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ZERO-FREE NEIGHBORHOOD AROUND THE UNIT CIRCLE

FOR KAC POLYNOMIALS

GERARDO BARRERA* AND PAULO MANRIQUE

Abstract. In this paper, we study how the roots of the so-called Kac poly-
nomial Wn(z) =

∑n−1

k=0
ξkz

k are concentrating to the unit circle when its coef-
ficients of Wn are independent and identically distributed non-degenerate real
random variables. It is well-known that the roots of a Kac polynomial are con-
centrating around the unit circle as n → ∞ if and only if E[log(1+ |ξ0|)] < ∞.
Under the condition of E[ξ2

0
] < ∞, we show that there exists an annulus

of width O(n−2(log n)−3) around the unit circle which is free of roots with

probability 1 − O((log n)−1/2). The proof relies on the so-called small ball
probability inequalities and the least common denominator used in [16].

1. Introduction

In the signal analysis and the speech recognition, an important tool is the so-
called z-transform (a particular case is the discrete Fourier transform). In this
context, the study of zeros of the z-transform provides useful information of a
signal. The existence of a region free of zeros around the unit circle is an important
aspect for a proper work of the z-transform. For further details, see Chapter 3 in
[4]. Roughly speaking, in this paper we find a region free of zeros around the unit
circle for the so-called Kac polynomials which are closely related to the discrete
Fourier transform.

Let n ∈ N and let ξ0, . . . , ξn−1 be independent and identically distributed (iid for
shorthand) non-degenerate real random variables (rvs for shorthand) defined in the
probability space (Ω,F ,P). Denote by E the expectation respect to the measure P.
The Kac polynomial Wn is defined as the random polynomial of degree n− 1 given
by

Wn(z) =

n−1
∑

j=0

ξjz
j, z ∈ C.

In the sequel, we introduce the basic notation and terminology which will be
used throughout this manuscript. For any z ∈ C, denote by |z| and arg(z) the
modulus of z and the argument of z, respectively. Let a, b ∈ R such that a ≤ b.
Denote by Rn(a, b) the number of roots of Wn in the annulus {z ∈ C : a ≤ |z| ≤ b}
and for any α, β ∈ [−π, π] such that α ≤ β denote by Sn(α, β) the number of roots
in {z ∈ C : α ≤ arg(z) ≤ β}.
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Shparo and Shur [19] proved that under general conditions on the random co-
efficients (rcs for shorthand), the roots of Wn concentrate around the unit circle
with asymptotically uniform distribution in the argument as n goes by. Moreover,
Ibragimov and Zaporozhets [7] showed that if the rcs of Wn are non-degenerate and
satisfy E[log(1 + |ξ0|)] < ∞ if and only if its roots are asymptotically concentrated
near the unit circle. Later, Kabluchko and Zaporozhets [9] provided a wide descrip-
tion of the localization of the roots for different conditions on the rcs. We point out
that the localization of the roots of Kac polynomials determine the poor efficiency
of some algorithms from the speech recognition and signal processing applications,
see [5] for further details.

Ibragimov and Zaporozhets [7] proved that

P

(

lim
n→∞

1

n
Rn (1− δ, 1 + δ) = 1

)

= 1 holds for any δ ∈ (0, 1)

if and only if E[log(1 + |ξ0|)] < ∞. They also proved that for any distribution ξ0
and α, β ∈ (−π, π) the following holds:

P

(

lim
n→∞

1

n
Sn (α, β) =

β − α

2π

)

= 1.

Shepp and Vanderbei [18] studied the case of iid standard Gaussian coefficients and
showed that

(1) lim
n→∞

1

n
E[Rn(e

−δ/n, eδ/n)] =
1 + e−2δ

1− e−2δ
− 1

δ
for any δ > 0.

Later, Ibragimov and Zeitouni[8] extended (1) to the case of iid coefficients which
common distribution belongs to the domain of attraction of an α-stable law,

(2) lim
n→∞

1

n
E[Rn(e

−δ/n, eδ/n)] =
1 + e−αδ

1− e−αδ
− 2

αδ
for any δ > 0.

Note that for any δ > 0, as α → 0+ we have 1+e−αδ

1−e−αδ − 2
αδ → 0. Then (2) may tend

to zero as n → ∞ when ξ0 has a slowly varying tail distribution. In fact, Götze
and Zaporozhets [6] showed that if |ξ0| has a slowly varying tail distribution, then

lim
n→∞

P
(

Rn(e
−δ/n, eδ/n) = 0

)

= 1 for any δ > 0,

i.e., the roots of a Kac polynomial with iid rcs with a slowly varying tail distribution
hit the unit circle with almost zero probability.

In the case that Wn has iid rcs which common distribution belongs to the domain
of attraction of an α-stable law, limit (2) yields that for δ > 0, Wn has at least one
root in the annulus Rδ,n := {z ∈ C : e−δ/n ≤ |z| ≤ eδ/n} with positive probability
for all large n and

P
(

Rn(e
−δ/n, eδ/n) = n

)

≤ 1 + e−αδ

1− e−αδ
− 2

αδ
+ o(1).

Therefore, a remarkable question is to determine if there exists an annulus inside of
Rδ,n such that Wn has at least one root or not on it. The existence of roots pretty
close to the unit circle is an important aspect in the analysis of signals. This helps
to understand the contribution of the phase information of a signal. We refer to [5]
for further details.

Shepp and Vanderbei [18] conjectured that with high probability the nearest
root of Wn to the unit circle is at a distance of order O(n−2). Later, Konyagin and
Schlag [12] showed that the last conjecture holds true when the rcs have standard
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Gaussian or Rademacher (uniform distribution on {−1, 1}) distribution. To be
more precise, Konyagin and Schlag proved that there exists a positive constant C
such that for any t > 0

(3) lim sup
n→∞

P

(

min
||z|−1|≤tn−2

|Wn(z)| ≤ tn−1/2
)

≤ Ct.

