S) xpa(s—i)yi'ypa -0
(2 7

s0, ¢ is well defined and the proposition is proved.

O

Examples 2.2 Let us consider k a reduced ring of characteristic p =3 and h = x3 — y* € k[x,y], then v =1
so, according with Proposition 2.1,

(0z) 1<i<3
IDerp(A;i) =< (204,y05) 3<i<9
(202, y%0z) 1 >9

Now, if we consider h = x> — y°, then v = 2 and

IDery,(A; ) = { (0s)

Remark 2.3 Note that if k is not reduced, Proposition 2.1 is not true. For example, if k = F3[t]/(t3) and
h =3 —y°, then td, € IDery(A) with the integral

A = Aflpl]
T = T+t
y = Y




Corollary 2.4 Let k be a commutative reduced ring of characteristic p > 0 and A = k[x,y]/{h) where h =
™ —y? such that «,m > 1 and ¢ > 2. We denote B; := Anny (IDery(A;i — 1)/ IDery(A;4)) for i > 1. Then,

g _{ @y ifi=p°
’ (y) ifi=p*tP s=1, a<Bandm=1

Moreover, B; O J° = (y1=1) where J° is the gradient ideal of h defined in Proposition 1.12.

Proof.
Let us start with ¢ = p®. From Proposition 2.1, we can deduce that

IDery (A;p® — 1) /IDery, (A;p®) = (0x) /{x0x, y" Ox)

where 0, € Dery(A). By definition, a € B; if a0, = 0 mod (z0,,yY0,), i.e, if there exist F,G € A such that
a0, = Fx0, + Gy"0,. Applying this derivation to x, we have that a € (x,y7).
Now, when o < 3, s = m = 1 and i = p**#, from Proposition 2.1,

Dery, (A;p**7 — 1) /IDery, (4;p°17) = (205,47 0:) [ (@00, "' 00) = (47 0u [y 0s)

In this case, a € Byoyg if and only if ay?d, € (y?119,), i.e, if (a — Fy)y7d, = 0 for some F € A. This implies
that a € (y) and we have proved the corollary.

O

2.1 [P-logarithmic derivations

In this section, we want to calculate the m-integrable derivations of A = k[z,y]/(h) where k is a unique
factorization domain (UFD) of characteristic p > 0 and h = 2" — y? with n,¢ = 0 mod p. We start with some
general results about the relationship between ( f)-logarithmic and (f?)-logarithmic derivations. In this section,
we denote R = k[x1,...,2q4].

Proposition 2.5 If f,g € R = k[x1,...,x4] are coprime, then, for all n € N, we have:
HS;(log fg;n) = HSk(log f;n) NHSy(log g; n).
Proof.

D. Let D € HSk(log f;n) N HS(log g;n). By definition, D;(f) € (f) and D;(g) € {g) for all i < n. Then
Di(fg) = > urv=i Da(f)Du(g) € (fg), so D € HSi(log fg;n).
. Let D € HSk(log fg;n). This implies that D;(fg) € (fg) for all i < n. We will prove the result by

induction on i. When ¢ = 1, then D1(fg) = D1(f)g + D1(g9)f € (fg) C (f),{g). So, D1(f)g € (f). Since
g and f are coprime, D1(f) € (f). For g is analogous.

Now let us assume that D;(f) € (f) and D;(g) € (g) for all i < n. By definition,

N

Dn(fg) = Dn(f)g + Dn(g)f + § D.(f)Dy(9) € (fg9) = Dn(f)g+ Dnl(9)f € (fg)
a+b=n
a,b#0

and we can proceed like case ¢ = 1. O

Corollary 2.6 If f,g € R are coprime, then IDery,(log fg;n) C IDery(log f;n) N IDery(log g;n) for all n € N.

Proof. If 6 € IDerg(log fg;n) then, there exists D € HSi(log fg;n) a n-integral of 6. By Proposition 2.5,
D € HSk(log f;n) NHSk(log g;n) so, § € IDerk(log f;n) NIDery(log g; n).

