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ON THE KÄHLER–YANG–MILLS–HIGGS EQUATIONS

LUIS ÁLVAREZ-CÓNSUL, MARIO GARCIA-FERNANDEZ, AND OSCAR GARCÍA-PRADA

To Simon Donaldson on his 60th birthday

Abstract. In this paper we introduce a set of equations on a principal bundle over a
compact complex manifold coupling a connection on the principal bundle, a section of an
associated bundle with Kähler fibre, and a Kähler structure on the base. These equations
are a generalization of the Kähler–Yang–Mills equations introduced by the authors. They
also generalize the constant scalar curvature for a Kähler metric studied by Donaldson
and others, as well as the Yang–Mills–Higgs equations studied by Mundet i Riera. We
provide a moment map interpretation of the equations, construct some first examples,
and study obstructions to the existence of solutions.
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1. Introduction

In the 1990s, Donaldson and Fujiki observed independently that moment maps play a
central role in Kähler geometry [11, 15]. Since then, they have been fruitfully applied
in the problem of finding constant scalar curvature Kähler metrics, acting as a guiding
principle for many advances in this topic such as the recent solution of the Kähler–Einstein
problem [10]. As noticed in [1], the moment map picture for Kähler metrics extends to
the study of equations coupling a Kähler metric on a compact complex manifold and a
connection on a principal bundle over it, known as the Kähler–Yang–Mills equations. Alike
the constant scalar curvature Kähler metrics can be used to understand the moduli space
of polarised manifolds, these equations are natural in the study of the algebro-geometric
moduli problem for bundles and varieties, suggested in [36].

Motivated by the search of the simplest non-trivial solutions of the Kähler–Yang–Mills
equations, the authors studied [2] the dimensional reduction of the equations on the product
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of a Riemann surface with the complex projective line. This approach to the Kähler–Yang–
Mills equations provided a new theory for abelian vortices on the Riemann surface [7, 28,
18, 19] with back-reaction of the metric, described by solutions of the ‘gravitating vortex
equations’, and showed an unexpected relation with the physics of cosmic strings [2, 3].
The further coupling of a Kähler metric and a connection with a ‘Higgs field’ considered in
these works also reveils newly emergent phenomena, not observed in the theory originally
introduced in [1].

Building on [1, 2, 3], this paper develops some basic pieces of a general moment-map theory
for the coupling of a Kähler metric on a compact complex manifold X , a connection on a
principal bundle E over X , and a Higgs field φ, given by a section of a Kähler fibration
associated to E. Our treatment of the Higgs field φ is inspired by, on the one hand, work
on the Yang–Mills–Higgs equations by Mundet i Riera [27], and, other hand, Donaldson’s
study of actions of diffeomorphism groups on spaces of sections of a bundle [14] (see
Section 2). As we will see, the Kähler–Yang–Mills–Higgs equations introduced in this
paper lead to a very rich theory (see Section 3), which comprises a large class of interesting
examples of moment-map equations (see Sections 4 and 5). In addition, we expect that
these equations may provide a natural framework for the interaction of Kähler geometry
and a certain class of unified field theories in physics [34] (see Section 5.2).

Acknowledgements. The authors wish to thank D. Alfaya and T. L. Gómez for useful
discussions.

2. Hamiltonian actions of the extended gauge group

2.1. The space of connections. Details for this section can be found in [1].

Let X be a compact symplectic manifold of dimension 2n, with symplectic form ω. Let G
be a compact Lie group with Lie algebra g and E be a smooth principal G-bundle on X ,
with projection map π : E → X . Let H be the group of Hamiltonian symplectomorphisms
of (X,ω) and AutE be the group of automorphisms of the bundle E. Recall that an
automorphism of E is a G-equivariant diffeomorphism g : E → E. Any such automorphism
covers a unique diffeomorphism ǧ : X → X , i.e. a unique ǧ such that π ◦ g = ǧ ◦ π. We
define the Hamiltonian extended gauge group (to which we will simply refer as extended
gauge group) of E,

G̃ ⊂ AutE,

as the group of automorphisms which cover elements of H. Then the gauge group of E is

the normal subgroup G ⊂ G̃ of automorphisms covering the identity.

The map G̃ p−→ H assigning to each automorphism g the Hamiltonian symplectomorphism
ǧ that it covers is surjective. We thus have an exact sequence of Lie groups

1 → G ι−→ G̃ p−→ H → 1, (2.1)

where ι is the inclusion map.

The spaces of smooth k-forms on X and smooth k-forms with values in any given vector
bundle F on X are denoted by Ωk and Ωk(F ), respectively. Fix a positive definite inner
product on g, invariant under the adjoint action, denoted

(·, ·) : g⊗ g −→ R. (2.2)
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This product induces a metric on the adjoint bundle adE = E ×G g, which extends to a
bilinear map on (adE)-valued differential forms (we use the same notation as in [6, §3])

Ωp(adE)× Ωq(adE) −→ Ωp+q : (ap, aq) 7−→ ap ∧ aq. (2.3)

We consider the operator

Λ = Λω : Ωk −→ Ωk−2 : ψ 7−→ ω♯yψ, (2.4)

where ♯ is the operator acting on k-forms induced by the symplectic duality ♯ : T ∗X → TX
and y denotes the contraction operator. Its linear extension to Ωk(adE) is also denoted
Λ : Ωk(adE) → Ωk−2(adE) (we use the same notation as, e.g., in [12]).

Let A be the set of connections on E. This is an affine space modelled on Ω1(adE). The
2-form on A defined by

ωA(a, b) =

∫

X

a ∧ b ∧ ωn−1

n− 1!
(2.5)

for a, b ∈ TAA = Ω1(adE), A ∈ A, is a symplectic form.

There is an action of AutE, and hence of the extended gauge group, on the space A
of connections on E. To define this action, we view the elements of A as G-equivariant
splittings A : TE → V E of the short exact sequence

0 → V E −→ TE −→ π∗TX → 0, (2.6)

where V E = ker dπ is the vertical bundle. Using the action of g ∈ AutE on TE, its action
on A is given by g ·A := g ◦A ◦ g−1. Any such splitting A induces a vector space splitting
of the Atiyah short exact sequence

0 → LieG ι−→ Lie(AutE)
p−→ Lie(DiffX) → 0 (2.7)

(cf. [6, equation (3.4)]), where Lie(DiffX) is the Lie algebra of vector fields on X and
Lie(AutE) is the Lie algebra of G-invariant vector fields on E. Abusing of the notation,
this splitting is given by maps

A : Lie(AutE) −→ LieG, A⊥ : Lie(DiffX) −→ Lie(AutE) (2.8)

such that ι ◦A+A⊥ ◦ p = Id, where A is the vertical projection and A⊥ the horizontal lift
of vector fields on X to vector fields on E, given by the connection.

It is easy to see that the G̃-action on A is symplectic. An equivariant moment map for this
action was calculated in [1]. To give an explicit formula, we use that the splitting (2.8)
restricts to a splitting of the exact sequence

0 → LieG ι−→ Lie G̃ p−→ LieH → 0 (2.9)

induced by (2.1). Consider the isomorphism of Lie algebras

LieH ∼= C∞
0 (X), (2.10)

where LieH is the Lie algebra of Hamiltonian vector fields on X and C∞
0 (X) is the Lie

algebra of smooth real functions on X with zero integral over X with respect to ωn, with
the Poisson bracket. This isomorphism is induced by the map C∞(X) → LieH : f 7→ ηf ,
which to each function f assigns its Hamiltonian vector field ηf , defined by

df = ηfyω. (2.11)

Let FA ∈ Ω2(adE) be the curvature of A ∈ A and z be an element of the space

z = gG (2.12)
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of elements of g which are invariant under the adjoint G-action, that we identify with
sections of adE. We have the following.

Proposition 2.1. The G̃-action on A is Hamiltonian, with equivariant moment map

µG̃ : A → (Lie G̃)∗ given by

〈µG̃(A), ζ〉 =
∫

X

Aζ ∧ (ΛFA − z)
ωn

n!
− 1

4

∫

X

f
(
Λ2(FA ∧ FA)− 4ΛFA ∧ z

) ωn

n!
(2.13)

for all ζ ∈ Lie G̃, A ∈ A, where f ∈ C∞
0 (X) corresponds to p(ζ) via (2.9) and (2.10).

2.2. Sections of a Kähler fibration. Let (F, Ĵ, ω̂) be a (possibly non-compact) Kähler

manifold, with complex structure Ĵ and Kähler form ω̂. Following the notation of the
previous section, we assume that G acts on F by Hamiltonian isometries, and fix a G-
equivariant moment map

µ̂ : F → g∗.

Consider the associated fibre bundle F = E ×G F with fibre F . We will denote by
V F ⊂ TF the vertical bundle of the fibration.

Let S := Ω0(X,F) the space of C∞ global sections of the fibre bundle F . Using the
Kähler structure on the fibres of F , we endow the infinite-dimensional space S with a
Kähler structure. Given φ ∈ S, the symplectic form is given explicitly by

ωS(φ̇1, φ̇2) =

∫

X

ω̂(φ̇1, φ̇2)
ωn

n!

where φ̇i ∈ TφS are identified with elements in Ω0(φ∗V F).

An equivariant moment map for the action of the gauge group G of E on (S, ωS) was
calculated in [27]. Here we are interested in a generalization of this result, where the
gauge group is extended by the group of hamiltonian symplectomorphisms H of (X,ω).

The action of the extended group G̃ on E induces an action on S. This can be seen, for
example, by regarding a section of F as a G-equivariant map φ : E → F . Furthermore, it

is easy to see that G̃-action on S preserves the Kähler structure.

