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ON THE KAHLER-YANG-MILLS-HIGGS EQUATIONS

LUIS ALVAREZ-CONSUL, MARIO GARCIA-FERNANDEZ, AND OSCAR GARCIA-PRADA

To Simon Donaldson on his 60th birthday

ABSTRACT. In this paper we introduce a set of equations on a principal bundle over a
compact complex manifold coupling a connection on the principal bundle, a section of an
associated bundle with Kahler fibre, and a Ké&hler structure on the base. These equations
are a generalization of the Kahler—Yang—Mills equations introduced by the authors. They
also generalize the constant scalar curvature for a Kahler metric studied by Donaldson
and others, as well as the Yang-Mills-Higgs equations studied by Mundet i Riera. We
provide a moment map interpretation of the equations, construct some first examples,
and study obstructions to the existence of solutions.

CONTENTS

Introduction

Hamiltonian actions of the extended gauge group

1

2

3. The Kahler-Yang-Mills-Higgs equations

4. Gravitating vortices and dimensional reduction
b}

Examples

EE R am=

References

1. INTRODUCTION

In the 1990s, Donaldson and Fujiki observed independently that moment maps play a
central role in Kéhler geometry [I1) 15]. Since then, they have been fruitfully applied
in the problem of finding constant scalar curvature Kéhler metrics, acting as a guiding
principle for many advances in this topic such as the recent solution of the Kahler—Einstein
problem [I0]. As noticed in [I], the moment map picture for Kéahler metrics extends to
the study of equations coupling a Kahler metric on a compact complex manifold and a
connection on a principal bundle over it, known as the Kahler—Yang—Mills equations. Alike
the constant scalar curvature Kahler metrics can be used to understand the moduli space
of polarised manifolds, these equations are natural in the study of the algebro-geometric
moduli problem for bundles and varieties, suggested in [36].

Motivated by the search of the simplest non-trivial solutions of the Kahler—Yang—Mills
equations, the authors studied [2] the dimensional reduction of the equations on the product
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of a Riemann surface with the complex projective line. This approach to the Kahler—Yang—
Mills equations provided a new theory for abelian vortices on the Riemann surface [7], 28]
18], 19] with back-reaction of the metric, described by solutions of the ‘gravitating vortex
equations’, and showed an unexpected relation with the physics of cosmic strings [2], [3].
The further coupling of a Kahler metric and a connection with a ‘Higgs field’ considered in
these works also reveils newly emergent phenomena, not observed in the theory originally
introduced in [1].

Building on [T}, 2, 3], this paper develops some basic pieces of a general moment-map theory
for the coupling of a Kahler metric on a compact complex manifold X, a connection on a
principal bundle E over X, and a Higgs field ¢, given by a section of a Kéhler fibration
associated to E. Our treatment of the Higgs field ¢ is inspired by, on the one hand, work
on the Yang-Mills-Higgs equations by Mundet i Riera [27], and, other hand, Donaldson’s
study of actions of diffeomorphism groups on spaces of sections of a bundle [14] (see
Section ). As we will see, the Kdhler—Yang—Mills-Higgs equations introduced in this
paper lead to a very rich theory (see Section [B]), which comprises a large class of interesting
examples of moment-map equations (see Sections Ml and [l). In addition, we expect that
these equations may provide a natural framework for the interaction of Kéahler geometry
and a certain class of unified field theories in physics [34] (see Section [(.2)).

Acknowledgements. The authors wish to thank D. Alfaya and T. L. Gémez for useful
discussions.

2. HAMILTONIAN ACTIONS OF THE EXTENDED GAUGE GROUP

2.1. The space of connections. Details for this section can be found in [I].

Let X be a compact symplectic manifold of dimension 2n, with symplectic form w. Let G
be a compact Lie group with Lie algebra g and E be a smooth principal G-bundle on X,
with projection map 7: £ — X. Let H be the group of Hamiltonian symplectomorphisms
of (X,w) and Aut £ be the group of automorphisms of the bundle E. Recall that an
automorphism of E is a G-equivariant diffeomorphism g: £ — E. Any such automorphism
covers a unique diffeomorphism ¢: X — X, i.e. a unique § such that rog = gom. We
define the Hamiltonian extended gauge group (to which we will simply refer as extended
gauge group) of F,
G CAutFE ,

as the group of automorphisms which cover elements of H. Then the gauge group of E'is
the normal subgroup G C G of automorphisms covering the identity.

The map G - H assigning to each automorphism ¢ the Hamiltonian symplectomorphism
g that it covers is surjective. We thus have an exact sequence of Lie groups

156565 H—1, (2.1)

where ¢ is the inclusion map.

The spaces of smooth k-forms on X and smooth k-forms with values in any given vector
bundle F on X are denoted by QF and QF(F), respectively. Fix a positive definite inner
product on g, invariant under the adjoint action, denoted

(n):g®g—R (2.2)
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This product induces a metric on the adjoint bundle ad E = F X g, which extends to a
bilinear map on (ad E)-valued differential forms (we use the same notation as in [0, §3])
W(ad E) x Qi(ad E) — QP12 (ay, a,) — a, A ag. (2.3)
We consider the operator
A=A, : QF — QF 2 h s wi i, (2.4)

where f is the operator acting on k-forms induced by the symplectic duality §: T*X — T'X
and _ denotes the contraction operator. Its linear extension to QF(ad ) is also denoted
A:QF(ad E) — Q9 2(ad E) (we use the same notation as, e.g., in [12]).

Let A be the set of connections on E. This is an affine space modelled on Q'(ad E). The
2-form on A defined by

n—1

wA(a,b):/a/\b/\n T (2.5)
X - .

for a,b € TyA = Q' ad E), A € A, is a symplectic form.

There is an action of Aut F/, and hence of the extended gauge group, on the space A
of connections on E. To define this action, we view the elements of A as G-equivariant
splittings A: TE — V E of the short exact sequence

0—-VE—TE —mTX — 0, (2.6)

where V E = ker dr is the vertical bundle. Using the action of ¢ € Aut E on T'F, its action
on A is given by g- A := go Ao g~!'. Any such splitting A induces a vector space splitting
of the Atiyah short exact sequence

0 — LieG — Lie(Aut E) - Lie(Diff X) — 0 (2.7)
(cf. [6, equation (3.4)]), where Lie(Diff X') is the Lie algebra of vector fields on X and
Lie(Aut E) is the Lie algebra of G-invariant vector fields on E. Abusing of the notation,
this splitting is given by maps
A: Lie(Aut E) — LieG, A*': Lie(Diff X) — Lie(Aut F) (2.8)
such that 1o A+ A+ op = Id, where A is the vertical projection and At the horizontal lift
of vector fields on X to vector fields on F, given by the connection.

It is easy to see that the G-action on A is symplectic. An equivariant moment map for this
action was calculated in [I]. To give an explicit formula, we use that the splitting (2.8))
restricts to a splitting of the exact sequence

0— LieG — LieG 2 LieH — 0 (2.9)
induced by (2.]]). Consider the isomorphism of Lie algebras
LieH = C5P(X), (2.10)

where Lie H is the Lie algebra of Hamiltonian vector fields on X and C§°(X) is the Lie
algebra of smooth real functions on X with zero integral over X with respect to w”, with
the Poisson bracket. This isomorphism is induced by the map C*(X) — LieH: f — ny,
which to each function f assigns its Hamiltonian vector field 7, defined by

df = 1w (2.11)
Let Fiy € Q*(ad E) be the curvature of A € A and z be an element of the space
3=10 (2.12)
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of elements of g which are invariant under the adjoint G-action, that we identify with
sections of ad E. We have the following.

Proposition 2.1. The G-action on A is Hamiltonian, with equivariant moment map
pg: A — (LieG)* given by

ig(4).¢) = [

be
for all ¢ € LieG, A € A, where f € C3*(X) corresponds to p(¢) via (Z3) and (210).

n

AC N (AFy — z)%? - i/xf (A*(Fa A Fa) —4AF4 A 2) Y (213)

n!

2.2. Sections of a Kihler fibration. Let (F,.J, ) be a (possibly non-compact) Kéhler
manifold, with complex structure J and Kahler form &. Following the notation of the
previous section, we assume that G acts on F' by Hamiltonian isometries, and fix a G-
equivariant moment map

p: F— gt
Consider the associated fibre bundle F = E Xg F with fibre . We will denote by
VF C TF the vertical bundle of the fibration.

