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HARER-ZAGIER FORMULA VIA FOCK SPACE

D. LEWAŃSKI

Let ǫg(d
′) be the number of ways of obtaining a genus g Riemann surface by identifying in

pairs the sides of a (2d′)-gon. The goal of this note is to give a short proof of the following
theorem.

Theorem 0.1 (Harer-Zagier formula, [7], 1986).

(0.1) ǫg(d
′) =

(2d′ − 1)!!2d
′
−2g

(d′ − 2g + 1)!
[u2g]

[

u

sinh(u)

]2 [
u

tanh(u)

]d′

.

This formula was needed in the same paper [7] as key combinatorial fact to compute the celebrated
formula for the Euler characteristic of the moduli space of curves of genus g. Nine years after
the original paper, a proof of this formula via representation theory was given in [15]. Later on,
it was proved again using different techniques (see, e.g., [2, 3, 4, 14]). Our proof uses operators
in the semi-infinite wedge formalism. The operator we need is available in the literature, but
corresponds to a different enumerative problem. However, this enumerative problem is known
to be related to ǫg(d

′) via a certain correspondence in the group algebra of the symmetric group
due to Jucys.

0.1. Hurwitz numbers as vacuum expectations. The pioneering paper of Okounkov in 2000
[12] expresses simple Hurwitz numbers as vacuum expectation via the so called semi-infinite
wedge formalism (for an introduction on the topic we recommend [9]). Since then, many more
(generating series of) different kinds of Hurwitz numbers have been related to vacuum expecta-
tions of the type

〈Ea1
(z1)Ea2

(z2) · · · Ean
(zn)〉 ,

n
∑

i=1

ai = 0,

where ai are integer numbers called energies, and zi are complex variables. Such expressions
vanish whenever a1 is negative or an is positive — the general strategy to evaluate them is to
commute the E operators exploiting this vanishing property, until a single energy zero operator
E0(z) is left:

(0.2) [Ea(z), Eb(w)] =

{

aδa+b,0 if z = w = 0,

ς(aw − bz)Ea+b(z + w) otherwise,
〈Ea(z)〉 =

δa,0
ς(z)

,

with ς(z) := 2 sinh(z/2) = ez/2 − e−z/2. For the purpose of this note we will actually only need
the last computational rule. We will also use the function S(z) = ς(z)/z.

0.2. Recalling four facts. Our proof consists of an elementary computation, whose first equa-
tion follows from four known facts.

Fact 1. Standard topological arguments (see, e.g., [5]) show that

ǫg(d
′)

(2d′)
= hGr.,2

g;(2d′)
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where hGr.,2
g;(2d′) is the weighted enumeration of ramified coverings of the Riemann sphere

CP1 of degree 2d′ by a genus g ≥ 0 surface only ramified over 0, 1,∞ ∈ CP1 (also known
as Grothendieck dessins d’enfant), whose ramification profiles over 0 and ∞ are given
respectively by the cycle types (2d′) and (2, 2, . . . , 2), whereas the cycle type µ ⊢ 2d′ over
1 is arbitrary (also known as one-part 2-hypermaps, or ribbon graphs with a single face).

Fact 2. Jucys Correspondence [10] implies that

hGr.,2
g;(2d′) = h<,2

g;(2d′),

where h<,2
g;(2d′) is the weighted enumeration of ramified coverings of the Riemann sphere

CP1 of degree is 2d′ by a genus g ≥ 0 surface ramified over 0,∞ ∈ CP1, with ramification
profiles given respectively by the cycle types (2d′) and (2, 2, . . . , 2), and m further simple
ramifications (xi yi)i=1,...,m ∈ S2d′ written such that xi < yi and subject to the extra
strictly monotone condition yi < yi+1. This can be found, e.g. in [1, 8]. We prove it
once more in Appendix A for reader’s convenience.

Fact 3. The vacuum expectation operator for strictly monotone ramificationsD(σ)(u) was derived
in [1], Proposition 5.2, and it implies that

∑

g=0

h<,2
g;(2d′)u

2g−1+d′

=
1

(2d′)

〈

eE2(0)/2D(σ)(u)E−2d′(0)
(

D(σ)(u)
)−1

e−E2(0)/2

〉

,

where D(σ)(u) = exp
(

E0(−u2∂u))
ς(u2∂u)

+ [w1]E0(w)
)

log(u).