They also showed

(4) P

(

min
x∈[0,1]

|Wn(x)| ≤ n−1/2(log n)−γ

)

= o(1), as n → ∞

for γ > 1/2 and iid Gaussian rcs.
Karapetyan [11] mentioned that it is possible to extend the above result under

the assumption of non-degenerate real sub-Gaussian rcs, but only a sketch of the
proof was given. Moreover, he claimed that the previous result can be extended
under the finiteness of the third moment on the rcs. However, Karapetyan [10]
showed that for iid rcs with zero mean and finite third moment, it follows for any

ǫ ∈ (0, 1) and n > 16C
9936
ǫ3 ,

(5) P

(

min
x∈[0,1]

∣

∣

n−1
∑

j=0

ξje
ijx
∣

∣ ≥ n−1/2+ǫ
)

≤ 1

nǫ2/180
,

where the constant C depends only on the moments of ξ0. The proof of (5) is long,
technical and complicated.

Later, Barrera and Manrique [2] proved that if the moment generating function
of iid coefficients exists in an open neighborhood around 0, then for any t ≥ 1

(6) P

(

min
||z|−1|≤tn−2(logn)−1/2−γ

|Wn(z)| ≤ tn−1/2(log n)−γ
)

= O((log n)−γ+1/2),

where γ > 1/2. The proof of (6) recovers the essential ideas of Konyagin and Schlag
[12] who only considered the problem when the rcs have Rademacher or standard
Gaussian distribution. Their proof is quite technical and involved. It is based on
the so-called Salem-Zygmund inequality for sub-Gaussian rvs.

To extend for more distributions, Barrera and Manrique [2] took advantage of
the concept of least common denominator (lcd for shorthand), which was developed
in the study of the singularity of random matrices [16]. Roughly speaking, the lcd is
a combinatorial measurement to understand the concentration of a sum of indepen-
dent rvs in a small ball. Furthermore, under the assumptions of the finiteness of the
second moment, using similar ideas from Barrera and Manrique [2], it is possible to
find an annulus in which Wn does not have roots with high probability. We remark
that the lcd has been converted into a useful tool that allows analyzing different
interesting problems. For instance, it is used in the study of isomorphism between
graphs [14] and in the analysis of the condition number for random matrices [17].
In this manuscript, the lcd is used to understand how small can be the modulus of
a random polynomial near the unit circle.

In this work, the lcd allows us to develop clear arguments to estimate how close
are the roots of a Kac polynomial to the unit circle. To be more precise, when
the rcs of a Kac polynomial are iid rvs with zero mean and finite second moment,
the majority of the roots are a distance of order O(n−2(log n)−3) with probability
1−O((log n)−1/2). The main obstacle to extend this result comes from the Salem-
Zygmund inequality as we will see in Section 2.
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The main result of this paper is the following.

Theorem 1.1. Let {ξj : j ≥ 0} be a sequence of real iid non-degenerate real rvs

satisfying

(H) sup
u∈R

P(|ξ0 − u| ≤ γ) ≤ 1− q and P(|ξ0| > M) ≤ q

2

for some M > 0, γ > 0 and q ∈ (0, 1). Assume that E[ξ0] = 0 and E[ξ20 ] < ∞.

Then for all t ≥ 1 fixed we have

(7) P

(

min
||z|−1|≤tn−2(logn)−3

|Wn(z)| ≤ tn−1/2 (logn)
−2
)

= O((log n)−1/2),

where the implicit constant depends on t and the distribution of ξ0.
Remark 1.2.

(1) In Theorem 1.1 only is assumed the finiteness of the second moment, zero

mean and condition (H) which include Rademacher and standard Gaussian

rvs. As a directly consequence of Theorem 1.1, we have

P
(

Wn has no roots on
{

z ∈ C : ||z| − 1| ≤ tn−2 (logn)−3 }) = 1−O((log n)−1/2).

(2) We point out that in (7) we consider the minimum of the modulus of the Kac

polynomial over the set {||z| − 1| ≤ tn−2 (logn)
−3} which is properly con-

tained into the region considered in expression (3), but it contains the region
considered in (4). Nevertheless, we obtain the upper bound O((log n)−1/2)
which improves the bound given in (3).

This manuscript is organized as follows. In Section 2 we give an outline of the
proof. In Section 3 we provide the proof of Theorem 1.1. Finally, in Appendix A
we prove auxiliary results that we used throughout the manuscript.

2. Outline of the proof

In this section, we present the strategy used to prove Theorem 1.1. Our goal is
to estimate P(An), where

An :=
{

min
z∈C:||z|−1|≤tn−2(logn)−3

|Wn(z)| ≤ tn−1/2(logn)−2
}

and t ≥ 1 is a fix constant. First, motivated by the estimates given in [12], Section
2, p. 4964, we analyze the probability of the events

An,α := {|Wn (exp(i2πxα))| ≤ gn} for xα =
α

Nn
, α = 0, . . . , Nn − 1,

where Nn and gn are appropriate functions of n (later on, we provide precise de-
scription of them). We anticipate that Nn ≈ n2(log(n))3, which is similar to the
number of balls using in [12]. We point out that Nn needs to trade off gn in order
to the probability of An,α tends to zero, as n → ∞.