Let S := QY(X,F) the space of C™ global sections of the fibre bundle F. Using the
Kahler structure on the fibres of F, we endow the infinite-dimensional space S with a
Kahler structure. Given ¢ € S, the symplectic form is given explicitly by

os(r,dn) = [ aldn,da) %

where ¢; € T,,S are identified with elements in Q°(¢*V F).

An equivariant moment map for the action of the gauge group G of E on (S,ws) was
calculated in [27]. Here we are interested in a generalization of this result, where the
gauge group is extended by the group of hamiltonian symplectomorphisms H of (X, w).
The action of the extended group G on E induces an action on S. This can be seen, for
example, by regarding a section of F as a G-equivariant map ¢: £ — F. Furthermore, it
is easy to see that G-action on S preserves the Kahler structure.

To compute the moment map, let us assume for a moment that the symplectic form @ is
exact (this is, e.g., the situation considered in [3]), that is, there exists 6 € Q!(F) such
that

do = w.
By averaging over (G, we can assume that ¢ is invariant under the action of G, and it
follows that ws = dos, with

oW

7s(6) = [ #(6)

Then, a g-equivariant moment map ji5: S — (Lie 5)* is given by

nl’

. w"
(1g:) = =os(¥0) = [ alaslO) (2.14)
where Y, denotes the infinitesimal action
Yejp = —do(C)

of ¢ € Lie G on ¢ € §, where ¢ is regarded as a map ¢: £ — F and we use the identification
ExqgTF = ¢*VF.
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We want to obtain an equivalent formula for the moment map (2.14) which is independent
of the choice of 1-form &. For this, choosing a connection A: TE — VE on E, we can
write

do(¢) = dp(A*Q) + do(AQ) = Cadad — AC - &,

where ¢ := p(¢), AC - ¢ denotes the infinitesimal action of AC € Q°(V E) along the image
of ¢ and da¢ = dp(A*-) € QL(¢*V F) is the covariant derivative induced by A. Using that
0 induces a moment map for the G-action on F' (that we can assume to be [i) it follows
that

G(AC-¢) = — ("1, AC)
where ¢*i € Q°(E x¢g*). We use now that ¢ € H, that is, (uw = df for a smooth function
felCr(X):

wn—l

[ ot = [ 5 A(dA¢>Ade< =

- J et A T

Finally, our desired formula follows from

A(6(d0) = 20(d6.446) + 5(Fa - 6) = S0(datdad) — (6"} Fa).
The next result is independent of the existence of the 1-form 6 on F'.
Proposition 2.2. The G-action on S is Hamiltonian, with equivariant moment map
pg: S — (LieG)*.

For any choice of unitary connection A on E, the moment map is given explicitly by

(), ) = / (65, AQ S+ / F((dad, dad) — 26 Fa)) A (2.15)

for all g € S and ¢ € LieG covering ¢ € H, such that df = ¢ w with f € C(X).

Proof. The variation of (¢*fi, AC) with respect to ¢ is

(dil($), AC) = w(dp(AQ), §).

In addition, we have

n

~0(dad(0), )= = ~(dad,6) Nf A"
= d(fo(dag, ¢) A" ") = fd(&(dag, §)) AW,
while the variation of &(da¢, dad) — 2(¢*f1, F4) in the second integral is
&(dad, dad) + &(dad, dad) — 20(dd(Fa), ¢) = —2d(@(dag, ).
Formula (ZI5) follows now integrating by parts. O
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2.3. The Hermitian scalar curvature as a moment map. Via its projection into
the group of Hamiltonian symplectomorphisms H (see (210)), the extended gauge group
acts on the space J of compatible almost complex structures on the symplectic manifold
(X,w). As proved by Donaldson [11], the H-action on J is Hamiltonian, with moment map
given by the Hermitian scalar curvature of the almost Kahler manifold. The moment map
interpretation of the scalar curvature was first given by Quillen in the case of Riemann
surfaces and Fujiki [I5] for the Riemannian scalar curvature of Kéhler manifolds, and
generalized independently in [11].

First we recall the notion of Hermitian scalar curvature of an almost Kéahler manifold, we
follow closely Donaldson’s approach. Fix a compact symplectic manifold X of dimension
2n, with symplectic form w. An almost complex structure J on X is called compatible
with w if the bilinear form g¢,(-,-) := w(-, J-) is a Riemannian metric on X. Any almost
complex structure J on X which is compatible with w defines a Hermitian metric on 7% X
and there is a unique unitary connection on 7*X whose (0,1) component is the operator
Jy: QlJ’O — Q},’l induced by J. The real 2-form p; is defined as —:¢ times the curvature
of the induced connection on the canonical line bundle Kx = AfT*X, where 7 is the
imaginary unit /—1. The Hermitian scalar curvature S is the real function on X defined
by

Syw™ = 2npy Aw" L. (2.16)

The normalization is chosen so that S; coincides with the Riemannian scalar curvature
when J is integrable. The space J of almost complex structures J on X which are
compatible with w is an infinite dimensional Kahler manifold, with complex structure

J: T;J — T;J and Kéhler form w; given by

n!

1
J® = J® and wy (¥, P) = 2—/ tr(JUP)w", (2.17)
b

for &, U € T;J, respectively. Here we identify 7; 7 with the space of endomorphisms
¢: TX — TX such that ® is symmetric with respect to the induced metric w(-, J-) and
satisfies ®J = —J®.

The group H of Hamiltonian symplectomorphisms h: X — X acts on J by push-forward,
ie. h-J := h,oJoh,l preserving the Kihler form. As proved by Donaldson [11]
Proposition 9], the H-action on J is Hamiltonian with equivariant moment map pyg,: J —
(Lie’H)* given by

wn
(pau(J),myp) = —/ fSi— (2.18)
X n.
for f € C§°(X), identified with an element 7, in Lie by (2.10) and (ZII)).

As a warm up for our discussion in Section Bl we note that the H-invariant subspace
J? C J of integrable almost complex structures is a complex submanifold (away from its
singularities), and therefore inherits a Kahler structure. Over J°, the Hermitian scalar
curvature S; is the Riemannian scalar curvature of the Kéhler metric determined by J
and w. Hence the quotient

i (0)/1, (2.19)

where 19, is now the restriction of the moment map to J?, is the moduli space of Kihler
metrics with fixed Kéhler form w and constant scalar curvature. Away from singularities,
this moduli space can thus be constructed as a Kéhler reduction (see [I5] and references
therein for details).
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3. THE KAHLER-YANG-MILLS-HIGGS EQUATIONS

3.1. The equations as a moment map condition. Fix a compact symplectic manifold
X of dimension 2n with symplectic form w, a compact Lie group GG and a smooth principal
G-bundle E on X. We fix an Ad-invariant inner product (-,-): g ® g — R on the Lie
algebra g of G. Let J be the space of almost complex structures on X compatible with w
and A the space of connections on F. Consider the space of triples

J xAxS, (3.1)
endowed with the symplectic structure
wy +daw s + 4Pws, (3.2)

(for a choice of non-zero real coupling constants «, ). Similarly as in [Il, Proposition 2.2],
the space ([B.]) has a formally integrable almost complex structure, which is compatible
with (B.2) when a > 0 and > 0, thus inducing a Kéhler structure in this case.

By Proposition combined with Proposition 2.1l and .18, the diagonal action of G on
this space is Hamiltonian (here the action of G on J is given by projecting to H), with
equivariant moment map 4 5: J X A x S — (LieG)* given by

* A~ w"
(051 A.0).6) =4 [ (ACarFy+ G- )%
X .
. .n w"
- / f(Sy = 28A6(dag, dag) + al*(Fa A Fa) + 4(AF4, 86" f1 — 042))?,
X .
(3.3)
for any choice of central element z in the Lie algebra g.

Suppose now that X has Kahler structures with Kahler form w. This means that the
subspace J' C J of integrable almost complex structures compatible with w is not empty.
Define
TCcTxAxS (3.4)

by the conditions

JeJ, AcA}, 0;.6=0,
where 0544 denotes the (0,1)-part of d4¢ with respect to J and .A},’l C A consists of
connections A with F4 € Q?,’l(ad E), or equivalently satisfying

Fy* =0.