To compute the moment map, let us assume for a moment that the symplectic form ω̂ is
exact (this is, e.g., the situation considered in [3]), that is, there exists σ̂ ∈ Ω1(F ) such
that

dσ̂ = ω̂.

By averaging over G, we can assume that σ̂ is invariant under the action of G, and it
follows that ωS = dσS , with

σS(φ̇) =

∫

X

σ̂(φ̇)
ωn

n!
.

Then, a G̃-equivariant moment map µG̃ : S −→ (Lie G̃)∗ is given by

〈µG̃ , ζ〉 = −σS(Yζ) =
∫

X

σ̂(dφ(ζ))
ωn

n!
, (2.14)

where Yζ denotes the infinitesimal action

Yζ|φ = −dφ(ζ)
of ζ ∈ Lie G̃ on φ ∈ S, where φ is regarded as a map φ : E → F and we use the identification
E ×G TF ∼= φ∗V F .
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We want to obtain an equivalent formula for the moment map (2.14) which is independent
of the choice of 1-form σ̂. For this, choosing a connection A : TE → V E on E, we can
write

dφ(ζ) = dφ(A⊥ζ) + dφ(Aζ) = ζ̌ydAφ− Aζ · φ,
where ζ̌ := p(ζ), Aζ · φ denotes the infinitesimal action of Aζ ∈ Ω0(V E) along the image
of φ and dAφ = dφ(A⊥·) ∈ Ω1(φ∗V F) is the covariant derivative induced by A. Using that
σ̂ induces a moment map for the G-action on F (that we can assume to be µ̂) it follows
that

σ̂(Aζ · φ) = −〈φ∗µ̂, Aζ〉
where φ∗µ̂ ∈ Ω0(E×G g

∗). We use now that ζ̌ ∈ H, that is, ζ̌yω = df for a smooth function
f ∈ C∞

0 (X):

∫

X

σ̂(ζ̌ydAφ)
ωn

n!
=

∫

X

σ̂(dAφ) ∧ df ∧ ωn−1

(n− 1)!

=

∫

X

fd(σ̂(dAφ)) ∧
ωn−1

(n− 1)!
.

Finally, our desired formula follows from

d(σ̂(dAφ)) =
1

2
ω̂(dAφ, dAφ) + σ̂(FA · φ) = 1

2
ω̂(dAφ, dAφ)− 〈φ∗µ̂, FA〉.

The next result is independent of the existence of the 1-form σ̂ on F .

Proposition 2.2. The G̃-action on S is Hamiltonian, with equivariant moment map

µG̃ : S −→ (Lie G̃)∗.

For any choice of unitary connection A on E, the moment map is given explicitly by

〈µ(φ), ζ〉 =
∫

X

〈φ∗µ̂, Aζ〉ω
n

n!
+

1

2

∫

X

f(ω̂(dAφ, dAφ)− 2〈φ∗µ̂, FA〉) ∧
ωn−1

(n− 1)!
(2.15)

for all φ ∈ S and ζ ∈ Lie G̃ covering ζ̌ ∈ H, such that df = ζ̌yω with f ∈ C∞
0 (X).

Proof. The variation of 〈φ∗µ̂, Aζ〉 with respect to φ is

〈dµ̂(φ̇), Aζ〉 = ω̂(dφ(Aζ), φ̇).

In addition, we have

−ω̂(dAφ(ζ̌), φ̇)
ωn

n
= −ω̂(dAφ, φ̇) ∧ df ∧ ωn−1

= d(fω̂(dAφ, φ̇) ∧ ωn−1)− fd(ω̂(dAφ, φ̇)) ∧ ωn−1,

while the variation of ω̂(dAφ, dAφ)− 2〈φ∗µ̂, FA〉 in the second integral is

ω̂(dAφ, dAφ̇) + ω̂(dAφ̇, dAφ)− 2ω̂(dφ(FA), φ̇) = −2d(ω̂(dAφ, φ̇)).

Formula (2.15) follows now integrating by parts. �
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2.3. The Hermitian scalar curvature as a moment map. Via its projection into
the group of Hamiltonian symplectomorphisms H (see (2.1)), the extended gauge group
acts on the space J of compatible almost complex structures on the symplectic manifold
(X,ω). As proved by Donaldson [11], theH-action on J is Hamiltonian, with moment map
given by the Hermitian scalar curvature of the almost Kähler manifold. The moment map
interpretation of the scalar curvature was first given by Quillen in the case of Riemann
surfaces and Fujiki [15] for the Riemannian scalar curvature of Kähler manifolds, and
generalized independently in [11].

First we recall the notion of Hermitian scalar curvature of an almost Kähler manifold, we
follow closely Donaldson’s approach. Fix a compact symplectic manifold X of dimension
2n, with symplectic form ω. An almost complex structure J on X is called compatible
with ω if the bilinear form gJ(·, ·) := ω(·, J ·) is a Riemannian metric on X . Any almost
complex structure J on X which is compatible with ω defines a Hermitian metric on T ∗X
and there is a unique unitary connection on T ∗X whose (0,1) component is the operator
∂̄J : Ω

1,0
J → Ω1,1

J induced by J . The real 2-form ρJ is defined as −i times the curvature
of the induced connection on the canonical line bundle KX = Λn

C
T ∗X , where i is the

imaginary unit
√
−1. The Hermitian scalar curvature SJ is the real function on X defined

by

SJω
n = 2nρJ ∧ ωn−1. (2.16)

The normalization is chosen so that SJ coincides with the Riemannian scalar curvature
when J is integrable. The space J of almost complex structures J on X which are
compatible with ω is an infinite dimensional Kähler manifold, with complex structure
J : TJJ → TJJ and Kähler form ωJ given by

JΦ := JΦ and ωJ (Ψ,Φ) :=
1

2n!

∫

X

tr(JΨΦ)ωn, (2.17)

for Φ, Ψ ∈ TJJ , respectively. Here we identify TJJ with the space of endomorphisms
Φ: TX → TX such that Φ is symmetric with respect to the induced metric ω(·, J ·) and
satisfies ΦJ = −JΦ.
The group H of Hamiltonian symplectomorphisms h : X → X acts on J by push-forward,
i.e. h · J := h∗ ◦ J ◦ h−1

∗ , preserving the Kähler form. As proved by Donaldson [11,
Proposition 9], the H-action on J is Hamiltonian with equivariant moment map µH : J →
(LieH)∗ given by

〈µH(J), ηf〉 = −
∫

X

fSJ
ωn

n!
, (2.18)

for f ∈ C∞
0 (X), identified with an element ηf in LieH by (2.10) and (2.11).

As a warm up for our discussion in Section 3, we note that the H-invariant subspace
J i ⊂ J of integrable almost complex structures is a complex submanifold (away from its
singularities), and therefore inherits a Kähler structure. Over J i, the Hermitian scalar
curvature SJ is the Riemannian scalar curvature of the Kähler metric determined by J
and ω. Hence the quotient

µ−1
H (0)/H, (2.19)

where µH is now the restriction of the moment map to J i, is the moduli space of Kähler
metrics with fixed Kähler form ω and constant scalar curvature. Away from singularities,
this moduli space can thus be constructed as a Kähler reduction (see [15] and references
therein for details).
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3. The Kähler–Yang–Mills–Higgs equations

3.1. The equations as a moment map condition. Fix a compact symplectic manifold
X of dimension 2n with symplectic form ω, a compact Lie group G and a smooth principal
G-bundle E on X . We fix an Ad-invariant inner product (·, ·) : g ⊗ g → R on the Lie
algebra g of G. Let J be the space of almost complex structures on X compatible with ω
and A the space of connections on E. Consider the space of triples

J ×A× S, (3.1)

endowed with the symplectic structure

ωJ + 4αωA + 4βωS , (3.2)

(for a choice of non-zero real coupling constants α, β). Similarly as in [1, Proposition 2.2],
the space (3.1) has a formally integrable almost complex structure, which is compatible
with (3.2) when α > 0 and β > 0, thus inducing a Kähler structure in this case.

By Proposition 2.2 combined with Proposition 2.1 and 2.18, the diagonal action of G̃ on

this space is Hamiltonian (here the action of G̃ on J is given by projecting to H), with

equivariant moment map µα,β : J ×A× S → (Lie G̃)∗ given by

〈µα,β(J,A, φ), ζ〉 = 4

∫

X

(Aζ, αΛFA + βφ∗µ̂− z)
ωn

n!

−
∫

X

f(SJ − 2βΛω̂(dAφ, dAφ) + αΛ2(FA ∧ FA) + 4(ΛFA, βφ
∗µ̂− αz))

ωn

n!
,

(3.3)

for any choice of central element z in the Lie algebra g.

Suppose now that X has Kähler structures with Kähler form ω. This means that the
subspace J i ⊂ J of integrable almost complex structures compatible with ω is not empty.
Define

T ⊂ J ×A× S (3.4)

by the conditions
J ∈ J i, A ∈ A1,1

J , ∂̄J,Aφ = 0,

where ∂̄J,Aφ denotes the (0, 1)-part of dAφ with respect to J and A1,1
J ⊂ A consists of

connections A with FA ∈ Ω1,1
J (adE), or equivalently satisfying

F 0,2J
A = 0.

Here Ωp,q
J (adE) denotes the space of (adE)-valued smooth (p, q)-forms with respect to J

and F 0,2J
A is the projection of FA into Ω0,2

J (adE). This space is in bijection with the space
of holomorphic structures on the principal Gc-bundle Ec over (X, J) (see [30]).

By definition, T is a complex subspace of (3.1) (away from its singularities) preserved by

the G̃-action, and hence it inherits a Hamiltonian G̃-action.
Proposition 3.1. The G̃-action on T is Hamiltonian with G̃-equivariant moment map

µα,β : T → (Lie G̃)∗ given by

〈µα,β(J,A, φ), ζ〉 = 4

∫

X

(Aζ, αΛFA + βφ∗µ̂− z)
ωn

n!