Second, for each α = 0, . . . , Nn − 1 we analyze the arithmetic structure of the
sequence {exp(i2πjxα) : j = 0, . . . , n − 1} and using the so-called small ball in-
equalities we prove that P(An,α) → 0, as n → ∞. The idea is to apply the Taylor
Theorem to approximate Wn in small balls with centers at exp(i2πxα). It allows us
to write the event An as the union of events of the form An,α. However, we need to
handle the maximum value for the derivative of Wn on the unit circle. The latter
can be done by a Salem-Zygmund type inequality, which consists in estimate the
maximum possible value of a Kac polynomial on the unit circle.
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Denote by ‖W ′
n‖∞ the supremum norm of W ′

n over the unit circle. In the case
of ξ0, . . . , ξn−1 being iid sub-Gaussian rvs, a Salem-Zygmund type inequality (in
probability) gives

(8) P

(

‖Wn‖∞ > Cpn
1/2 (logn)

1/2
)

= O
(

n−2
)

for some suitable positive constant Cp. In [2], the authors showed that (8) holds for
iid zero mean rvs with finite moment generating function. In this paper, we are not

assuming the existence of the moment generating function. Instead of, we assume
finiteness of the second moment. By applying the majorizing measure method,
Weber [20] showed (8) in expectation. To be more precise, let ξ0, ξ1, . . . , ξn−1 be
iid zero mean rvs with finite second moment, Corollary 2 in [20] implies that there

exists a positive constant C̃ (only depends on E[ξ20 ]) such that

E [‖Wn‖∞] ≤ C̃n1/2 (logn)1/2 for any n ∈ N.

To improve Theorem 1.1 (using lcd technique) to more general rcs we require a
refined version of the Salem-Zygmund inequality for rvs without finite second mo-
ment. At the moment, the authors are not able to obtain a Salem-Zygmund type
inequality for rvs without the finiteness of the second moment. Later, we apply
small ball inequalities to show that

P (|Wn (exp (i2πxα))| ≤ gn) → 0, as n → ∞.

This kind of inequalities allow us to consider more general rcs and provide a new
proof of the main theorem in [12]. To apply small ball inequalities we analyze the
lcd for some specific matrix. In the sequel, we give the definition of the lcd for a
matrix. Denote log+ x := max {log x, 0} for any x > 0.

Definition 2.1 (Least common denominator (lcd)). Let L > 0 be a positive num-

ber. Let ‖ · ‖2 be the standard Euclidean norm and let dist
(

v,ZM
)

denote the dis-

tance between the vector v ∈ RM and the set ZM . For a given matrix V ∈ Rm×M

the lcd is defined as

D(V ) := inf

{

‖Θ‖2 : Θ ∈ R
m, dist

(

V TΘ,ZM
)

< L

√

log+
‖V TΘ‖2

L

}

.

For a review of the concept lcd, we recommend Section 7 in [16]. For our pur-
poses, in Definition 2.1 we take m = 2, M = n and the matrix V is given by

V :=

[

1 cos (2πxα) . . . cos ((n− 1)2πxα)
0 sin (2πxα) . . . sin ((n− 1)2πxα)

]

.

Set X = [ξ0, . . . , ξn−1]
T . Observe that

P (‖V X‖2 ≤ gn) = P (|Wn (exp (i2πxα))| ≤ gn) .

Note that if det
(

V V T
)

> 0, Theorem 7.5 in [16] implies that for a > 0 and t ≥ 0

P (‖aV X‖2 ≤ t) ≤ C2L2

2a2(det(V V T ))1/2

(

t+
1

D(aV )

)2

,(9)

where L ≥
√

2/q and the constant C only depends on constants M , γ, q specified
in Theorem 1.1. By Definition 2.1 it is not hard to deduce that for any a > 0,
D(aV ) ≥ (1/a)D(V ). Recall the inequality (x + y)2 ≤ 2x2 + 2y2 for any x, y ∈ R.
By (9) we deduce that
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P (‖aV X‖2 ≤ t) ≤ C2L2t2

a2 (det (V V T ))
1/2

+
C2L2

a2 (det (V V T ))
1/2

(D(aV ))
2

≤ C2L2t2

a2 (det (V V T ))
1/2

+
C2L2

(det (V V T ))
1/2

(D(V ))2
.(K)

Since xα = α
Nn

, the arithmetic properties of xα given by α and Nn should play an
important role in the estimates. Depending on the greatest common divisor between
α and Nn, gcd (α,Nn), we deduce suitable positive lower bounds for det

(

V TV
)

and

dist
(

V TΘ,Zn
)

which together with (K) allow us to show that P (‖V X‖2 ≤ gn) is
sufficiently small.

Taylor’s approximation. In the sequel, define the trigonometric random poly-
nomial Tn(x) :=

∑n−1
j=0 ξje

ijx, x ∈ R and denote by T ′
n its derivative with respect

to x. To do the notation shorter, we denote by ∆n the following event:

∆n :=

{

max
z∈C:||z|−1|≤2tn−11/10

|Wn(z)| ≤ n3/2, ‖T ′
n‖∞ ≤ C0n

3/2 logn

}

,

where C0 is a positive constant that we will precise later. We also denote by P (A,B)
the probability P (A ∩B) for any two events A and B. By the total probability
law, we deduce

P (An) ≤ P (An,∆n) + P

(

‖T ′
n‖∞ > C0n

3
2 logn

)

+ P

(

max
z∈C:||z|−1|≤2tn−11/10

|Wn(z)| > n3/2

)

.(10)

The Markov inequality yields

P

(

max
z∈C:||z|−1|≤2tn−11/10

|Wn(z)| > n3/2

)

≤ P





n−1
∑

j=0

|ξj |
(

1 +
2t

n1+1/10

)j

> n3/2





≤
E

[

∑n−1
j=0 |ξj |

(

1 + 2t
n1+1/10

)j
]

n3/2
≤ e2tnE [|ξ0|]

n3/2
=

e2tE [|ξ0|]
n1/2

.

