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Abstract

In this article I prove the Weil conjecture about the eigenvalues of Frobenius endomor-
phisms. The precise formulation is given in (1.6). I tried to make the demonstration as
geometric and elementary as possible and included reminders: only the results of paragraphs
3, 6, 7 and 8 are original.

In the article following this one I will give various refinements of the intermediate results
and the applications, including the hard Lefschetz theorem (on the iterated cup products by
the cohomology class of a hyperplane section).

The text faithfully follows from the six lectures given at Cambridge in July 1973. I thank
N.Katz for allowing me to use his notes.
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1 The theory of Grothendieck: a cohomological interpre-

tation of L-functions

(1.1) Let X be a scheme of finite type over Z, |X| be the set of closed points of X and for x P |X|
we denote by Npxq the number of elements in the residue field kpxq of X at x. The Hasse-Weil
zeta function of X is

ζXpsq “
ź

xP|X|

p1´Npxq´sq´1 (1.1.1)

(this product converges absolutely for Repsq large enough). ForX “ SpecpZq, ζXpsq is the Riemann
zeta function.

We will consider exclusively the case when X is a scheme over a finite field Fq.
For x P |X| we will write gx instead of Npxq. Denoting degpxq “ rkpxq : Fqs we have qx “ qdegpxq.

It makes sense to introduce a new variable t “ q´s. Let

ZpX; tq “
ź

xP|X|

p1´ tdegpxq
q
´1 (1.1.2);

this product converges for |t| small enough and we have

ζXpsq “ ZpX; q´sq (1.1.3)

(1.2) Dwork (On the rationality of the zeta function of an algebraic variety, Amer. J. Math.,
82, 1960, p. 631-648) and Grothendieck ([1] and SGA5) have demonstrated that ZpX; tq is a
rational function of t.

For Grothendieck, this is a corollary of general results in l-adic cohomology (where l is a prime
number not equal to the characteristic p of Fq). These provide a cohomological interpretation of the
zeros and poles of ZpX; tq, and a functional equation when X is proper and smooth. The methods
of Dwork are p-adic. For X a non-singular hypersurface in a projective space they also provided
him with a cohomological interpretation of zeros and poles, and the functional equation. They
inspired the crystalline theory of Grothendieck and Berthelot, which for X proper and smooth
provides a p-adic cohomological interpretation of zeros and poles, and the functional equation.
Based on Washnitzer ideas, Lubkin created a variant of this theory, valid only for X proper,
smooth and liftable to characteristic 0 (A p-adic proof of Weil’s conjectures, Ann of Math, 87,
1968, pp. 125-255).

We will make essential use of Grothendieck’s results and recall them below.
(1.3) Let X be an algebraic variety over an algebraically closed field k of characteristic p, i.e.

a separated scheme of finite type over k. We do not exclude the case p “ 0. For any prime number
l ‰ p, Grothendieck defined l-adic cohomology groups H ipX,Qlq. He also defined cohomology
groups with compact support H i

cpX,Qlq. For X proper the two coincide. H i
cpX,Qlq are vector

spaces of finite dimension over Ql, zero for i ą 2dimpXq.
(1.4) Let X0 be an algebraic variety over Fq, F̄q the algebraic closure of Fq and X the algebraic

variety over F̄q obtained from X0 by extension of scalars of Fq to F̄q. In the language of Weil and
Shimura we would express this situation by: ”Let X be an algebraic variety defined over Fq”. Let
F : X Ñ X be the Frobenius morphism; it sends a point with coordinates x to the point with
coordinates xq; in other words, for U0 a Zariski open subset of X0, defining an open subset U of X,
we have F´1pUq “ U ; for x P H0pU0,Oq we have F ˚x “ xq. Let us identify the set |X| of closed
points of X with X0pF̄qq (all the points HomFqpSpecpF̄qq, X0q of X0 with coefficients in F̄q) and
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let ϕ P GalpF̄q{Fqq be the substitution of Frobenius: ϕpxq “ xq. The action of F on |X| identifies
with the action of ϕ on X0pF̄qq. Then:

a) The set XF of closed points of X fixed under F is identified with the set X0pFqq Ă X0pF̄qq of
points of X defined over Fq. This simply expresses the fact that for x P F̄q we have x P Fq ô xq “ x.

b) Similarly, the set XFn of closed points of X fixed under the n-th iteration of F is identified
with X0pFqnq.

c) The set |X| of closed points of X is identified with the set |X|F of orbits of F (or ϕ) on |X|.
The degree degpxq of x P |X0| is the number of elements in the corresponding orbit.

d) From b) and c) we see that

#XFn
“ #X0pFqnq “

ÿ

degpxq|n

degpxq (1.4.1)

(for x P |X0| and degpxq|n, x defines degpxq points with coordinates in Fqn all conjugate over Fq).
(1.5) The morphism F is finite, in particular, proper. Therefore, it induces morphisms

F ˚ : H i
cpX,Qlq Ñ H i

cpX,Qlq.

Grothendieck proved the formula of Lefschetz

#XF
“
ÿ

i

p´1qiTrpF ˚, H i
cpX,Qlqq;

the right side, that is a priori an l-adic number is an integer and is equal to the left side. We
should note that such a formulation is only reasonable because dF “ 0, even at infinity (X is not
assumed to be proper); the relation dF “ 0 implies that fixed points of F have multiplicity one.

We have a similar formula for the iterations of F :

#XFn
“ X0pFqnq “

ÿ

i

p´1qiTrpF ˚n, H i
cpX,Qlqq (1.5.1)

We take the logarithmic derivative of (1.1.2):

t
d

dt
logZpX0, tq “

t d
dt
ZpX0, tq

ZpX0, tq
“

ÿ

xP|X0|

´
´ degpxqtdegpxq

1´ tdegpxq
“

“
ÿ

xP|X0|

ÿ

ną0

degpxqtndegpxq p1.4.1q
“

ÿ

n

X0pFqnqtn (1.5.2)

For F an endomorphism of a vector space V we have a formal series identity

t
d

dt
logpdetp1´ Ft, V q´1

q “
ÿ

ną0

TrpF n, V qtn (1.5.3)

(check for dimV “ 1 and observe that both sides are additive in V when we take short exact
sequences). By substituting (1.5.1) into (1.5.2) and applying (1.5.3) one finds

t
d

dt
logZpX0, tq “

ÿ

i

p´1qit
d

dt
log detp1´ F ˚t,H i

cpX,Qlqq
´1,
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or
ZpX, tq “

ź

i

detp1´ F ˚t,H i
cpX,Qlqq

p´1qi`1

(1.5.4)

The right side is in Qlptq. The formula implies that its Taylor expansion at t “ 0, a priori a
formal series in Qlrrtss with constant coefficient one, is in Zrrtss and is equal to the left side, also
considered as a formal series in t. This formula is the Grothendiek’s cohomological interpretation
of the Z-function.

Our main result is the following:

Theorem (1.6). Let X0 be a projective nonsingular (= smooth) variety over Fq. For each i, the
characteristic polynomial detp1´ F ˚t,H ipX,Qlqq has integer coefficients independent of l pl ‰ pq.
The complex roots α of this polynomial (complex conjugates of the eigenvalues of F ˚) are of absolute

value |α| “ q
i
2 .

We show that (1.6) is a consequence of the following apparently weaker statement:

Lemma (1.7). For each i and each l ‰ p the eigenvalues of the Frobenius endomorphism F ˚ on

H ipX,Qlq are algebraic numbers of absolute value |α| “ q
i
2 .

Proof of (1.7) ñ(1.6): Let’s look at ZpX0, tq as a formal series with constant term 1, an element
of Zrrtss : ZpX0, tq “

ř

n ant
n. From (1.5.3), the image of ZpX0, tq in Qlrrtss is a Taylor expansion

of a rational function. This means that for N and M large enough (ě the degrees of numerator
and denominator) the Hankel determinants

Hk “ detppai`j`kq0ďi,jďMq pk ą Nq

are zero. They vanish in Ql if and only if they vanish in Q; ZpX0, tq is a Taylor expansion of an
element in Qptq. In other words,

ZpX0, tq P Zrrtss XQlptq Ă Qptq.

Let ZpX0, tq “
P
Q

, with P,Q P Zrts coprime and with positive constant terms. According to a

lemma of Fatou, since ZpX0, tq lies in Zrrtss and has constant term 1, the constant terms of P and
Q are 11. Let

Piptq “ detp1´ F ˚t,H i
pX,Qlqq.

(1.7) implies that Pi are coprime. The right hand side of (1.5.4) is therefore an irreducible fraction
and

P ptq “
ź

i odd

Piptq

Qptq “
ź

i even

Piptq.

Let K be the subfield of the algebraic closure Q̄l of Ql generated over Q by the roots of Rptq “
P ptqQptq. The roots of Piptq are the roots of Rptq such that all their complex conjugates have

absolute value q´
i
2 . This set is stable under GalpK{Qq. Therefore, Piptq has rational coefficients.

According to a lemma of Gauss (or because roots of Pi, being roots of R, are inverses of algebraic

1See the proof in James Milne’s lectures on Etale Cohomology (Milne). Here and below - footnotes of the
translator.
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integers), it even has integer coefficients. The above description of the roots of Piptq is independent
of l, therefore, the polynomial Piptq is also independent of l.

The rest of the article is dedicated to the demonstration of (1.7).
(1.8) The theory of Grothendieck provides cohomological interpretation not only of zeta func-

tions but also of L-functions. The results are as follows.
(1.9) Let X be an algebraic variety over a field k. For the definition of a constructible Ql-sheaf

on X consult SGA 5 VI2. It suffices to say that:
a) If F is a constructible Ql-sheaf, there exists a finite partition of X into locally closed parts

such that F |Xi is locally constant.
b) Assume that X is connected and let x̄ be a geometric point of X. For F locally constant,

π1pX, x̄q acts on the stalks Fx̄; the map F Ñ Fx̄ defines an equivalence of categories (locally
constant Ql-sheaves on X) Ñ (continuous representations of π1pX, x̄q on Ql vector spaces of finite
dimension). Such a representation in general does not factor through a finite quotient.

c) If k “ C, the constructible Ql-sheaves over X are identified with the sheaves of Ql vector
spaces F on Xan and their exists a finite partition of X into Zariski locally closed parts and for
each i a local system3 of free of finite type Zl-modules Fi on Xi such that

F |Xi “ Fi bZl Ql.