−
∫

X

f(SJ + β∆g|φ∗µ̂|2 + αΛ2(FA ∧ FA)− 4α(ΛFA, z))
ωn

n!
,

(3.5)
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for all (J,A, φ) ∈ T and ζ ∈ Lie G̃, where ∆g denotes the Laplacian of g = ω(·, J ·).

Proof. Since (J,A, φ) ∈ T , we have ∂̄Aφ = 0, and hence

∆g|φ∗µ̂|2 = 2iΛ∂̄∂|φ∗µ̂|2 = −2Λω̂(dAφ, dAφ) + 4〈φ∗µ̂,ΛFA〉.
The statement follows now from (3.3). �

The zeros of the moment map µα,β, restricted to the space of integrable pairs T , corre-
spond to a coupled system of partial differential equations which is the object of our next
definition.

Definition 3.2. We say that a triple (J,A, φ) ∈ T satisfies the Kähler–Yang–Mills–Higgs

equations with coupling constants α, β ∈ R if

αΛFA + βφ∗µ̂ = z,

SJ + β∆g|φ∗µ̂|2 + αΛ2(FA ∧ FA)− 4α(ΛFA, z) = c,
(3.6)

where SJ is the scalar curvature of the metric gJ = ω(·, J ·) on X , z is an element in the
center of g and c ∈ R.

The constant c ∈ R in (3.6) is explicitly defined by the identity

c[ω]n = 2πnc1(X) ∪ [ω]n−1 + 2αn(n− 1)p1(E) ∪ [ω]n−2 − 4nc(E) ∪ [ω]n−1 (3.7)

where p1(E) := [FA ∧ FA] ∈ H4(X,R) and c(E) ∈ H2(X,R) are the Chern–Weil classes
associated to the G-invariant symmetric forms (·, ·) and (·, z) on g respectively, and so c
only depends on [ω] and the topology of E.

The set of solutions of (3.6) is invariant under the action of G̃ and we define the moduli

space of solutions as the set of all solutions modulo the action of G̃. We can identify this
moduli space with the quotient

µ−1
α,β(0)/G̃, (3.8)

where µα,β denotes now the restriction of the moment map to T . Away from singularities,

this is a Kähler quotient for the action of G̃ on the smooth part of T equiped with the
Kähler form obtained by the restriction of (3.2).

3.2. Futaki invariant and geodesic stability. In this section, we explain briefly some
general obstructions to the existence of solutions of the Kähler–Yang–Mills–Higgs equations
(3.6), which follow the general method developed in [1, §3]. To describe them, it is helpful
to adopt a dual view point, based on complex differential geometry.

We fix a compact complex manifold X of dimension n, a Kähler class Ω ∈ H1,1(X) and
a holomorphic principal bundle Ec over X . We assume that the structure group of Ec is
a complex reductive Lie group Gc, and that the Lie algebra gc of Gc is endowed with an
Ad-invariant symmetric bilinear form. Let (F, Ĵ, ω̂) be a (possibly non-compact) Kähler

manifold, with complex structure Ĵ and Kähler form ω̂. We assume that a maximal
compact subgroup G ⊂ Gc acts on F by Hamiltonian isometries, and fix a G-equivariant
moment map

µ̂ : F → g∗.

Consider the associated fibre bundle F = Ec ×Gc F with fibre F , and assume that there
exists a holomorphic section

φ ∈ H0(X,F).
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Then, the Kähler–Yang–Mills–Higgs equations on (X,Ec, φ), for fixed coupling constants
α, β ∈ R, are

αΛωFH + βφ∗µ̂ = z,

Sω + β∆ω|φ∗µ̂|2 + αΛ2
ω(FH ∧ FH)− 4α(ΛωFH , z) = c,

(3.9)

where the unknowns are a Kähler metric on X with Kähler form ω in Ω, and a reduction
H : X → Ec/G to G. In this case, FH is the curvature of the Chern connection AH of H
on Ec, and Sω is the scalar curvature of the Kähler metric. Note that the constant c ∈ R

depends on α, Ω and the topology of X and Ec. In the rest of this section, we will assume
α > 0 and β > 0 in the definition of (3.9).

Our first obstruction builds on the general method in [1, §3] and classical work of Fu-
taki [16]. Consider the complex Lie group Aut(X,Ec) of automorphisms of (X,Ec) and
the complex Lie subgroup fixing the section φ

Aut(X,Ec, φ) ⊂ Aut(X,Ec).

We define a map

Fα,β : LieAut(X,Ec, φ) −→ C

given by the formula

〈Fα,β, ζ〉 = 4

∫

X

(AHζ, αΛωFH + βφ∗µ̂− αz)
ωn

n!

−
∫

X

ϕ(Sω + β∆ω|φ∗µ̂|2 + αΛ2
ω(FH ∧ FH)− 4(ΛωFH , z)))

ωn

n!
,

(3.10)

for a choice a Kähler form ω ∈ Ω and hermitian metric H on E. To explain this formula,
we note that LieAut(X,Ec) is the space of Gc-invariant holomorphic vector fields ζ on
the total space of Ec. Any such ζ covers a real-holomorphic vector field ζ̌ on X , and
decomposes, in terms of the connection AH , as

ζ = AHζ + A⊥
H ζ̌ ,

where AHζ and A⊥
H ζ̌ are its vertical and horizontal parts. The complex-valued function

ϕ := ϕ1 + iϕ2,

with ϕ1, ϕ2 ∈ C∞
0 (X,ω), is determined by the unique decomposition

ζ̌ = ηϕ1
+ Jηϕ2

+ γ,

valid precisely because ζ̌ is a real-holomorphic vector field, where J is the (integrable)
almost complex structure of X , ηϕj

(for j = 1, 2) is the Hamiltonian vector field of ϕj, and
γ is the dual of a 1-form that is harmonic with respect to the Kähler metric.

This Futaki character provides the following obstruction to the existence of solutions of the
Kähler–Yang–Mills–Higgs equations equations (cf. [1, Theorem 3.9]). Let B be the space
of pairs (ω,H) consisting of a Kähler form ω in the cohomology class Ω and a reduction
H of Ec to G ⊂ Gc.

Proposition 3.3. The map (3.10) is independent of the choice of element (ω,H) in B. It

defines a character of LieAut(X,Ec, φ), which vanishes identically if there exists a solution

of the Kähler–Yang–Mills–Higgs equations (3.9) with Kähler class Ω.
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Further obstructions to the existence of solutions of the Kähler–Yang–Mills equations are
intimately related to the geometry of the infinite-dimensional space B. It is interesting to
notice that this geometry is independent of the choice of holomorphic section φ on F . The
space B has a structure of symmetric space [1, Theorem 3.6], that is, it has a torsion-free
affine connection ∇, with holonomy group contained in the extended gauge group (each
point of B determines one such group) and covariantly constant curvature. The partial
differential equations that define the geodesics (ωt, Ht) on B, with respect to the connection
∇, are

ddc(ϕ̈t − (dϕ̇t, dϕ̇t)ωt
) = 0,

Ḧt − 2Jηϕ̇t
ydHt

Ḣt + iFHt
(ηϕ̇t

, Jηϕ̇t
) = 0,

(3.11)

where ηϕ̇t
is the Hamiltonian vector field of ϕ̇t with respect to ωt, i.e. dϕ̇t = ηϕ̇t

yωt.
Assuming existence of smooth geodesic rays, that is, smooth solutions (ωt, Ht) of (3.11)
defined on an infinite interval 0 ≤ t < ∞, with prescribed boundary condition at t = 0,
one can define a stability condition for (X,Ec, φ). Define a 1-form σα,β on B by

σα,β(ω̇, Ḣ) =− 4i

∫

X

(H−1Ḣ, αΛωFH + βφ∗µ̂− αz)
ωn

n!

−
∫

X

ϕ̇(Sω + β∆ω|φ∗µ̂|2 + αΛ2
ω(FH ∧ FH)− 4(ΛωFH , z)))

ωn

n!
,

where (ω̇, Ḣ) is a tangent vector to B at (ω,H) and ω̇ = ddcϕ̇ for ϕ ∈ C∞
0 (X,ω).

Definition 3.4. The triple (X,Ec, φ) is geodesically semi-stable if for every smooth geo-
desic ray bt on B, the following holds

lim
t→+∞

σα,β(ḃt) ≥ 0.

Under the assumption that B is geodesically convex, that is, that any two points in B can
be joined by a smooth geodesic segment, geodesic semi-stability provides an obstruction
to the existence of solutions of (3.9).

The proof of the next proposition follows from the fact that the quantity σα,β(ḃt) is increas-
ing along geodesics in B, with speed controlled by the infinitesimal action on the space T
in 3 (see the proof of [1, Proposition 3.14]).

Proposition 3.5. Assume that B is geodesically convex. If there exists a solution of

the Kähler–Yang–Mills–Higgs equations in B, then (X,P c, φ) is geodesically semi-stable.

Furthermore, such a solution is unique modulo the action of Aut(X,Ec, φ).

The space B defines a geodesic submersion over the symmetric space of Kähler metrics
on the class Ω [13, 24, 29]. In particular, this implies that in general one cannot expect
existence of smooth geodesic segments on B with arbitrary boundary conditions.

3.3. Matsushima–Lichnerowicz for the Kähler–Yang–Mills–Higgs equations. In
this section we introduce a new obstruction to the existence of solutions of the Kähler–
Yang–Mills–Higgs equations. This is based on an analogue of Matsushima–Lichnerowicz
Theorem [23, 25] for (3.9), which relates the existence of a solution on (X,Ec, φ) with
the reductivity of LieAut(X,Ec, φ). Our proof relies on the moment-map interpretation
of the equations (3.9), following closely Donaldson–Wang’s abstract proof [11, 32] of the
Matsushima–Lichnerowicz Theorem.
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For simplicity, we will assume that X has vanishing first Betti number, even though we
expect that our analysis goes through with minor modifications to the general case.

