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2 Differentiability of the arithmetic volume function

along the base conditions

Hideaki Ikoma*

March 24, 2022

Abstract

In this paper, we show that the arithmetic volume function defined on the

space of pairs of adelic R-Cartier divisors and base conditions is differen-

tiable at a big pair, and that its derivative is given by an arithmetic restricted

positive intersection number defined for the pair.
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1 Introduction

Let K be a number field, let Mf
K denote the set of finite places of K, and set MK ≔

Mf
K ∪ {∞}. Let X be a normal, projective, and geometrically connected variety

defined over K, and let Rat(X) denote the field of rational functions on X. An

adelic R-Cartier divisor D on X is a couple
(
D,gggD

)
consisting of an R-Cartier

divisor D on X and a family of D-Green functions

gggD =
∑

v∈MK

gD
v [v]

satisfying the adelic condition (see [18] for detail). To each pair
(
D; E

)
of an adelic

R-Cartier divisor D on X and an R-Cartier divisor E on X, we assign the finite set

of all strictly small sections of D vanishing along the positive part of E: namely

Γ̂ss
(
D; E

)
≔

{
φ ∈ Rat(X)× : D + (̂φ) > 0 and D + (φ) > E

}
∪ {0}

(see Notation and terminology 7). The arithmetic volume of the pair
(
D; E

)
is then

defined as

v̂ol
(
D; E

)
≔ lim sup

m∈Z>1,
m→∞

log
(
#̂Γss

(
mD; mE

))

mdim X+1/(dim X + 1)!

(see [11] for detail).

As is well-known, differentiability of the arithmetic volume function has es-

sential importance in Arakelov geometry and many applications in problems on

rational points (see for example [19]). Due to Yuan’s arithmetic Siu inequality

[20], we know that the arithmetic volume function above is Gâteaux differentiable

along directions defined by adelic R-Cartier divisors, and that the derivatives are

given by arithmetic positive intersection numbers (see [5, 9, 11]). Another analytic

approach to differentiability is proposed by Berman and Boucksom [1]. In this

paper, we study Gâteaux differentiability of the arithmetic volume function along

directions defined by R-Cartier divisors, and show that the derivatives are given

by arithmetic restricted positive intersection numbers, which gives an answer to a

question raised by Moriwaki and Chen.

Let Y be a prime Cartier divisor on X. A pair
(
D; E

)
is said to be Y-big if

there is a weakly ample (or w-ample for short) adelic R-Cartier divisor A on X
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(see Notation and terminology 8 for definition of w-ampleness) such that the pair(
D − A; E

)
is strictly effective and the support of D − A − E does not contain Y as

a component. In particular, the Y-bigness of
(
D; E

)
implies that ordY(E) > 0. The

main purpose of this paper is to establish the following:

Theorem A (see section 3.4). Let X be a normal projective variety over a number
field, let Y be a prime Cartier divisor on X, and let

(
D; E

)
be a Y-big pair on X. If

ordY(E) > 0, then the function r 7→ v̂ol
(
D; E + rY

)
is two-sided differentiable at

r = 0 and

lim
r→0

v̂ol
(
D; E

)
− v̂ol

(
D; E + rY

)

r
= (dim X + 1)

〈(
D; E

)· dim X
〉∣∣∣∣∣

Y
.

The right-hand side of Theorem A denotes the arithmetic restricted positive
intersection number of

(
D; E

)
along Y , which we define as follows: We refer to

a couple
(
π : X′ → X,M

)
consisting of a modification π : X′ → X and a nef and

π−1
∗ (Y)-big adelic R-Cartier divisor M on X′ such that

(
π∗D − M; E

)
is π−1

∗ (Y)-

pseudo-effective as a Y-approximation of
(
D; E

)
, and set

〈(
D; E

)· dim X
〉∣∣∣∣∣

Y
≔ sup(
π,M

)

{
d̂eg

((
M

∣∣∣
π−1
∗ (Y)

)· dim X
)}
,

where the supremum is taken over all Y-approximations
(
π,M

)
of

(
D; E

)
.

Under our definition of local positivity of pairs, the cone of Y-big pairs admits

the boundary defined as
{(

D; E
)

:
(
D; E

)
is Y-big and ordY(E) = 0

}
.

