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SEMI-ORTHOGONAL DECOMPOSITION OF SYMMETRIC

PRODUCTS OF CURVES AND CANONICAL SYSTEM

INDRANIL BISWAS, TOMÁS L. GÓMEZ, AND KYOUNG-SEOG LEE

Abstract. Let C be an irreducible smooth complex projective curve of genus
g ≥ 2 and Cd its d-fold symmetric product. In this paper, we study the question
of semi-orthogonal decompositions of the derived category of Cd. This entails
investigations of the canonical system on Cd, in particular its base locus.

1. Introduction

Let C be an irreducible smooth complex projective curve of genus g ≥ 2. Let

Cd = C×
d
· · · ×C be its Cartesian product, and let Cd be the d-fold symmetric

product, meaning the quotient of Cd by the action of the symmetric group of d
letters. We address the question whether the bounded derived category of coherent
sheaves

D(Cd) := Db
coh(Cd)

admits a non-trivial semi-orthogonal decomposition (Definition 4.1).
Semi-orthogonal decomposition is one of the basic notions in the theory of derived

categories of coherent sheaves on algebraic varieties. When the derived category of
an algebraic variety admits a semi-orthogonal decomposition, we can divide the
category into smaller pieces and try to understand the whole triangulated category
via its components. It turns out that semi-orthogonal decompositions of derived
categories of algebraic varieties are closely related to birational geometry, Hochschild
homology and cohomology, K-theory, mirror symmetry, moduli theory, motives,
etc. See [Ku14] and [AB] and references therein for an overview of the role of
semi-orthogonal decompositions in algebraic geometry. As a concrete example, we
can mention the result of Bernardara and Bolognesi [BB] giving a criterion for
the rationality of a conic bundle on a minimal rational surface in terms of the
existence of certain semi-orthogonal decomposition of its derived category. Also,
there is a conjecture of Kuznetsov [Ku10, Conjecture 1.1] about the rationality of a
smooth cubic fourfold in terms of one of the components of certain semi-orthogonal
decomposition. Last but not least, semi-orthogonal decomposition can be used to
investigate geometry of moduli spaces of instanton or ACM bundles on some Fano
varieties [Ku12].

In general, it is very hard to classify all possible semi-orthogonal decompositions
of the derived category of a given variety. Even the question of which algebraic
variety can have a non-trivial semi-orthogonal decomposition is still widely open.

There are several known classes of varieties who do not admit non-trivial semi-
orthogonal decomposition (cf. [KO, Ok]). From the earlier works, we can see that
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the existence of non-trivial semi-orthogonal decomposition of the derived category
of an algebraic variety is closely related to the base locus of the canonical bundle of
the variety. This motivated us to study base locus of the canonical line bundle of
Cd.

This study of the base locus of the canonical bundle and semi-orthogonal de-
composition of the derived category of Cd was inspired by a conjecture of M. S.
Narasimhan. Recently, Narasimhan proved in [Na1, Na2] that the derived category
of C can be embedded into the derived category of the moduli space SUC(2, L)
of stable bundles of rank 2 and fixed determinant L of degree 1. A similar result
was obtained by Fonarev and Kuznetsov for general curves via different method (cf.
[FK]). Narasimhan conjectured that the derived category of the moduli space admits
a semi-orthogonal decomposition as follows (Belmans, Galkin and Mukhopadhyay
have independently stated the same conjecture in [BGM]).

Conjecture 1.1. The derived category of SUC(2, L) has the following semi-orthogonal
decomposition

D(SUC(2, L)) = 〈D(pt),D(pt),D(C),D(C), · · · ,D(Cg−2),D(Cg−2),D(Cg−1)〉.

(two copies of D(Ci) for i < g − 1 and one copy for i = g − 1).

It turns out that there is a motivic decomposition of SUC(2, L) which is compat-
ible with the above conjecture (cf. [Lee]). From the point of view of this conjecture
it is of interest whether the derived categories of symmetric powers of curves can be
further decomposed. Okawa proved that the derived category of a curve of genus
g ≥ 2 cannot have a non-trivial semi-orthogonal decomposition [Ok]. On the other
hand, Toda gives an explicit semi-orthogonal decomposition of Cd for large d in [To,
Corollary 5.11]. Let J denotes the Jacobian of C. Toda proves that, if d > g − 1,
then:

D(Cd) = 〈

d−g+1︷ ︸︸ ︷
D(J), . . .,D(J),D(C−d+2g−2)〉.