Theorem 3.6. Assume H1(X,R) = 0. If (X,Ec, φ) admits a solution of the Kähler–Yang–

Mills–Higgs equations (3.9) with α > 0 and β > 0, then the Lie algebra of Aut(X,Ec, φ)
is reductive.

To prove our theorem we need some preliminary results. Let ω be a Kähler form on X
and a reduction H of Ec to G ⊂ Gc. The following lemma gives a convenient formula
for the elements of LieAut(X,Ec, φ) adapted to the pair (ω,H), and is reminiscent of
the Hodge-theoretic description of holomorphic vector fields on compact Kähler manifolds

(see, e.g., [20, Ch. 2]). As in (2), Lie G̃ will denote the Lie algebra of the extended gauge
group associated to the symplectic structure ω and the reduction EH . For the proof, we
will not assume that (ω,H) is a solution of (3.9). We denote by I the almost complex
structure on the total space of Ec.

Lemma 3.7. Assume H1(X,R) = 0. Then, for any y ∈ LieAut(X,Ec) there exist ζ1, ζ2 ∈
Lie G̃ such that

y = ζ1 + Iζ2. (3.12)

Proof. Let A be the Chern connection of H on Ec. We will use the decomposition of

y = Ay + A⊥y̌ (3.13)

into its vertical and horizontal components Ay, A⊥y̌, where y̌ is the unique holomorphic
vector field on X covered by y. Using the anti-holomorphic involution on the Lie algebra
gc determined by G ⊂ Gc, we decompose

Ay = ξ1 + iξ2,

for ξj ∈ Ω0(adEH). Furthermore, as H1(X,R) = 0, we have

y̌ = y̌1 + Jy̌2,

where y̌1 and y̌2 are Hamiltonian vector fields for the symplectic form ω. Hence, defining
the vector fields

ζj = ξj + A⊥y̌j,

for j = 1, 2, we obtain the result. �

We will now apply Lemma 3.7 to the elements of LieAut(X,Ec, φ) ⊂ LieAut(X,Ec).

Lemma 3.8. Assume H1(X,R) = 0 and that (X,Ec, φ) admits a solution (ω, h) of

the Kähler–Yang–Mills–Higgs equations with α > 0 and β > 0. Then, for any y ∈
LieAut(X,Ec, φ), the vector fields ζ1, ζ2 in (3.12) satisfy ζ1, ζ2 ∈ LieAut(X,Ec, φ).

Proof. By the results of Section 3.1, if (ω, h) is a solution of (3.9), then the triple t :=
(J,A, φ) is a zero of a moment map

µα,β : T → Lie G̃∗

for the action of G̃ on the space of ‘integrable triples’ T defined in (3.4). Recall that T is
endowed with a (formally) integrable almost complex structure I, and Kähler metric

gα,β = ωα,β(·, I·)
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(as we are assuming α > 0 and β > 0), where the compatible symplectic structure ωα,β is
as in (3.2). Given y ∈ LieAut(X,Ec), we denote by Yy|t the infinitesimal action of y on
t). Then the proof reduces to show that Yζ1|t = Yζ2|t = 0 for y ∈ LieAut(X,Ec, φ), where
ζ1, ζ2 as in (3.12). To prove this, we note that since the almost complex structure I on Ec

is integrable, we have (see [1, Section 3.2])

0 = Yy|t = Yζ1+Iζ2|t = Yζ1|t + IYζ2|t.

Considering now the norm ‖ · ‖ on TtT induced by the metric gα,β, we obtain

0 = ‖Yy|t‖2 = ‖Yζ1|t‖2 + ‖Yζ2|t‖2 − 2ωα,β(Yζ1|t, Yζ1|t).

Now, µα,β(t) = 0 and the moment map µα is equivariant, so

ωα(Yζ1|t, Yζ1|t) = d〈µα, ζ1〉(Yζ2|t) = 〈µα(t), [ζ1, ζ2]〉 = 0,

and therefore
‖Yζ1|t‖2 = ‖Yζ2|t‖2 = 0,

so we conclude that ζ1, ζ2 ∈ LieAut(X,Ec, φ), as required. �

Theorem 3.6 is now a formal consequence of Lemma 3.8.

Proof of Theorem 3.6. Considering the G̃-action on T , we note that the Lie algebra k =

Lie G̃t of the isotropy group G̃t of the triple t = (J,A, φ) ∈ T satisfies

k⊕ Ik ⊂ LieAut(X,Ec, φ).

Furthermore, the Lie group G̃t is compact, because it can be regarded as a closed subgroup
of the isometry group of a Riemannian metric on the total space of EH (see [1, Section
2.3]). Now, Lemma 3.8 implies that

LieAut(X,Ec, φ) = k⊕ Ik,

so LieAut(X,Ec, φ) is the complexification of the Lie algebra k of a compact Lie group,
and hence a reductive complex Lie algebra. �

4. Gravitating vortices and dimensional reduction

4.1. Gravitating quiver vortex equations. Here we consider in more detail the Kähler–
Yang–Mills–Higgs equations when the Higgs field is a section of a special type of vector
bundles, defining a quiver bundle. To fix notation, we recall the notions of quiver and
quiver bundle (see, e.g., [4] for details). A quiver Q is a pair of sets (Q0, Q1), together with
two maps t, h : Q1 → Q0. The elements of Q0 and Q1 are called the vertices and arrows
of the quiver, respectively. An arrow a ∈ Q1 is represented pictorially as a : i → j, where
i = ta and j = ha are called the tail and the head of a. Suppose for simplicity that the
quiver is finite, that is, both Q0 and Q1 are finite sets (this condition will be weakened in
Section 4.2). Fix a compact complex manifold X of dimension n. A holomorphic Q-bundle
over X is a pair (E, φ) consisting of a set E of holomorphic vector bundles Ei on X ,
indexed by the vertices i ∈ Q0, and a set φ of holomorphic vector-bundle homomorphisms
φa : Eta → Eha, indexed by the arrows a ∈ Q1. Note that it is often useful to consider a
category of twisted quiver bundles (see [4]), but they will not be needed for the application
given in Corollary 5.3.

A Hermitian metric on (E, φ) is a set H of Hermitian metrics Hi on Ei, indexed by
the vertices i ∈ Q0. Any such Hermitian metric determines a C∞ adjoint vector-bundle
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morphism φ∗Ha
a : Eha → Eta of φa : Eta → Eha with respect to the Hermitian metrics Hta

and Hha, for each a ∈ Q1, and we can construct a (H-self-adjoint) ‘commutator’

[φ, φ∗H] =
⊕

i∈Q0

[φ, φ∗H ]i :
⊕

i∈Q0

Ei −→
⊕

i∈Q0

Ei,

with components

[φ, φ∗H ]i :=
∑

a∈h−1(i)

φa ◦ φ∗Ha

a −
∑

a∈t−1(i)

φ∗Ha

a ◦ φa : Ei −→ Ei,

for all i ∈ Q0. In the following, R>0 ⊂ R is the set of positive real numbers, and for any
two sets I and S, SI is the set of maps σ : I → S, i 7→ σi; to avoid confusion with the
symbols used to denote quiver vertices, i =

√
−1 is the imaginary unit.

Definition 4.1. Fix constants ρ ∈ R>0, σ ∈ R
Q0

>0 and τ ∈ RQ0. The gravitating quiver

(ρ, σ, τ)-vortex equations for a pair (ω,H), consisting of a Kähler metric ω on the complex
manifold X and a Hermitian metric H on a holomorphic Q-bundle (E, φ), are

σi iΛωFHi
+ [φ, φ∗H ]i = τi IdEi

, (4.1a)

Sω − ρ
∑

i∈Q0

σiΛ
2
ω TrF

2
Hi

+ 2ρ
∑

a∈Q1

(
∆ω + 2

(
τha
σha

− τta
σta

))
|φa|2Ha

= c. (4.1b)

Here, |φa|2Ha
:= Tr(φa ◦φ∗Ha

a ) ∈ C∞(X) is the pointwise squared norm, and c is a constant,
determined by the parameters ρ, σ, τ , the cohomology class of ω, and the characteristic
classes of the manifold X and the vector bundles Ei. More precisely,

cVolω(X) = 2

∫

X

ρω ∧ ωn−1

(n− 1)!
− 4ρ

∑

i∈Q0

σi

∫

X

TrF 2
Hi

∧ ωn−2

(n− 2)!