We will only consider constructible Ql-sheaves and call them just Ql-sheaves.
(1.10) Assume that k is algebraically closed and let F be a Ql-sheaf on X. Grothendieck

defined the l-adic cohomology groups H ipX,Fq and H i
cpX,Fq. H i

cpX,Fq are vector spaces of
finite dimension over Ql, zero for i ą 2 dimpXq. For k “ C, H ipX,Fq and H i

cpX,Fq are the usual
cohomology groups (resp. groups with compact support) of Xan with coefficients in F .

(1.11) Let X0 be an algebraic variety over Fq, X the corresponding variety over F̄q and F0 a
sheaf of sets on X0 (for the etale topology). We denote by F its inverse image on X. In addition to
the Frobenius isomorphism F : X Ñ X, we have a canonical isomorphism F ˚ : F ˚F „

Ñ F . Here is
a description. We regard F0 as an etale space over X0, i.e. we identify F0 with an algebraic space
rF0s, equipped with an etale morphism f : rF0s Ñ X0 such that F0 is the sheaf of local sections
of rF0s. The similar etale space rFs over X is obtained from rF0s by extension of scalars. So we
have a commutative diagram

rFs rFs

X X

F

f f

F

and a morphism rFs Ñ X ˆpF,X,fq rFs “ rF ˚Fs, that is an isomorphism because f is etale. The
inverse of this isomorphism defines the isomorphism F ˚F „

Ñ F that we seek.
This construction is generalized to Ql-sheaves.
(1.12) Let X0 be an algebraic variety over Fq, F0 a Ql-sheaf on X0, pX,F) is obtained by

extension of scalars of Fq to F̄q, F : X Ñ X and F ˚ : F ˚F Ñ F . Finite morphisms F and F ˚

define an endomorphism

F ˚ : H i
cpX,Fq Ñ H i

cpX,F
˚Fq Ñ H i

cpX,Fq.
2Or Milne.
3We will also call it a locally constant sheaf (french. constant tordu). This is an abuse of terminology. A sheaf

M “ pMnq of Zl-modules is called locally constant if each Mn is locally constant. It is not, in general, locally
constant in the classical sense. Similar remarks apply elsewhere to Zl and Ql-sheaves.
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For x P |X|, F ˚ defines a morphism F ˚x : FF pxq Ñ Fx. For x P XF it is an endomorphism of Fx.
Grothendieck proved the formula of Lefschetz

ÿ

xPXF

TrpF ˚x ,Fxq “
ÿ

i

p´1qiTrpF ˚, H i
cpX,Fqq.

A similar formula holds for the iterations of F : n-th iteration of F ˚ defines morphisms
F ˚nx : FFnpxq Ñ Fx; for x fixed under F n, F ˚nx is an endomorphism and

ÿ

xPXFn

TrpF ˚nx ,Fxq “
ÿ

i

p´1qiTrpF ˚n, H i
cpX,Fqq (1.12.1)

(1.13) Let x0 P |X|, Z be the orbit corresponding to F in |X| and x P Z. The orbit Z has

degpx0q elements (1.4). We denote by F ˚x0 the endomorphism F
˚ degpx0q
x of Fx and let

detp1´ F ˚x0t,F0q “ detp1´ F ˚x0t,Fxq.

Because of the local isomorphism4, pFx, F ˚x0q does not depend on the choice of X. This justifies
omitting x in the notation. We will use a similar notation for other functions of pFx, F ˚x0q.

(1.14) Define ZpX0,F0, tq P Qlrrtss by the product

ZpX0,F0, tq “
ź

xP|X0|

detp1´ F ˚x t
degpxq,F0q

´1 (1.14.1)

For the constant sheaf Ql we recover (1.1.2). According to (1.5.3), the logarithmic derivative of Z
is

t
d

dt
logZpX0,F0, tq

def
“

t d
dt
ZpX0,F0, tq

ZpX0,F0, tq
“
ÿ

n

ÿ

xPXFn“X0pFqn q

TrpF ˚nx ,F0qt
n (1.14.2)

Substituting (1.12.1) in (1.14.2) we find by a calculation similar to (1.5) the generalization of
(1.5.4)

ZpX0,F0, tq “
ź

i

detp1´ F ˚t,H i
cpX,Fqqp´1qi`1

(1.14.3)

This formula is an identity in Qlrrtss.
(1.15) It is sometimes convenient to use Galois language instead of the geometric one. Here is

the dictionary.
If F̄1

q and F̄2
q are two algebraic closures of Fq, pX0,F0q over Fq defines by extension of scalars

pX1,F1q over F̄1
q and pX2,F2q over F̄2

q. All Fq-isomorphisms σ : F̄1
q
„
Ñ F̄2

q define isomorphisms

H˚
c pX1,F1q

„
Ñ H˚

c pX2,F2q.

In particular, for F̄1
q “ F̄2

q (denote by F̄q), we find that GalpF̄q{Fqq acts on H˚
c pX,Fq (action by

transport of structure 5). Let ϕ P GalpF̄q{Fqq be the substitution of Frobenius. We verify that

F ˚ “ ϕ´1
pin EndpH˚

c pX,Fqqq.
4The Frobenius F is a local isomorphism and hence an isomorphism on stalks.
5This phrase is commonly used to state the principle that any isomorphism Y1 Ñ Y2 extends canonically

to an isomorphism of objects constructed from Y1 and Y2 (cohomology groups, sheaves, etc). When Y1 “ Y2,
automorphisms also extend.
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This leads to the definition of the geometric Frobenius F P GalpF̄q{Fqq as ϕ´1. We have

F ˚ “ F (1.15.1)

Let x be a geometric point of X0, localized to x0 P |X0|. By transport of structure, the group
Galpkpxq{kpx0qq acts on the stalk pF0qx of F0 at x; in particular, we have a geometric Frobenius
relative to kpx0q: Fx0 P Galpkpxq{kpx0qq. For x defined by a closed point, still denoted by x, in X
we have Fx “ pF0qx and

F ˚x0
def
“ F ˚ degpx0q

x “ Fx0 pin EndpFxqq (1.15.2)

In the Galois notation, (1.14.3) looks like

ź

xP|X0|

detp1´ Fxt
degpxq,F0q

´1
“
ź

i

detp1´ Ft,H i
cpX,Fqqp´1qi`1

.

2 The theory of Grothendieck: Poincare duality

(2.1) To explain the relationship between the roots of unity and orientations I will first repeat the
two classical cases in a wacky language.

a) Differentiable manifolds. - Let X be a differentiable manifold purely of dimension n. The
orientation sheaf Z1 on X is the sheaf locally isomorphic to the constant sheaf Z, whose invertible
sections on an open U in X correspond to the orientations of U . An orientation of X is an
isomorphism of Z1 with the constant sheaf Z. The fundamental class of X is a morphism Tr :
Hn
c pX,Z1q Ñ Z; if X is orientable, it is identified with a morphism Tr : Hn

c pX,Zq Ñ Z. The
Poincare duality is expressed using the fundamental class.

b) Complex varieties. - Let C be the closure of R. A smooth complex algebraic variety or
rather the underlying differentiable variety is always orientable. To justify this it suffices to orient
C itself. This amounts to a choice:

a) choosing one of the two roots of the equation X2 “ ´1; we call it `i;
b) choosing an isomorphism from R{Z to U1 “ tz P C| |z| “ 1u; `i is the image of 1

4
;

c) choosing one of the two isomorphisms xÑ expp˘2πixq from Q{Z to the group of the roots
of unity of C, which extends continuously to an isomorphism from R{Z to U1.

We denote by Zp1q a free Z-module of rank one whose set of generators has two elements
canonically corresponding to one of the two-element sets a), b), c). The simplest is to take
Zp1q “ Kerpexp : C Ñ C˚q. The generator y “ ˘2πi corresponds to the isomorphism c):
x Ñ exppxyq. Let Zprq be the r-th tensor power of Zp1q. If X is a smooth complex algebraic
variety purely of complex dimension r, the orientation sheaf on X is the constant sheaf of value
Zprq.

(2.2) To ”orient” an algebraic variety over an algebraically closed k of characteristic zero, we
must choose an isomorphism from Q{Z to the group of the roots of unity of k. The set of such
isomorphisms is the principal homogeneous space for Ẑ˚ (no longer for Z˚). When one is only
interested in the l-adic cohomology, it suffices to consider the roots of unity of order a power of
l, and to assume that the characteristic p of k differs from l. We denote by Z{lnp1q the group of
the roots of unity of k of order dividing ln. For various n, Z{lnp1q form a projective system with
transition maps

σm,n : Z{lmp1q Ñ Z{lnp1q : xÑ xl
m´n

.
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We let Zl “ lim projZ{lnp1q and Qlp1q “ Zlp1q bZl Ql. Denote by Qlprq the r-th tensor power of

Qlp1q; for r P Z negative we put Qlprq “ Qlp´rqq.
As a vector space over Ql, Qlp1q is isomorphic to Ql. However, the automorphism group of k

acts non-trivially on Qlp1q: it acts via the character with values in Z˚l , which gives its action on
the roots of unity. In particular, for k “ F̄q, the substitution of Frobenius ϕ : x Ñ xq acts by
multiplication by q.

Let X be an algebraic variety purely of dimension n over k. The orientation sheaf of X for
the l-adic cohomology is the constant Ql-sheaf Qlpnq. The fundamental class is a morphism

Tr : H2n
c pX,Qlpnqq Ñ Ql,

or rather even
Tr : H2n

c pX,Qlq Ñ Qlp´nq.

Theorem (2.3) (Poincare duality). For X proper and smooth, purely of dimension n, the
bilinear form

TrpxY yq : H i
pX,Qlq bH

2n´i
pX,Qlq Ñ Qlp´nq

is a perfect paring (it identifies H ipX,Qlq with the dual of H2n´ipX,Qlpnqq).

