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ON THE CODIMENSION OF NOETHER-LEFSCHETZ LOCI

FOR TORIC THREEFOLDS

VALERIANO LANZA AND IVAN MARTINO

Abstract. In this manuscript we sharpen the lower bound on the codimension of the irreducible

components of the Noether-Lefschetz locus of surfaces in projective toric threefolds given in

[BG17]. We also provide a simpler proof of Theorem 4.11 in [BG17], which allows one to avoid

some technical assumptions.

Let PΣ be a projective toric threefold with orbifold singularities, β a nef class in the class group

Cl(PΣ), and Mβ the moduli space of surfaces in PΣ of degree β modulo automorphisms of PΣ.

The Noether-Lefschetz locus Uβ with respect to β is the subscheme of Mβ corresponding to

quasi-smooth surfaces whose Picard number is strictly larger than the one of PΣ.

Let η be a primitive ample Cartier class and suppose that β is a Cartier divisor of the form

−KPΣ
+ nη, where KPΣ

is the canonical divisor of PΣ and n is a non-negative integer; in this

specific case, we denote Uβ by Uη(n). Note that, to have such a β, one has to implicitly assume

that KPΣ
is Cartier, which forces PΣ to be Gorenstein.

Assume the multiplication map

H0(PΣ,OPΣ
(β)) ⊗H0(PΣ,OPΣ

(nη)) → H0(PΣ,OPΣ
(β + nη))

to be surjective; we shall refer to this as “condition (⋆).” Hence, the very general quasi-smooth

surface in the linear system defined by β has the same Picard number as PΣ, see Theorem 3.5 of

[BG12]; in other words Uη(n) is a countable union of closed subschemes of positive codimension.

Bruzzo and Grassi prove the following:

Theorem 4.11 of [BG17]. Assume that the multiplication maps

H0(PΣ,OPΣ
(β)) ⊗H0(PΣ,OPΣ

(kη)) → H0(PΣ,OPΣ
(β + kη))

are surjective for all positive integer k (in particular condition (⋆) is fulfilled). Assume also the

vanishings

H1(PΣ,OPΣ
(β − η)) = H2(PΣ,OPΣ

(β − η)) = H2(PΣ,OPΣ
(β − 2η)) = 0 .

Then, for any irreducible component U of Uη(n),

i) η (−1)− regular ⇒ codimU ≥ n+ 1;

ii) η 0− regular ⇒ codimU ≥ n.

Nevertheless, they provide many examples where the chosen ample class η is 0-regular and the

locus Uη(n) has a component of codimension precisely n+1, see Section 5 in [BG17]. These are the

natural generalizations of the examples that achieve the minimal bound in the classical setting;

namely, the surfaces in P
3 that contain a line [Voi89, Gre84, Gre88, Gre89]. For this reason one is

led to believe that the bound in ii) may not be sharp: we show here that this is precisely the case.
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Theorem. Let PΣ be a Gorenstein projective toric threefold with orbifold singularities, η a primi-

tive ample Cartier class which is 0-regular, and β a Cartier divisor of the form −KPΣ
+nη, where

KPΣ
is the canonical divisor of PΣ and n is a non-negative integer.

Assume condition (⋆). If H1(PΣ,OPΣ
(β − η)) = H2(PΣ,OPΣ

(β − 2η)) = 0, then

codimU ≥ n+ 1

for every irreducible component U of Uη(n).

Remark 1. The bounds in Theorem 4.12, Corollary 4.13, and Theorem 4.15 of [BG17] can be

accordingly upgraded. Notice that the hypoteses of each of the results just mentioned imply those

of Theorem 4.11 of [BG17], and so, a fortiori, ours.

The new bound is sharp for the following threefolds and suitable choices of η, see Section 5 of

[BG17]:

• toric simplicial Gorenstein threefolds with nef anticanonical bundle;

• the projective space blown-up along a line, P̂3;

• P
1 × P

2;

• a small resolution of the cone over a quartic surface in P
3;

• the weighted projective space P[1, 1, 2, 2].

∗ ∗ ∗

Before proving the theorem, we first notice that, for what concerns Theorem 4.11 of [BG17], the

discrepancy between the case where η is (−1)-regular and the one where it is just 0-regular has its

origin in Proposition 3.5 of [BG17], which inspects the regularity (with respect to η) of the tensor

powers of a 1-regular locally free sheaf F on PΣ.