Hence continuity of the arithmetic restricted positive intersection numbers at the

boundary does not directly follows from their concavity property. We partially

solve this problem as follows (see Notation and terminology 2):

Theorem B (see section 2.6). Let X be a normal projective variety over a number
field, let Y be a prime Cartier divisor on X, and let A be a nef and Y-big R-Cartier
divisor on X. Let D ≔

(
D1, . . . ,Dm

)
be a family of adelic R-Cartier divisors on

X, and let E ≔ (E1, . . . , En) be a family of R-Cartier divisors on X such that
ordY(E j) = 0 for every j. Then

lim
t,u→0

r↓0

〈(
A + t ·D; rY + u ·E

)· dim X
〉∣∣∣∣∣

Y
=

〈
A
· dim X

〉∣∣∣∣∣
Y
.
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Immediate consequences of our theorems are Corollaries C and D below.

Corollary C. Let X be a normal projective variety over a number field, and let Y
be a prime Cartier divisor on X. If

(
D; rY

)
is Y-big, then

v̂ol
(
D; rY

)
=

〈(
D; rY

)· dim X
〉
· D − r

〈(
D; rY

)· dim X
〉∣∣∣∣∣

Y
.

Corollary D. Let X be a normal, projective variety over a number field, let Y be a
prime Cartier divisor on X, and let A be a nef and Y-big adelic R-Cartier divisor
on X.

(1) The function r 7→ v̂ol
(
A; rY

)
is one-sided differentiable at r = 0 and

lim
r↓0

v̂ol
(
A
)
− v̂ol

(
A; rY

)

r
= (dim X + 1)

〈
A
· dim X

〉∣∣∣∣∣
Y
.

(2) Let gggY be an adelic Y-Green function, and consider the pair
(
Y,gggY ; Y

)
. Then

lim
r↓0

v̂ol
(
A + rY; rY

)
− v̂ol

(
A
)

r
= (dim X + 1)

(〈
A
· dim X

〉
· Y −

〈
A
· dim X

〉∣∣∣∣∣
Y

)

= (dim X + 1)

∫

X
gggY

〈
A
· dim X

〉
.

In his paper [21], Yuan uses vertical flags

F>1 : Y = F1 ⊃ F2 ⊃ · · · ⊃ Fdim Y +1

on an arithmetic variety Y to construct convex bodies in Euclidean spaces whose

Euclidean volumes approximate the arithmetic volume of a Hermitian line bundle

on Y (see section 2.4). Later, Moriwaki [16] applies Yuan’s techniques to the study

of arithmetic restricted volumes of Hermitian line bundles. After that, Yuan [22]

further constructs an arithmetic Newton–Okounkov body whose Euclidean volume

exactly gives the arithmetic volume of a given Hermitian line bundle.

The strategy to prove Theorem A is then as follows: First, in section 2.4, we

apply Yuan’s techniques to the case of pairs and establish the arithmetic Fujita ap-

proximations for arithmetic restricted volumes of pairs, which ensures the identi-

ties between the arithmetic restricted volumes and the arithmetic restricted positive

intersection numbers (see Proposition 2.20). Next, after observing a basic result
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on concave functions in section 3.1, we use Moriwaki’s method [15] to give up-

per bounds for the derivatives of the arithmetic volume function in section 3.2. In

section 3.3, we consider flags

F• : X ⊃ Y = F1 ⊃ F2 ⊃ · · · ⊃ Fdim X

on X and construct the approximate arithmetic Newton–Okounkov bodies for w-

ample adelic Cartier divisors. Lastly, by using these convex bodies, we will show

lower bounds for the derivatives of the arithmetic volume function (see section 3.4).

Notation and terminology

1. The floor (respectively, ceiling) function is defined as

⌊α⌋ ≔ max{n ∈ Z : n 6 α}

(respectively, ⌈α⌉ ≔ min{n ∈ Z : n > α} )

for α ∈ R. For any r ≔ (r1, . . . , rl) ∈ R
l, we set

|r| ≔ (|r1|, . . . , |rl|) and ‖r‖ ≔

l∑

i=1

|ri|.

2. Let R be a ring, and let M be an R-module. The R-submodule of M generated

by a subset Γ ⊂ M is denoted by 〈Γ〉R. Let l ∈ Z>1, let r ≔ (r1, . . . , rl) ∈ Rl

and let m ≔ (m1, . . . ,ml) ∈ Ml. We use the dot-product notation as

r ·m ≔

l∑

i=1

rimi.