(2.4) Let X0 be a proper and smooth algebraic variety over Fq, purely of dimension n and we
obtain X over F̄q from X0 by extension of scalars. The morphism (2.3) is compatible with the
action of GalpF̄q{Fqq. If pαjq are the eigenvalues of the geometric Frobenius acting on H ipX,Qlq,
the eigenvalues of F acting on H2n´ipX,Qq are pqnα´1

j q.
(2.5) Assume for simplicity that X is connected. The proof of (2.4) goes as follows, once we

transpose to the geometric language instead of the Galois one (see (1.15)).
a) The cup-product puts H ipX,Qlq and H2n´ipX,Qlq into perfect duality with values in

H2npX,Qlq that has dimension one.
b) The cup product commutes with the inverse image of F ˚ by the Frobenius morphism

F : X Ñ X.
c) The morphism F is finite of degree qn: on H2npX,Qlq F

˚ is multiplication by qn.
d) Therefore, the eigenvalues of F ˚ satisfy the property (2.4).
(2.6) We let χpXq “

ř

ip´1qi dimH ipX,Qlq. For n odd, the form Trpx Y yq on HnpX,Qlq is
skew-symmetric; the integer nχpXq is always even. It is easy to deduce from p1.5.4q and (2.3),
(2.4) that

ZpX0, tq “ εq
´nχpXq

2 t´χpXqZpX0, q
´nt´nq

for ε “ ˘1. If n is even, let N denote the multiplicity of the eigenvalue q
n
2 of F ˚ acting on

HnpX,Qlq (i.e the dimension of the corresponding invariant subspace). We have

ε “

#

1, if n is odd

p´1qN , if n is even

This is the Grothendieck’s formulation of the functional equation for Z-functions.
(2.7) We will need other forms of the duality theorem. The case of curves will be enough for

our purposes. If F is a Ql-sheaf on an algebraic variety X over an algebraically closed k, we denote
by Fprq the sheaf F bQlprq. This sheaf is (not canonically) isomorphic to F .
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Theorem (2.8). Let X be smooth purely of dimension n and F be a locally constant sheaf. We

denote by qF the dual of F . The bilinear form

TrpxY yq : H i
pX,Fq bH2n´i

c pX, qFpnqq Ñ H2n
c pX,F b qFpnqq Ñ H2n

c pX,Qlpnqq Ñ Ql

is a perfect pairing.

(2.9) Assume that X is connected and that x is a closed point of X. The functor F Ñ Fx is
an equivalence of the category of locally constant Ql-sheaves with that of l-adic representations of
π1pX, xq. Via this equivalence, H0pX,Fq is identified with the invariants of π1pX, xq acting on Fx:

H0
pX,Fq „Ñ Fπ1pX,xqx .

According to (2.8), for X smooth and connected of dimension n we have

H2n
c pX,Fq “ H0

pX, qFpnqqq “ pp qFxpnqqπ1pX,xqqq.

The duality exchanges invariants (the largest invariant subspaces) with coinvariants (the largest
invariant quotients)6. The formula takes form

H2n
c pX,Fq “ pFxqπ1pX,xqp´nq.

We will only use it for n “ 1.

Statement (2.10). Let X be a connected smooth curve over an algebraically closed field k, x a
closed point of X and F a locally constant Ql-sheaf. We have

(i)H0
c pX,Fq “ 0 if X is affine.

(ii)H2
c pX,Fq “ pFxqπ1pX,xqp´1q.

Assertion (i) simply states that F does not have sections with finite support.
(2.11) Let X be a connected smooth projective curve over an algebraically closed k, U an open

set in X, the complement of the finite set S of closed points of X, j the inclusion U ãÝÑ X and F
a locally constant Ql-sheaf on U . Let j˚F be the constructible Ql-sheaf - the direct image of F .
Its stalk at x P S has rank less or equal to the rank of the stalk at a general point; it is the space
of invariants of the local monodromy group.

Theorem (2.12). The bilinear form

TrpxY yq : H i
pX, j˚Fq bH2´i

pX, j˚ qFp1qq Ñ H2
pX, j˚F b j˚ qFp1qq Ñ

Ñ H2
pX, j˚pF b qFqp1qq Ñ H2

c pX,Qlp1qq Ñ Ql

is a perfect pairing.

(2.13) It will be convenient to have Ql-sheaves Qlprq on any scheme X where l is invertible.
The point is to define Z{lnp1q. By definition, Z{lnp1q is the etale sheaf of the ln-th roots of unity.

(2.14) Bibliographical notes on paragraphs 1 and 2.
A) All the important results in etale cohomology are first proved for torsion sheaves. The

extension to Ql-sheaves is done by passing to formal limits. In what follows, for each theorem

6I haven’t seen the terms ”invariant” and ”coinvariant” used in this setting. For a group G acting on M the
”invariants” (resp. ”coinvariants”) are denoted MG (resp MG).
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mentioned I will not refer to the reference where it is proved, but to the reference where a similar
statement for a torsion sheaf is proved.

B) With the exception of the Lefschetz formula and (2.12), results in etale cohomology used in
this article are all proved in SGA 4. For those already stated, the references are: definition of H i:
VII; definition of HI

c : XVII 5.1; finiteness theorem: XIV 1, completed in XVII 5.3; cohomological
dimension: X; Poincare duality: XVIII.

C) The relation between the various Frobeniuses ((1.4), (1.11), (1.15)) is explained in detail in
SGA 5, XV, par. 1, 2.

D) The cohomological interpretation of the Z-functions is clearly exposed in [1]; however,
Lefschetz formula (1.12) for X a smooth projective curve is used, but not proved. For the proof,
one has to consult SGA 5.

E) The form p2.12q of the Poincare duality theorem follows from the general result SGA 4,
XVIII (3.2.5) (for S “ Specpkq, X “ X, K “ j˚F , L “ Ql) by a local calculation that is not
difficult. The statement will be explicitly included in the final version of SGA 5. For the case
interesting to us (tame ramification of F), we could obtain it transcendentially7 by lifting X and
F to characteristic 0.

3 The main lemma (La majoration fondamentale)

The result of this paragraph was catalyzed by reading the lecture of Rankin [3]8.
(3.1) Let U0 be a curve on Fq, complement in P1 to a finite set of closed points, U be the curve

over F̄q corresponding to it, u a closed point of U , F0 a locally constant sheaf on U0 and F its
inverse image on U .

Let β P Q. We say that F0 is of weight β if for all x P |U0|, the eigenvalues of Fx acting on

F0 (1.13) are algebraic numbers all of which complex conjugates are of absolute value q
β{2
x . For

example, Qlprq is of weight ´2r.

Theorem (3.2). Let’s make the following hypotheses:
(i) F0 is equipped with a bilinear skew-symmetric nondegenerate form

ψ : F0 b F0 Ñ Qlp´βq pβ P Zq.

(ii) The image of π1pU, uq in GLpFuq is an open subgroup of the symplectic group SppFu, ψuq.
(iii) For all x P |U0|, the polynomial detp1´ Fxt,F0q has rational coefficients.
Then F is of weight β.

We may and do assume that U is affine and that F ‰ 0.

Lemma (3.3). Let 2k be an even integer and denote by
2k
bF0 the 2k-th tensor power of F0. For

x P |U0| the logarithmic derivative

t
d

dt
logpdetp1´ Fxt

degpxq,
2k
bF0q

´1
q

is a formal series with positive rational coefficients.

7Transcendential algebraic geometry deals with varieties defined over C and concentrates on their structure of
holomorphic manifolds, that allows one to use powerful techniques of topology, analysis, differential equations, etc.

8For a slightly different exposition of the main lemma using the equivalence of (1.9) b) consult Milne.
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Hypothesis (iii) ensures that for all n TrpF n
x ,F0q P Q. The number

TrpF n
x ,

2k
bF0q “ TrpF n

x ,F0q
2k

is a positive rational and we apply (1.5.3).

Lemma (3.4). The local factors detp1´ Fxt
degpxq,

2k
bF0q

´1 are formal series with positive rational
coefficients.

The formal series logpdetp1 ´ Fxt
degpxq,

2k
bF0q

´1q has constant term zero, from (3.3) all the
coefficients are ě 0; the coefficients of the exponentiation are therefore also positive.

Lemma (3.5). Let fi “
ř

n ai,nt
n be a sequence of formal series with positive real coefficients. We

assume that the order of fi ´ 1 tends to infinity with i; and we denote f “
ś

i fi. Then the radius
of convergence of fi is greater or equal to that of f .

If f “
ř

n ant
n, we have ai,n ď an.

Lemma (3.6). Under the assumptions of (3.5), if f and the fi are Taylor expansions of mero-
morphic functions, then

inft|z| |fpzq “ 8u ď inft|z| |fipzq “ 8u

Indeed, those numbers are the radii of convergence.
(3.7) For each partition P of r1, 2ks 9 into the two element sets tiα, jαupiα ď jαq, we define

ψP :
2k
bF0 Ñ Qlp´kβq : x1 b ¨ ¨ ¨ b x2k Ñ

ź

α

ψpxiα , xjαq.

Let x be a closed point of X 10. Hypothesis (ii) ensures that the coivariants of π1pU, uq on
2k
bFu are

the coinvariants on
2k
bFu of the entire symplectic group (π1 is Zariski-dense in Sp). Let P be the

set of partitions P . From H.Weil (The classical groups, Princeton University Press, chap. VI, par.
1), for an appropriate P 1 Ă P , depending on dimpFuq, ψP (for P P P 1) defines an isomorphism

p
2k
bFuqπ1 “ p

2k
bFuqSp

„
Ñ Qlp´kβq

P 1 .

Let N be the number of elements in P 1. According to (2.10) the formula above gives

H2
c pU,

2k
bFq » Qlp´kβ ´ 1qN .

Since H0
c pU,

2k
bFq “ 0 11, the formula (1.14.3) reduces to

ZpU0,
2k
bF0, tq “

detp1´ F ˚t,H1pU,
2k
bFqq

p1´ qkβ`1tqN
.

9of t1, ¨ ¨ ¨ , 2ku
10Let u be a closed point of U .
11Again, see (2.10).
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This Z-function is therefore the Taylor series expansion of a rational function having only one pole
at t “ 1{qkβ`1. We will only use the fact that the poles are of modulus t “ 1{qkβ`1 in C. This
could be concluded from the general arguments about reductive groups. If α is an eigenvalue of

Fx on F0, then α2k is an eigenvalue of Fx on
2k
bF0. We now let α be any complex conjugate of 12 α.

The inverse power 1{α2k{degpxq is a pole of detp1 ´ Fxt
degpxq,

2k
bFq´1. According to (3.4) and (3.6)

we have
|1{qkβ`1

| ď |1{α2k{degpxq
|,

or

|α| ď q
β
2
` 1

2k
x .

Letting k go to infinity we find that

|α| ď q
β
2
x .

On the other hand, the existence of ψ ensures that qβxα
´1 is an eigenvalue, so we have the inequality

|qβxα
´1
| ď qβ{2x ,

or
qβ{2x ď |α|.

This completes the proof.

Corollary (3.8). Let α be an eigenvalue of F ˚ acting on H1
c pU,Fq. Then α is an algebraic number

all of which complex conjugates satisfy

|α| ď q
β`1
2
` 1

2 .

The formula (1.14.3) for F0 reduces to

ZpU0,F , tq “ detp1´ F ˚t,H1
c pU,Fqq.