Here 2%(ad E) denotes the space of (ad E)-valued smooth (p, ¢)-forms with respect to J
and Fg’Q" is the projection of F4 into QOJ’Q(ad E). This space is in bijection with the space
of holomorphic structures on the principal G-bundle E° over (X, J) (see [30]).
By definition, 7 is a complex subspace of (3.1]) (away from its singularities) preserved by
the g action, and hence it inherits a Hamiltonian g action.

Proposition 3.1. The G-action on T is Hamiltonian with g—equz’vam’ant moment map
tap: T — (LieG)* given by

(ap( . A, 6),C) = / (AC,aFa + Bt — 2)

n
n!

" (3.5)
= [ (2 BAO P + 0N (Fa n Fa) ~ da(AFa, 2)
X .
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for all (J,A,¢) € T and ¢ € Lie G, where A, denotes the Laplacian of g = w(-, J-).

Proof. Since (J, A, ¢) € T, we have 94¢ = 0, and hence
AR = 2iA00|¢" > = ~2Ad(dag, dad) + 4(6" 1, AF).
The statement follows now from (B.3]). O

The zeros of the moment map p, g, restricted to the space of integrable pairs 7, corre-
spond to a coupled system of partial differential equations which is the object of our next
definition.

Definition 3.2. We say that a triple (J, A, ¢) € T satisfies the Kdhler—Yang—Mills—Higgs
equations with coupling constants «, f € R if

aAFy + Bo*fi = 2,
Sy 4+ BA ¢ > + aA*(Fa A Fa) — da(AFa, 2) = c,

where S; is the scalar curvature of the metric g; = w(-,J-) on X, z is an element in the
center of g and ¢ € R.

(3.6)

The constant ¢ € R in (B.6]) is explicitly defined by the identity
clw]™ = 2mney (X)) U [w]™ ™ + 2an(n — 1)p1(B) U [w]*™2 — 4nc(E) U [w]" (3.7)

where pi(E) := [Fa A F4] € H*(X,R) and ¢(E) € H*(X,R) are the Chern-Weil classes
associated to the G-invariant symmetric forms (-,-) and (-, z) on g respectively, and so ¢
only depends on [w] and the topology of E.

The set of solutions of (B.0) is invariant under the action of G and we define the moduli
space of solutions as the set of all solutions modulo the action of G. We can identify this
moduli space with the quotient N

ta(0)/G, (3.8)
where 11, g denotes now the restriction of the moment map to 7. Away from singularities,
this is a Kéahler quotient for the action of G on the smooth part of 7T equiped with the
Kéhler form obtained by the restriction of (3.2]).

3.2. Futaki invariant and geodesic stability. In this section, we explain briefly some
general obstructions to the existence of solutions of the Kahler—Yang-Mills-Higgs equations
(3:4), which follow the general method developed in [I, §3]. To describe them, it is helpful
to adopt a dual view point, based on complex differential geometry.

We fix a compact complex manifold X of dimension n, a Kahler class Q € H"(X) and
a holomorphic principal bundle E° over X. We assume that the structure group of E° is
a complex reductive Lie group G¢, and that the Lie algebra g¢ of G° is endowed with an
Ad-invariant symmetric bilinear form. Let (F), J, @) be a (possibly non-compact) Kéhler
manifold, with complex structure J and Kahler form ©. We assume that a maximal
compact subgroup G C G¢ acts on F' by Hamiltonian isometries, and fix a G-equivariant
moment map
i F— g
Consider the associated fibre bundle F = E°¢ x4 F with fibre F', and assume that there
exists a holomorphic section
€ HYX,F).
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Then, the Kahler—Yang-Mills-Higgs equations on (X, E¢, ¢), for fixed coupling constants
a, b € R, are

aAwFH + B(b*ﬂ =z,

3.9
S+ BAL G i|* + a2 (Fy A Fy) — 4a(A,Fy, 2) = c, (3:9)

where the unknowns are a Kahler metric on X with Kéhler form w in €2, and a reduction
H: X — E°/G to G. In this case, Fy is the curvature of the Chern connection Ay of H
on F¢ and S, is the scalar curvature of the Kéhler metric. Note that the constant ¢ € R
depends on «, €2 and the topology of X and E°. In the rest of this section, we will assume

a > 0and 8 > 0 in the definition of (3.9).

Our first obstruction builds on the general method in [I, §3] and classical work of Fu-
taki [16]. Consider the complex Lie group Aut(X, E¢) of automorphisms of (X, E¢) and
the complex Lie subgroup fixing the section ¢

Aut(X, £, ¢) C Aut(X, E°).

We define a map
Fop: LieAut(X, E¢ ¢) — C

given by the formula
. w"
(Fa,8.€) = 4/ (AuC, ol Fg + Bo* i — az)m
" ' (3.10)

n

= [ (St BN RP + AN (P A Fi) — A(AuFi, )5,
X .

for a choice a Kahler form w € ) and hermitian metric H on E. To explain this formula,
we note that Lie Aut(X, £¢) is the space of G®invariant holomorphic vector fields ¢ on
the total space of E°. Any such ¢ covers a real-holomorphic vector field ¢ on X, and
decomposes, in terms of the connection Ag, as

where AyC and A% are its vertical and horizontal parts. The complex-valued function

P = 1+ Upa,
with ¢1, p2 € C§°(X,w), is determined by the unique decomposition

(= Npy + Iy + 7,

valid precisely because € is a real-holomorphic vector field, where J is the (integrable)
almost complex structure of X, 5, (for j = 1,2) is the Hamiltonian vector field of ¢;, and
v is the dual of a 1-form that is harmonic with respect to the Kéhler metric.

This Futaki character provides the following obstruction to the existence of solutions of the
Kéhler—Yang-Mills-Higgs equations equations (cf. [I, Theorem 3.9]). Let B be the space
of pairs (w, H) consisting of a Kéhler form w in the cohomology class Q and a reduction
H of E¢to G C G“.

Proposition 3.3. The map [B.I0) is independent of the choice of element (w, H) in B. It
defines a character of Lie Aut(X, E€, ¢), which vanishes identically if there exists a solution
of the Kdhler—Yang—Mills—Higgs equations ([3.9) with Kdhler class €.
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Further obstructions to the existence of solutions of the Kahler—Yang—Mills equations are
intimately related to the geometry of the infinite-dimensional space B. It is interesting to
notice that this geometry is independent of the choice of holomorphic section ¢ on F. The
space B has a structure of symmetric space [I, Theorem 3.6], that is, it has a torsion-free
affine connection V, with holonomy group contained in the extended gauge group (each
point of B determines one such group) and covariantly constant curvature. The partial
differential equations that define the geodesics (wy, H;) on B, with respect to the connection
V, are

dd*(¢r — (dp, dfy)w,) = 0,

Hy — 20, odg, Hy + iFy, (ng,, Jng,) = 0,

where 7, is the Hamiltonian vector field of ¢, with respect to wy, ie. dyp, = ng, 2w
Assuming existence of smooth geodesic rays, that is, smooth solutions (wy, H;) of (3.11))

defined on an infinite interval 0 < ¢ < oo, with prescribed boundary condition at ¢ = 0,
one can define a stability condition for (X, E¢ ¢). Define a 1-form o, 3 on B by

(3.11)

n

o500, H) :—4@'/X(HlH,aAwFH+B¢*ﬂ—az)%

. * A w
= [ (S B RP + aXL (P A Fi) — A(AuFr,2)) 2
X .

where (w, H) is a tangent vector to B at (w, H) and w = dd°p for ¢ € C°(X,w).

Definition 3.4. The triple (X, E°, ¢) is geodesically semi-stable if for every smooth geo-
desic ray b, on B, the following holds
i h) > 0.
i, aalh) 20
Under the assumption that B is geodesically convex, that is, that any two points in B can

be joined by a smooth geodesic segment, geodesic semi-stability provides an obstruction
to the existence of solutions of (3.9)).

The proof of the next proposition follows from the fact that the quantity oa,g(l‘)t) is increas-
ing along geodesics in B, with speed controlled by the infinitesimal action on the space T
in 3] (see the proof of [I, Proposition 3.14]).