Recall that the gonality gon(C) of a curve C is the lowest degree among all
nonconstant morphisms from C to the projective line P

1. Equivalently, it is the
lowest degree of a line bundle L on C with h0(L) ≥ 2. In this paper, we prove the
following theorem.

Theorem 1.2 (Corollary 4.3). Let C be a smooth complex projective curve of genus
g ≥ 3, and let d be a positive integer with d < gon(C). Then there is no non-trivial
semi-orthogonal decomposition of D(Cd).

We note that, for a generic curve C of genus g, the gonality satisfies

gon(C) =

⌊
g + 3

2

⌋
.

If d = 2 we prove the following result for all curves (no condition on gonality)
with genus at least 3:

Theorem 1.3 (Theorem 4.9). Let C be a smooth projective curve of genus g ≥ 3.
Then there is no non-trivial semi-orthogonal decomposition on D(C2).

This result is sharp because, if g = 2 then D(C2) admits a semi-orthogonal
decomposition (recall that, for g = 2, the Albanese map C2 −→ J is the blow-up of
the Jacobian at a point, and then apply the semi-orthogonal decomposition formula
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for the blow-up [Or]). We conjecture the following (this has independently been
stated in [BGM]).

Conjecture 1.4. Let C be a projective smooth curve of genus g ≥ 2. Then there is
no non-trivial semi-orthogonal decomposition on D(Cd) for 1 ≤ d ≤ g − 1.

In this direction, we prove some results on the base locus of the canonical divisor
KCd

of the symmetric product Cd.

Proposition 1.5 (Proposition 3.4). Let 1 ≤ d ≤ g − 1. The base locus of the
canonical divisor KCd

is the set of points (x1, · · · , xd) in Cd such that h0(OC(x1 +
· · ·+ xd)) > 1.

Equivalently, the base locus is the set of points in Cd where the Albanese map is
not injective.

The following conjecture is known to the experts.

Conjecture 1.6. Let X be a smooth projective variety. If the canonical bundle KX

is nef and h0(KX) > 0, then X admits no non-trivial semi-orthogonal decomposi-
tion.

In Lemma 2.2 we prove that Conjecture 1.6 implies Conjecture 1.4

2. Nefness of the canonical divisor of Cd

Let Θ be the theta divisor on the Jacobian J(C). Fixing a point p ∈ C, the
Albanese map of the symmetric product Cd is constructed as follows

u : Cd −→ J(C) , D 7−→ OC(D − dp) .

Note that the fiber of the Albanese map is

u−1(u(D)) = PH0(OC(D)) . (2.1)

We also define
i : Cd−1 −→ Cd , D 7−→ D + p .

Let θ := u∗Θ. The class of the divisor i(Cd−1) of Cd will be denoted by x.

Lemma 2.1. The canonical class of the symmetric product Cd is given by the for-
mula

KCd
= (g − d− 1)x+ θ . (2.2)

Proof. Let ∆ ⊂ Cd be the big diagonal where at least two points coincide. The
image of ∆ under the quotient map π : Cd −→ Cd, for the action of the symmetric
group, will be denoted by ∆′, so we have the commutative diagram

∆ //

π|∆
��

Cd

π

��

∆′ // Cd

Note that π∗(∆′) = 2∆, and hence ∆ is the ramification divisor. The divisor ∆′ is
divisible by 2; in fact,

KCd
= (2g − 2)x−∆′/2

[K2, Proposition 2.6]. On the other hand,

−∆′/2 = θ − (d+ g − 1)x

[K1, Lemma 7]. The lemma follows from these two facts. �
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Recall the formula of Macdonald [Ma, § 11]

H0(Cd, KCd
) =

∧d
H0(C, KC) (2.3)

Lemma 2.2. If Conjecture 1.6 holds, then for any curve C with g ≥ 3 and 1 < d <
g, the symmetric product Cd admits no non-trivial semi-orthogonal decomposition.