The left hand side is a formal series with rational coefficients, given its representation as a product
and hypothesis (iii). The right hand side is therefore a polynomial with rational coefficients, 1{α is
its root. This already implies that α is algebraic. To complete the proof, it suffices to show that the

infinite product that defines ZpU0,F0, tq converges absolutely (thus it is nonzero) for |t| ă q
´β
2
´1.

Let N be the rank of F and let

detp1´ Fxt,Fq “
N
ź

i“1

p1´ αi,xtq.

According to (3.2), |αi,x| “ q
β{2
x . The convergence of the infinite product for Z follows from that

of the series
ÿ

i,x

|αi,xt
degpxq

|.

For |t| “ q
´β
2
´1´ε pε ą 0q we have

ÿ

i,x

|αi,xt
degpxq

| “ N
ÿ

x

q´1´ε
x .

12the original
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On the affine line there are qn points with coordinate in Fqn , so there are at most qn closed points
of degree n. So we have

ÿ

x

q´1´ε
x ď

ÿ

n

qnqnp´1´εq
“
ÿ

n

q´nε ă 8,

which completes the proof.

Corollary (3.9). Let j0 be the inclusion of U0 in P1
Fq , j that of U into P1 and α an eigenvalue of

F ˚ acting on H1pP1, j˚Fq. Then α is an algebraic number all of which complex conjugates satisfy

q
β`1
2
´ 1

2 ď |α| ď q
β`1
2
` 1

2 .

The segment of the long exact sequence in cohomology defined by the short exact sequence

0 Ñ j!F Ñ j˚F Ñ j˚F{j!F Ñ 0

(j! is the extension by 0) is
H1
c pU,Fq Ñ H1

pP, j˚Fq Ñ 0.

So the eigenvalue α already appears in H1
c pU,Fq 13 and so by (3.8) we have:

|α| ď q
β`1
2
` 1

2 .

The Poincare duality (2.12) implies that qβ`1α´1 is an eigenvalue, so we have the inequality

|qβ`1α´1
| ď q

β`1
2
` 1

2

and the corollary is proved.

4 Lefschetz theory: local theory

(4.1) On C Lefshietz local results are as follows. LetD “ tz| |z| ă 1u be the unit disk, D˚ “ D´t0u
and f : X Ñ D be a morphism of analytic spaces. We assume that

a) X is nonsingular and purely of dimension n` 1;
b) f is proper;
c) f is smooth outside the point x of the special fiber X0 “ f´1p0q;
d) At x f has a nondegenerate double point.
Let t ‰ 0 in D and Xt “ f´1ptq ”the” general fiber. To the previous data we associate:
α) Specialization morphisms sp : H ipX0,Zq Ñ H ipXt,Zq: X0 is a deformation retract of X

and sp is the composition arrow

H i
pX0,Zq

„
Ð H i

pX,Zq Ñ H i
pXt,Zq

β) The monodromy transformations T : H ipXt,Zq Ñ H ipXt,Zq, which describe the effect on
the singular cycles of Xt of ”rotating t around 0”. This is even an action on H ipXt,Zq, the stalk
at t of the local system Rif˚Z|D˚, of the positive generator of π1pD

˚, tq.

13We will repeatedly use the following facts:
A) If HipX 1q Ñ HipXq is a surjection, then (1.7) for HipX 1q ñ (1.7) for HipXq.
B) If HipXq ãÝÑ HipX2q is an embedding, then (1.7) for HipX2q ñ (1.7) for HipXq.
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Lefschetz theory describes α) and β) in terms of the vanishing cycle14 δ P HnpXt,Zq. This
cycle is well-defined up to sign. For i ‰ n, n` 1 we have

H i
pX0,Zq

„
Ñ H i

pXt,Zq pi ‰ n, n` 1q.

For i “ n, n` 1 we have an exact sequence

0 Ñ Hn
pX0,Zq Ñ Hn

pXt,Zq
xÑpx,δq
Ñ ZÑ Hn`1

pX0,Zq Ñ Hn`1
pXt,Zq Ñ 0.

For i ‰ n, the monodromy T is the identity. For i “ n we have

Tx “ x˘ px, δqδ.

The values of ˘, Tδ and pδ, δq are as follows:

n mod 4 0 1 2 3
Tx “ x˘ px, δqδ - - + +

pδ, δq 2 0 -2 0
Tδ ´δ δ ´δ δ

The monodromy transformation preserves the intersection form Trpx Y yq on HnpXt,Zq. For n
odd, it is the symplectic transvection. For n even, it is the symmetric orthogonal.

(4.2) There is an analog of (4.1) in abstract algebraic geometry. The disk D is replaced by the
spectrum of a henselian discrete valuation ring A with an algebraically closed residue field. Let S
be the spectrum, η its generic point (spectrum of the field of fractions of A), s the closed point
(spectrum of the residue field). The role of t is played by the geometric generic point η̄ (spectrum
of the closure of the field of fractions of A).

Let f : X Ñ S be a proper morphism, with X regular purely of dimension n ` 1. We assume
that f is smooth except for an ordinary double point x of the special fiber Xs. Let l be a prime
number different from the residual characteristic15 p of S. Denoting by Xη̄ the generic geometric
fiber, we have the specialization morphism

sp : H i
pXs,Qlq

„
Ð H i

pX,Qlq Ñ H i
pXη̄,Qlq (4.2.1)

The role of T is played by the action of the inertia group I “ Galpη̄{ηq on H ipXη̄,Qlq by transport
of structure (see (1.15)):

I “ Galpη̄{ηq Ñ GLpH i
pXη̄,Qlqq (4.2.2)

The data (4.2.1), (4.2.2) fully determines the sheaf Rif˚Ql on S.
(4.3) Let n “ 2m for n even and n “ 2m`1 for n odd. (4.2.1) and (4.2.2) can still be described

in terms of the vanishing cycle

δ P Hn
pXη̄,Qlqpmq (4.3.1)

This cycle is well-defined up to sign.

14We can define δ to be the unique (up to sign) generator of HnpX0,ZqK Ă HnpXt,Zq (under the pairing induced
by Poincare duality).

15Characteristic of the residue field of A.
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For i ‰ n, n` 1 we have

H i
pXs,Qlq

„
Ñ H i

pXη̄,Qlq pi ‰ n, n` 1q (4.3.2)

For i “ n, n` 1 we have an exact sequence

0 Ñ Hn
pXs,Qlq Ñ Hn

pXη̄,Qlq
xÑTrpxYδq
Ñ Qlpm´nq Ñ Hn`1

pXs,Qlq Ñ Hn`1
pXη̄,Qlq Ñ 0 (4.3.3)

The action (4.2.2) (local monodromy) is trivial for i ‰ n. For i “ n, it is described as follows.
A) n odd. - We have a canonical homomorphism

tl : I Ñ Zlp1q,

and the action of σ P I is
xÑ x˘ tlpσqpx, δqδ.

B) n even. - We will not need this case. Let’s just say that if p ‰ 2, there exists a unique
character of order two

ε : I Ñ t˘1u,

and we have

σx “ x if εpσq “ 1
σx “ x˘ px, δqδ if εpσq “ ´1

The signs ˘ in A) and B) are the same as in (4.1).
(4.4) These results imply the following information16 about Rif˚Ql.
a) If δ ‰ 0:

1) For i ‰ n the sheaf Rif˚Ql is constant.
2) Let j be the inclusion of η in S. We have

Rif˚Ql “ j˚j
˚Rif˚Ql.

b) If δ “ 0: (This is an exceptional case. Since pδ, δq “ ˘2 for n even, it can only happen for
n odd.)

1) For i ‰ n` 1 the sheaf Rif˚Ql is constant.
2) Let Qlpm´ nqs be the sheaf Qlpm´ nq on tsu, extended by zero on S. Then we have an

exact sequence
0 Ñ Qlpm´ nqs Ñ Rn`1f˚Ql Ñ j˚j

˚Rn`1f˚Ql Ñ 0,

where j˚j
˚Rn`1f˚Ql is a constant sheaf.

5 Lefschetz theory: global theory

(5.1) On C the results of Lefshietz are as follows. Let P be a projective space of dimension ě 1

and qP the dual projective space; its points parameterize the hyperplanes of P and we denote by Ht

the hyperplane defined by t P qP. If A is a linear subspace of codimension 2 in P, the hyperplanes
containing A are parameterized by points of the line D Ă qP, the dual of A. These hyperplanes
pHtqtPD form the pencil with axis A.

16Derivation of some of the results can be found in Milne.
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Let X Ă P be a connected nonsingular projective variety of dimension n` 1. Let X̃ Ă X ˆD
be the set of pairs px, tq such that x P Ht. Projections to the first and second coordinates form a
diagram17

X X̃

D

π

f (5.1.1)

The fiber of f at t P D is the hyperplane section Xt “ X XHt of X.
Fix X and take a general enough A. Then:
A) A is transverse to X and X̃ is the blowing up of X along A X X. In particular, X̃ is

nonsingular.
B) There is a finite subset S of D and for each s P S a point xs P Xs such that f is smooth

outside xs.
C) The xs are critical nondegenerate points of f .
Therefore, for each s P S local Lefschetz theory (4.1) applies to a small disk Ds around s and

f´1pDsq.
(5.2) Let U “ D ´ S. Let u P U and choose disjoint loops pγsqsPS starting from u, with γs

turning once around s:

These loops generate the fundamental group π1pU, uq. This group acts on H ipXu,Zq, the stalk
at u of the local system Rif˚Z|U . According to the local theory (4.1), to each s P S corresponds
a vanishing cycle δs P H

npXu,Zq; these cycles depend on the choice of γs. For i ‰ n, the action of
π1pU, uq on H ipXu,Zq is trivial. For i “ n we have

γsx “ x˘ px, δsqδs (5.2.1)

Let E be the subspace of HnpXu,Qq generated by the δs (vanishing part of the cohomology).

Proposition (5.3). E is stable under the action of the monodromy group π1pU, uq. The orthogonal
EK of E (for the intersection form TrpxY yq) is the space of the invariants of the monodromy in
HnpXu,Qq.

The γs generate the monodromy group, so this is clear from (5.2.1).

Theorem (5.4). The vanishing cycles ˘δs are conjugate (up to sign)18 under the action of
π1pU, uq.

17In the original paper the letter f is absent.
18That is, given s, s1 P S, there exists a σ P π1 such that σδs “ ˘δs.
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Let qX Ă qP be the dual variety of X; it is the set of t P qP such that Ht is tangent to X, i.e.
such that Xt is singular or X Ă Ht. The variety qX is irreducible. Let Y Ă X ˆ qP be the space of
pairs px, tq such that x P Ht. We have a diagram

X Y

qP

g

The fiber of g at t P qP is the hyperplane section Xt “ X X Ht of X and g is smooth on the
complement of the inverse image of qX.