+ 4ρVolω(X)
∑

i∈Q0

(
τi
σi

− µω(Ei)

)
τiri,

where Volω(X) =
∫
X
ωn/n!, ri is the rank of Ei, its normalized ω-slope is

µω(Ei) :=
1

Volω(X)

1

ri

∫

X

Tr(iFAi
) ∧ ωn−1

(n− 1)!
, (4.2)

and ρω is the Ricci form. To see this, we integrate (4.1b), use (2.16), and also integrate
the following identity (that follows from (4.1a))

∑

a∈Q1

(
τha
σha

− τta
σta

)
|φa|2Ha

=
∑

i∈Q0

τi
σi

Tr[φ, φ∗H ]i =
∑

i∈Q0

(
τ 2i ri
σi

− τi Tr(iΛωFHi
)

)
. (4.3)

Given a fixed Kähler form ω on X , the first set of equations (4.1a), involving a Hermitian
metric H on (E, φ), were called the (σ, τ)-vortex equations on (E, φ) over the Kähler
manifold (X,ω) in [5], where their symplectic interpretation and their relation with a (σ, τ)-
polystability condition were provided. To explain how the larger set of equations (4.1) fit
in the general moment-map picture of Section 3, we now fix the metrics and consider the
holomorphic data as the unknowns. More precisely, we fix a compact real manifold X
of dimension 2n, with a symplectic form ω, and a pair (E,H) consisting of a set of C∞

(complex) vector bundles Ei of ranks ri, and a set of Hermitian metrics Hi on Ei, indexed
by the vertices i ∈ Q0. Let Pi be the frame Gi-bundle of the Hermitian vector bundle Ei,
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where Gi = U(ri), for all i ∈ Q0, and G̃i the extended gauge group of Pi over (X,ω). Let

P → X be the fibre product of the principal bundles Pi → X , for all i ∈ Q0, and G̃ the
extended gauge group of P over (X,ω). Then P is a principal G-bundle, where G is the
direct product of the groups Gi, for all i ∈ Q0, and we have short exact sequences

1 → Gi −→ G̃i
p−→ H → 1, 1 → G −→ G̃ p−→ H → 1,

where Gi is the gauge group of Pi, the gauge group of P is the direct product

G =
∏

i∈Q0

Gi, (4.4)

and p : G̃ → H is the fibre product of the group morphisms p : G̃i → H, for all i ∈ Q0.

Let Ai is the space of connections on Pi. Consider the space of connections on P , denoted

A =
∏

i∈Q0

Ai.

To specify a symplectic structure on A, we fix a vector α ∈ R
Q0

>0, and define an Ad-invariant
positive definite inner product (2.2) on the Lie algebra g of G, given for all a, b ∈ g by

(a, b) = −
∑

i∈Q0

αiTr(ai ◦ bi), (4.5)

where ai, bi are in the Lie algebra gi of Gi. Then the symplectic form (2.5) on A becomes

ωA(a, b) = −
∑

i∈Q0

αi

∫

X

Tr(ai ∧ bi) ∧
ωn−1

n− 1!
, (4.6)

for A ∈ A, a, b ∈ TAA = Ω1(adE). Consider the element z of the centre of g given by

zi = − i ci IdEi
, for all i ∈ Q0, for fixed ci ∈ R. By Proposition 2.1, the G̃-action on A has

equivariant moment map µG̃ : A → (Lie G̃)∗ given for all A ∈ A, ζ ∈ Lie G̃ by

〈µG̃(A), ζ〉 = i
∑

i∈Q0

αi

∫

X

Tr (ξi(iΛωFAi
− ci IdEi

))
ωn

n!

+
1

4

∫

X

f
∑

i∈Q0

(
αiΛ

2
ω TrF

2
Ai

+ 4ciαi Tr(iΛωFAi
)
) ωn

n!
,

(4.7)

where ξ := Aζ ∈ LieG (so ξi = Aiζ ∈ LieGi), and p(ζ) = ηf with f ∈ C∞
0 (X) (see (2.11)).

Define a Hermitian vector bundle over X by

R =
⊕

a∈Q0

Ra, with Ra = Hom(Eta, Eha),

where the Hermitian metric is the orthogonal direct sum of the Hermitian metrics Ha on
the vector bundles Ra, given by the formulae (φa, ψa)Ha

:= Tr(φaψ
∗Ha
a ), for all φa, ψa in

the same fibre of Ra. Consider now the space of C∞ global sections of R,

S =
⊕

a∈Q0

Sa, with Sa = Γ(X,Ra).

Then S has a symplectic form ωS defined for all φ ∈ S, φ̇, ψ̇ ∈ TφS ∼= S by

ωS(φ̇, ψ̇) = i
∑

a∈Q1

∫

X

Tr(φ̇aψ̇
∗
a − ψ̇aφ̇

∗
a)
ωn

n!
.
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Since ωS = dσ, for the 1-form σ on S given for all φ ∈ S, φ̇ ∈ TφS by

σ(φ̇) = − i

2

∑

a∈Q1

∫

X

(φ̇aφ
∗
a − φaφ̇

∗
a)
ωn

n!
,

the canonical G̃-action is Hamiltonian, with equivariant moment map µS : S → (Lie G̃)∗
given by 〈µS(φ), ζ〉 = −σ(Yζ(φ)), where the infinitesimal action of ζ ∈ Lie G̃ on S is the
vector field on S with value Yζ(φ) = ξ · φ− p(ζ)ydAφ on φ ∈ S. Here, ξ = Aζ ∈ LieG (so
ξi = Ai(ζi) ∈ LieGi), the action of ξ on φ is given by (ξ ·φ)a = ξhaφa−φaξta, and dAφ is the
covariant derivative with respect to the connection induced by A on R. More explicitly,

〈µS(φ), ζ〉 = i
∑

i∈Q0

∫

X

Tr([φ, φ∗]iξi)
ωn

n!
− i

∫

X

f
∑

a∈Q1

Λωd(dAa
φa, φa)Ha

ωn

n!
. (4.8)

Fix ρ ∈ R>0. Then we consider the space of triples J ×A× S, with the symplectic form

ωα,ρ = ωJ + 4ωA + 4ρωS , (4.9)

with J and ωJ as in Section 2.3. Adding (2.18), (4.7) and (4.8), we see that the diagonal

G̃-action on J ×A×S has equivariant moment map µα,ρ : J ×A×S → (Lie G̃)∗ given by

〈µα,ρ(J,A, φ), ζ〉 = 4 i
∑

i∈Q0

∫

X

Tr (ξi(αi iΛωFAi
+ ρ[φ, φ∗]i − αici IdEi

))
ωn

n!
(4.10)

−
∫

X

f

(
SJ −

∑

i∈Q0

(
αiΛ

2
ω TrF

2
Ai

+ 4ciαi Tr(iΛωFAi
)
)
+ 4ρ

∑

a∈Q1

iΛωd(dAa
φa, φa)Ha

)
ωn

n!
,

for all (J,A, φ) ∈ J ×A× S, ζ ∈ Lie G̃, with ξ := Aζ ∈ LieG, p(ζ) = ηf , f ∈ C∞
0 (X).

Consider the G̃-invariant subspace T ⊂ J ×A× S of ‘integrable triples’ (J,A, φ), defined
by the conditions J ∈ J i, Ai ∈ (Ai)

1,1
J , ∂̄J,Aa

φa = 0, for all i ∈ Q0, a ∈ Q1 (cf. (3.4)). Since

∆ω|φa|2Ha
= 2 iΛω∂̄∂|φa|2Ha

= 2 iΛωd(dAa
φa, φa)Ha

when ∂̄Aa
φa = 0, the G̃-action has equivariant moment map µα,ρ : T → (Lie G̃)∗ given by

〈µα,ρ(J,A, φ), ζ〉 = 4 i
∑

i∈Q0

∫

X

Tr (ξi(αi iΛωFAi
+ ρ[φ, φ∗]i − αici IdEi

))
ωn

n!
(4.11)

−
∫

X

f

(
SJ + 2ρ∆ω

∑

a∈Q1

|φa|2Ha
−
∑

i∈Q0

(
αiΛ

2
ω TrF

2
Ai

+ 4ciαi Tr(iΛωFAi
)
)
)
ωn

n!
,

for all (J,A, φ) ∈ T . Defining now σi = αi/ρ and τi = αici/ρ, we see that the vanishing
condition µα,ρ(J,A, φ) = 0 for a triple (J,A, φ) ∈ T is equivalent to the equations

σi iΛωFHi
+ [φ, φ∗H ]i = τi IdEi

,

Sω + 2ρ∆ω

∑

a∈Q1

|φa|2Ha
− ρ

∑

i∈Q0

(σiΛ
2
ω TrF

2
Hi

+ 4τi Tr(iΛωFHi
)) = c′, (4.12)

expressed in terms of the metrics ω and H , where c′ ∈ R. By (4.3), these equations are
equivalent to the gravitating vortex equations (4.1), with c′ replaced by another c ∈ R.
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4.2. Dimensional reduction. We will now consider the invariant solutions of the Kähler–
Yang–Mills equations on an equivariant vector bundle over M = X ×Kc/P . Here, X is a
compact complex manifold, Kc is a connected simply connected semisimple complex Lie
group, and P ⊂ Kc is a parabolic subgroup, so the quotient Kc/P for the P -action by
right multiplication on Kc is a flag manifold. The group Kc acts trivially on the first factor
X and in the standard way on Kc/P . The Kähler–Yang–Mills equations for the compact

complex manifold M , a holomorphic vector bundle Ẽ → M , and a fixed real parameter
α > 0, are

iΛω̃FH̃ = µω̃(Ẽ) IdẼ , (4.13a)

Sω̃ − αΛ2
ω̃ TrF

2
H̃
= C. (4.13b)

They involve a pair consisting of a Kähler form ω̃ on M and a Hermitian metric H̃ on Ẽ,
with normalized slope µω̃(Ẽ) defined by (4.2).

Let L ⊂ P be a (reductive) Levi subgroup, and K ⊂ Kc a maximal compact Lie subgroup.
Then the K-invariant Kähler 2-forms ωε on the complex Kc-manifold K/(K ∩P ) ∼= Kc/P
are parametrized by elements ε ∈ R

Σ
>0 (see [4, p. 38, Lemma 4.8]), where Σ is a fixed set of

‘non-parabolic simple roots’, as defined in [4, §1.5.1]. For a fixed ε ∈ RΣ
>0 and each choice

of Kähler form ω on X , we consider the K-invariant Kähler form on M defined by

ω̃ = ω + ωε (4.14)

(hereafter we omit the symbols for the pullbacks by the canonical projections M → X ,
M → Kc/P ).