O
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Remark 2.7 In general, equality in Proposition 2.5 does not hold. For example: Let k = Fy and f = y? and
g = 2% —y two polynomial of k[z,y]. Then 0, € IDery(log f;4) NIDery(log g;4). However 0, ¢ IDery(log fg;4).

Corollary 2.8 Let f1,..., fm € R. If fi,f; are coprime whenever i # j, then, for all N we have:

HSy(log f1- -+ fm;n) =, HSk(log fi;n) and IDerg(log fi--- fm;n) C (), IDery(log fi;n)
Proof. The result is obtained thanks to Proposition 2.5 and Corollary 2.6 by induction on m.
O

Lemma 2.9 Let f be an irreducible polynomial, a > 1 and n € N. Consider D € HSy(R;n). Suppose that
D;(f*)? € (f*) for all i <mn. Then, D € HSi(log f*;n).

Proof.
We write a = sp® where a = val,(a) > 0 and s > 1. By Lemma 1.6,

- 0 it p* fi
. sp — o
Di(f ){ Dyjpe (fP" it pOi

Hence, we can focus on the case n > p® and i = jp* < n. It’s enough to show that D;(f) € (f) because, if this
is true, we have that D;(f*) € (f*) by Lemma 1.7, and D; (fsz’a) = D;(f*)P" € <f5pa> so we would have the
result.

Since ¢ = jp* < n,
s Pa+l sp™ p sp“Jrl
Dy (V" = Dype (7)€ (57 (5)
When j =1, Dy (f*) = sf* 'D(f). Substituting in the previous expression, we have that

a+1

Dy ()7 = s Dy (g e () (6)

Since R is UFD and f,s # 0, D (f)*"" € <fp““> C (f) and hence D1 (f) € (f).
Let us assume that D;(f) € (f) for all I < j with jp® < n. Thanks to the hypothesis, we can use Lemma
1.7, and we have
Dj (f*) = sf*"'Di(f) + Ff*
for some F' € R. Substituting this expression in (5),

a1 ot a1

S A R R O Vi

Observe that it is the same condition that (6), so we can deduce that D;(f) € (f). .

Proposition 2.10 Let k be an UFD of characteristic p > 0 and R = klz1,...,x4) the polynomial ring over k.
Let h be a polynomial of R. For all m € N, we have:

IDerg (log h; n) = IDery, (log AP, np) .

Proof.

C. Let Dy € IDerg(logh;n) and D € HSg(logh;n) an integral. If n < oo, from Corollary 1.9, D is
np-integrable, so let D’ be a np-integral of D. If n = co, we put D’ = D. Observe that D| = D; so, if
D’ € HSy, (log h?; np) then D; € IDery(log h?; np). We have to see that D.(hP) € (h?) for all i < np.

By Lemma 1.6,

0 if pfi

! Py —
D; (b ){ D, (b i pli
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Then, we can focus on 7 = jp where 1 < j <n. Note that D} =Djforall1 <j <n,so
D; (h7) = Djj(h)" = Dj;(h)" € (h7).

Therefore, D;(h?) € (hP) for all i < np and we have the inclusion.
D. Let Dy € IDery, (log h?;np) and D € HSy, (log h?;np) a np-integral of Dy. Let h = hi'---h%" be the

factorization of h in irreducible factors, i.e, h; is irreducible and a; > 1 for all ¢ = 1,...,m and h; # h; if ¢ # j.
Then A" and h;j are coprime whenever i # j, and therefore, h{'?, ..., h%"P are coprime too. By Corollary 2.8,

D € HSg(log h?; np) = r]HS;C (log h{™";np) .