We retrieve the situation of (5.1) by replacing qP by the line D Ă qP and Y by g´1pDq. We have

S “ D X qX. According to a theorem of Lefschetz, for D general enough, the map

π1pD ´ S, uq Ñ π1p
qP´ qX, uq

is surjective. It suffices to show that ˘δs are conjugate under π1p
qP´ qXq.

For x in the smooth locus of codimension 1 of qX, let ch be the path from t to x in qP´ qX and γx
the loop that follows ch until the neighborhood of qX, turns once around qX and then returns to t
by ch. The loops γx (for various ch) are mutually conjugate. Since qX is irreducible, two points in

the smooth locus of qX can always be joined, in qX, by a path that does not leave the smooth locus.
It follows that the conjugation class of γx does not depend on x. In particular, γs are mutually
conjugate. We see from (5.2.1) that this implies the conjugacy of ˘δs.

Corollary (5.5). The action of π1pU, uq on E{pE X EKq is absolutely irreducible19.

Let F Ă E b C be the subspace stable under the monodromy. If F Ć pE X EKq b C, there
exists an x P F and s P S such that px, δsq ‰ 0. We then have

γsx´ x “ ˘px, δsqδs P F

and δs P F . According to (5.4), all the δs are then in F and F “ E. This proves (5.5).
(5.6) These results transpose as follows into abstract algebraic geometry. Let P be a projective

space of dimensioną 1 over an algebraically closed field k of characteristic p and X Ă P a connected
projective nonsingular variety of dimension n ` 1. For A a linear subspace of codimension 2 we
define D, the pencil pHtqtPD, X̃ and the diagram (5.1.1) as in (5.1). We say that pHtqtPD form a
Lefschetz pencil of hyperplane sections if the following conditions are satisfied:

A) The axis A is transverse to X. X̃ is obtained by blowing up X along AXX and is smooth.
B) There is a finite subset S of D and for each s P S a point xs P Xs such that f is smooth

outside xs.
C) The xs are ordinary double singular points of f .
For each s P S the local Lefschetz theory of par. 4 applies to the spectrum Ds of the henseliza-

tion of the local ring of D at s and to X̃Ds “ X̃ ˆD Ds.
(5.7) Let N be the dimension of P, r an integer ě 1 and ιprq the embedding of P into the

projective space of dimension
`

N`r
N

˘

´ 1, the homogeneous coordinates of which are monomials

19The action on the k-vector space V is called absolutely irreducible if the corresponding action on V bk k̄ is
irreducible.
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of degree r in the homogeneous coordinates of P 20. The hyperplane sections of ιprqpPq are the
hypersurfaces of degree r of P.

For p ‰ 0 it might happen that there is no such pencil of hyperplane sections of X that is
Lefschetz. However, if r ě 2 and we replace the projective embedding ι1 : X ãÝÑ P by ιr “ ιprq ˝ ι1,
then, in this new embedding, any general enough pencil of hypersurface sections of degree r on X
is still Lefschetz.

(5.8) For the rest of this discussion, we are studying the Lefschetz pencil of hyperplane sections
of X, excluding the case p “ 2, n even. The case of n odd will suffice for our purposes. We put
U “ D ´ S. Take u P U and l a prime number ‰ p. The local results of par. 4 show that Rnf˚Ql

is tamely ramified at each s P S. The tame fundamental group of U is a quotient of the profinite
completion of the corresponding transcendential21 fundamental groups (lifting to characteristic 0
of the tame coverings and the Riemann existence theorem). The algebraic situation is therefore
similar to the transcendential situation and the transfer of Lefschetz’s results is done by standard
arguments. In the proof of (5.4) the theorem of Lefschetz for π1 is replaced by a theorem of Bertiny
and we have to invoke Abhyankar’s lemma to control the ramification of R˚g˚Ql along the smooth
locus of codimension one in qX 22.

The results are as follows23:
a) If the vanishing cycles are nonzero:

1) For i ‰ n the sheaf Rif˚Ql is constant.
2) Let j be the inclusion of U in D. We have

Rnf˚Ql “ j˚j
˚Rnf˚Ql.

3) Let E Ă HnpXu,Qlq be the subspace of the cohomology generated by the vanishing
cycles. This subspace is stable under π1pU, uq and

EK “ Hn
pXu,Qlq

πpU,uq.

The representation of πpU, uq on E{pE X EKq is absolutely irreducible and the image of π1 in
GLpE{pE X EKqq is generated (topologically24) by the x Ñ x ˘ px, δsqδs ps P Sq (the ˘ sign is
determined as in (4.1)).

b) If the vanishing cycles are zero: (This is an exceptional case. Since pδ, δq “ ˘2 for n even,
it can only happen for n odd: n “ 2m ` 1. Note that if one vanishing cycle is zero, they all are
because of conjugacy.)

1) For i ‰ n` 1 the sheaf Rif˚Ql is constant.
2) We have an exact sequence

0 Ñ ‘
sPS

Qlpm´ nqs Ñ Rn`1f˚Ql Ñ F Ñ 0

with F constant.
3) E “ 0.

(5.9) The subspace E X EK of E is the kernel of the restriction to E of the intersection form
TrpxY yq. Therefore, this form induces a bilinear nondegenerate form

ψ : E{pE X EKq b E{pE X EKq Ñ Qlp´nq,

20Deligne describes the Veronese mapping.
21That is, taken over C, see footnote 7.
22See the sketch of this proof in Milne.
23Again, proofs of some of the results appear in Milne.
24They generate a dense subgroup.

18



skew-symmetric for n odd and symmetric for n even. This form is preserved by the monodromy;
for n odd, therefore, the monodromy representation induces

ρ : π1pU, uq Ñ SppE{pE X EKq, ψq.

Theorem (5.10) (Kajdan-Margulis). 25 The image of ρ is open.

The image of ρ is a compact, therefore, analytic l-adic26 subgroup of SppE{pE X EKq, ψq. It
suffices to show that its Lie algebra L equals sppE{pE X EKq, ψq. The transcendential analog of
this Lie algebra is the Lie algebra of the Zariski closure of the monodromy group.

We deduce from (5.8) that L is generated by transformations with zero square

Ns : xÑ px, δsqδs ps P Sq

and that E{pE X EKq is an absolutely irreducible representation of L. The theorem comes from
the following lemma.

Lemma (5.11). Let V be a finite dimensional vector space over the field k of characteristic 0, ψ a
nondegenerate skew-symmetric form on a Lie subalgebra L of the Lie algebra sppV, ηq. We assume
that:

(i) V is a simple representation of L.
(ii) L is generated by the family of endomorphisms of V of the form xÑ ψpx, δqδ.

Then L “ sppV, ψq.

We may and do assume that V , and thus L are nonzero. Let W Ă V be the set of δ P V such
that Npδq : xÑ ψpx, δqδ is in L.

a) W is stable under homotheties (since L is a vector subspace of glpV q).
b) If δ P W , exppλNpδqq is an automorphism of pV, ψ,Lq, therefore, transforms W to itself. If

δ1, δ2 P W , we have exppλNpδ1qqδ2 “ δ2 ` λψpδ2, δ1qδ1 P W 27; if ψpδ1, δ2q ‰ 0, then the vector
subspace spanned by δ1 and δ2 lies in W .

c) It follows that W is the union of its maximal linear subspaces Wα and that those are
pairwise orthogonal. Each Wα is therefore stable under the Npδq pδ P W q, so it is stable under L.
By hypothesis (i), Wα “ V and L contains all Npδq for δ P V . We conclude by noting that Lie
algebra sppV, ψq is generated by the Npδq pδ P V q.

Remark (5.12) (not necessary for the exposition). - It is now easy to prove (1.6) for a hyper-
surface of odd dimension n in Pn`1

Fq .

Let X0 be such a hypersurface and X̄0 the hypersurface over F̄q, which is obtained by extension
of scalars. We have

H i
pX̄0,Qlq “ Qlp´iq p0 ď i ď nq;

H ipX̄0,Qlpiqq is generated by the i-th cup power of η, the cohomology class c1pOp1qq of a hyperplane
section. Therefore, we have

ZpX0, tq “ detp1´ F ˚t,Hn
pX̄0,Qlq{

n
ź

i“0

p1´ qitq

and detp1´ F ˚t,HnpX̄0,Qlq is a polynomial with integer coefficients independent of l.

25See a somewhat more detailed exposition of this part in Milne.
26A Lie group over Ql.
27We use the nilpotence of Npδq first to define exppλNpδqq and then to obtain the formula.
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Let’s vary X0 within the Lefschetz pencil of hypersurfaces that is defined over Fq (see (5.7)
for X “ Pn`1; the existence of such a pencil is not clear; if we wanted to complete the argument
sketched here, we would have to use the arguments that will be given in (7.1). One verifies that E
coincides here with the whole Hn and (3.2) provides the Weil conjecture for all the hypersurfaces
of the pencil, in particular for X0.

(5.13) Bibliographical notes on paragraphs 3 and 4.
A) The results of Lefschetz (4.1) and (5.1) to (5.5) are contained in this book [2]. For the local

theory (4.1), it may be more handy to consult SGA 7, XIV (3.2).
B) The results of paragraph 4 are proved in parts XIII, XIV and XV of SGA 7.
C) (5.7) is proved in SGA 7, XVII28.
D) (5.8) is proved in SGA 7, XVIII. The irreducibility theorem is proved there for E but only

under the hypothesis that E X EK “ t0u. Proof of the general case (for E{pE X EKq) is similar.

6 The rationality theorem

(6.1) Let P0 be a projective space of dimension ě 1 over Fq, X0 Ă P0 a projective nonsingular

variety, A0 Ă P0 a linear subspace of codimension two, D0 Ă
qP0 the dual line, F̄q the algebraic

closure of Fq and P, X,A,D over F̄q obtained from P0, X0, A0, D0 by extension of scalars. The
diagram (5.1.1) from (5.6) comes from a similar diagram over Fq:

X0 X̃0

D0

π0

f0
(6.1.1)

We assume that X is connected of even dimension n ` 1 “ 2m ` 2 and that the pencil of
hyperplane sections of X defined by D is a Lefschetz pencil. The set S of t P D such that Xt is
singular and defined over Fq comes from S0 Ă D0. We denote U0 “ D0 ´ S0 and U “ D ´ S.