In [4], the first and the third authors proved that there exist an infinite quiver Q and a

set of relations K of Q, such that a Kc-equivariant holomorphic vector bundle Ẽ over M
is equivalent to a holomorphic Q-bundle (E, φ) over X that satisfies the relations in K
(see [4, p. 19, Theorem 2.5]). The vertex set Q0 consists of the isomorphism classes of
(finite-dimensional complex) irreducible representations of L. Under this equivalence, the

K-invariant Hermitian metrics H̃ on the vector bundle Ẽ over M are in bijection with the
Hermitian metrics H on the quiver bundle (E, φ) over X (see [4, §4.2.4]). Furthermore,

for each choice of Kähler form ω on X , a K-invariant Hermitian metric H̃ satisfies the

Hermitian–Yang–Mills equation (4.13a) on Ẽ over (M, ω̃) if and only if the corresponding
Hermitian metric H on (E, φ) over (X,ω) satisfies the quiver (σ, τ)-vortex equations (4.1a)

(see [4, §4.2.2, Theorem 4.13]). Here, the parameters σ ∈ R
Q0

>0 and τ ∈ RQ0 are given by

σλ = dimCMλ, τλ = σλ(µω̃(Ẽ)− µε(Oλ)), (4.15)

for all λ ∈ Q0, where Mλ is an irreducible representation of L (or P ) in the isomorphism
class λ, Oλ = Kc ×P Mλ is the homogeneous vector bundle over Kc/P associated to Mλ,
and the normalized slopes µε(Oλ) := µωε

(Oλ), defined by (4.2), are explicitly given by [4,
(4.16), §4.2.3]. Note that the vortex equations (4.1a), and the symplectic interpretation in
Section 4.1, make sense for the infinite quiver Q, as Eλ 6= 0 only for finitely many λ ∈ Q0,
and the quiver Q is locally finite, that is, t−1(a) and h−1(a) are finite sets for all a ∈ Q1.

The following correspondence extends these bijections to the Kähler–Yang–Mills equations.
It includes [2, Proposition 3.4] for a particular class of equivariant bundles when Kc/P =

P1. As above, Ẽ is a Kc-equivariant holomorphic vector bundle over M , and (E, φ) is the
corresponding holomorphic Q-bundle over X .
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Theorem 4.2. Let ω be a Kähler form on X and ω̃ the K-invariant Kähler form on M
defined by (4.14). Let H̃ be a K-invariant Hermitian metric on Ẽ, and H the correspond-

ing Hermitian metric on (E, φ). Then the pair (ω̃, H̃) satisfies the Kähler–Yang–Mills

equations (4.13) if and only if (ω,H) satisfies the quiver (ρ, σ, τ)-vortex equations (4.1),

where ρ := α, and σ ∈ R
Q0

>0 and τ ∈ RQ0 are given by (4.15).

Proof. Let Q′ ⊂ Q be the finite full subquiver with vertex set Q′
0 consisting of the vertices

λ ∈ Q0 such that Eλ 6= 0, so (E, φ) is a Q′-bundle over X . Let Ã and Aλ be the Chern

connections of H̃ and Hλ on the holomorphic vector bundles Ẽ and Eλ, respectively, for
λ ∈ Q′

0. The vector bundles Eλ and the Hermitian metrics Hλ on Eλ, for λ ∈ Q′
0, specify

the K-action on Ẽ and its Hermitian metric H̃, respectively, via the identification

Ẽ =
⊕

λ∈Q′

0

Eλ ⊗Oλ (4.16)

between K-equivariant C∞ Hermitian vector bundles, where the homogeneous vector bun-
dles Oλ are endowed with their unique (up to scale) K-invariant Hermitian metrics. Fur-
thermore, the Higgs fields φa and the unitary connections Aλ, for a ∈ Q1, λ ∈ Q′

0, specify

the unitary connection Ã on Ẽ, given by dÃ = dA◦ + θ, with θ = β − β∗ ∈ Ω1(ad Ẽ) and

dA◦ =
∑

λ∈Q′

0

(dAλ
⊗ IdOλ

+ IdEλ
⊗dA′

λ
) ◦ πλ, β =

∑

a∈Q′

1

φa ⊗ ηa, (4.17)

where A′
λ is the unique K-invariant unitary connection on Oλ, πλ : Ẽ → Eλ ⊗Oλ are the

canonical projections, and {ηa | a ∈ t−1(λ)∩ h−1(µ)} is a basis of the space of K-invariant
Hom(Oλ,Oµ)-valued (0, 1)-forms on Kc/P , for all λ, µ ∈ Q′

0 (see [4, §3.4.5]).
We will use the moment-map interpretations of the Kähler–Yang–Mills equations and the

quiver gravitating vortex equations. Let J̃ , Ã and G̃M be the space of almost complex
structures J̃ on (M, ω̃), the space of unitary connections on (Ẽ, Ĥ), and the extended

gauge group of the symplectic manifold (M, ω̃) and the Hermitian vector bundle (Ẽ, H̃),

respectively. By [1, Proposition 2.1], the G̃M -action on J̃ × Ã, with symplectic form

ωJ̃ + 4αωÃ, has equivariant moment map µ̃G̃M
: J̃ × Ã → (Lie G̃M )∗ given by

〈µ̃G̃M
(J̃ , Ã), ζ̃〉 = 4α〈µ̃GM

(Ã), ξ̃〉+
∫

M

f̃Sα(J̃ , Ã)
ω̃m

m!
, (4.18)

for all ζ̃ ∈ Lie G̃M , where ξ̃ = Ãζ̃ ∈ LieGM , f̃ ∈ C∞
0 (M) is such that df̃ = p(ζ̃)yω̃,

m = dimCM , and µ̃GM
: Ã → (LieGM)∗, Sα(J̃ , Ã) ∈ C∞(M) (cf. [1, (3.78)]) are given by

〈µ̃GM
(Ã), ξ̃〉 = i

∫

M

Tr((iΛω̃FÃ − µω̃(Ẽ) IdẼ)ξ̃)
ω̃m

m!
, (4.19a)

Sα(J̃ , Ã) = −SJ̃ + 4αµω̃(Ẽ) Tr(iΛω̃FÃ) + αΛ2
ω̃ TrF

2
Ã
. (4.19b)

By construction, Λω̃FÃ+iµω̃(Ẽ) IdẼ ∈ Lie G̃K
M , so µ̃GM

(Ã) = 0 if and only if 〈µ̃GM
(Ã), ξ̃〉 = 0

for all ξ̃ ∈ LieGK
M (where (−)K means the fixed-point subspace for the K-action). Using

the last displayed formula for iΛω̃FÃ in [4, §4.2.4]), we see that

〈µ̃GM
(Ã), ξ̃〉 = Volε(K

c/P )
∑

λ∈Q′

0

i

∫

X

Tr ((σλ iΛωFAλ
+ [φ, φ∗]λ − τλ IdEλ

)ξλ)
ωn

n!
, (4.20)
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where ξ ∈ LieGK corresponds to (ξλ)λ∈Q′

0
, with ξλ ∈ LieGλ, by [4, Proposition 3.4], Gλ

being the unitary gauge group of Eλ, and Volε(K
c/P ) =

∫
Kc/P

ωl
ε/l!, with l = dimC(K

c/P ).

This gives the correspondence for the vortex equations (4.1a) and the Hermitian–Yang–
Mills equation (4.13a). To compare (4.1b) and (4.13b), we calculate separately the terms
involved in (4.19b), namely,

−SJ̃ = −SJ + const., (4.21a)

4αµω̃(Ẽ) Tr(iΛω̃FÃ) = 4ρµω̃(Ẽ)
∑

λ∈Q′

0

σλ Tr(iΛωFAλ
ξλ) + const., (4.21b)

αΛ2
ω̃ TrF

2
Ã
=
∑

λ∈Q′

0

(
ρσλΛ

2
ω TrF

2
A − 4ρσλµε(Oλ) Tr(iΛωFAλ

)
)

−
∑

a∈Q′

1

4ρ iΛωdTr(dAa
φa ◦ φ∗

a) (4.21c)

− ρ
∑

a,b∈Q′

1

Tr(φa ◦ φ∗
b)Λ

2
ωε
dTr(ηa ∧ dA′

b
η∗b + dA′

a
ηa ∧ η∗b ) + const.,

where Aa (resp. A′
a) is the connection induced by Ata and Aha (resp. A′

ta and A′
ha) on the

vector bundle Hom(Eta, Eha) (resp. Hom(Ota,Oha)), and the sums in a, b ∈ Q′
1 in (4.21b)

are constrained to the condition ta = tb, ha = hb (so that the traces are well defined).
Formula (4.21a) follows because the scalar curvature of ωε on Kc/P is K-invariant by
construction, and hence it is constant, as K acts effectively on Kc/P . Formula (4.21b)
is obtained taking traces in the last displayed formula for iΛω̃FÃ in [4, §4.2.4]). We
prove (4.21c) making the substitution FÃ = FA◦ + dA◦θ + θ2, obtaining

Λ2
ω̃ TrF

2
Ã
= Λ2

ω̃ TrF
2
A◦ + 2Λ2

ω̃ Tr(FA◦ ∧ dA◦θ) + Λ2
ω̃ Tr(θ

4)

+ 2Λ2
ω̃ Tr(dA◦θ ∧ θ2) + Λ2

ω̃ Tr((dA◦θ)2) + 2Λ2
ω̃ Tr(FA◦ ∧ θ2),

(4.22)

and calculating the six terms in the right-hand side:

Λ2
ω̃ TrF

2
A◦ =

∑

λ∈Q′

0

(
σλΛ

2
ω TrF

2
Aλ

− 4σλµε(Oλ) Tr(iΛωFAλ
)
)
+ const., (4.23a)

Λ2
ω̃ Tr(FA◦ ∧ dA◦θ) = 0, Λ2

ω̃ Tr(θ
4) = 0, Λ2

ω̃ Tr(dA◦θ ∧ θ2) = 0, (4.23b)

Λ2
ω̃ Tr((dA◦θ)2)=

∑

a,b∈Q′

1

(
4Tr iΛω(dAa

φa ∧ dAb
φ∗
b)− 2Tr(φa ◦ φ∗

b)Λ
2
ωε
Tr(dA′

a
ηa ∧ dA′

b
η∗b )
)
,

(4.23c)

Λ2
ω̃ Tr(FA◦ ∧ θ2)=−2

∑

a∈Q′

1

Tr (iΛωFAha
◦ φa ◦ φ∗

a − iΛωFAta
◦ φ∗

a ◦ φa) (4.23d)

+
∑

a,b∈Q′

1

Tr(φa ◦ φ∗
b)Λ

2
ωε
Tr(FA′

ha
∧ ηa ∧ η∗b + FA′

ta
∧ η∗a ∧ ηb).