Hence, D;(h{")? = Dj,(h{'") € (h{'*) for j < n. By Lemma 2.9, D;(h{") € (h{*) for all i = 1,...,m, and
Jj < n. S0, Tupn(D) € NHSk(log hi*;n) = HSk(log h;n) = Dy € IDerk(log h;n). O

Corollary 2.11 For all 7 > 0 and n € N, IDery(log h;n) = IDery, (1og hpf;in).
Proof. By induction on 7 using Proposition 2.10. O

Proposition 2.12 Let k be a UFD of characteristic p > 0, R = k[x1,...,2z4) the polynomial ring over k, h € R
and 7 > 1. Then the set of the leaps of A:= R/ <h3”T> 1$

{ {np™| n leap of R/(h)} if Dery, (log h) = Dery(R)
{np™| n leap of R/{h)}Up™ if Dery (logh) # Dery(R)

Proof.
By Corollary 1.11, A has a leap on s > 1 if and only if the inclusion IDery (1og hP" s — 1) 2 IDery, (1og h?": s)
is proper. First of all, we will prove the next two equalities:

1. For s < p7, IDery, (1og hpf;s) = Derg(R).

C is always true. Let Dy € Dery(R) = IDery(R) and D € HSy(R) an integral. Since s < p7, for all j <'s, p™ 1 j.
By Lemma 1.6, D; (hpT) =0¢c <hp7> for all j < s. Then, any derivation D; has a h? -logarithmic s-integral
and the other inclusion holds. So, A does not have a leap on s.

2. Let s be an integer such that np”™ < s < (n + 1)p” for some n > 1. Then IDer; (logh? ;s) =
IDer (1og hpf;in).

Since s > np7, the inclusion C is true. Let Dy € IDery (log hpT;in). By definition there exists an integral
D € HS; (log hpf;in). By Corollary 1.9, we can consider D’ € HSy(R;s) an integral of D. Hence, for all j
such that np™ < j < s < (n+1)p”, p” [fj and, by Lemma 1.6, D’ (hpf) =0¢€ <h1’7>. Since D] = D; for all
I <np™, D' € HSy (1og hpT;s). Therefore, Dy € IDery, (log hpT;s) and A does not have a leap on s.

Thanks to these two equalities we know that the leaps are given on s = np” for some n > 1. Let us suppose
that s = p™. By Corollary 2.11 and the point 1.,

Dery, (R) = IDery, (1og hP s — 1) D IDery, (log R pT = s) = Dery, (log h)

Hence, A has a leap on p7 if and only if Dery(logh) # Dery(R). Now, let us consider s = np” for n > 2. By
Corollary 2.11 and the point 2.

IDery, (log h;n — 1) IDery, (log hP"; (n — 1)pT) = IDery, (log h?"  np™ — 1)

D IDery (log hpT;in) = IDery, (log h; n)

Then, A has a leap on s = np” if and only if n is a leap on R/(h) and we have proved the result.
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Proposition 2.13 Let k be a UFD of characteristic p > 0 and h = 2™ —y? € klz,y]. Suppose o :=val,(n) > 1
and B :=val,(q) > 1. We write T =mine,3 > 1, s=n/p” and t = q/p”. Then,

IDery,(k[z, y]/(h);np) = {0| § € IDery(log(z* — y*),n)}
where the leaps occur in {np™| n is a leap of k[x,y]/(H)} Up™.

Proof. Using Corollary 2.11 and Proposition 2.1. 0

3 Other examples

We are going to calculate the integrable derivations of the quotient of a polynomial ring over some non-binomial
equations. These examples have been taken from the article [Gr].

Ezxample 1.

Let k be a domain of characteristic p > 0 and h = 2P + tzP™ € R = k[z] with ¢t € k. Let A = R/{h). The
module of Dery(logh) is generated by (1 + tx)9d,. From Example (2.1.2) of [Na2], we have that (1 + tz)0, is
h-logarithmically (p — 1)-integrable. So, let us consider E € HS(logh;p — 1) an integral of u(1 4 tx)d, where
u € R. From Corollary 1.9, there exists D € HS;(R) an integral of E. In order for D to be h-logarithmic,

D, (P + txPt) = Dy(2)P + t(x2Dy1(2)P + Dy(z)aP) = uP (1 + tx)PT! +tD,(z)aP € (h)

So, u € (z) and IDery(logh;p) = (z(1 + tx)d;). Observe that this generator is co-integrable, for example
x €A x+a(l+tx)u € Al|p|] is an integral. In conclusion,

(1 4 tx)0y) ifi<p-—1

[Dery (4;4) = { (x(1 +tx)d,) ifi>p

Ezxample 2.