In other words, we have

(11) P

(

max
z∈C:||z|−1|≤2tn−11/10

|Wn(z)| > n3/2

)

= O
(

n−1/2
)

,

where the implicit constant depends on t and E [|ξ0|]. On the other hand, the
Bernstein inequality (see Theorem 14.1.1 in [15]) allows us to deduce for the second
term in the right-side hand of (10) that

P

(

‖T ′
n‖∞ > C0n

3/2 logn
)

≤ P

(

‖Tn‖∞ > C0n
1/2 logn

)

.

Since E [ξ0] = 0 and E
[

ξ20
]

< ∞, one can apply Corollary 2 of [20] which together
with the Markov inequality imply

P

(

‖Tn‖∞ > C0n
1/2 logn

)

≤ C(E
[

ξ20
]

)1/2n1/2 (logn)1/2

C0n1/2 logn
=

C(E
[

ξ20
]

)1/2

C0 (logn)
1/2

,
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where C is a universal positive constant. Consequently, the Bernstein inequality
yields

(12) P

(

‖T ′
n‖∞ > C0n

3/2 logn
)

= O
(

(logn)−1/2
)

.

By inequalities (10), (11) and (12), we observe that to estimate P(An) we only need
to analyze P(An,∆n).

Remark 2.2. In the preceding reasoning we only use zero mean and finiteness of

the second moment of ξ0. In particular, it holds for sub-Gaussian rvs which includes

Rademacher, standard Gaussian, and bounded rvs.

Arithmetic properties of xα. In the sequel, we decompose the event An ∩∆n

into regions for which the arithmetic properties of xα are useful in order to use the
anti-concentration assumption (H) and allows us to show P(An,∆n) tends to zero,
as n → ∞. We point out that in the following reasoning we only use assumption
(H).

To achieve our goal, we consider a set of balls with center at points on the unit
circle with an adequate radius. We distinguish two kind of balls. The special balls
with center at 1 + 0i and −1 + 0i, where the radius r is large (r = 2tn−11/10), and
the balls with center at points z with argument satisfying n−11/10 < |arg(z)| <
π − n−11/10 and small radius (r = 2tn−2 (log n)

−3
).

Recall that for any x ∈ R, ⌊x⌋ denotes the greatest integer less than or equal

to x. Let N = ⌊n2 (logn)
3⌋ and xα = α

N for α = 0, 1, . . . , N − 1. For a ∈ C

and s > 0, denote by B (a, s) the closed ball with center a and radius s, i.e.,
B (a, s) = {z ∈ C : |z − a| ≤ s}. Denote by S1 the unit circle. Let

A
(

S
1, tn−2 (logn)

−3
)

:=
{

z ∈ C : ||z| − 1| ≤ tn−2 (logn)
−3
}

.

Notice that

A
(

S
1, tn−2 (logn)

−3
)

=
{

z ∈ A : n−11/10 < |arg(z)| < π − n−11/10
}

∪
{

z ∈ A : |arg(z)| ≤ n−11/10 or |arg(z)− π| ≤ n−11/10
}

.

Let t ≥ 1 and observe that
{

z ∈ A : |arg(z)| ≤ n−11/10 or |arg(z)− π| ≤ n−11/10
}

⊂ B
(

−1 + 0i, 2tn−11/10
)

∪ B
(

1 + 0i, 2tn−11/10
)

.

The preceding inclusion yields that any z ∈ A with small argument belongs in the
union of the balls with center at 1 + 0i and −1 + 0i with radius 2tn−11/10. On the
other hand, for z ∈ A with large argument we have

{

z ∈ A : n−11/10 < |arg(z)| < π − n−11/10
}

⊂
N−1
⋃

α=1
α : n−11/10<|2πxα|<π−n−11/10

B
(

ei2πxα , 2tn−2 (logn)
−3
)

.
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Define

J1(n,N) :=
{

α ∈ [1, N − 1] ∩ N : gcd (α,N) ≥ n11/10 (logn)
−1/2

}

,

J2(n,N) :=
{

α ∈ [1, N − 1] ∩ N : n11/10 (logn)
−1/2 ≥ gcd (α,N) ≥ n (logn)

3
}

,

J3(n,N) :=
{

α ∈ [1, N − 1] ∩ N : n (logn)3 ≥ gcd (α,N) ≥ n9/10 (logn)3
}

,

where gcd(α,N) denotes the greatest common divisor between α and N . For any
α ∈ J3(n,N) we have

n− 1

n (logn)
3 ≤ N

gcd (α,N)
≤ n11/10.

The preceding inequalities mean that the irreducible fraction of xα is as small as a
multiple of n−11/10. Therefore,

N−1
⋃

α=1
α : n−11/10<|2πxα|<π−n−11/10

B
(

ei2πxα , 2tn−2 (logn)
−3
)

=
⋃

α∈J1(n,N)

B
(

ei2πxα , 2tn−2 (logn)−3
)

∪
⋃

α∈J2(n,N)

B
(

ei2πxα , 2tn−2 (logn)−3
)

∪
⋃

α∈J3(n,N)

B
(

ei2πxα , 2tn−2 (logn)
−3
)

We emphasize that if α ∈ J1(n,N) ∪ J2(n,N) ∪ J3(n,N). Then we have

n−11/10 < |2πxα| < π − n−11/10.

Consequently,

P (An,∆n) ≤ P

(

∆n, min
z∈B(1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (logn)
−2

)

+ P

(

∆n, min
z∈B(−1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (logn)−2

)

(13)

+
∑

α∈J1(n,N)

P (∆n,Bα) +
∑

α∈J2(n,N)

P (∆n,Bα) +
∑

α∈J3(n,N)

P (∆n,Bα) ,

where

Bα :=

{

min
z∈B(ei2πxα ,2tn−2(logn)−3)

|Wn(z)| < tn−1/2 (logn)
−2

}

.

The right-hand side of (13) will be estimated as follows.

Lemma 2.3. The following holds.