Fact 4. The nested conjugations above were computed in a more general setting in [11], Lemma
4.4. The computation is an elementary application of the Campbell-Baker-Hausdorff
formula eABe−A =

∑

t=0
1
t! [A, . . . [A, [A,B]] . . . ], since D(σ)(u) itself is an exponential

operator. It implies that

eE2(0)/2D(σ)(u)E−2d′(0)
(

D(σ)(u)
)−1

e−E2(0)/2 =
∑

t=0

∑

v=t

(2d′)!

t!(2d′ − v)!
ut[zv−t]

S(2uz)t

S(uz)2d′+1
E2t−2d′(uz).

0.3. Proof of Theorem 0.1. We are now armed to compute the constants ǫg(d
′).

Proof. Facts 1− 4 together imply the first equality of the following computation.

ǫg(d
′) = [u2g−1+d′

]
∑

t=0

∑

v=t

(2d′)!

t!(2d′ − v)!
ut[zv−t]S(uz)−2d′

−1S(2uz)t 〈E2t−2d′(uz)〉

(

〈Ea(z)〉 =
δa,0
ς(z)

)

= [u2g−1]
∑

w=0

(2d′)!

d′!(d′ − w)!
[zw]S(uz)−2d′

−1S(2uz)d
′ (uz)−1

S(uz)
(w + 1 = 2g)

=
(2d′ − 1)!!2d

′

(d′ − 2g + 1)!
[u2g]

[

u/2

sinh(u/2)

]2 [
eu − e−u

(eu/2 − e−u/2)2
(u/2)

]d′

=
(2d′ − 1)!!2d

′
−2g

(d′ − 2g + 1)!
[u2g]

[

u

sinh(u)

]2 [
u

tanh(u)

]d′

.

�

Appendix A. Jucy correspondence and proof of Fact 2

The goal of this appendix is to re-prove Fact 2 via Jucys-Murphy correspondence, following [1].
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Theorem A.1 (Jucys correspondence [10], 1974). Let µ be a conjugacy class of Sn or equiv-

alently a partition of n, and let ℓ(µ) the number of its cycles or parts. Let Cµ =
∑

g∈µ g ∈

Z(Q(Sn)) be the formal sum of all permutations with cycle type µ in the center of the group

algebra. We have

(A.1) σk(J2, . . . ,Jn) =
∑

µ:ℓ(µ)=n−k

Cµ ∈ ZQ[Sn], k = 0, . . . , n− 1,

where σk is the k-th elementary symmetric polynomial and

Jk := (1 k) + (2 k) + · · ·+ (k−1 k) ∈ Q[Sn] for k = 2, . . . , n,

is the k-th Jucys-Murphy element. By convention σ0( ~J ) = id ∈ Sn.

Example 1 (Testing Jucys correspondence for ZQ[S4]).

σ0(J2,J3,J4) = id = (1)(2)(3)(4) =
∑

µ:ℓ(µ)=4−0=4

Cµ

σ1(J2,J3,J4) = J2 + J3 + J4 = (12) + ((13) + (23)) + ((14) + (24) + (34))

= all transpositions = (12)(3)(4) + (13)(2)(4) + · · · =
∑

µ:ℓ(µ)=4−1=3

Cµ

σ2(J2,J3,J4) = J2J3 + J2J4 + J3J4 =

= (12) ((13) + (23)) + (12) ((14) + (24) + (34))+

+ ((13) + (23)) ((14) + (24) + (34)) =

= (123)(4) + (132)(4) + (142)(3) + (124)(3) + (12)(34) + (143)(2)+

+ (14)(23) + (13)(24) + (432)(1) + (134)(2) + (234)(1) =
∑

µ:ℓ(µ)=4−2=2

Cµ

σ3(J2,J3,J4) = J2J3J4 = (12)[(13) + (23)][(14) + (24) + (34)] =

= (1234) + (1243) + (1324) + (1342) + (1423) + (1432) =
∑

µ:ℓ(µ)=4−3=1

Cµ

A.1. Proof of fact 2. By definition we have

hGr.,2
g;(2d′) :=

1

(2d′)!
[Cid]C(2)d′





∑

µ:ℓ(µ)=d−(2g−1+d′)