Let k be a domain of characteristic p = 2 and h = 2% + y% + y” € R = k[x,y]. Let A= R/(h). In this case,
the module of h-logarithmic derivations is generated by 0, and hd,. Since h0, is h-logarithmically co-integrable,
we can focus on the h-logarithmically integrability of ud, where u € k[z,y]. Let ¢ : R — R[|u|] a k-algebra
homomorphism:

o R — R[Ju]
r z+uu+u2u2+~~~
y — oy 4+ ’u2 4+

We want to see that there exist u;, v; € R for i > 2 such that ¢ is h-logarithmic. The coefficient of pu? for i = 2,3
in ¢(h) is ySv;. In order for ¢ to be h-logarithmic, v; € (h), so we can put v; = 0. In fact, we can put v; = 0
for all ¢ such that 4 fi. Thanks to this, we can write:

p(h) = (@ +up+ugp® + .. )" + (Y +vap* +osp® )L+ y +oap® +ogp® ) (7)

The coefficient of p* in (7) is g := u* + y%vs and it has to belong to (h). Hence, u € (x,y?) and
IDerg (log h;4) = (0, y*0x, hD,). It’s easy to proof the following lemma through the calculation of a term in
the equation (7):

Lemma 3.1 Suppose that uj = 0 for all j > 2 and vay, € (y?) for all n < i, then there exists vy; € (y*) such
that the coefficient of u** in (7) belongs to (h).

Using this lemma repeatedly we deduce that 320, and zyd, are h-logarithmically integrable since a possible
solution so that py is h-logarithmic is vy = y? and vy = (1 + y)y* respectively. Therefore, we need to see the
h-logarithmically integrability of uxd, where u € k[z]. In this case, vy € (1 + y)u* + (h). Calculating the
coefficient of p® in (7), we obtain ug := u3 + y°vs + v3(1 + y)y*. In order for ug to be in (h), u € (z). Hence,
vy € (x*, h). We deduce that 220, is h-logarithmically integrable by the following lemma:
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Lemma 3.2 Suppose that u; = 0 for all j > 2 and v4, € (x*) for all n < i, then there ewists vy; € (x*) such
that the coefficient of u** in (7) belongs to (h).

In conclusion,
(0) if1<i<4
IDery(A;i) = ¢ (20, y%0,) if4<i<8
(2204, Y0y, y?0,) 11 >38

Example 3.

Let k be a domain of characteristic p = 3 and h = 2® + y° + 2%y* € R = k[z,y]. Let A = R/(h). The
module of h-logarithmic derivation is generated by &, := 229, + y*9, and d := 2y?9, + (z + y*)9,. These two
derivations are h-logarithmically integrable. To verify this claim, let us consider ¢ : R — R[|p|] a homomorphism
of k-algebras

o R — RlJu
T o At uip A ougp® 4
Yy > ytuipt o4

As in the previous example, we want to prove that there exist u;,v; € R for ¢ > 2 such that ¢(h) € (h) where
uy and vy are determined by 7 or d2. By calculating a generic term of p(h), we can show the following lemmas:

Lemma 3.3 Let uy = 2% and v1 = y*. Suppose that v; = 0 for all j > 2 and u, € (z?) for all n < i. Then,
there exists u; € (x?) such that the coefficient of u* in ¢(h) belongs to (h).

Lemma 3.4 Let u; = 2y? and vi = x +y%. Suppose u, € (xy,y>) and v, € (y?) for all2 < n <i. Then, there
exist u; € (zy,y3) and v; € (y?) such that the coefficient of u' in @(h) belongs to (h).

Using Lemma 3.3 for the integrability of 4; and Lemma 3.4 for the integrability of d2, we can deduce that

IDery(A) = (61, 02).
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