Formula (4.23a) follows from the definition of dA◦ in (4.17), the identities iΛωε
FA′

λ
=

µε(Oλ) IdOλ
(see [4, Lemma 4.15, §4.2.3]), and the fact that Λ2

ωε
TrF 2

A′

λ
∈ C∞(Kc/P ) is

K-invariant, and hence constant. The first identity in (4.23b) follows by using (4.17)
and observing the quiver Q′ has no oriented cycles [4, Lemma 1.15]. The second identity
in (4.23b) follows from Tr(θ ∧ θ3) = −Tr(θ3 ∧ θ) (as θ is a 1-form). Using (4.17) and the
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orthogonal direct-sum decomposition

TM = TX ⊕ T (Kc/P ) (4.24)

(with respect to the metric ω̃), it is not difficult to derive the identity

Λ2
ω̃ Tr(dA◦θ ∧ θ2) = −

∑

a,b,c∈Q′

1

Tr(φa ◦ φb ◦ φ∗
c)⊗ Λ2

ωε
dTr(ηa ∧ ηb ∧ η∗c ) + c. c., (4.25)

where “c.c.” means complex conjugate. The third identity in (4.23b) now follows because
the function Λ2

ω̃ Tr(dA◦θ ∧ θ2) is K-invariant (by construction), so it equals its average by
fibre integration along the canonical projection M → X , that vanishes because in (4.25),

∫

Kc/P

Λ2
ωε
dTr(ηa ∧ ηb ∧ η∗c )ωl

ε = 0.

To prove (4.23c), we use (4.17) with θ = β − β∗, and the facts that the quiver Q′ has no
oriented cycles and the direct-sum decomposition (4.24) is orthogonal, obtaining

Λ2
ω̃ Tr((dA◦θ)2) = −2Λ2

ω̃ Tr(dA◦β ∧ dA◦β∗).

To prove that this equals the right-hand side of (4.23c), one needs to make another calcu-
lation using (4.17), choosing the basis {ηa} as in [4, §4.2.4], so the pointwise inner product

− Tr iΛωε
(ηa ∧ η∗b ) = δab (4.26)

is the Kronecker delta for ta = tb, ha = hb, and the orthogonal decomposition (4.24).

Finally, using (4.17) and the decomposition θ = β − β∗, one can prove that

Λ2
ω̃ Tr(FA◦ ∧ θ2) = −Λ2

ω̃ Tr(FA◦ ∧ [β, β∗]),

where [β, β∗] = β ∧ β∗ + β∗ ∧ β, because Λωε
and Λ2

ωε
respectively vanish when applied

to (2, 0) and (0, 2)-forms, and to (1, 3) and (3, 1)-forms. To show that this is equal to the
right-hand side of (4.23d), one has to use (4.17) once again, and (4.26).

Formula (4.21c) follows from (4.22), (4.23), and the fact that the connections Aλ and A′
λ

are unitary, and so putting together the right-hand sides of (4.23c) and (4.23d), we obtain

Λ2
ω̃ Tr((dA◦θ)2) + 2Λ2

ω̃ Tr(FA◦ ∧ θ2) =− 4
∑

a∈Q′

0

iΛωdTr(dAa
φa ◦ φ∗

a)

−
∑

a,b∈Q′

0

Tr(φa ◦ φ∗
b)Λ

2
ωε
dTr(ηa ∧ dA′

b
η∗b + dA′

a
ηa ∧ η∗b ).

We can now compare (4.1b) and (4.13b). By construction, Sα(J̃ , Ã) ∈ C∞(M)K , so

Sα(J̃ , Ã) = const. if and only if the last term in (4.19b) vanishes for all f̃ ∈ C∞
0 (M)K , i.e.

f̃ = f ◦ pX with f ∈ C∞
0 (X), pX : M → X being the canonical projection. In this case,

∫

M

f̃Sα(J̃ , Ã)
ω̃m

m!
=Volε(K

c/P )

∫

X

fSρ,σ,τ (J,A, φ)
ωn

n!
,

where, adding the three identities in (4.21), we have

Sρ,σ,τ (J,A, φ) := −SJ+ρ
∑

λ∈Q′

0

(σλΛ
2
ω TrF

2
Aλ

+4τλ Tr(iΛωFAλ
))−4ρ

∑

a∈Q′

1

iΛωdTr(dAa
φa◦φ∗

a).

Combining this and (4.20) in (4.18), we see that 〈µ̃G̃M
(J̃ , Ã), ζ̃〉 equals (4.10), up to a factor

Volε(K
c/P ). This implies the correspondence for (4.1b) and (4.13b), as required. �
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Note that the relations in the set K have not played any role in the proof of Theorem 4.2.

5. Examples

5.1. Solutions in the weak coupling limit. In this section we consider the Kähler–
Yang–Mills–Higgs equations with coupling constants α = β. Assuming α > 0 and normal-
izing the first equation in (3.9), we obtain the system of equations

ΛωFH + φ∗µ̂ = z,

Sω + α∆ω|φ∗µ̂|2 + αΛ2
ω(FH ∧ FH)− 4α(ΛωFH , z) = c.

(5.1)

Following [1], this section is concerned with the existence of solutions of (5.1) in ‘weak
coupling limit’ 0 < |α| ≪ 1 by deforming solutions (ω,H) with coupling constants α = 0.

Note that for α = 0, the coupled equations (5.1) are the condition that ω is a constant scalar
curvature Kähler (cscK) metric onX andH is a solution of the Yang–Mills–Higgs equation,
as studied in [27]. If φ = 0, then the existence of solutions of the first equation in (5.1) is
equivalent, by the Theorem of Donaldson, Uhlenbeck and Yau [12, 31], to the polystability
of the holomorphic bundle Ec with respect to the Kähler class [ω] ∈ H2(X,R). For φ 6= 0,
Mundet i Riera [27] gave the following characterization of the existence of solutions.

Theorem 5.1 ([27]). Assume that φ 6= 0 and that (Ec, φ) is a simple pair. Then, for

every fixed Kähler form ω, there exists a solution H of the Yang–Mills–Higgs equation if

and only if (Ec, φ) is z-stable, in which case the solution is unique.

The conditions of simplicity and z-stability in the previous theorem are rather technical,
and we refer the reader to [27] for a detailed definition. To give an idea in the language of
Section 3.2, a sufficient condition for (Ec, φ) to be a simple pair (see [27, Definition 2.17])
is that the Lie algebra LieAut(Ec, φ) of infinitesimal automorphisms of (Ec, φ) vanishes,
where LieAut(Ec, φ) is given by the Kernel of

LieAut(X,Ec, φ) → H0(X, TX).

The z-stability of the pair (Ec, φ) can regarded as a version of the geodesic stability in
Definition 3.4, for (weak) geodesic rays (ωt, Ht) with ωt = ω constant (see [27, Definition
2.16]).

Our next result is a consequence of the implicit function theorem in Banach spaces, com-
bined with Theorem 5.1 and the moment map interpretation of the constant scalar curva-
ture Kähler metric equation. The proof follows along the lines of [1, Theorem 4.18].

Theorem 5.2. Assume that φ 6= 0 and that (Ec, φ) is a simple pair. Assume that there

is a cscK metric ω0 on X with cohomology class [ω0] = Ω0 and that there are no non-zero

Hamiltonian Killing vector fields on X. If (Ec, φ) is z-stable with respect to ω0, then there

exists an open neighbourhood U ⊂ R × H1,1(X,R) of (0,Ω0) such that for all (α,Ω) ∈ U
there exists a solution of (5.1) with coupling constant α such that [ω] = Ω.

We next provide an application of the previous theorem to the Kähler–Yang–Mills equa-
tions. Using the notation of Section 4.2, we fix a Kähler form ω0 on X , a K-invariant
Kähler form ωε on Kc/P (with ε ∈ RΣ

>0), and the product Kähler form ω̃0 = ω0 + ωε

on M = X × Kc/P . Let Ω0 = [ω0], Ωε = [ωε] and Ω̃0 = [ω̃0] = Ω0 + Ωε be their
cohomology classes on X , Kc/P and M , respectively. We also fix a Kc-equivariant holo-

morphic vector bundle Ẽ on M , and say Ẽ is Kc-invariantly stable (with respect to Ω̃0)
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if for all Kc-invariant proper subsheaves Ẽ ′ ⊂ Ẽ, their slopes with respect to Ω̃0 satisfy

µΩ̃0
(Ẽ ′) < µΩ̃0

(Ẽ) (cf. [4, Definition 4.6, §4.1.2]).