Cµ



C(2d′),

h<,2
g;(2d′) :=

1

(2d′)!
[Cid]C(2)d′ · σ2g−1+d′ (J2, . . . ,J2d′)C(2d′),

where [Cid] is the operator that extracts the coefficient of Cid from the expression. Jucys corre-
spondence A.1 for n = 2d′ and k = 2g − 1 + d′ gives

σ2g−1+d′ (J2, . . . ,J2d′) =
∑

µ:ℓ(µ)=d−(2g−1+d′)

Cµ,

which immediately implies h<,2
g;(2d′) = hGr.,2

g;(2d′). The rest of the appendix is dedicated to explain

how the definitions above correspond to their respective geometric meaning.
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A.1.1. One part Grothendieck dessins d’enfant with one 2-orbifold ramification. Let hGr.,2
g;(2d′) be

the weighted number of ramified coverings of the Riemann sphere CP1 of degree 2d′ by a genus
g ≥ 0 surface only ramified over 0, 1,∞ ∈ CP1, whose ramification profiles over 0 and ∞ are
given respectively by the cycle types (2d′) and (2, 2, . . . , 2), whereas the cycle type µ ⊢ 2d′ over
1 is arbitrary. The Riemann-Hurwitz equation imposes the following restriction on the lenght of

µ: ℓ(µ) = d′ + 1− 2g = 2d′ − (2g − 1 + d′). In terms of the group algebra, hGr.,2
g;(2d′) is defined as

hGr.,2
g;(2d′) :=

1

(2d′)!
[Cid]C(2)d′





∑

µ:ℓ(µ)=d−(2g−1+d′)

Cµ



C(2d′),

where [Cid] is the operator that extracts the coefficient of Cid from the expression. The expression
above can be thought as follows. Label the 2d′ sheets of the covering. Take an unbrached point
on the Riemann sphere and compose the three loops around the points 0, 1,∞. Every loop picks
up the monodromy around that point. Since the base curve is a sphere, it is always possible to
”pull” the loop on the other side of the sphere and contract it, this means that the product of the
monodromies should be equal to the identity. At the level of the group algebra, this corresponds
to formally expanding all the Cµ in the expression above, compute all multiplications in S2d′ ,
and count how many identities one gets this way. The final division by (2d′)! accounts for the
possible choices of labelling the sheets.

A.1.2. One part strictly monotone Hurwitz numbers with one 2-orbifold ramification. Let h<,2
g;(2d′)

be the weighted number of ramified coverings of the Riemann sphere CP1 of degree is 2d′ by a
genus g ≥ 0 surface ramified over 0,∞ ∈ CP1, with ramification profiles given respectively by the
cycle types (2d′) and (2, 2, . . . , 2), and m further simple ramifications (i.e. these m ramification
profiles are given by m transpositions (xi yi) ∈ S2d′). Let us write them in such a way that
xi < yi, i = 1, . . . ,m. We impose the extra strictly monotone condition yi < yi+1. The Riemann-

Hurwitz equation imposes that m = 2g− 1+ d′. In terms of the group algebra, h<,2
g;(2d′) is defined

as

h<,2
g;(2d′) :=

1

(2d′)!
[Cid]C(2)d′ · σ2g−1+d′ (J2, . . . ,J2d′)C(2d′).

Let us explain why the symmetric elementary polynomials σ of Jucys-Marphy elements are the
right elements to describe these ramified coverings. First of all, every Jucys-Murphy element is a
formal sum of transpositions, and σ2g−1+d′ is homogenous of degree 2g − 1 + d′, therefore every
summand in its expansion is a product of exactly 2g − 1 + d′ transpositions, as required. Let us
see how the strict monotonicity condition is guaranteed. The Jucys-Murphy element Jk is the
formal sum of all those ramification profiles whose greatest sheet label is equal to k, therefore, if
Jk appears as i-th factor in some summand of σ, this translates to yi = k in the corresponding
covering. At this point, the definition of σ grants that the summands produced are all and only
the ones satisfying the monotonicity conditions in the corresponding coverings.
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