Let u P U . The vanishing part of the cohomology E Ă HnpXu,Qlq is stable under π1pU, uq, so
it is defined over U by a local subsystem E of Rnf˚Ql. The latter is defined over Fq: Rif˚Ql is the
inverse image of the Ql sheaf Rif0˚Ql on D0 and, on U , E is the inverse image of a local subsystem

E0 Ă Rnf0˚Ql.

The cup product is a skew-symmetric form

ψ : Rnf0˚Ql bR
nf0˚Ql Ñ Qlp´nq.

Denoting by EK0 the orthogonal of E0 relative to ψ, on Rnf0˚Ql|U0 we see that ψ induces a a perfect
pairing

ψ : E0{pE0 X EK0 q b E0{pE0 X EK0 q Ñ Qlp´nq.

Theorem (6.2). For all x P |U0| the polynomial detp1´F ˚x t, E0{pE0XEK0 qq has rational coefficients.

Corollary (6.3). Let j0 be the inclusion of U0 in D0 and j that of U in D. The eigenvalues of F ˚

acting on H1pD, j˚E0{pE0 X EK0 qq are algebraic numbers all of which complex conjugates α satisfy

q
n`1
2
´ 1

2 ď |α| ď q
n`1
2
` 1

2 .
28Also see the sketch of the proof presented in Milne.
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According to (5.10) and (6.2), the hypotheses of (3.2) are in fact verified for pU0, E0{pE0XEK0 q, ψq
for β “ n and we apply (3.9).

Lemma (6.4). Let G0 be a locally constant Ql-sheaf on U0 such that its inverse image G on U is
a constant sheaf. Then there exist units αi in Q̄l such that for each x P |U0| we have

detp1´ F ˚x t,G0q “
ź

i

p1´ α
degpxq
i tq.

The lemma expresses the fact that G0 is the inverse image of a sheaf on SpecpFqq, namely, its
direct image on SpecpFqq 29. The latter identifies with an l-adic representation G0 of GalpF̄q{Fqq
and we have30

detp1´ Ft,G0q “
ź

i

p1´ αitq.

Lemma (6.4) applies to Rif0˚Ql pi ‰ nq, to Rnf0˚Ql{E0 and to E0 X EK0 31 .
For x P |U0| the fiber Xx “ f´1

0 pxq is a variety over the finite field kpxq. If x̄ is a point of U
above x, Xx̄ is obtained from Xx by extension of scalars of kpxq to the algebraic closure kpx̄q “ F̄q
and H ipXx̄,Qlq is the stalk of Rif˚Ql at x̄. The formula (1.5.4) for the variety Xx over kpxq gives

ZpXx, tq “
ź

i

detp1´ F ˚x t, R
if0˚Qlq

p´1qi`1

and ZpXx, tq is a product of

Zf
“ detp1´ F ˚x t, R

nf0˚Ql{E0q detp1´ F ˚x t, E0 X EK0 q
ź

i‰n

detp1´ F ˚x t, R
if0˚Qlq

p´1qi`1

and
Zm

“ detp1´ F ˚x t, E0{pE0 X EK0 q.
Put F0 “ E0{pE0 X EK0 q, F “ E{pE X EKq and apply (6.4) to the factors of Zf . We find that there
exist l-adic units αi p1 ď i ď Nq and βj p1 ď j ďMq in Q̄l such that for all x P |U0|

ZpXx, tq “

ś

i

p1´ α
degpxq
i tq

ś

j

p1´ β
degpxq
j tq

detp1´ F ˚x t,F0q

and in particular the right side is in Qptq. If some αi coincides with a βj, we can simultaneously
delete αi from the family of α and βj from the family of β. Therefore, we may and do assume that
αi ‰ βj for all i and all j.

(6.5) It suffices to prove that polynomials
ś

i

p1´αitq and
ś

j

p1´βjtq have rational coefficients,

i.e. the family of αi (resp. the family of βj) is defined over Q. We will deduce that from the
following propositions.

29Indeed, if ε : Uo Ñ SpecFq is the canonical morphism, the assumption implies that ε˚ε˚G0 Ñ G0 becomes an
isomorphism once we base change to F̄q.

30To establish the lemma, we also use the relationship between the stalks of the sheaf and those of its inverse/direct
image (see Milne).

31To see that the inverse images of the latter two are constant, use the equivalence of categories of locally
constant sheaves and continuous representations of π1 and the fact that the monodromy action acts by deforming
the cohomology by the vanishing cycles.
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Proposition (6.6). Let pγiq p1 ď i ď P q and pδjq p1 ď j ď Qq be two families of l-adic units
in Q̄l. Assume that γi ‰ δj. If K is a large enough set of integers ‰ 1, and L is a large enough
nowhere dense subset of |U0|, then, if x P |U0| satisfies k - degpxq (for all k P K) and x R L, the
denominator of

detp1´ F ˚x t,F0q
ź

i

p1´ γ
degpxq
i tq{

ź

j

p1´ δ
degpxq
j tq (6.6.1)

written in irreducible form, is
ś

j

p1´ δ
degpxq
j tq.

The proof will be given in (6.10-13). According to (6.7) below, (6.6) provides an intrinsic
description of the family of δj in terms of the family of rational fractions (6.6.1) for x P |U0|.

Lemma (6.7). Let K be a finite set of integers ‰ 1 and pδjq p1 ď j ď Qq and pεjq p1 ď j ď Qq
be two families of elements of a field. If, for all n large enough, not divisible by any of the k P K,
the family of δnj coincides with that of εnj (up to order), then the family of δj coincides with that
of εj (up to order).

We proceed by induction on Q. The set of integers n such that δnQ “ εnj is an ideal pnjq. Let’s
prove that there exists a j0 such that δQ “ εj0 . Otherwise the nj would be distinct from 1 and there
would be arbitrarily large integers n, not divisible by any of the nj nor by any of the k P K. We
would have δnQ ‰ εnj and this contradicts the hypothesis. So there exists a j0 such that δQ “ εj0 .We
conclude by applying the induction hypothesis to the families pδjq pj ‰ Qq and pεjq pj ‰ j0q.

Proposition (6.8). Let pγiq p1 ď i ď P q and pδjq p1 ď j ď Qq be two families of p-adic units in

Q̄l, Rptq “
ś

i

p1 ´ γitq and Sptq “
ś

j

p1 ´ δjtq. Assume that for all x P |U0|
ś

j

p1 ´ δ
degpxq
j tq 32

divides
ź

i

p1´ γ
degpxq
i tq detp1´ F ˚x t,F0q.

Then Sptq divides Rptq.

Remove from the families pγiq and pδjq pairs of common elements until they verify the hypothesis
of (6.6). Apply (6.6). By hypothesis, the rational fractions (6.6.1) are polynomials. Therefore, no
δ survives, which means that33 Sptq divides Rptq.

(6.9) We prove (6.5) and (6.2) (modulo (6.6)). Let’s put pγiq “ pαiq and pδiq “ pβiq in (6.6).
We get an intrinsic characterization of the family of βj in terms of the family of rational functions
ZpXx, tq px P |U0|q. These being in Qptq, the family of βj is defined over Q.

Polynomials34
ś

i

p1´α
degpxq
j tq detp1´F ˚x t,F0q are therefore in Qrts. Proposition (6.8) provides

an intrinsic description of the family of αi in terms of this family of polynomials35. The family of
αi is thus defined over Q.

(6.10) Let u P U and Fu the stalk of F at u. The arithmetic fundamental group π1pU0, uq, the
extension of Ẑ “ GalpF̄{Fq (generator: ϕ) by the geometric fundamental group36 π1pU, uq, acts on

32In the original paper i appears instead of j.
33By the remarks after Proposition (6.6) and Lemma (6.7).
34for various x
35Since a polynomial is uniquely characterized by its quotients.
36Both of the aforementioned groups are also called etale fundamental groups (of U0 and U respectively).
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Fu by symplectic similitudes37

ρ : π1pU0, uq Ñ CSppFu, ψq.

We denote by µpgq the multiplier of the symplectic similitude g. Let

H Ă Ẑˆ CSppFu, ψq

be the subgroup defined by the equation

q´n “ µpgq

(q being an l-adic unit, qn P Q˚l is defined for all n P Ẑ). The fact that ψ has values in Qlp´nq

implies that the map from π1 to Ẑˆ CSp, the coordinates of the canonical projection to Ẑ and ρ
factor through

ρ1 : π1pU0, uq Ñ H.

Lemma (6.11). The image H1 of ρ1 is open in H.

Indeed, π1pU0, uq projects onto Ẑ and the image of π1pU, uq “ Kerpπ1pU0, uq Ñ Ẑq in
SppFu, ψq “ KerpH Ñ Ẑq is open (5.10).

Lemma (6.12). For δ P Q̄l an l-adic unit, the set Z of pn, gq P H1 such that δn is an eigenvalue
of g is closed of measure 0 38.

It is clear that Z is closed. For each n P Ẑ let CSpn be the set of g P CSppFu, ψq such that
µpgq “ q´n and let Zn be the set of g P CSpn such that δn is an eigenvalue of g. Then CSpn is a
homogeneous space for Sp and we check that Zn is a proper algebraic subspace, thus, of measure
0. According to (6.11), H1 X ptnu ˆ Znq is of measure 0 in the inverse image in H1 of n and we
apply Fubini to the projection H1 Ñ Ẑ.

(6.13) Let us prove (6.6). For each i and j, the set of integers n such that γni “ δnj is the set
of multiples of a fixed integer nij (we do not exclude nij “ 0). By hypothesis, nij ‰ 1.

According to (6.12) and the Chebotarev’s density theorem, the set of x P |U0| such that β
degpxq
j

is an eigenvalue of F ˚x acting on F0 is nowhere dense. We take for K the set of nij and for L the
set of x as above.

7 Completion of the proof of (1.7)

Lemma (7.1). Let X0 be a nonsingular absolutely irreducible39 projective variety of even dimen-
sion over Fq. Let X over F̄q be obtained from X0 by extension of scalars and α an eigenvalue of F ˚

acting on HdpX,Qlq. Then α is an algebraic number all of which complex conjugates, still denoted
α, satisfy

q
d
2
´ 1

2 ď |α| ď q
d
2
` 1

2 (7.1.1)

37i.e. a group ApV q of linear transformations g of a vector space V equipped with a nondegenerate bilinear form
ă,ą: V ˆ V Ñ k such that ă gv, gw ą“ µpgq ă v, w ą for a multiplicative character µ : ApV q Ñ kˆ called the
similitude multiplier

38With respect to the Haar measure on Ẑˆ CSp.
39or geometrically irreducible
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We proceed by induction on d (always assumed even). The case d “ 0 is trivial even without
assuming that X0 is absolutely irreducible; we assume from now on d ě 2. We put d “ n ` 1 “
2m` 2.