3. Let X be a reduced, irreducible, and Noetherian scheme of finite Krull di-

mension. We denote the field of rational functions on X by Rat(X). A flag
on X is a sequence of reduced, irreducible, and closed subschemes of X,

F• : X = F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ Fdim X,

such that each Fi has codimension i in X, such that Fdim X consists of a closed

point ξ of X, and such that each Fi+1 is locally principal in Fi around ξ.

We define the valuation map wF• : Rat(X)× → Zdim X attached to a flag F•
as follows (see [14, section 1.1]): For each i = 1, . . . , dim X, we choose a
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local equation fi defining Fi in Fi−1 around ξ. Given a φ ∈ Rat(X)×, we set

φ1 ≔ φ, and set

φi+1 ≔

(
f
− ordFi (φi)

i · φi

)∣∣∣∣∣
Fi

for i = 1, . . . , dim X − 1, inductively. Then

wF•(φ) = (w1(φ), . . . ,wdim X(φ)) ≔
(
ordF1

(φ1), . . . , ordFdim X (φdim X)
)
,

which does not depend on a specific choice of f1, . . . , fdim X.

4. Assume that X is a normal. Let K denote either Z, Q or R. The K-module

of all K-Cartier divisors on X is denoted by CDivK(X). Given any D ∈
CDivK(X), we set

H0(D) ≔
{
φ ∈ Rat(X)× : D + (φ) > 0

}
∪ {0}. (1.1)

5. Let K denote a number field, let Mf
K denote the set of finite places of K, and

let MK ≔ Mf
K ∪ {∞}. For each v ∈ Mf

K, Kv denotes the v-adic completion of

K. Let X be a normal, projective, and geometrically connected K-variety, let

Xan
v denote the Berkovich analytic space associated to X ×Spec(K) Spec(Kv)

for v ∈ Mf
K, and let Xan

∞ denote the complex analytic space associated to

X ×Spec(Q) Spec(C). Let D be an R-Cartier divisor on X. The support of D is

defined as

Supp(D) ≔
⋃

ordZ (D),0

Z,

where the union is taken over all codimension-one subvarieties Z of X such

that ordZ(D) , 0 (see [11, Notation and terminology 2]).

For each v ∈ MK, a D-Green function on Xan
v is a function gv : (X\Supp(D))an

v →

R such that, for each x0 ∈ Xan
v , the function

gv(x) + log (| f |(x))

extends to a continuous function defined around x0, where f denotes a local

equation defining D around x0.

Let (X ,D) be a normal and projective OK-model of (X,D). For each v ∈
Mf

K, X̃v denotes the fiber over v and rv : Xan
v → X̃v denotes the reduction

map over v. The D-Green function associated to (X ,D) is defined as

g(X ,D)
v (x) = − log (| f |(x)) , (1.2)

where f is a local equation defining D around rv(x).
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6. Let D be an R-Cartier divisor on X. An adelic D-Green function ggg is a formal

sum

ggg ≔
∑

v∈MK

gv[v]

having the following properties:

(a) For each v ∈ MK , gv is a D-Green function on Xan
v and gan

∞ is invariant

under the complex conjugation.

(b) There exists a normal and projective OK-model (X ,D) of (X,D) such

that gv = g(X ,D)
v for all but finitely many v.

The OK-model (X ,D) appearing in the property (b) above is called a model
of definition for ggg. Let K be either R, Q, or Z. We refer to a couple of a

K-Cartier divisor D on X and an adelic D-Green function gggD as an adelic
K-Cartier divisor D on X. The K-module of all adelic K-Cartier divisors on

X is denoted by ĈDivK(X).

Given a nonzero rational function φ,

(̂φ) ≔

div(φ),
∑

v∈MK

− log (|φ|) [v]

 (1.3)

is an adelic Cartier divisor on X.

Let D be an adelic R-Cartier divisor on X, and let ϕ be a continuous function

on Xan
∞ that is invariant under the complex conjugation. Then we denote

D(ϕ) ≔ D + (0, ϕ[∞]). (1.4)

Let K and K′ denote either R, Q, or Z. The module of all pairs of adelic K-

Cartier divisors on X andK′-Cartier divisors on X is denoted by ĈDivK,K′(X).