Proposition 3.5. Assume that B is geodesically convex. If there exists a solution of
the Kdhler—Yang—Mills—Higgs equations in B, then (X, P°, ¢) is geodesically semi-stable.
Furthermore, such a solution is unique modulo the action of Aut(X, E¢, ¢).

The space B defines a geodesic submersion over the symmetric space of Kahler metrics
on the class Q [13], 24, 29]. In particular, this implies that in general one cannot expect
existence of smooth geodesic segments on B with arbitrary boundary conditions.

3.3. Matsushima—Lichnerowicz for the Kahler—Yang—Mills—Higgs equations. In
this section we introduce a new obstruction to the existence of solutions of the Ké&hler—
Yang-Mills-Higgs equations. This is based on an analogue of Matsushima-Lichnerowicz
Theorem [23] 25] for (B9), which relates the existence of a solution on (X, E°, ¢) with
the reductivity of Lie Aut(X, E° ¢). Our proof relies on the moment-map interpretation
of the equations (3.9)), following closely Donaldson-Wang’s abstract proof [11], [32] of the
Matsushima-Lichnerowicz Theorem.
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For simplicity, we will assume that X has vanishing first Betti number, even though we
expect that our analysis goes through with minor modifications to the general case.

Theorem 3.6. Assume H' (X, R) = 0. If (X, E¢, ¢) admits a solution of the Kdihler—Yang—
Mills—Higgs equations [B9) with o > 0 and > 0, then the Lie algebra of Aut(X, E¢, ¢)
15 reductive.

To prove our theorem we need some preliminary results. Let w be a Kahler form on X
and a reduction H of E¢ to G C G°. The following lemma gives a convenient formula
for the elements of Lie Aut(X, E¢ ¢) adapted to the pair (w, H), and is reminiscent of
the Hodge-theoretic description of holomorphic vector fields on compact Kéahler manifolds
(see, e.g., [20, Ch. 2]). As in (2), LieG will denote the Lie algebra of the extended gauge
group associated to the symplectic structure w and the reduction Epy. For the proof, we
will not assume that (w, H) is a solution of (3.9). We denote by I the almost complex
structure on the total space of E°.

Lemma 3.7. Assume H'(X,R) = 0. Then, for anyy € Lie Aut(X, E¢) there exist (1,(s €
LieG such that
y =+ 1. (3.12)

Proof. Let A be the Chern connection of H on E°. We will use the decomposition of
y = Ay + ALy (3.13)

into its vertical and horizontal components Ay, A1y, where ¢ is the unique holomorphic
vector field on X covered by y. Using the anti-holomorphic involution on the Lie algebra
g¢ determined by G C G¢, we decompose

Ay = gl + Z.6-27
for & € 0%(ad Ey). Furthermore, as H'(X,R) = 0, we have

g = gl + JgZ)
where gj; and 95 are Hamiltonian vector fields for the symplectic form w. Hence, defining
the vector fields

G =&+ A,
for 7 = 1,2, we obtain the result. O

We will now apply Lemma [3.7] to the elements of Lie Aut(X, E¢ ¢) C Lie Aut(X, E°).

Lemma 3.8. Assume H'(X,R) = 0 and that (X, E°, ¢) admits a solution (w,h)
the Kahler—Yang—Mills—Higgs equations with o« > 0 and S > 0. Then, for any y
Lie Aut(X, £, ¢), the vector fields (1, (s in BI2) satisfy (1, s € Lie Aut(X, E€, ¢).

me

Proof. By the results of Section B.J], if (w, h) is a solution of (B.9), then the triple ¢ :=
(J, A, ¢) is a zero of a moment map

Lap: T — Lie G

for the action of G on the space of ‘integrable triples’ T defined in (3.4]). Recall that T is
endowed with a (formally) integrable almost complex structure I, and Kéhler metric

Jo,8 = wa,p(+ I)
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(as we are assuming « > 0 and 8 > 0), where the compatible symplectic structure w, s is
as in ([3.2). Given y € Lie Aut(X, £°), we denote by Y, the infinitesimal action of y on
t). Then the proof reduces to show that Y, = Ye,;; = 0 for y € Lie Aut(X, E°, ¢), where
(1,¢2 as in (BI2). To prove this, we note that since the almost complex structure I on E°
is integrable, we have (see [I], Section 3.2])

0="Yy = Yet160e = Yo + e
Considering now the norm || - || on 7;7 induced by the metric g, 3, we obtain
0 = [[¥yell® = [IYerpell® + Yortell” = 20,8 (Yeuper Yeurn).
Now, ft,(t) = 0 and the moment map g, is equivariant, so

wa<YCl\t7 YClIt) = d(fla, C1><Y42\t> = (Ua(t), [C1,¢]) =0,
and therefore
HYClltH2 = HYCzltH2 =0,
so we conclude that (3, (s € Lie Aut(X, E€, ¢), as required. O

Theorem is now a formal consequence of Lemma

Proof of Theorem[3.6. Considering the G-action on T, we note that the Lie algebra ¢ =
Lie G; of the isotropy group G; of the triple t = (J, A, ¢) € T satisfies

t @ It C Lie Aut(X, £, ¢).

Furthermore, the Lie group ét is compact, because it can be regarded as a closed subgroup
of the isometry group of a Riemannian metric on the total space of Ey (see [I, Section
2.3]). Now, Lemma 3.8 implies that

Lie Aut(X, E¢ ¢) = ¢ @ I,

so Lie Aut(X, E° ¢) is the complexification of the Lie algebra ¢ of a compact Lie group,
and hence a reductive complex Lie algebra. O

4. GRAVITATING VORTICES AND DIMENSIONAL REDUCTION

4.1. Gravitating quiver vortex equations. Here we consider in more detail the Kahler—
Yang—Mills—Higgs equations when the Higgs field is a section of a special type of vector
bundles, defining a quiver bundle. To fix notation, we recall the notions of quiver and
quiver bundle (see, e.g., [4] for details). A quiver @ is a pair of sets (Qg, Q1), together with
two maps t,h: ()1 — Qy. The elements of @)y and ); are called the vertices and arrows
of the quiver, respectively. An arrow a € )y is represented pictorially as a: i — j, where
1t = ta and j = ha are called the tail and the head of a. Suppose for simplicity that the
quiver is finite, that is, both @y and @) are finite sets (this condition will be weakened in
Section [2)). Fix a compact complex manifold X of dimension n. A holomorphic Q-bundle
over X is a pair (F,¢) consisting of a set E of holomorphic vector bundles E; on X,
indexed by the vertices 7 € (Jy, and a set ¢ of holomorphic vector-bundle homomorphisms
Go: Eyy — FEhg, indexed by the arrows a € Q1. Note that it is often useful to consider a
category of twisted quiver bundles (see [4]), but they will not be needed for the application
given in Corollary

A Hermitian metric on (F,¢) is a set H of Hermitian metrics H; on FE;, indexed by
the vertices ¢ € Q. Any such Hermitian metric determines a C* adjoint vector-bundle
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morphism qbZH“: Ey, — Ei, of ¢,: Eyy — Ep, with respect to the Hermitian metrics Hy,
and Hp,, for each a € )1, and we can construct a (H-self-adjoint) ‘commutator’

0.0 = Dle.o"li: DE— DE.
1€Qo 1€Qo 1€Q0
with components
(0,6 ii= > a0t — Y @ifog,: Bl — B,
a€h=1() act=1(3)

for all i € Q)g. In the following, R.y C R is the set of positive real numbers, and for any
two sets I and S, ST is the set of maps o: I — S, i — 0;; to avoid confusion with the
symbols used to denote quiver vertices, i = v/—1 is the imaginary unit.