If Fqr is an extension of degree r of Fq and X 1
0{Fqr is obtained from X0{Fq by extension of

scalars, the statement (7.1) for X0{Fq is equivalent to (7.1) for X 1
0{Fqr ; in the same way as q is

replaced by qr, the eigenvalues of F ˚ are replaced by their r-th powers.
According to (5.7), in a suitable projective embedding i : X Ñ P, X admits a Lefschetz pencil

of hyperplane sections. The previous remark allows us to assume that the pencil is defined over
Fq (once we replace Fq by a finite extension).

Therefore, assume that there exists a projective embedding X0 Ñ P0 and a subspace A0 Ă P0

of codimension two that defines the Lefschetz pencil. We recall the notations of (6.1) and (6.3). A
new extension of scalars allows us to assume that:

a) The points of S are defined over Fq.
b) The vanishing cycles for xs ps P Sq are defined over Fq (since only ˘δ is intrinsic, they can

only be defined over quadratic extensions).
c) There exists a rational point u0 P U0. We take the corresponding point u of U as the base

point.
d) Xu0 “ f´1

0 pu0q admits a smooth hyperplane section Y0 defined over Fq. We let Y “ Y0bFq F̄q.
Since X̃ is obtained from X by blowing up along a smooth subvariety AXX of dimension two,

we have
H i
pX,Qlq ãÝÑ H i

pX̃,Qlq

(in fact, H ipX̃,Qlq “ H ipX,Qlq ‘ H i´2pA X X,Qlqp´1qq40. It suffices to prove (7.1.1) for the
eigenvalues α of F ˚ acting on HdpX̃,Qlq.

The Leray spectral sequence for f is

Epq
2 “ Hp

pD,Rqf˚Qlq ñ Hp`q
pX̃,Qlq.

It suffices to prove (7.1.1) for the eigenvalues of F ˚ acting on Epq
2 for p ` q “ d “ n ` 1. Those

are41:
A) E2,n´1

2 . According to (5.8), Rn´1f˚Ql is constant. From (2.10) we have

E2,n´1
2 “ Hn´1

pXu,Qlqp´1q.

Applying the weak Lefschetz theorem (corollary of SGA 4, XIV (3.2)) and the Poincare duality
(SGA 4, XVIII), we have

Hn´1
pXu,Qlqp´1q ãÝÑ Hn´1

pY,Qlqp´1q

and we apply the induction hypothesis to Y0.
B) E0,n`1

2 . If the vanishing cycles are nonzero, Rn`1f˚Ql is constant and

E0,n`1
2 “ Hn`1

pXu,Qlq.

The Gysin map
Hn´1

pY,Qlqp´1q Ñ Hn`1
pXu,Qlq

is surjective (by an argument dual to that of A)) and we apply the induction hypothesis to Y0.

40This is by the Thom isomorphism theorem. See a (rather technical) proof in Milne.
41I highly recommend consulting Milne’s book for the explanations of the steps in A), B), C).
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If the vanishing cycles are zero, the exact sequence of (5.8) b) gives the following exact sequence

‘
sPS

Qlpm´ nq Ñ E0,n`1
2 Ñ Hn`1

pXu,Qlq.

The eigenvalues of F acting on Qlpm´ nq are qd{2 and for Hn`1 everything is as above.
C) E1,n

2 . If we had the hard Lefschietz theorem, we would know that E X EK is zero and that
Rnf˚Ql is the direct sum of j˚E and a constant sheaf. The H1 of a constant sheaf on P1 is zero
and it would suffice to apply (6.3).

Since we have not proved the hard Lefshetz theorem yet, we will have to figure a way out. If the
vanishing cycles are zero, Rnf˚Ql is constant ((5.8) b)) and E1,n

2 “ 0. Therefore we may and do
assume that the vanishing cycles are nonzero. Filter Rnf˚Ql “ j˚j

˚Rnf˚Ql (5.8) by the subsheafs
j˚E and j˚pE X EKq. If the vanishing cycles δ are not in E X EK 42 we have exact sequences43:

0 Ñ j˚E Ñ Rnf˚Ql Ñ constant sheaf Ñ 0 (7.1.2)

0 Ñ constant sheaf j˚pE X EKqq Ñ j˚E Ñ j˚pE{pE X EKqq Ñ 0 (7.1.3)

If, God forbid, the δ are in E X EK, we have E Ă EK and exact sequences44:

0 Ñ the constant sheaf j˚EK Ñ Rnf˚Ql Ñ a sheaf F Ñ 0 (7.1.4)

0 Ñ F Ñ the constant sheaf j˚j
˚F Ñ ‘

sPS
Qlpn´mqs Ñ 0 (7.1.5)

In the first case the long exact sequences in cohomology give

H1
pD, j˚Eq Ñ H1

pD,Rnf˚Qlq Ñ 0 (7.1.2’)

0 Ñ H1
pD, j˚Eq Ñ H1

pD, j˚pE{pE X EKqqq (7.1.3’)

and we apply (6.3).
In the second case, they give

0 Ñ H1
pD,Rnf˚Qlq Ñ H1

pD,Fq (7.1.4’)

‘
sPS

Qlpn´mq Ñ H1
pD,Fq Ñ 0 (7.1.5’)

and we remark that F acts on Qlpn´mq by multiplication by qd{2.

Lemma (7.2). Let X0 be a nonsingular projective absolutely irreducible variety of dimension d
over Fq. Let X over F̄q be obtained from X0 by extension of scalars and α be an eigenvalue of F ˚

acting on HdpX,Qlq. Then α is an algebraic number all of which complex conjugates, still denoted
α, satisfy

|α| “ q
d
2 .

42More precisely, not in E X EK.
43The constant sheaf in (7.1.2) is j˚pR

nf˚Ql{Eq. To see that this (and the next few) sheaves are constant, reason
as in footnote 31 and use that the inverse/direct images of constant sheaves via j are constant (the second claim is
false in general).

44For F “ Rnf˚Ql{j˚EK.
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We first prove that (7.2) ñ (1.7). For X0 projective nonsingular over F̄q we have to prove the
following statements:

W pX0, iq. Let X be obtained from X0 by extension of scalars of Fq to F̄q. If α is an eigenvalue
of F ˚ acting on H ipX,Qlq, then α is an algebraic number all of which complex conjugates, still
denoted α, satisfy |α| “ qi{2.

a) If Fqn is an an extension of degree n of Fq and X 1
0{Fqn is obtained from X0{Fq by extension

of scalars, then W pX0, iq is equivalent to W pX 1
0, iq: the extension of scalars replaces α by αn and

q by qn.
b) If X0 is purely of dimension n, W pX0, iq is equivalent to W pX0, 2n ´ iq; this follows from

Poincare duality45.
c) If X0 is a an union of irreducible Xα

0 , W pX0, iq is equivalent to the collection of W pXα
0 , iq.

d) If X0 is purely of dimension n, Y0 is a smooth hyperplane section of X0 and i ă n, then
W pY0, iq ñ W pX0, iq: this follows from the weak Lefschetz theorem46.

To prove the statements W pX0, iq we move in succession:
-by c) we assume that X0 is purely of dimension n;
-by b) we also assume that 0 ď i ď n;
-by a) and d) we also assume i “ n;
-by a) and c) we also assume that X0 is absolutely irreducible.
Now the case satisfies the conditions of (7.2).
(7.3) We prove (7.2). For every integer k, αk is an eigenvalue of F ˚ acting on HkdpXk,Qlq

(Kunneth’s formula). For k even, Xk satisfies the conditions of (7.1), so we have

q
kd
2
´ 1

2 ď |αk| ď q
kd
2
` 1

2

and
q
d
2
´ 1

2k ď |α| ď q
d
2
` 1

2k .

Letting k go to infinity, we establish (7.2).

8 First applications

Theorem (8.1). Let X0 Ă Pn`r0 be a nonsingular complete intersection over Fq of dimension n
and of multidegree pd1, ¨ ¨ ¨ drq. Let b1 be the n-th Betti number of the complex nonsingular complete
intersection with the same dimension and multidegree. Put b “ b1 for n odd and b “ b1 ´ 1 for n
even. Then

|#X0pFqq ´#PnpFqq| ď bqn{2.

Let X{F̄q be obtained from X0 and Qlη
i be the line in H2npX,Qlq generated by the i-th cup

power of the cohomology class of the hyperplane section. On this line F ˚ acts by multiplication
by qi. The cohomology of X is the direct sum of the Qlη

i p0 ď i ď nq and the primitive part of

45If α is an eigenvalue of F˚ acting on HipX,Qlq, then qn{α is an eigenvalue of F˚ acting on H2n´ipX,Qlq. See
Milne.

46Depending on what one takes for the weak Lefschetz theorem, this follows either directly from it and the
properties of Frobenius (if we assume that the weak Lefschetz theorem provides us with surjectivity of the Gysin
map in cohomology) or one has to also invoke the Gysin sequence to establish surjectivity (if we only assume
HipX,Qlq “ 0 for i ą d and X affine). One can also avoid using the weak Lefschetz theorem and apply a Kunneth
formula argument instead (due to A. Mellit). See Milne for clarifications.
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HnpX,Qlq of dimension b. According to (1.5), therefore, there exist b algebraic numbers αj, the
eigenvalues of F ˚ acting on this primitive cohomology, such that

#X0pFqq “
n
ÿ

i“0

qi ` p´1qn
ÿ

j

αj.

According to (1.7), |αj| “ qn{2 and

|#X0pFqq ´#PnpFqq| “ |#X0pFqq ´
n
ÿ

i“0

qi| “ |
ÿ

j

αj| ď
ÿ

j

|αj| “ bqn{2.

Theorem (8.2). Let N be an integer ě 1, ε : pZ{Nq˚ Ñ C˚ a character, k an integer ě 2 and
f a holomorphic modular form on Γ0pNq of weight k and with character ε : f is a holomorphic

function on the the Poincare half-plane X such that for

ˆ

a b
c d

˙

P SLp2,Zq, with c ” 0 pNq we

have

f

ˆ

az ` b

cz ` d

˙

“ εpaq´1
pcz ` dqkfpzq.

We assume that f is cuspidal and primitive (”new” in the sence of Arkin-Lehner and Miyake),
in particular an eigenvector of the Hecke operators Tp pp - Nq. Let f “

ř8

n“1 anq
n with q “ e2πiz

(and a1 “ 1). Then for p prime not dividing N

|ap| ď 2p
k´1
2 .