Proof. The class θ is nef, being the pullback of an ample class, while the class x
is ample, hence KCd

= (g − d − 1)x + θ is nef under the given conditions on d.

Furthermore H0(Cd, KCd
) =

∧dH0(C, KC) 6= 0 (2.3), so all the conditions in
Conjecture 1.6 are satisfied. �

3. Base locus of canonical divisor of Cd

Let C be a smooth projective curve of genus g. Take any positive integer d ≤ g−1.
In this section we prove that the base locus of the canonical line bundle KCd

of the
symmetric product Cd coincides with the locus where the Albanese map is not
injective (Proposition 3.4). We give two independent proofs. The first proof is a
combination of Proposition 3.1 and Lemma 3.2. The second proof is given after the
statement of Proposition 3.4.

When we write a point of Cd as z = (z1, · · · , zd), the points zi of C need not be
distinct. We also denote by z the subscheme of C defined by

∑
zi.

Proposition 3.1. Let 1 ≤ d ≤ g − 1. Let z = (z1, · · · , zd) ∈ Cd be a point of
the base locus of the complete linear system |KCd

| = P(H0(Cd, KCd
)). Then the

dimension of

H0(C, OC(z)) = H0(C, OC(

d∑

i=1

zi))

is at least two.

Proof. We shall first describe a subset of P(H0(Cd, KCd
)) whose linear span is whole

P(H0(Cd, KCd
)).

Let S ⊂ H0(C, KC) be a linear subspace of dimension d. Now define

DS := {(y1, · · · , yd) ∈ Cd | div(ω)−
d∑

i=1

yi is effective for some ω ∈ S \ {0}} .

Note that div(ω) −
∑d

i=1 yi is effective if and only if ω vanishes on the subscheme

of C defined by
∑d

i=1 yi.
We claim that DS is a divisor on Cd linearly equivalent to KCd

and moreover the
collection {DS}S∈Gr(d,H0(C,KC)) spans H

0(Cd, KCd
).

To prove this, using (2.3) the above divisor DS corresponds to the line

∧d
S ⊂

∧d
H0(C, KC) = H0(Cd, KCd

) .

The collection of all such lines with S running over Gr(d,H0(C, KC)) evidently

spans
∧d H0(C, KC), proving the claim (for more details, see [Ba, Lemma 1.5.4]).

As in the statement of the proposition, take a point z = (z1, · · · , zd) ∈ Cd

of the base locus of P(H0(Cd, KCd
)). Note that this means that for every linear

subspace S ⊂ H0(C, KC) of dimension d, there is a nonzero ω ∈ S such that
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div(ω) −
∑d

i=1 zi is effective. We shall now interpret this condition in order to be
able to use it. Consider the short exact sequence of sheaves

0 −→ KC ⊗OC(−z) −→ KC −→ KC |z −→ 0 (3.1)

on C. Let

0 −→ H0(C, KC ⊗OC(−z))
β

−→ H0(C, KC)
γ

−→ H0(KC |z) (3.2)

be the long exact sequence of cohomologies associated to (3.1). This implies that

dimβ(H0(C, KC ⊗OC(−z))) ≥ g − d ,

because dimH0(KC |z) = d.
We shall show that

dimβ(H0(C, KC ⊗OC(−z))) ≥ g − d+ 1 . (3.3)

To prove this, if dimβ(H0(C, KC ⊗OC(−z))) = g − d, then take a subspace of
dimension d

S ⊂ H0(C, KC)

which is complementary to the subspace β(H0(C, KC ⊗ OC(−z))) of H0(C, KC).
Then the restriction γ|S , where γ is the homomorphism in (3.2), is injective. There-

fore, there is no nonzero ω ∈ S such that div(ω)−
∑d

i=1 zi is effective, because such
an element ω has to be in the kernel of γ|S . This proves (3.3).

From (3.3) and (3.2) it follows immediately that the homomorphism γ in (3.2) is
not surjective.