Definition 4.1. Fix constants p € Ryg, 0 € RQS and 7 € R¥%. The gravitating quiver
(p, o, T)-vortex equations for a pair (w, H), consisting of a Ké&hler metric w on the complex
manifold X and a Hermitian metric H on a holomorphic Q-bundle (E, ¢), are

oii A Fy, + |6, ") = 7 1dg,, (4.1a)
Sw—p Z o\ Tr i+ 2p Z (Aw +2 (;’; — %)) |pal7r, = c. (4.1b)
ta

1€Qo acQq @

Here, |¢q7;, := Tr(¢q 0 ¢%He) € C>(X) is the pointwise squared norm, and ¢ is a constant,
determined by the parameters p, o, 7, the cohomology class of w, and the characteristic
classes of the manifold X and the vector bundles E;. More precisely,

cVolw(X):2/Xpw 4,020,/ Tr Fj A n—2)

1€Qo
+ 4pVOlw(X) Z <£ — ,Uou(El)> TiT4,
1€Q0 L
where Vol (X) = [, w"/n!, r; is the rank of E;, its normalized w-slope is

wn—l

oo (F) = V()ll(X)l/XTr(lFA) TRk (4.2)

and p,, is the Ricci form. To see this, we integrate (4.1Dl), use (2.I6), and also integrate
the following identity (that follows from (&TIal))

Tha Tta T * Tl?ri -
Z <0'le - U—m) |baltr, = Z ;Tr[qb,qb ], = Z < PN Tr(lAwFH¢>) - (43)

i€Qo " 1€Qo !

Given a fixed Kéhler form w on X, the first set of equations (4.Ial), involving a Hermitian
metric H on (F,¢), were called the (o, 7)-vortex equations on (E,¢) over the Kéahler
manifold (X, w) in [5], where their symplectic interpretation and their relation with a (o, 7)-
polystability condition were provided. To explain how the larger set of equations (A1) fit
in the general moment-map picture of Section [3, we now fix the metrics and consider the
holomorphic data as the unknowns. More precisely, we fix a compact real manifold X
of dimension 2n, with a symplectic form w, and a pair (E, H) consisting of a set of C*
(complex) vector bundles E; of ranks 7;, and a set of Hermitian metrics H; on E;, indexed
by the vertices i € . Let P; be the frame G;-bundle of the Hermitian vector bundle F;,
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where G; = U(r;), for all i € @, and G: the extended gauge group of P; over (X,w). Let
P — X be the fibre product of the principal bundles P, — X, for all ¢ € )y, and G the

extended gauge group of P over (X,w). Then P is a principal G-bundle, where G is the
direct product of the groups G, for all ¢ € @y, and we have short exact sequences
195G —G6-5H—-1, 156-—G-5H1,
where G; is the gauge group of P;, the gauge group of P is the direct product
G=1] 3. (4.4)
1€Qo
and p: G — H is the fibre product of the group morphisms p: G — H, for all i € Q.
Let A; is the space of connections on P;. Consider the space of connections on P, denoted
A= ] A
1€Q0

To specify a symplectic structure on A, we fix a vector a € R>O, and define an Ad-invariant
positive definite inner product (2.2)) on the Lie algebra g of G, given for all a,b € g by

=) i Tr(a; o by), (4.5)
1€Qo

where a;, b; are in the Lie algebra g; of G;. Then the symplectic form (23]) on A becomes

Z ozz/ Tr(a; A\ b;) I (4.6)

1€Qo
for A € A, a,b € TyA = Ql(ad E). Consider the element z of the centre of g given by
z; = —ic¢;Idg,, for all @ € @), for fixed ¢i € R. By Proposition 2.1], the g action on A has
equivariant moment map pug: A — (Lie g) given for all A € A, C € LieG by

_IZOQ/Tr fz AFA CzIdE))

1€Qo

(4.7)

. wn
/fz AL Te FR + deios Tr(iAGFA))

1€Qo
where £ := AC € LieG (so & = A;¢ € LieG;), and p(¢) = ny with f € C§°(X) (see [211)).
Define a Hermitian vector bundle over X by
R = P R.. with R, = Hom(Eya, Epa),
a€Qo
where the Hermitian metric is the orthogonal direct sum of the Hermitian metrics H, on
the vector bundles R,, given by the formulae (¢q,Vs)m, = Tr(¢a0:e), for all ¢4, 1), in
the same fibre of R,. Consider now the space of C'"*° global sections of R,
S =P S., with S, =T(X,R,).
a€Qo

Then S has a symplectic form wg defined for all ¢ € S, ¢, € T¢S = S by

s =1 Y [ Tebud = i)

acQ1



ON THE KAHLER-YANG-MILLS-HIGGS EQUATIONS 15

Since ws = do, for the 1-form o on S given for all ¢ € S, ¢ € TS by

n

o) =5 > [ (b - ndi) 2],

a€@Qq

the canonical G-action is Hamiltonian, with equivariant moment map pus: & — (Lie é)*

given by (us(¢),() = —o(Y¢(¢)), where the infinitesimal action of ( € LieG on S is the
vector field on S with value Y (¢) =& - ¢ — p(¢)ada¢ on ¢ € S. Here, £ = AC € LieG (so
& = Ai(() € LieG;), the action of £ on ¢ is given by (- 0)a = EpaPa — Pulta, and da¢ is the

covariant derivative with respect to the connection induced by A on R. More explicitly,

.42/ﬁ¢¢&f—JfZAmm%m 4

1€Q0 acQ1
Fix p € R.y. Then we consider the space of triples J x A x §, with the symplectic form
Wa,p = W + dwa + 4pws, (4.9)

with J and wy as in Section 23 Adding (2.18), (A7) and (4.8), we see that the diagonal
G-action on J x A x S has equivariant moment map jto,,: J X A XS — (Lie G)* given by

wn
(fa,p(J, A, 0), C _412/'1“1" Ei(a i Fa, + plo, 0" —achIdE))g (4.10)
1€Qo
_/ f <SJ —Z (aiAi Tr Fi_ + 4o Tr(iAwFAi)) + 4pz iA,d(da,a, ¢a)Ha> %’
X 1€Q0 acQ1

for all (J,A,¢) € J x Ax S, ¢ € LieG, with £ := AC € LieG, p(¢) = 1y, f € CF(X).

Consider the G-invariant subspace T C J x A x 8 of ‘integrable triples’ (J, A, ¢), defined

by the conditions J € J%, A; € (A4, 054,60 =0, for all i € Qy,a € Q, (cf. (B4)). Since
Aw|¢a‘§{a = 21Aw§8|¢a|%{a =2 iAwd<dAa¢a7 ¢a)Ha

when 94, ¢, = 0, the G-action has equivariant moment map fi,,,: 7 — (Lie é)* given by
wn
(tap(J, A, 6), € —412/ Tr (&0 i AuFa, + plo, 6); = auei 1)) —

i€Qo

(4.11)

— 2pA,, o3 — A2 Tr F2 + dejo; Tr(i AL Fa, “
/Xf<m PG Y balis, — D (A2 Tr FR, + e Tr(i m)) T

ac€@Q 1€Qo

for all (J, A, ¢) € T. Defining now o; = «;/p and 7; = «;c¢;/p, we see that the vanishing
condition i, ,(J, A, @) = 0 for a triple (J, A, ¢) € T is equivalent to the equations

05 i*/\cu-FjHz + [Qb, QZ)*H]Z =T; IdEZ;
S 42000 Y [6ulh, —p Y (A2 Te FZ + 47, Te(iAuFi,)) = ¢, (4.12)

acQ1 i€Qo

expressed in terms of the metrics w and H, where ¢ € R. By (43), these equations are
equivalent to the gravitating vortex equations (4.1]), with ¢’ replaced by another ¢ € R.
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4.2. Dimensional reduction. We will now consider the invariant solutions of the Kahler—
Yang—Mills equations on an equivariant vector bundle over M = X x K¢/P. Here, X is a
compact complex manifold, K¢ is a connected simply connected semisimple complex Lie
group, and P C K¢ is a parabolic subgroup, so the quotient K¢/P for the P-action by
right multiplication on K¢ is a flag manifold. The group K¢ acts trivially on the first factor
X and in the standard way on K¢/P. The Kéhler—Yang—Mills equations for the compact
complex manifold M, a holomorphic vector bundle E— M , and a fixed real parameter
a > 0, are

lAgFﬁ = MQ(E) IdE, (4.13&)

Sz —aAZTr FZ =C. (4.13b)

They involve a pair consisting of a Kéhler form & on M and a Hermitian metric Hon F ,
with normalized slope pz(E) defined by (£2).