P

(

∆n, min
z∈B(1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (logn)
−2

)

= O

(

logn

n1/10

)

and

P

(

∆n, min
z∈B(−1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (logn)
−2

)

= O

(

logn

n1/10

)

,

where the implicit constants in the big O-notation depend on L and t.
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Lemma 2.4. Assume that gcd (α,N) ≥ n11/10 (logn)−1/2
, where N = ⌊n2(log n)3⌋.

Then for a suitable constant C̃ it follows

∑

α∈J1(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ C̃tn−1/2 (logn)
−2
)

= O

(

(logn)
4

n1/20

)

,

where the implicit constant in the big O-notation depends on L and t.

Lemma 2.5. Assume that n11/10

(logn)1/2
≥ gcd (α,N) ≥ n (log n)

3
, where

N = ⌊n2(logn)3⌋. Then for a suitable constant C̃ it follows

∑

α∈J2(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ C̃tn−1/2 (logn)−2
)

= O

(

1

logn

)

,

where the implicit constant in the big O-notation depends on L and t.

Lemma 2.6. Assume that n (logn)
3 ≥ gcd (α,N) ≥ n9/10 (logn)

3
, where

N = ⌊n2 (logn)3⌋. Then for a suitable constant C̃ it follows

∑

α∈J3(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ C̃tn−1/2 (log n)
−2
)

= O

(

1

n1/10

)

,

where the implicit constant in the big O-notation depends on L and t.

In the sequel, we stress the fact that Theorem 1.1 is just a consequence of what
we have already stated up to here. Indeed, combining Lemma 2.3, Lemma 2.4,
Lemma 2.5, Lemma 2.6, estimate (11) and estimate (12) in inequality (10) yield
Theorem 1.1.

3. Proof of Theorem 1.1

In this section, we show that the left-hand side of inequality (13) is of order
O((log(n))−1/2).

3.1. Estimates on the balls centered at −1 and 1.

Proof of Lemma 2.3. Let z ∈ B
(

1 + 0i, 2tn−11/10
)

. The Taylor Theorem implies

|Wn(z)−Wn(1)| ≤ |z − 1||W ′
n(1)|+ |R2(z)|,

where R2(z) is the error of the Taylor approximation of order 2. On ∆n we have

|R2(z)| ≤
(

2tn−1−1/10
)2

1− o(1)
max

z∈B(1+0i,2tn−11/10)
|Wn(z)|

≤ 4t2n−2−1/5n3/2

1− o(1)
=

4t2n−1/2−1/5

1− o(1)
,
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where o(1) = 2tn−1−1/10. The preceding inequality and assuming that ∆n holds
yield

|Wn(z)−Wn(1)| ≤ 2tn−1−1/10|W ′
n(1)|+

4t2n−1/2−1/5

1− o(1)

≤ 2tn−1−1/10‖T ′
n‖∞ +

4t2n−1/2−1/5

1− o(1)

≤ 2C0tn
1/2−1/10 logn+

4t2n−1/2−1/5

1− o(1)
.

Hence,

P

(

∆n, min
z∈B(1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (logn)
−2

)

≤

P

(

|Wn(1)| ≤ 2C2tn
1/2−1/10 logn

)

,

where 2C2 = 2C0 + 4t+ 1. Since Wn(1) =
∑n−1

j=0 ξj , Corollary 7.6 in [16] implies

P

(

|Wn(1)| ≤ 2C2tn
1/2−1/10 logn

)

≤ C3L

‖a‖

(

2C2t+
1

D(a)

)

for L ≥
√

1/q, where C3 is a positive constant and D(a) is the lcd of

a =
(

n1/2−1/10 logn
)−1

(1, . . . , 1) ∈ R
n.

By Proposition 7.4 in [16] we have D(a) ≥ 1/2n1/2−1/10 logn. Then

P

(

|Wn(1)| ≤ 2C2tn
1/2−1/10 logn

)

≤ C3L logn

n1/10

(

2C2t+
2

n1/2−1/10 logn

)

≤ (2C2t+ 2)C3L logn

n1/10
.

Therefore,

P

(

∆n, min
z∈B(1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (logn)
−2

)

= O

(

logn

n1/10

)

.

On the other hand, for z ∈ B
(

−1 + 0i, 2tn−11/10
)

similar reasoning yields

P

(

∆n, min
z∈B(−1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (logn)
−2

)

≤

P

(

|Wn(−1)| ≤ 2C2tn
1/2−1/10 logn

)

.

In this case, we need to analyze Wn(−1) =
∑n−1

j=0 (−1)
j
ξj . Again taking L ≥

√

1/q

and applying Corollary 7.6 in [16] we obtain

P

(

|Wn(−1)| ≤ 2C2tn
1/2−1/10 logn

)

≤ C3L

‖b‖

(

2C2t+
1

D(b)

)

,

where C3 is a positive constant and D(b) is the lcd of

b =
(

n1/2−1/10 logn
)−1

(

1,−1, 1, . . . , (−1)n−1
)

∈ R
n.
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By Proposition 7.4 in [16] we have D(b) ≥ 1/2n1/2−1/10 logn. Then

P

(

|Wn(−1)| ≤ 2C2tn
1/2−1/10 logn

)

≤ C3L logn

n1/10

(

2C2t+
2

n1/2−1/10 logn

)

≤ (2C2t+ 2)C3L logn

n1/10
.

Therefore,

P

(

∆n, min
z∈B(−1+0i,2tn−11/10)

|Wn(z)| < tn−1/2 (logn)
−2

)

= O

(

logn

n1/10

)

.

�

3.2. Estimates of P (∆n,Bα). In the sequel, we apply the Taylor Theorem repeat-
edly in order to reduce P (∆n,Bα) to an estimate of the probability of how small
a sum of iid rvs can be. The latter can be computed (estimated) using small ball
inequalities.