Now consider the short exact sequence of sheaves

0 −→ OC −→ OC(z) −→ OC(z)|z −→ 0

on C. Let

0 −→ H0(C, OC) −→ H0(C, OC(z))
η

−→ H0(OC(z)|z)
φ

−→ H1(C, OC) (3.4)

be the corresponding long exact sequence of cohomologies. By Serre duality,

H1(C, OC) = H0(C, KC)
∗ .

Using this duality, the homomorphism φ in (3.4) is the dual of the homomorphism
γ in (3.2). We proved earlier that γ is not surjective. Consequently, φ is not
injective. Hence from (3.4) it follows that dimH0(C, OC(z)) ≥ 2. This completes
the proof. �

In view of the above proof, the following converse of Proposition 3.1 is now rather
straightforward.

Lemma 3.2. Let 1 ≤ d ≤ g − 1. Let z = (z1, · · · , zd) ∈ Cd be a point such that
the dimension of

H0(C, OC(z)) = H0(C, OC(

d∑

i=1

zi))

is at least two. Then z lies on the base locus of the complete linear system |KCd
| =

P(H0(Cd, KCd
)).
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Proof. Since dimH0(C, OC(z)) ≥ 2, the homomorphism η in (3.4) is nonzero.
Hence φ in (3.4) is not injective. Consequently, the dual homomorphism γ in (3.2)
is not surjective. Therefore,

dim γ(H0(C, KC)) < dimH0(KC |z) = d .

This implies that for any linear subspace S ⊂ H0(C, KC) of dimension d, the
restriction γ|S is not injective. Now for any nonzero ω ∈ kernel(γ|S) the divisor

div(ω)−
∑d

i=1 yi is effective. Consequently, z lies on the base locus of the complete
linear system |KCd

|. �

Let f : C −→ P
1 be a surjective map of degree d. For any b ∈ P

1, we have
f−1(b) ∈ Cd, where f−1(b) is the scheme theoretic inverse image. Therefore, we
have morphism

f̂ : P1 −→ Cd , b 7−→ f−1(b) .

This is a morphism, and not just a set theoretic map, because Cd is the Hilbert
scheme Hilbd(C) of subschemes of C of dimension 0 and length d, the graph of f
gives a closed subscheme of P

1 × C, flat over P
1, and the morphism P

1 −→ Cd

associated to this subscheme by the universal property of the Hilbert scheme is

precisely f̂ .

Corollary 3.3. The image of the above map f̂ is contained in the base locus of the
complete linear system |KCd

|.

Proof. For any b ∈ P
1, we have

dimH0(C, OC(f
−1(b))) ≥ dimH0(P1, OP1(b)) = 2 .

So Lemma 3.2 completes the proof. �

Proposition 3.4. Let 1 ≤ d ≤ g − 1. The base locus of the canonical divisor KCd

is the set of points (x1, · · · , xd) in Cd such that h0(OC(x1 + · · ·+ xd)) > 1.
Equivalently, the base locus is the set of points in Cd where the Albanese map is

not injective.

Proof. The first part follows from the combination of Proposition 3.1 and Lemma
3.2. The second part follows from the observation that the fiber of the Albanese
map u : Cd −→ J(C) is u−1(u(z)) = P(H0(OC(z))).

�

We shall now give the second proof of Proposition 3.4. Consider the Albanese
map

u : Cd −→ J(C)

Let z = (z1, · · · , zd) ∈ Cd be a point, which can also be thought as a subscheme
in C. The tangent space TzCd of Cd at z is

TzCd = Hom(OC(−z), Oz) = H0(C, OC(z)|z) . (3.5)

Therefore, the differential of the Albanese map gives a linear map

φ : H0(C,OC (z)|z) = TzCd
duz−→ Tu(z)J(C) = H1(C, OC) .