Let L C P be a (reductive) Levi subgroup, and K C K¢ a maximal compact Lie subgroup.
Then the K-invariant K&hler 2-forms w. on the complex K“manifold K/(KNP) = K¢/P
are parametrized by elements ¢ € R% (see [4, p. 38, Lemma 4.8]), where ¥ is a fixed set of
‘non-parabolic simple roots’, as defined in [4, §1.5.1]. For a fixed ¢ € R% and each choice
of Kahler form w on X, we consider the K-invariant Kéahler form on M defined by

W=w+we (4.14)

(hereafter we omit the symbols for the pullbacks by the canonical projections M — X,
M — K¢/P).

In [4], the first and the third authors proved that there exist an infinite quiver @ and a
set of relations K of (), such that a K°-equivariant holomorphic vector bundle E over M
is equivalent to a holomorphic Q-bundle (F,¢) over X that satisfies the relations in &
(see [4, p. 19, Theorem 2.5]). The vertex set )y consists of the isomorphism classes of
(ﬁmte—dlmenswnal complex) irreducible representations ¢ of L. Under this equivalence, the
K-invariant Hermitian metrics H on the vector bundle E over M are in bijection with the
Hermitian metrics H on the quiver bundle (F,¢) over X (see [4, §4.2.4]). Furthermore,
for each choice of Kéahler form w on X, a K-invariant Hermitian metric H satisfies the
Hermitian—Yang—Mills equation (£.I3al) on E over (M, w) if and only if the corresponding
Hermitian metric H on (E, ¢) over (X, w) satisfies the quiver (o, 7)-vortex equations (4.Tal)
(see [, §4.2.2, Theorem 4.13]). Here, the parameters o € Rgg and 7 € R% are given by

ox = dime My, 75 = ox(pa(E) — 1(Oy)), (4.15)

for all A € @y, where M, is an irreducible representation of L (or P) in the isomorphism
class A\, Oy = K¢ xp M, is the homogeneous vector bundle over K¢/P associated to M),
and the normalized slopes 1.(O)) 1= p,.(O,), defined by ([@2), are explicitly given by [4]
(4.16), §4.2.3]. Note that the vortex equations (AIal), and the symplectic interpretation in
Section [4.1] make sense for the infinite quiver @), as E # 0 only for finitely many \ € (),
and the quiver @ is locally finite, that is, t7*(a) and h~!(a) are finite sets for all a € Q.

The following correspondence extends these bijections to the Kahler—Yang—Mills equations.
It includes [2, Proposition 3.4] for a particular class of equivariant bundles when K¢/P =

P. As above, F is a K°-equivariant holomorphic vector bundle over M, and (F, ¢) is the
corresponding holomorphic @-bundle over X.
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Theorem 4.2. Let w be a Kdhler form on X and w the K-invariant Kihler form on M
defined by ([@I4)). Let H be a K-invariant Hermitian metric on E, and H the correspond-
ing Hermitian metric on (E,¢). Then the pair (~,ﬁ]) satisfies the Kdhler—Yang—Mills
equations ([AI3) if and only if (w, H) satisfies the quiver (p,o,T)-vortex equations (T,
where p == a, and 0 € RYY and 7 € R are given by [@EI5).

Proof. Let Q' C @ be the finite full subquiver with vertex set (), consisting of the vertices
A € Qo such that Ey # 0, so (E,¢) is a (-bundle over X. Let A and A, be the Chern

connections of H and H A on the holomorphic vector bundles E and E)\, respectively, for
A € Q). The vector bundles E) and the Hermitian metrics Hy on E), for A € @, specify

the K-action on F and its Hermitian metric H , respectively, via the identification

=P E 20, (4.16)
AEQy
between K-equivariant C'>° Hermitian vector bundles, where the homogeneous vector bun-
dles O, are endowed with their unique (up to scale) K-invariant Hermitian metrics. Fur-
thermore, the Higgs fields ¢, and the unitary connections Ay, for a € Q1, A € Q, specify
the unitary connection Aon F, given by dj = dae + 0, with = 3 — 5* € Q'(ad E) and

dao = Y (da, ® o, +1dp, @dy)om, B= Y ¢a®na, (4.17)
)\6@6 atel

where A) is the unique K-invariant unitary connection on Oy, my: E — E\ ® O, are the
canonical projections, and {7, | a € t"}(A\)Nh~' (1)} is a basis of the space of K-invariant
Hom(Oy, O,)-valued (0, 1)-forms on K¢/P, for all A, u € @ (see [4] §3.4.5]).

We will use the moment-map interpretations of the Kahler—Yang-Mills equations and the
quiver gravitating vortex equations. Let j A and éM be the space of almost complex
structures J on (M, &), the space of unitary connections on (E, H), and the extended
gauge group of the symplectic manifold (M, w) and the Hermitian vector bundle (E H ),
respectively. By [I, Proposition 2.1], the QM-actlon on J x A with symplectic form
w7 + 4aw 7, has equivariant moment map ,ug T x A (Lie QM) given by

(s (7, 2),8) = daigy, (A / 7su (4.18)

for all E € LieGy, where E AQ € LlegM, f € C§°(M) is such that df = p(g)J&}
m = dime M, and Jig,, : A — (LieGy)*, Sa(J, A) € C=(M) (cf. [l (3.78)]) are given by

(i (10, =1 [ To((iAaF; ~ ol B) 1)) o, (4.19a)
Sa(J, A) = =S5+ dapgz(E) Te(i AgF;) + aAZ Tr F2. (4.19b)

By construction, AgFg—'—ng(E) Idz € Lie GE 50 fig, (A) = 0if and only if (fig,, (A),) =0
for all ¢ € LieGE (where (—)% means the fixed-point subspace for the K-action). Using
the last displayed formula for i AzF'7 in [4] §4.2.4]), we see that

n

(Figu (3,8 = Vol.(k/P) 3 i / T ((ox i AuFa, + [0, 6k — mIds, )6) 27, (4.20)

AEQ)
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where ¢ € Lie G corresponds to (Ex)reqy, with &y € Lie Gy, by [4, Proposition 3.4, Gy
being the unitary gauge group of E, and Vol.(K°/P) = ch/P wl /1!, with [ = dime(K¢/P).
This gives the correspondence for the vortex equations (AJIal) and the Hermitian—Yang—
Mills equation (AI3a). To compare (4.1D) and (4.13L]), we calculate separately the terms
involved in (4.19D)), namely,

—S57=—S; + const., (4.21a)
4oz (E) Te(A Az Fy) = 4ppz(E) > ox Tr(i AuFa, 6y) + const., (4.21b)
AEQq
aAZ Tr F% = Z (porAZ Tr 3 — 4poap-(Oy) Tr(i Ay Fla,))
AEQ)
— ) 4piAdTe(da,da 0 6}) (4.21c)
acQ)
—p Z Tr (g 0 ¢5)AZ_ d Tr(n, A dagmy, + dayna A ny) + const.,
a,beQ]

where A, (resp. A’) is the connection induced by Ay, and Ay, (resp. Aj, and Aj,) on the
vector bundle Hom(Ey,, Ery) (resp. Hom(Oya, Opa)), and the sums in a,b € Q] in (4.211)
are constrained to the condition ta = tb, ha = hb (so that the traces are well defined).
Formula ([@2Ta)) follows because the scalar curvature of w. on K¢/P is K-invariant by
construction, and hence it is constant, as K acts effectively on K¢/P. Formula (4.21D))
is obtained taking traces in the last displayed formula for iAgF7 in [4, §4.2.4]). We
prove ([L.2Id) making the substitution Fiy = Fyo + d 4.0 + 6*, obtaining

AZTr F3 = A3 Tr Fio 4+ 202 Tr(Fao A dao0) + A2 Tr(6%)

2 2 2 2 2 2 (422>
+ 2AZ Tr(d a0 A O7) + ASTr((dae0)°) + 2AZ Tr(Fao A 67),
and calculating the six terms in the right-hand side:
AT FRe = (a2 Tr F3, — 4oap(Oy) Tr(iA,Fa,)) + const., (4.23a)
AEQq
AZTr(Fpo Adao) =0, A2Tr(0*) =0, AZTr(das0 A6G*) =0, (4.23b)
AZTr((dae0)?) = (4TriAy(da,da Ada,dh) — 2Tr(¢g 0 ¢5)A2 Tr(daynia A dagny))
a,beQ]
(4.23¢)
AZTr(Fae NO*)=—=2>  Tr(iA,Fa,, 0 ¢ 0 ) — 1A, Fa, 0 &0 dy) (4.23d)
acQ)
+ > Tr(ga o ¢y) AL Tr(Fay, Ana Any + Fag, Ais Ay)-
a,beQ’