Corollary 5.3. Assume that ω0 is a constant scalar curvature Kähler metric on X, there

are no non-zero Hamiltonian Killing vector fields on X, and Ẽ is Kc-invariantly stable with

respect to Ω0. Then there exists an open neighbourhood U ⊂ R×H1,1(X,R) of (0,Ω0) such

that for all (α,Ω) ∈ U , there exists a K-invariant solution (ω̃, H̃) of the Kähler–Yang–Mills

equations (4.13) on M with coupling constant α such that [ω̃] = Ω + Ωε.

Proof. This follows from Theorems 5.2 and 4.2, and the correspondences of [4, §4]. To
apply Theorem 5.2, we consider the holomorphic Q-bundle (E, φ) over X corresponding to

Ẽ, and the symplectic form (3.2) given by ωJ +4ρωA+4ρωS , i.e., with α = β both equal to
ρ, where ωA is now defined using the invariant inner product (4.6) with αλ = dimCMλ. �

Note that this result is not covered by [1, Theorem 4.18], since the infinitesimal action by
any non-zero element of kc/p ∼= TP (K

c/P ) induces a nowhere-vanishing real holomorphic
vector field over X ×Kc/P (where p ⊂ kc are the Lie algebras of P ⊂ Kc, respectively).

To illustrate further the scope of application of Theorem 5.2, consider now a compact
Riemann surface Σ with genus g(Σ) > 1, endowed with a Kähler metric ω0 with constant
curvature −1. We fix a holomorphic principal Gc-bundle over Σ and consider a unitary
representation ρ : G → U(W ), for a hermitian vector space W . We take F = P(W ),
endowed with the Fubini–Study metric, rescaled by a real constant τ > 0. Consider the
associated ruled manifold

F = Ec ×Gc F = P(Ec ×Gc W ).

Denote by P(W )s ⊂ P(W ) the locus of stable points for the linearized Gc-action, and set

F s = Ec ×Gc P(W )s ⊂ F .
Then, if Ec is semistable with respect the Kähler class [ω0] and φ ∈ H0(Σ,F) is such
that φ(Σ) ⊂ F s, then (Ec, φ) is z-stable, for any z and any value of τ (see [26, p. 74]).
Furthermore, we can also choose φ such that the pair is simple, by taking its image outside
any proper Gc-invariant subspace W ′ ⊂ W .

For the sake of concreteness, consider the case that Gc = GL(r,C) and ρ is the standard
representation in W = Cr. Then V = Ec ×Gc W is a holomorphic vector bundle and
φ ∈ H0(Σ,F) can be identified with the inclusion

L ⊂ V

for a holomorphic subbundle L of rank one, as considered by Bradlow and the third author
in [9]. Then, the pair (Ec, φ) is not simple if and only if one can find a holomorphic
splitting

V = V ′ ⊕ V ′′

such that L is contained in V ′. Identifying z = −iλ Id ∈ u(r) for a real constant λ ∈ R,
the pair (Ec, φ) is z-stable if and only if for any non-zero proper subbundle V ′ ⊂ V we
have

deg(V ′) + τ rk(L ∩ V ′)

rk(V ′)
<

deg(V ) + τ

r
.
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In this simple situation, the equations (5.1) are for a Kähler metric ω on Σ and a hermitian
metric H on V , and reduce to

iΛωFH + τπH
L = λ Id,

Sω + ατ 2∆ω|πH
L |2 = c′,

for a suitable real constant c′ ∈ R, where πH
L : V → L denotes the H-orthogonal projection.

5.2. Gravitating vortices and Yang’s Conjecture. In this section we apply Theorem
3.6 to find an obstruction to the gravitating vortex equations on the Riemann sphere, as
introduced in [2]. As an application, we give an alternative affirmative answer to Yang’s
Conjecture for the Einstein–Bogomol’nyi equations [33] (see also [34, p. 437]), that shall
be compared with the original proof in [3, Corollary 4.7].

Consider X = P
1, with Gc = C

∗ and F = C, endowed with the standard hermitian
structure. A C∗-principal bundle on P1 is equivalent to a line bundle OP1(N) of degree
N , while the Higgs field is φ ∈ H0(P1,OP1(N)). Here we are concerned with the case
φ 6= 0, so we assume N > 0. Choose a real constant τ > 0, and consider z = −iατ/2.
Then, the Kähler–Yang–Mills–Higgs equations (3.9) with coupling constants α = β > 0
are equivalent to the gravitating vortex equations [2]

iΛωFH +
1

2
(|φ|2H − τ) = 0,

Sω + α(∆ω + τ)(|φ|2H − τ) = c,
(5.2)

where ω is a Kähler metric on P1 and H is a hermitian metric on OP1(N). The constant
c ∈ R is topological, and is explicitly given by

c = 2− 2ατN, (5.3)

where have assumed the normalization
∫
P1 ω = 2π.

The first equation in (5.2) is the abelian vortex equation. A theorem by Noguchi [28],
Bradlow [7] and the third author [18, 19] implies that, upon a choice of Kähler metric with
volume 2π, the equation

iΛωFH +
1

2
(|φ|2H − τ) = 0

admits a (unique) solution provided that N < τ/2. As we will show next, this numerical
condition is not enough to ensure the existence of solutions of the coupled system (5.2).

Theorem 5.4. If φ has only one zero, then there are no solutions of the gravitating vortex

equations for (P1, L, φ).

Proof. Choose homogeneous coordinates [x0, x1] on P1 such that φ is identified with the
polynomial

φ ∼= xN0 .

Here we use the natural identification H0(P1, L) ∼= SN(C2)∗, where the right hand side is
the space of degree N homogeneous polynomials in the coordinates x0, x1. By [3, Lemma
4.3], it follows that

Aut(P1,OP1(N), φ) ∼= C
∗
⋊ C,

which is non-reductive. Consequently, the proof follows from Theorem 3.6. �
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When the constant c in (5.3) is zero, the gravitating vortex equations (5.2) turn out to be
a system of partial differential equations that have been extensively studied in the physics
literature, known as the Einstein–Bogomol’nyi equations. Based on partial results in [33],
Yang posed a conjecture about non-existence of solutions of the Einstein–Bogomol’nyi
equations with φ having exactely one zero. This conjecture has been recently settled in
the affirmative in [3]. As an application of Theorem 5.4, we provide here an alternative
proof.

Corollary 5.5 (Yang’s conjecture). There is no solution of the Einstein–Bogomol’nyi

equations for φ having exactly one zero.

5.3. Non-abelian vortices on P1. We consider now the case of non-abelian rank-two
vortices on the Riemann sphere (corresponding to G = U(2)).

Let X = P1, with Gc = GL(2,C) and F = C2, endowed with the standard hermitian
structure. A Gc-principal bundle on P1 is equivalent to a split rank-two bundle

V = OP1(N1)⊕OP1(N2),

while the Higgs field is

φ = (φ1, φ2) ∈ H0(P1,OP1(N1))⊕H0(P1,OP1(N2)).

We will assume 0 < N1 6 N2. Choose a real constant τ > 0, and consider the central ele-
ment z = −i(ατ/2) Id. Then, the Kähler–Yang–Mills–Higgs equations (3.9) with coupling
constants α = β > 0 are equivalent to

iΛωFH +
1

2
φ⊗ φ∗H =

τ

2
Id,

Sω + α(∆ω + τ)(|φ|2H − 2τ) = c,
(5.4)

where ω is a Kähler metric on P1 and H is a hermitian metric on V . The constant c ∈ R

is topological, and is explicitly given by

c = 2− 2ατ(N1 +N2), (5.5)

where have assumed the normalization
∫
P1 ω = 2π.

The first equation in (5.4) is the non-abelian vortex equation, as studied in [8]. Applying
[8, Theorem 2.1.6] we obtain that this equation admits a solution provided that

N2 <
τ

2
< N1 +N2 − deg([φ]), (5.6)

where [φ] denotes the line bundle given by the saturation of the image of φ : OP1 → V .
We want to show next that condition (5.6) is not sufficient to solve the full system of
equations (5.4). For this, we will apply the Futaki invariant in Proposition 3.3. Fix
homogeneous coordinates [x0, x1] , so that H0(P1,OP1(Nj)) ∼= SNj(C2)∗ is the space of
degree Nj homogeneous polynomials in x0, x1. Following [3], consider

φj = x
N−ℓj
0 x

ℓj
1 , (5.7)

with 0 ≤ ℓj < Nj (the case ℓ1 = ℓ2 = 0 corresponds to a Higgs field φ that has only one
zero). In this case, it can be easily checked that the numerical condition (5.6) reduces to

N2 <
τ

2
< N1 +N2 −min{ℓ1, ℓ2} −min{N1 − ℓ1, N2 − ℓ2}, (5.8)
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and, by choosing suitable values of the parameters τ, Nj , and ℓj , the non-abelian vortex
equation admits a solution. To evaluate the Futaki invariant, note that the Lie algebra
element

y =

(
0 0
0 1

)
∈ gl(2,C) (5.9)

can be identified with an element in LieAut(P1, V, φ) for any choice of ℓj as before.

Lemma 5.6.

〈Fα,α, y〉 = 2πiα(2N1 − τ)(2ℓ1 −N1) + 2πiα(2N2 − τ)(2ℓ2 −N2) (5.10)

The proof follows along the lines of [3, Lemma 4.6], by direct evaluation of the Futaki
invariant using the Fubini–Study metric on P1 and the product ansatz H = H1⊕H2, with
Hj the Fubini–Study hermitian metric on the line bundle OP1(Nj).

As a direct consequence of Proposition 3.3 and the previous lemma, we obtain the following.

Theorem 5.7. Let (V, φ) as before, and assume that (5.8) is satisfied. Then, there is no

solution of the equations (5.4) on (P1, V, φ), unless the following balancing condition holds

2ℓ1 −N1

2N2 − τ
+

2ℓ2 −N2

2N1 − τ
= 0.
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