Let z ∈ B
(

ei2πxα , 2tn−2 (logn)
−3
)

and assume that ∆n holds. The Taylor

Theorem yields

|Wn(z)−Wn

(

ei2πxα
)

| ≤ |z − ei2πxα ||W ′
n

(

ei2πxα
)

|+ |R2(z)|

≤ 2tn−2 (logn)−3 |W ′
n

(

ei2πxα
)

|+ 4t2n−5/2 (logn)−6

1− o(1)

≤
(

2tC0 + 4t2
)

n−1/2 (logn)
−2

,

where o(1) = 2tn−2 (logn)
−3

. Then

(14) P (∆n,Bα) ≤ P

(

|Wn

(

ei2πxα
)

| ≤ 2tC2n
−1/2 (logn)

−2
)

.

To show that P (∆n,Bα) tends to zero as n increases, we rewrite the sum
Wn

(

ei2πxα
)

as the product of a matrix by a vector, and then we analyze the lcd of
the corresponding matrix.

Define the 2× n matrix Vα as follows

Vα :=

[

1 cos (2πxα) . . . cos ((n− 1)2πxα)
0 sin (2πxα) . . . sin ((n− 1)2πxα)

]

and take X = [ξ0, . . . , ξn−1]
T ∈ Rn. Notice that

‖VαX‖2 =
∣

∣

∣

n−1
∑

j=0

ξje
ij2πxα

∣

∣

∣
= |Wn

(

ei2πxα
)

|.

Let Θ = r [cos (θ) , sin (θ)]
T ∈ R2, where r > 0 and θ ∈ [0, 2π). For fix r and θ we

have

V T
α Θ = r [cos (−θ) , cos (2πxα − θ) , . . . , cos (2(n− 1)πxα − θ)]

T ∈ R
n.

We also point out that ‖V T
α Θ‖2 ≤ r

√
n. On the other hand, we observe that

det
(

VαV
T
α

)

= det





∑n−1
j=0 cos2 (j2πxα)

1
2

∑n−1
j=0 sin (2 · j2πxα)

1
2

∑n−1
j=0 sin (2 · j2πxα)

∑n−1
j=0 sin2 (j2πxα)



 .

Bearing all this in mind, we can use the notion of lcd for high dimensions to obtain
an accurate upper bound of the left-hand side of (14).
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We recall that the events ∆n ∩ Bα are defined for

n−11/10 < |2πxα| < π − n−11/10.

Therefore, to estimate the left-hand side of (14) we distinguish the following three
cases.

3.2.1. Estimates on J1(n,N).

Proof of Lemma 2.4. Notice that

N

gcd (α,N)
≤ n2 (logn)

3

n11/10 (logn)
−1/2

= n9/10 (logn)
7/2

.

and

|2πxα| = 2π
α

N
= 2π

α/gcd (α,N)

N/gcd (α,N)
≥ 2π

1

n9/10 (logn)
7/2

.

Then 2πxα also satisfies n−1 < |2πxα| < π − n−1 for all large n. By Lemma 3.2
Part 1 in [12], there exist positive constants c4, C4 such that

(15) c4n
2 ≤ det

(

VαV
T
α

)

≤ C4n
2.

By Lemma A.1 in Appendix A we obtain that the number of indices α ∈
[1, N ] ∩ N that satisfies the condition gcd (α,N) ≥ n11/10 (logn)

−1/2
is at most

N1+o(1)

n11/10(logn)−1/2 . By the definition of N we obtain

(16)
N1+o(1)

n11/10 (logn)
−1/2

≤ n2+o(1) (logn)
7/2+o(1)

n11/10
= n9/10+o(1) (logn)

7/2+o(1)
.

By Proposition 7.4 in [16], the lcd of Vα satisfiesD (Vα) ≥ 1/2. Therefore, inequality
(K), inequality (15) and inequality (16) yield

∑

α∈J1(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ 2tC2n
−1/2 (logn)

−2
)

≤ n9/10+o(1) (logn)
7/2+o(1)







2C2L2 (2tC2)
2

(c4n2)
1/2
(

n1/2 (logn)
2
)2 +

2C2L2

1
4 (c4n

2)
1/2







≤ 8C2C2
2L

2t2

c
1/2
4 n11/10−o(1) (logn)1/2−o(1)

+
8C2L2 (logn)

7/2+o(1)

c
1/2
4 n1/10−o(1)

for all large n. Consequently,

∑

α∈J1(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ 2tC2n
−1/2 (logn)

−2
)

= O

(

(logn)4

n1/20

)

,

where the implicit constant depends on L and t. �



Zero free neighborhood for Kac polynomials 13

3.2.2. Estimates on J2(n,N).

Proof of Lemma 2.5. Notice that

(17) n ≥ N

gcd (α,N)
≥ n9/10 (logn)7/2 − o(1),

where o(1) = (logn)1/2

n11/10 . The latter implies that

|2πxα| = 2π
α

N
= 2π

α/gcd (α,N)

N/gcd (α,N)
≥ 2π

1

n
.

Then 2πxα also satisfies n−1 ≤ |2πxα| ≤ π − n−1 for all large n. By Lemma 3.2
Part 1 in [12] there exist positive constants c4, C4 such that

(18) c4n
2 ≤ det

(

VαV
T
α

)

≤ C4n
2.

Note xα = α
N = α′

N ′
, where α = α′ gcd (α,N) and N = N ′ gcd (α,N). Observe that

gcd (α′, N ′) = 1. Since N ′ ≤ n, for any θ we have

{

exp

(

i

(

j2π
α′

N ′
− θ

))

: j = 0, . . . , N ′ − 1

}

=

{

exp

(

i

(

j2π
1

N ′
− θ

))

: j = 0, . . . , N ′ − 1

}

.