Formula ([£.23a) follows from the definition of dao in (AIT), the identities 1A, Fa, =
1(Ox) Ido, (see [, Lemma 4.15, §4.2.3]), and the fact that AZ_Tr Fj& € C®(K¢/P) is

K-invariant, and hence constant. The first identity in (£23h) follows by using (EI7)
and observing the quiver " has no oriented cycles [4, Lemma 1.15]. The second identity

in ({230) follows from Tr(0 A 6%) = — Tr(6> A 9) (as 6 is a 1-form). Using (£I7) and the
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orthogonal direct-sum decomposition

TM =TX & T(K®/P) (4.24)
(with respect to the metric @), it is not difficult to derive the identity
AZTr(dact AOP) == Y Tr(¢aodyody) @ AL dTr(ng Amy Ani) +cc,  (4.25)

a,b,ceQ)

where “c.c.” means complex conjugate. The third identity in (423D now follows because
the function AZ Tr(da-0 A 6?) is K-invariant (by construction), so it equals its average by
fibre integration along the canonical projection M — X that vanishes because in (£25]),

/ A2 dTr(ng Ay Al wt = 0.
Ke/P

To prove (£.23d), we use ([ALI7) with § = 8 — *, and the facts that the quiver ' has no
oriented cycles and the direct-sum decomposition ([£24) is orthogonal, obtaining

A2 Tr((dgo0)?) = —2A2 Tr(dse 8 A d e 5°).

To prove that this equals the right-hand side of (4.23d), one needs to make another calcu-
lation using (£I7), choosing the basis {n,} as in [4, §4.2.4], so the pointwise inner product

— TriAe. (. Amp) = dap (4.26)
is the Kronecker delta for ta = tb, ha = hb, and the orthogonal decomposition (4.24]).
Finally, using (4.I7) and the decomposition § = 5 — 3*, one can prove that
AZTr(Fae AO*) = —AZTr(Fae A B, 5Y]),

where [, 5*] = B A B* 4+ f* A B, because A, and Ais respectively vanish when applied
to (2,0) and (0, 2)-forms, and to (1,3) and (3, 1)-forms. To show that this is equal to the

right-hand side of ([£.23d]), one has to use (EI7) once again, and (£26).
Formula (A.21d) follows from (£.22), (£23), and the fact that the connections A, and A)
are unitary, and so putting together the right-hand sides of (4.23d) and (4.23dl), we obtain
A2 Tr((dae0)?) + 203 Te(Fae A 6%) = =4 " i Aud Te(da,da © 6

acQy

_ Z Tr(¢, 0 qbZ)AiEdTr(na A dAgngf +d g Mg A )
a,beQy,

We can now compare (AIL) and (I3L). By construction, S,(J, /~1)~E C=(M)E, so
Sa(J, A) = const. if and only if the last term in (£I9B) vanishes for all f € Cg°(M)", i.e.

f = fopx with f € C§°(X), px: M — X being the canonical projection. In this case,

n

| FSAT A Vol (KIP) [ 18,0000 4,002,
M m: X n.
where, adding the three identities in (£.2]]), we have

Spor(J, A @) :=—=S;+p Z (oAA] Tr F3 447 Tr(iA,Fay ) —4p Z iAL,dTr(da,pa00)).
AEQ) a€Qq

Combining this and (£20) in (£I8]), we see that (ﬁgM(j L A), ) equals [@I0), up to a factor
Vol.(K*¢/P). This implies the correspondence for (4.1D) and (4I3h), as required. O
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Note that the relations in the set K have not played any role in the proof of Theorem

5. EXAMPLES

5.1. Solutions in the weak coupling limit. In this section we consider the Kahler—
Yang—Mills—Higgs equations with coupling constants a = 8. Assuming a > 0 and normal-
izing the first equation in (3.9)), we obtain the system of equations

AwFH + ¢*ﬂ =z,
Sy +aly|¢*i? + a2 (Fy A Fy) — 4a(AuFyr, 2) = c.

Following [I], this section is concerned with the existence of solutions of (B.]) in ‘weak
coupling limit’ 0 < |a] < 1 by deforming solutions (w, H) with coupling constants o = 0.

(5.1)

Note that for o = 0, the coupled equations (5.]) are the condition that w is a constant scalar
curvature Kéhler (cscK) metric on X and H is a solution of the Yang-Mills—Higgs equation,
as studied in [27]. If ¢ = 0, then the existence of solutions of the first equation in (5.1)) is
equivalent, by the Theorem of Donaldson, Uhlenbeck and Yau [12, 3], to the polystability
of the holomorphic bundle E¢ with respect to the Kahler class [w] € H*(X,R). For ¢ # 0,
Mundet i Riera [27] gave the following characterization of the existence of solutions.

Theorem 5.1 ([27]). Assume that ¢ # 0 and that (E,¢) is a simple pair. Then, for
every fixed Kdahler form w, there exists a solution H of the Yang—Mills—Higgs equation if
and only if (E°, ¢) is z-stable, in which case the solution is unique.

The conditions of simplicity and z-stability in the previous theorem are rather technical,
and we refer the reader to [27] for a detailed definition. To give an idea in the language of
Section B.2] a sufficient condition for (E¢ ¢) to be a simple pair (see [27, Definition 2.17])
is that the Lie algebra Lie Aut(E*¢, ¢) of infinitesimal automorphisms of (E€, ¢) vanishes,
where Lie Aut(E°, ¢) is given by the Kernel of

Lie Aut(X, E°, ¢) — H(X,TX).

The z-stability of the pair (E° ¢) can regarded as a version of the geodesic stability in
Definition [3.4] for (weak) geodesic rays (wy, H;) with w; = w constant (see [27, Definition
2.16]).

Our next result is a consequence of the implicit function theorem in Banach spaces, com-
bined with Theorem [B.1] and the moment map interpretation of the constant scalar curva-
ture Kahler metric equation. The proof follows along the lines of [I, Theorem 4.18].

Theorem 5.2. Assume that ¢ # 0 and that (E€, ¢) is a simple pair. Assume that there
is a cscK metric wy on X with cohomology class [wo] = Qo and that there are no non-zero
Hamiltonian Killing vector fields on X. If (E€, ¢) is z-stable with respect to wy, then there
exists an open neighbourhood U C R x HY(X R) of (0,Q0) such that for all (a,Q) € U
there exists a solution of (B.1l) with coupling constant « such that [w] = Q.

We next provide an application of the previous theorem to the Kéhler—Yang—Mills equa-
tions. Using the notation of Section 4.2 we fix a Kéhler form wy on X, a K-invariant
Kahler form w. on K¢/P (with ¢ € R%), and the product Kéhler form @y = wy + w.
on M = X x K/P. Let Qy = [wo], Q2 = [w.] and Qo = (o] = Qo + Q. be their
cohomology classes on X, K¢/P and M, respectively. We also fix a K“equivariant holo-
morphic vector bundle Eon M , and say Eis K “-invariantly stable (with respect to @0)
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if for all Kinvariant proper subsheaves E C E, their slopes with respect to ?20 satisfy
pig, (B') < g, (E) (cf. [, Definition 4.6, §4.1.2]).

Corollary 5.3. Assume that wy is a constant scalar curvature Kdahler metric on X, there
are no non-zero Hamiltonian Killing vector fields on X, and E is K¢-invariantly stable with
respect to Qo. Then there exists an open neighbourhood U C R x HV( X, R) of (0,Q0) such
that for all (a, Q) € U, there exists a K -invariant solution (&, H) of the Kdhler—Yang—Mills
equations (EI3) on M with coupling constant « such that [w] = Q + Q..

Proof. This follows from Theorems and 2] and the correspondences of [4, §4]. To
apply Theorem [5.2 we consider the holomorphic @-bundle (E, ¢) over X corresponding to
E, and the symplectic form (3.2]) given by w7 +4pw4+4pws, i.e., with o = 8 both equal to
p, where w4 is now defined using the invariant inner product (£.6) with o, = dim¢ M,. O

Note that this result is not covered by [I, Theorem 4.18], since the infinitesimal action by
any non-zero element of ¢/p = Tp(K¢/P) induces a nowhere-vanishing real holomorphic
vector field over X x K¢/P (where p C £¢ are the Lie algebras of P C K*, respectively).