In other words, the roots of the equation

T 2
´ apT ` εppqp

k´1

are of absolute value p
k´1
2 .

These roots are indeed the eigenvalues of the Frobenius acting on Hk´1 of a nonsingular pro-
jective variety of dimension k ´ 1 defined over Fp.

Under restrictive assumptions, this fact is proved in my Bourbaki expose (Formes modulaires
et representations l-adiques, expose 355, February 1969, in: Lecture Notes in Mathematics, 179).
The general case is not much more difficult.

Remark (8.3) J.P.Serre and myself have recently proved that (8.2) remains true for k “ 1. The
proof is quite different.

The following application was suggested to me by E.Bombiery.

Theorem (8.4). Let Q be a polynomial in n variables and of degree d over Fq, Qd a homogeneous
part of degree d of Q and ψ : Fq Ñ C˚ an additive nontrivial character on Fq. We assume that:

(i) d is coprime to p 47

(ii) The hypersurface H0 in Pn´1
Fq defined by Qd is smooth.

Then
|

ÿ

x1,¨¨¨ ,xnPFq

ψpQpx1, ¨ ¨ ¨ , xnqq| ď pd´ 1qnqn{2.

47(the characteristic of Fqq
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After replacing Q by a scalar multiple, we may (and do) assume that48

ψpxq “ expp2πiTrFq{Fppxq{pq (8.4.1)

Let X0 be an etale covering of the affine space A0 of dimension n over Fq with equation T p´T “ Q
and let σ be the projection of X0 to A0:

σ : X0 Ñ A0

X0 “ SpecpFqrx1, ¨ ¨ ¨ , xn, T s{pT
p
´ T ´Qqq.

The covering X0 is Galois with Galois group Z{p; i P Z{p “ Fp acts by T Ñ T ` i.
We let x P A0pFqq and compute the Frobenius endomorphism on the fiber of X0{A0 at x.

Let q “ pf and let F̄q be the algebraic closure of Fq. For px, T q P X0pF̄q above x we have
F ppx, T qq “ px, T qq and

T q “ T `
f
ÿ

i“1

pT p
i

´ T p
i´1

q “ T `
ÿ

Qpxqp
i´1

“ T ` TrFq{FppQpxqq.

This is the action of the element TrFq{FppQpxqq of the Galois group.
Let E be the field of the p-th roots of unity and λ a finite place of E coprime to p. We will work

in λ-adic cohomology. For j P Z{p, let Fj,0 be a Eλ local system of rank one on A0 defined by X0

and ψp´jxq : Z{pÑ E˚ Ñ E˚λ : we have ι : X0 Ñ Fj,0 and ιpi ‹ xq “ ψp´ijqιpxq. Denote without

0 objects obtained from A0, X0,Fj,0 by extension of scalars to F̄q. The trace formula (1.12.1) for
Fj,0 gives:

ÿ

x1,¨¨¨ ,xnPFq

ψpQpx1, ¨ ¨ ¨ , xnqq “
ÿ

i

TrpF ˚, H i
cpA,F1qq (8.4.2)

We have σ˚Eλ “ ‘
j
Fj and so

H˚
c pX,Qlq bQl Eλ “ ‘

j
H˚
c pA,Fjq (8.4.3)

For j “ 0, Fj is the constant sheaf Eλ; this factor corresponds to inclusion, by taking the inverse
image, of the cohomology of A in that of X.

Lemma (8.5). (i) For j ‰ 0, H i
cpA,Fjq is zero for i ‰ n, for i “ n, the cohomology space has

dimension pd´ 1qn.
(ii) For j ‰ 0, the cup product

Hn
c pA,Fjq bHn

c pA,F´jq Ñ H2n
pA, Eλq

Tr
Ñ Eλp´nq

is a perfect pairing.
(iii) X0 is open in a nonsinqular projective variety Z0.

Let’s deduce (8.4) from (8.5). Let j0 : X0 ãÝÑ Z0 and j : X ãÝÑ Z be obtained by extension of
scalars of F̄q. According to (8.4.2), (i) and (1.7) for Z0, it suffices to prove the injectivity of

Hn
c pA,F1q

σ˚
Ñ Hn

c pX,F1q “ Hn
c pX,Eλq

j!
Ñ Hn

pZ,Eλq.

48For q “ pf we have TrFq{Fp
pxq “ x` xp ` ¨ ¨ ¨ ` xp

f´1

.
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We have TrpaY bq “ 1
p
Trpj!σ

˚aX j!σ
˚bq, so injectivity follows from (ii)49.

(8.6) We prove (8.5) (iii). Let P0 be the projective space over Fq, obtained from A0 by adding
a hyperplane at infinity P80 , H0 Ă P80 with equation Qd “ 0 and Y0 the covering of P0 normalizing
P0 along X0.

X0 Y0

A0 P0 P80 H0

σ (8.7.1)

Let’s study Y0{P0 near the infinity, locally for the etale topology.

Lemma (8.7). Y0 is smooth outside the inverse image of H0.

The divisor of a rational function Q on P0 is the sum of the finite part divpQqf and p´dq times
the hyperplane at infinity. We have:

divpQq “ divpQqf ´ dP80 (8.7.1)

divpQqf X P80 “ H0

At a finite distance, Y0 “ X0 is etale over A0, so smooth. At the infinity but outside the inverse
image of H0 there exist local coordinates pz1, ¨ ¨ ¨ , znq such that Q “ z´d1 (here we use pd, pq “ 1).
In these coordinates, Y0 appears as a product of a curve and a smooth space (corresponding to
coordinates z2, ¨ ¨ ¨ , zn). By normality it is smooth.

Lemma (8.8). In the etale neighborhood of a point above H0, Y0 is smooth on a normal singular
surface, always the same.

This time we can find local coordinates such that Q “ z´d1 z2. Indeed, since H0 is smooth,
divpQqf is smooth in the neighborhood of infinity and crosses P80 transversely. This form is
independent of the chosen point and uses only two coordinates, hence the assertion.

(8.9) The following method (due to Zariski) allows one to resolve singularities on surfaces:
alternately, we normalize and we blow up the (reduced) singular locus. Operators in play commute
with etale localization and taking products by a smooth space. The method of Zariski, therefore,
allows one to resolve singularities on a space that (like Y0) is, locally for the etale topology, smooth
on a surface. The resolution obtained from Y0 is the Z0 we seek.

If T is a curve on a surface S containing the singular locus and T 1 is the inverse image of T
in the Zariski resolution S 1 of S, we know that if we repeatedly blow up the (reduced) singular
locus of pT 1qred in S 1, we obtain a surface S2 such that the inverse reduced image pT 2qred of T in
S2 is a divisor with normal crossings. Again, operations in play commute with etale localization
and taking products by a smooth space. Reasoning as above and observing that pY0, infinityq is
locally smooth in pS, T q, we can find Z0 such that Z0 ´X0 is a divisor with normal crossings.

(8.10) We prove (8.5) (i), (ii). These assertions are geometric; this allows us to work from now
on in F̄q. Let S 1 be the affine space over F̄q that parametrizes polynomials in n variables of degree
ď d and let S be an open in S 1 corresponding to the polynomials, which homogeneous part of degree
d has nonzero discriminant. We denote by QS P H

0pS,Orx1, ¨ ¨ ¨ , xnsq the universal polynomial50

of S and by XS the Galois etale covering of AS “ An ˆ S with equation T p ´ T “ QS and Galois

49By the same reasoning as in the proof of (7.1) A) (for which I referred to Milne).
50
ř

i1`¨¨¨`in“d ai1,¨¨¨ ,inx
i1
1 ¨ ¨ ¨x

in
n
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group Z{p. Let PS “ Pn ˆ S be the projective completion of AS and YS the normalization of PS
along Xs. We have, for S, a diagram similar to (8.6.1).

Expressions of Q in local coordinates (8.7) and (8.8) remain valid in this situation with param-
eters such that locally for the etale topology on YS, YS{S is isomorphic to the product of S (that
is smooth) with one fiber. The method of canonical resolution used in (8.9) gives us a relative
compactification ZS{S of XS{S with ZS ´XS a divisor with normal crossings relative to S

XS ZS

AS S

u

σ f

a

(f is proper and smooth, u is an open immersion, Zs´Xs a divisor with relative normal crossings).
Let Fj,S be a Eλ-sheaf on AS obtained as in (8.4) from XS{AS. We have σ˚Eλ “ ‘Fj,S, so

R˚pfuq!pEλq “ ‘
j
R˚a!Fj,S.

The properties of ZS ensure that Ripfuq!Eλ “ Rif˚pu!Eλq is a locally constant sheaf on S. There-
fore, Ria!Fj,S is also locally constant. Since S is connected, it suffices to prove (8.5) (i), (ii) for
a particular polynomial Q. We will take Q “

ř

i x
d
i . This polynomial satisfies the nonsingularity

condition because pd, pq “ 1. For this polynomial variables in the exponential sum (8.4) are sepa-
rated. This corresponds to the fact that Fj is the tensor product of the inverse images of similar
sheaves F1

j on the factors of dimension one A1 of A “ An. By Kunneth’s formula

H˚
pA,Fjq “ ‘H˚

pA1,F1
j q.

This reduces the proof of (8.5) (i), (ii) to the case when n “ 1 and Q is xd.
(8.11) Let’s deal with this particular case. The covering X of A is irreducible, so for i “ 0, 2

H i
cpA, Eλq

„
Ñ H i

cpX,Eλq.

So for i ‰ 1 and j ‰ 0 we have51

H i
cpX,Fjq “ 0.

Assertion (ii) follows from (2.8) or (2.12) and the fact that u!Fj “ u˚Fj. To prove (i) it remains
to verify that

χcpA,Fjq “ 1´ d.

According to the Euler-Poincare formula (see expose Bourbaki 286 of February 1965, by M.Raynaud),
it is equivalent to the following lemma.

Lemma (8.12). Swan’s conductor of Fj at infinity equals d.

This statement is equivalent to the following.

Lemma (8.13). Let k be a finite field of characteristic p, y P krrxss an element of valuation d
coprime to p, L the extension of K “ kppxqq generated by the roots of T p ´ T “ y´1 and χ the
following character on GalpL{Kq with values in Z{p:

χpσq “ σT ´ T.

Then χ has conductor d` 1.

By extension of the residue field we may assume that k is algebraically closed rather than finite
and apply: J.P.Serre, Sur les corps locaux a corps residuel algebriquement clos, Bull. Soc. Math.
France, 89 (1961), p. 105-154, no 4.4.

51In the original paper A appears instead of X.
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