Hence, without loss of generality, we assume that xα = 1
N ′

. A straightforward
computation yields

V T
α Θ = r [cos (−θ) , cos (2πxα − θ) , . . . , cos (2(n− 1)πxα − θ)]

T ∈ R
n.

Notice that in the proof of Lemma A.2 in Appendix A holds true for any real
positive number r. If r ≤ 1

32πxα
, by Lemma A.2 in Appendix A, inequality (17)

and remembering that ‖V T
α Θ‖2 ≤ r

√
n we deduce

1

128π

(

n9/10 (logn)7/2 − o (1)
)

≤ 1

128πxα
≤ dist

(

V T
α Θ,Zn

)

≤ L

√

log+
‖V T

α Θ‖2
L

≤ L

√

log+
rn1/2

L
≤ L

√

log+
n3/2

L
,

which yields a contradiction due to L ≥
√

2/q is fixed. Then for r > 1
32πxα

we have

D (Vα) ≥ r >
1

32π

(

n9/10 (logn)
7/2 − o (1)

)

.
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Therefore, the preceding inequality together with inequality (K), inequality (18)
and the fact the cardinality of J2(n,N) is at most N allow us to deduce

∑

α∈J2(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ 2tC2n
−1/2 (logn)

−2
)

≤ n2 (logn)
3







2C2L2 (2tC2)
2

(c4n2)
1/2
(

n1/2 (logn)
2
)2







+ n2 (logn)3







2C2L2

(c4n2)
1/2
(

1
32π

(

n9/10 (logn)
7/2 − o (1)

))2







≤ 8C2C2
2L

2t2

c
1/2
4 logn

+
2048cπ2C2L2

c
1/2
4 n2/5 (logn)

4

for all large n, where c4 is a positive constant. As a consequence we obtain

∑

α∈J2(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ 2tC2n
−1/2 (logn)

−2
)

= O

(

1

logn

)

,

where the implicit constant depends on L and t. �

3.2.3. Estimates on J3(n,N).

Proof of Lemma 2.6. This case requires a more refined analysis. Observe that

n11/10 ≥ N

gcd (α,N)
≥ n− o (1) ,

where o (1) = 1
n2(logn)3 . Then 2πxα satisfies

n−11/10 ≤ |2πxα| ≤ (n− o (1))
−1

or π− (n− o (1))
−1 ≤ |2πxα| ≤ π−n−11/10.

By Lemma 3.2 Part 2 in [12], there exist positive constants c4, C4 such that

(19) c4n
2−1/5 ≤ det

(

VαV
T
α

)

≤ C4n
2.

By Lemma A.1 we have that the number of indexes α ∈ [1, N ] ∩N that satisfy the

condition n (logn)3 ≥ gcd (α,N) ≥ n9/10 (logn)3 is at most n11/10+o(1)(log(n))o(1),
where o(1) → 0, as n → ∞.

In the sequel, we analyze the lcd of Vα. In particular, we find an appropriate

lower bound for the distance between V T
α Θ and the set Zn. Since xα = α

N = α′

N ′

with gcd (α′, N ′) = 1 and N ′ ≥ n−1 for all large n, then we have that all the points
in {exp (i (j2πxα − θ)) : j = 0, . . . , n− 1} are different between them. Let r ∈ N

consider the set of intervals of the form
[

m
r ,

m+1
r

]

for all m ∈ [−r, r − 1]∩Z. Write
Irm and Jr

m the corresponding arcs on the unit circle such that their projections on
the horizontal axis is the interval

[

m
r ,

m+1
r

]

. If 4r ≤ n, then the Pigeon-hole prin-
ciple implies that there exists at least one M ∈ [−r, r − 1]∩ Z such that IM or JM
contains at least n

4r ≥ 1 elements of the set {exp (i (j2πxα − θ)) : j = 0, . . . , n− 1}.
In the sequel, we define

IrM :=

{

j ∈ {0, . . . , n− 1} : cos (j2πx− θ) ∈
[

M

r
,
M + 1

r

]

∈
[

M

r
,
M + 1

r

]}

6= ∅.
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and for each j ∈ IrM , we define

dj = min

{∣

∣

∣

∣

cos (j2πxα − θ)− M

r

∣

∣

∣

∣

,

∣

∣

∣

∣

cos (j2πxα − θ)− M + 1

r

∣

∣

∣

∣

}

.

Note that

min
0 ≤ l<k ≤ n−1

|l2πxα − k2πxα| ≥
2πα′

N ′
≥ 2π

N ′
.

Let L = min
{

⌊

n
8r − 3

2

⌋

,
⌊

N ′

8r − 1
2

⌋}

and observe that for each 0 ≤ λ ≤ L there

exists at least j ∈ IrM such that dj ≥ (2λ+ 1) 2π
N ′

. Then

srM :=
∑

j∈Ir
M

dj ≥
L
∑

λ=0

(2λ+ 1)
2π

N ′
=

2π(L+ 1)2

N ′
≥ 2πL2

N ′
.

By the choosing of L, if r ≤
⌊

n1/4
⌋

, we have 2πL2

N ′
≥ 2π

n11/10n
3/2 for all large n.