This map φ is the connecting homomorphism in the long exact sequence of coho-
mologies associated to the short exact sequence of sheaves

0 −→ OC −→ OC(z) −→ OC(z)|z −→ 0 (3.6)
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on C. The dual to the map φ is the homomorphism

γ : H0(C,KC ) −→ H0(C,KC |z)

in the long exact sequence of cohomologies associated to the short exact sequence

0 −→ KC(−z) −→ KC −→ KC |z −→ 0

obtained by applying the functor Hom(·,KC) to the short exact sequence (3.6).
Using (3.5) and Serre duality, we obtain the following canonical isomorphism for

the fiber of KCd
over a point z = (z1, · · · , zd) ∈ Cd

KCd
|z =

∧d
Hom(OC(−z),Oz)

∨ =
∧d

Ext1(Oz ,KC(−z)) =
∧d

H0(KC |z)

(3.7)
Using the identifications (2.3), and (3.7) and taking the d-fold exterior product,

we get that

ez : H
0(Cd, KCd

) =
∧d

H0(C, KC)
∧dγ
−→

∧d
H0(KC |z) = KCd

|z .

The above map ez is the evaluation map at z. We note that a point z ∈ Cd is in the
base locus of KCd

if and only if ez is zero. This is equivalent to the map γ being
non-surjective, which in turn is equivalent to the assertion that the map φ is not
injective. We have identified the map φ with the differential duz of the Albanese
map at z. Therefore, a point z ∈ Cd is in the base locus of KCd

if and only the
Albanese map is not injective at z.

4. Semi-orthogonal decompositions of D(Cd)

Definition 4.1. A triangulated category T admits a nontrivial semi-orthogonal de-
composition if there are two full non-trivial triangulated subcategories A,B of T
such that

(1) HomT (b, a) = 0 for every b ∈ B, a ∈ A and
(2) A,B generate T .

In this section, using our results on the base locus of the canonical bundle, and
applying the work of Kawatani and Okawa [KO], we will obtain restrictions to the
existence of semi-orthogonal decompositions of the triangulated category D(Cd).

Theorem 4.2 ([KO, Corollary 1.3]). Let X be a smooth projective variety such that
the base locus of the canonical divisor is a finite set. Then there is no non-trivial
semi-orthogonal decomposition of D(X).

Corollary 4.3. Let C be a smooth complex projective curve of genus g ≥ 3 and
let d be a integer with d < gon(C). Then there is no non-trivial semi-orthogonal
decomposition of D(Cd).

Proof. Note that h0(OC(
∑

zi)) = 1 for any z = (z1, · · · , zd), because d < gon(C).
So Proposition 3.1 implies that z is not a base point of KCd

, and hence the canonical
divisor KCd

is base-point free. Now from Theorem 4.2 it follows that D(Cd) has no
non-trivial semi-orthogonal decomposition. �

When d = 2 we are able to prove a stronger result which disposes of condition
on the gonality of C. We will use the following result:



8 I. BISWAS, T. GÓMEZ, AND K.-S. LEE

Theorem 4.4 ([KO, Theorem 1.8]). Let S be a minimal smooth projective surface
of general type with h0(KS) > 1 and satisfying the condition that for any one-
dimensional connected component Z ⊂ Bs |KS |, its intersection matrix is negative
definite. Then there is no non-trivial semi-orthogonal decomposition of D(S).

We start with some results about the geometry of C2.

Lemma 4.5. Let g ≥ 3. The surface C2 is minimal. It has an embedded rational
curve if and only if C is hyperelliptic, and in this case

• the rational curve is Γ = {x+σ(x)}, where σ is the hyperelliptic involution,
and

• Γ2 = 1− g, i.e., Γ is a (1− g)-curve.

Proof. For all points in the image of the Albanese map u : C2 −→ J(C), the fiber is
a projective space (2.1). Since C2 is a surface, the fiber of the Albanese has at most
dimension 2. But the fiber cannot be P

2, because this would mean that there is a
degree 2 line bundle A on C with h0(A) = 3, and this would imply that the genus
of C is P1, contradicting the hypothesis g ≥ 3. In particular, the Albanese map is
not constant.

If C is hyperelliptic then C2 has no rational curve. Indeed, a rational curve has
to map to a point, so the fiber over this point would be exactly P

1 (by the previous
argument), and we would have a line bundle A on C with h0(A) = 2, so A would
be the hyperelliptic divisor.

Let us now suppose that C is hyperelliptic. A rational curve in C2 has to be in
a fiber of the Albanese map, but the only positive dimensional fiber of this map is
one dimensional (by the argument in the first paragraph of this proof), and it is the
fiber over the hyperelliptic line bundle.