To illustrate further the scope of application of Theorem [5.2] consider now a compact
Riemann surface ¥ with genus g(X) > 1, endowed with a Kéhler metric wy with constant
curvature —1. We fix a holomorphic principal G°-bundle over ¥ and consider a unitary
representation p: G — U(W), for a hermitian vector space W. We take F' = P(WV),
endowed with the Fubini-Study metric, rescaled by a real constant 7 > 0. Consider the
associated ruled manifold

F — EC XGC F == IP)(EC XG’C W)
Denote by P(W)* C P(IW) the locus of stable points for the linearized G®-action, and set
F* = E° % P(W)* C F.

Then, if E¢ is semistable with respect the Kahler class [wg] and ¢ € H°(X,F) is such
that ¢(X) C F*, then (E¢, ¢) is z-stable, for any z and any value of 7 (see [206, p. 74]).
Furthermore, we can also choose ¢ such that the pair is simple, by taking its image outside
any proper G°-invariant subspace W/’ C W.

For the sake of concreteness, consider the case that G¢ = GL(r,C) and p is the standard
representation in W = C". Then V = E° xge W is a holomorphic vector bundle and
¢ € H°(X, F) can be identified with the inclusion

LcvVv

for a holomorphic subbundle L of rank one, as considered by Bradlow and the third author
in [9]. Then, the pair (E¢ ¢) is not simple if and only if one can find a holomorphic
splitting

V — V/ @ VI/

such that L is contained in V’. Identifying z = —iAId € u(r) for a real constant A € R,
the pair (E¢, ¢) is z-stable if and only if for any non-zero proper subbundle V' C V' we
have
deg(V') +7rk(LNV')  deg(V)+ 71
< .
rk(V7) r
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In this simple situation, the equations (5.1]) are for a Kéhler metric w on ¥ and a hermitian
metric H on V', and reduce to
iN,F + 1l = \d,

S +ar? A |2 = ¢,

for a suitable real constant ¢ € R, where 7 : V — L denotes the H-orthogonal projection.

5.2. Gravitating vortices and Yang’s Conjecture. In this section we apply Theorem
to find an obstruction to the gravitating vorter equations on the Riemann sphere, as
introduced in [2]. As an application, we give an alternative affirmative answer to Yang’s
Conjecture for the Einstein-Bogomol'nyi equations [33] (see also [34, p. 437]), that shall
be compared with the original proof in [3, Corollary 4.7].

Consider X = P!, with G¢ = C* and F = C, endowed with the standard hermitian
structure. A C*-principal bundle on P! is equivalent to a line bundle Opi(N) of degree
N, while the Higgs field is ¢ € H(P!,Op(N)). Here we are concerned with the case

¢ # 0, so we assume N > 0. Choose a real constant 7 > 0, and consider z = —ia7/2.
Then, the Kdhler—Yang—Mills-Higgs equations (B8.9) with coupling constants « = 5 > 0
are equivalent to the gravitating vortex equations [2]

) 1
iAFn + (0l =) = 0.
Sw +a(A, + T)(‘(bﬁ{ —7)=c¢

where w is a Kahler metric on P! and H is a hermitian metric on Opi(N). The constant
c € R is topological, and is explicitly given by

c=2—2arN, (5.3)

(5.2)

where have assumed the normalization fPl w = 27.

The first equation in (52) is the abelian vortex equation. A theorem by Noguchi [2§],
Bradlow [7] and the third author [I8,[19] implies that, upon a choice of Kéhler metric with
volume 27, the equation

. 1
iy + 5 (6l = 7) =0

admits a (unique) solution provided that N < 7/2. As we will show next, this numerical
condition is not enough to ensure the existence of solutions of the coupled system (5.2]).

Theorem 5.4. If ¢ has only one zero, then there are no solutions of the gravitating vortex
equations for (P*, L, ).

Proof. Choose homogeneous coordinates [y, z;] on P! such that ¢ is identified with the
polynomial

b=y
Here we use the natural identification H°(P!, L) = S™(C?)*, where the right hand side is

the space of degree N homogeneous polynomials in the coordinates xq, x;. By [3, Lemma
4.3], it follows that

Aut(P', Opi(N),¢) =2 C* x C,
which is non-reductive. Consequently, the proof follows from Theorem [3.6l O
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When the constant ¢ in (5.3) is zero, the gravitating vortex equations (5.2]) turn out to be
a system of partial differential equations that have been extensively studied in the physics
literature, known as the Finstein—Bogomol’'nyi equations. Based on partial results in [33],
Yang posed a conjecture about non-existence of solutions of the Einstein-Bogomol'nyi
equations with ¢ having exactely one zero. This conjecture has been recently settled in
the affirmative in [3]. As an application of Theorem [5.4] we provide here an alternative
proof.

Corollary 5.5 (Yang’s conjecture). There is no solution of the Einstein—Bogomolnyi

equations for ¢ having exactly one zero.

5.3. Non-abelian vortices on P!. We consider now the case of non-abelian rank-two
vortices on the Riemann sphere (corresponding to G = U(2)).

Let X = P! with G¢ = GL(2,C) and F = C?, endowed with the standard hermitian
structure. A G-principal bundle on P! is equivalent to a split rank-two bundle

V - O]pl(Nl) @ O]pl(NQ),
while the Higgs field is
¢ = (¢1,¢2) € H'(P', O (N1)) @ H(P', Op1 (Vo).

We will assume 0 < N7 < N,. Choose a real constant 7 > 0, and consider the central ele-
ment z = —i(a7/2)Id. Then, the K&hler—Yang-Mills-Higgs equations (3.9) with coupling
constants a« = 3 > 0 are equivalent to

MJ%+%¢®WH:%M,
Se + Q(Aw + T)(|¢|§{ - 27—) = C,

(5.4)

where w is a Kahler metric on P! and H is a hermitian metric on V. The constant ¢ € R
is topological, and is explicitly given by

c=2—-2ar(Ny + N,), (5.5)
where have assumed the normalization f]P’l w = 2.

The first equation in (5.4) is the non-abelian vortex equation, as studied in [8]. Applying
[8, Theorem 2.1.6] we obtain that this equation admits a solution provided that

M<%<M+M—®mw, (5.6)

where [¢] denotes the line bundle given by the saturation of the image of ¢: Opr — V.
We want to show next that condition (5.6) is not sufficient to solve the full system of
equations (5.4]). For this, we will apply the Futaki invariant in Proposition B3l Fix
homogeneous coordinates [zg, 1] , so that H°(P', Opi(N;)) = SNi(C?)* is the space of
degree N; homogeneous polynomials in xg, z;. Following [3], consider

¢; =xy (5.7)

with 0 < ¢; < N; (the case ¢; = ¢, = 0 corresponds to a Higgs field ¢ that has only one
zero). In this case, it can be easily checked that the numerical condition (5.6) reduces to

N, < % < Ny + Ny —min{ly, b} — min{N; — {1, Ny — {5}, (58)
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and, by choosing suitable values of the parameters 7, N;, and ¢;, the non-abelian vortex
equation admits a solution. To evaluate the Futaki invariant, note that the Lie algebra
element

y = ( oY ) € gi(2,C) (5.9)

can be identified with an element in Lie Aut(P*, V, ¢) for any choice of ¢; as before.

Lemma 5.6.

<fa7a,’y> = 27Ti0[(2N1 — T)(2€1 — Nl) + 27T’i(1(2N2 — T)(QEQ — NQ) (510)

The proof follows along the lines of [3, Lemma 4.6], by direct evaluation of the Futaki
invariant using the Fubini-Study metric on P* and the product ansatz H = H; ® H,, with
H; the Fubini-Study hermitian metric on the line bundle Op:1(N;).

As a direct consequence of Proposition 3.3 and the previous lemma, we obtain the following.

Theorem 5.7. Let (V,¢) as before, and assume that (5.8) is satisfied. Then, there is no
solution of the equations (5.4) on (P, V,¢), unless the following balancing condition holds
261 — N1 262 — N2

=0.
2N2—7' 2N1—T
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