Here, let v be a vector in Rn with entries vj = cos (j2πxα − θ) for each j =

0, . . . , n − 1. If a positive integer r ≤
⌊

n1/4
⌋

, then by the previous discussion we

deduce dist(rv,Zn) ≥ 2πn2/5 for all n large. If r is any positive real number, observe

that
[

s
r ,

s+1
r

]

⊂
[

s
⌈r⌉ ,

s+1
⌈r⌉

]

, where s ∈ N, and therefore our previous analysis holds

true for any r > 0.
Assume that r ≤

⌊

n1/4
⌋

and recall that ‖V T
α Θ‖2 ≤ r

√
n and that L ≥

√

2/q is
fixed. By the definition of lcd, for all n large we obtain

2πn2/5 ≤ dist
(

V T
α Θ,Zn

)

≤ L

√

log+
‖V T

α Θ2‖2
L

≤ L

√

log+
n3/4

L
,

which yields a contradiction for n large. Thus, D (Vα) ≥
⌊

n1/4
⌋

. Therefore, the
preceding inequality together with inequality (K), inequality (19) and the fact the
cardinality of J3(n,N) is at most n11/10+o(1)(log(n))o(1) allow us to deduce

∑

α∈J3(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ 2tC2n
−1/2 (logn)

−2
)

≤ n11/10+o(1)(log(n))o(1)







2C2L2 (2tC2)
2

(

c4n2−1/5
)1/2

(

n1/2 (logn)
2
)2







+ n11/10+o(1)(log(n))o(1)

(

2C2L2

(

c4n2−1/5
)1/2 (

n1/4
)2

)

≤ 8C2C2
2L

2t2

c
1/2
4 n4/10

+
2C2L2

c
1/2
4 n1/10

for all large n. As a consequence we obtain

∑

α∈J3(n,N)

P

(

|Wn

(

ei2πxα
)

| ≤ 2tC2n
−1/2 (logn)−2

)

= O

(

1

n1/10

)

,

where the implicit constant depends on L and t. �
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Appendix A. Arithmetic properties

This section contains the proofs of the results that we skipped in the paper in
order to be more fluid.

Lemma A.1. Let m ≥ 1 and M ∈ N. Then the cardinality of the set

ΓM
m := {k ∈ [1,M ] ∩ N : gcd (k,M) ≥ m}

is at most 1
⌊m⌋M

1+C(log logM)−1

, where C is a positive constant.

Proof. Denote by T the Euler totient function. Observe that

∑

k∈ΓM
m

1 ≤
M
∑

d=⌊m⌋
d|M

T

(

M

d

)

.

It is well-known that T (s) ≤ s − √
s for all s ∈ N. Moreover, if d(s) denotes the

number of positive divisors of s, then Theorem 13.12 in [1] implies that there exists

a positive constant C such that d(s) ≤ sC(log log(s))−1

. Hence,

∑

k∈ΓM
m

1 ≤
(

M

⌊m⌋ −
√

M

⌊m⌋

)

MC(log log(M))−1 ≤ 1

⌊m⌋M
1+C(log logM)−1

which yields the statement. �

Lemma A.2. Let θ ∈ [0, 2π) and n ∈ N. Let V = (Vj)j∈{1,...,n} ∈ Rn such that

Vj = r cos (j2πx− θ) for j = 0, . . . , n− 1, where r ∈ N and x = 1/n. If 1
4πrx ≥ 8,

then

dist (V ,Zn) ≥ 1

128πx
.

Proof. Let θ ∈ [0, 2π) and n ∈ N. Let x = 1/n and we define the following sequence
Pn = {exp (i (j2πx− θ)) : j = 0, . . . , n− 1}, where i is imaginary unity. Note Pn

is a set of points on the unit circle which can be looked as vertices of a regular
polygon with n sides inscribed in the unit circle.

Since the arguments of “two consecutive points” on Pn, exp (i (j2πx− θ)) and
exp (i ((j + 1)2πx− θ)), are separated by a distance 2πx, the number of points in
Pn which are in any arc of length ℓ on the unit circle is at least ℓ

2πx − 2.

Let [y, y + 8πx] be a subinterval of [−1, 1]. We consider an arc
⌢

I on the unit
circle such that its projection on the horizontal axis is [y, y + 8πx]. If the length

of the arc
⌢

I is ℓ, then the number of values cos (j2πx− θ), j = 0, . . . , n − 1 that
belongs to (y, y + 8πx) is at least 1

2

(

ℓ
2πx − 2

)

. Observe that 1
2

(

ℓ
2πx − 2

)

≥ 1 when
ℓ ≥ 8πx.

Let r ∈ N and m ∈ [−(r − 1), (r − 1)] ∩ Z. By the preceding explanation, for all
positive integer k ≤ 1

8πrx there exists j ∈ {0, . . . , n− 1} such that

cos (j2πx− θ) ∈
(m

r
+ 8π (k − 1)x,

m

r
+ 8πkx

)

⊂
[

m

r
,
m+ 1

r

]

.

In the sequel, set

Irm :=

{

j ∈ {0, . . . , n− 1} : cos (j2πx− θ) ∈
[

m

r
,
m+ 1

r

]}

6= ∅
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and for each j ∈ Irm, define

dj := min

{

∣

∣

∣cos (j2πx− θ)− m

r

∣

∣

∣ ,

∣

∣

∣

∣

cos (j2πx− θ)− m+ 1

r

∣

∣

∣

∣

}

.

Let L be the biggest integer such that 8πLx ≤ 1
2r , or equivalently, L =

⌊

1
16πrx

⌋

.
Observe that

L ≥ 1

16πrx
− 1 ≥ 1

32πrx
when

1

4πrx
≥ 8.

Then

srm :=
∑

j∈Ir
m

dj ≥
L
∑

λ=1

2λ(8πx) ≥ 8πxL2 ≥ 1

128πr2x
.

Moreover,
m=r−1
∑

m=−(r−1)

srm ≥ 2r − 1

128πr2x
≥ 1

128πrx
,

where the last inequality follows since 2r−1
r ≥ 1 for r ∈ N. Consequently, the

distance between the vector V ∈ Rn with entries Vj = r cos (j2πx− θ) for j =
0, . . . , n− 1 with x = 1/n and the set Zn is at least

r

(

1

128πrx

)

=
1

128πx
verifying that

1

4πrx
≥ 8 is fulfilled.

�
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