We denote the above mentioned fiber of u by Γ, so Γ is isomorphic to P
1. We

now calculate its self-intersection. The self-intersection of the diagonal ∆ ⊂ C × C
is

∆2 = 2− 2g

by Poincaré–Hopf theorem. The automorphism of C × C, which is identity on the
first factor and the hyperelliptic involution on the second, sends the diagonal ∆ to

the graph Γ̃ = {x, σ(x)} of the hyperelliptic involution, hence also Γ̃2 = 2 − 2g.
Consider the diagram

Γ̃

f

��

�

�

// C ×C

π

��

Γ // C2

Observe that Γ̃ ∼= C and the morphism f is just the quotient by the hyperelliptic

involution. Therefore we have π∗Γ̃ = 2Γ and π∗Γ = Γ̃ as cycles, and the projection
formula for intersection gives

π∗(Γ̃ · Γ̃) = π∗(Γ̃ · π∗Γ) = π∗(Γ̃) · Γ = 2Γ · Γ

and hence Γ2 = 1− g. �

Now we prove that C2 is a surface of general type.

Lemma 4.6. If g ≥ 3, then the symmetric product C2 is of general type.

Proof. In view of [Be, Proposition X.1] it suffices to show that
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• the self-intersection of the canonical divisor of C2 is positive, and C2 is
irrational surface.

From [Be, Proposition I.8], we can compute the self-intersection on C2. We know
that the pull back of the canonical divisor on C2 to C2 is KC ⊠ KC(−∆). The
self-intersection of KC ⊠KC(−∆) is

2(2g − 2)2 − (2g − 2)− 4(2g − 2) = (2g − 2)(4g − 9)

and it is positive when g ≥ 3.
To prove that C2 is not rational by contradiction, assume that C2 is rational.

Then C2 can be covered by rational curves, which implies that the Albanese map
u : C2 → J(C) is constant, but we know that the Albanese map is not constant by
the argument in the first paragraph of the proof of 4.5. Hence C2 is not rational.

Therefore C2 is of general type when g ≥ 3. �

Remark 4.7. When g = 2, we know that C2 is the blow-up of the J(C) at a point.
This has two consequences: C2 is not a surface of general type, and D(C2) admits
a nontrivial semi-orthogonal decomposition (using the blow-up formula in [Or]).

Finally we check that pg > 1 for C2.

Lemma 4.8. The canonical bundle KC2
has h0(KC2

) =
(
g
2

)
> 1 (recall that g ≥ 3).

Proof. Macdonald, [Ma], proves that H0(Cd, KCd
) =

∧d H0(C, KC). �

Theorem 4.9. Let C be a smooth projective curve of genus g ≥ 3. Then there is
no non-trivial semi-orthogonal decomposition on D(C2).

Proof. If C is hyperelliptic, by Lemma 4.5 the Albanese map fails to be injective
exactly on Γ ⊂ J(C). Therefore, Proposition 3.4 implies that

Bs |KC2
| = Γ

and the only connected component of the base locus is Γ, which is irreducible. Hence
the intersection matrix is just Γ2 = 1− g < 0, so it is negative definite.

If C is not hyperelliptic, then the Albanese map is injective. Proposition 3.4
implies that KCd

has no base locus, and hence there is no non-trivial semi-orthogonal
decomposition by Theorem 4.2.

In view of Lemmas 4.5, 4.6, and 4.8, the hypothesis of Theorem 4.4 are satisfied,
so there is no non-trivial semi-orthogonal decomposition. �

Remark 4.10. We thank an anonymous referee for the following alternative argument
to check the assumptions of Theorem 4.4. By Lemma 2.1 and the assumption g ≥ 3,
we know that the canonical divisorKC2

is nef and big. Hence C2 is minimal surface of
general type. Since C2 is a minimal model, the Albanese map should be birational
onto its image (otherwise, C2 is either P

2 or a ruled surface, contradiction). In
other words, the morphism of C2 onto its image is a resolution of singularities of a
surface u(C2). Now the base locus of KC2

coincides with the u-exceptional curve
(Proposition 3.4), hence the intersection matrix of each connected component is
negative definite.
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