Our idea is to use instead a natural generalization of Corollary 1.8.10 of [Laz04].

Proposition 2. Let X be a projective variety together with an ample line bundle B which is

globally generated and 0-regular. If F is an m-regular locally free sheaf on X, then the p-fold

tensor power F⊗p is (pm)-regular. In particular, ΛpF and SpF are likewise (pm)-regular.

Proof. The proof of Corollary 1.8.10 of [Laz04], which is stated for locally free sheaves on a

projective space P which are regular with respect to OP(1), also works in this more general context.

The 0-regularity of B ensures the existence of a linear resolution for F of the form

· · · →
⊕

B−m−2 →
⊕

B−m−1 →
⊕

B−m → F → 0 ,

cf. Proposition 1.8.8 of [Laz04] and Corollary 3.3 of [BG17]. �

It is well-known that ample line bundles are always globally generated on projective toric varieties.

Proof of the Theorem. What follows logically corresponds to §4.1 of [BG17]. We pick a base-

point-free linear system W in H0(PΣ,OPΣ
(β)) and we select a complete flag of linear subspaces

W = Wc ⊂ Wc−1 ⊂ · · · ⊂ W1 ⊂ W0 = H0(PΣ,OPΣ
(β)) .

This means that the codimension ofWi is i (and in particular c is the codimension ofW ). We define

the vector bundle Mi over PΣ as the kernel of the natural (surjective) map Wi ⊗OPΣ
→ OPΣ

(β).
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Proposition 3. M0 is 1-regular with respect to η.

Proof. By definition, we would like to show that Hq(PΣ,M0((1 − q)η)) = 0 for all positive q.

Consider the long exact sequence in cohomology associated with

(†) 0 → M0 → W0 ⊗OPΣ
→ OPΣ

(β) → 0 ,

that is

0 → H0(PΣ,M0) → H0(PΣ,W0 ⊗OPΣ
)

π
→ H0(PΣ,OPΣ

(β)) → H1(PΣ,M0) → · · ·

Since π is surjective, H1(PΣ,M0) = 0.

The vanishing of H2(PΣ,M0(−η)) is obtained by tensoring (†) by OPΣ
(−η) and considering that

H2(PΣ,M0(−η)) lies between two zeros in the long exact sequence

· · · → H1(PΣ,OPΣ
(β − η)) → H2(PΣ,M0(−η)) → H2(PΣ,W0 ⊗OPΣ

(−η)) → · · ·

Note that H2(PΣ,W0 ⊗OPΣ
(−η)) = 0 because η is 0-regular with respect to itself.

One argues similarly for H3(PΣ,M0(−2η)). �

Corollary 4. For all i = 0, . . . , c, Hq(PΣ,∧
pMi(nη)) = 0 if q ≥ 1 and n+ q ≥ p+ i.

Proof. As a straightforward consequence of Mumford’s Theorem [Laz04, Theorem 1.8.5] one has

that a coherent sheaf F on PΣ is m-regular with respect to η if and only if

Hq(PΣ,F ⊗OPΣ
(nη)) = 0 ,

for all integers q > 0, n ≥ m − q. Hence, for i = 0 the statement is equivalent to ∧pM0 being

p-regular with respect to η and this is proved in Proposition 2. The proof then follows as for

Lemma 2 in [Gre88]. �

Proposition 5. If c = codimW ≤ n, then the map W ⊗H0(PΣ,OPΣ
(nη)) → H0(OPΣ

(β+nη)) is

surjective.

Proof. We consider the short exact sequence

0 → Mc → W ⊗OPΣ
→ OPΣ

(β) → 0 ,

and twist it by OPΣ
(nη). We pass to the long exact sequence in cohomology:

· · · → H0(PΣ,W ⊗OPΣ
(nη)) → H0(PΣ,OPΣ

(β + nη)) → H1(PΣ,Mc(nη)) → . . .

By applying Corollary 4 with p = q = 1, one gets that H1(PΣ,Mc(−nη)) is zero. �

Finally, the proof of the Theorem follows precisely as the one of Theorem 4.11 of [BG17] with the

only difference that we use the previous proposition instead of Proposition 4.10 of [BG17].
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