Let X be a normal and projective OK-model of X, and let
(
D ; E

)
be a couple

of an arithmetic R-Cartier divisor D =

(
D , gD

)
on X and a horizontal R-

Cartier divisor E on X . We define the adelization of
(
D ; E

)
as

(
D ; E

)ad
≔

D |X,
∑

v∈Mf
K

g(X ,D)
v [v] + gD [∞]; E |X

 . (1.5)

7. A pair
(
D; E

)
∈ ĈDivR,R(X) is said to be effective if D > max{0, E} and gD

v >

0 on Xan
v for every v ∈ MK. We say that

(
D; E

)
is strictly effective if

(
D; E

)

7



is effective and infx∈Xan
∞

{
gD
∞(x)

}
> 0. We denote

(
D; E

)
> 0 (respectively,(

D; E
)
> 0) if

(
D; E

)
is effective (respectively, strictly effective). We set

Γ̂ss
(
D; E

)
≔

{
φ ∈ Rat(X)× :

(
D + (̂φ); E

)
> 0

}
∪ {0}, (1.6)

Γ̂s
(
D; E

)
≔

{
φ ∈ Rat(X)× :

(
D + (̂φ); E

)
> 0

}
∪ {0}, (1.7)

and define

v̂ol
(
D; E

)
≔ lim sup

m∈Z>1,
m→∞

log
(
#̂Γss

(
mD; mE

))

mdim X+1/(dim X + 1)!
. (1.8)

8. The height of an algebraic point x ∈ X(K) with respect to D is defined as

hD(x) ≔
1

[κ(x) : K]


∑

w∈Mf
κ(x)

gw|K (xw) +
∑

σ : κ(x)→C

g∞(xσ)

 ,

where κ(x) denotes the field of definition for x, xw denotes the point on Xan
v

corresponding to (κ(x),w), and xσ denotes the point on Xan
∞ defined by an

embedding σ : κ(x)→ C.

(nef) We say that A ∈ ĈDivR(X) is nef if A is nef, gA
v is semipositive for

every v ∈ MK (see [18, section 4.4]), and

inf
x∈X(K)

{
hA(x)

}
> 0.

(integrable) We say that A ∈ ĈDivR(X) is integrable if A can be written as

a difference of two nef adelic R-Cartier divisors. We denote by ÎntR(X)

the R-vector space of all integrable adelic R-Cartier divisors on X.

(ample) We say that A ∈ ĈDivR(X) is ample, if A is nef and

inf
x∈X(K)

{
hA(x)

}
> 0.

(w-ample) We say that A ∈ ĈDivR(X) is weakly ample or w-ample for

short if A is a positive R-linear combination
∑l

i=1 aiAi of adelic Cartier

divisors Ai such that each Ai is ample and H0(mAi) is generated by

Γ̂ss
(
mAi

)
for every m ≫ 1 (see [10]).

(big) We say that
(
D; E

)
∈ ĈDivR,R(X) is big if v̂ol

(
D; E

)
> 0.

8



(pseudo-effective) We say that
(
D; E

)
∈ ĈDivR,R(X) is pseudo-effective if

v̂ol
(
D + B; E

)
> 0 for every big B ∈ ĈDivR(X).

9. There exists a unique multilinear map

d̂eg : ÎntR(X)× dim X × ĈDivR(X)→ R,
(
D1, . . . ,Ddim X+1

)
7→ d̂eg

(
D1 · · ·Ddim X+1

)

extending the arithmetic intersection numbers of Hermitian line bundles and

having the following properties (see [18]):

(a) The restriction d̂eg : ÎntR(X)×(dim X+1) → R is symmetric.

(b) If D1, . . . ,Ddim X are nef and Ddim X+1 is pseudo-effective, then

d̂eg
(
D1 · · ·Ddim X+1

)
> 0.

10. Let Y be a closed subvariety of X.

(Y-effective) We say that
(
D; E

)
∈ ĈDivR,R(X) is Y-effective if

(
D; E

)
> 0

and Y 1 Supp(D − E). We say that
(
D; E

)
is strictly Y-effective if(

D; E
)

is strictly effective and Y-effective. We denote
(
D; E

)
>Y 0

(respectively,
(
D; E

)
>Y 0) if

(
D; E

)
is Y-effective (respectively, strictly

Y-effective).

(Y-big) We say that
(
D; E

)
∈ ĈDivR,R(X) is Y-big if there exists a w-ample

adelic R-Cartier divisor A such that
(
D − A; E

)
>Y 0.

(Y-pseudo-effective) We say that
(
D; E

)
∈ ĈDivR,R(X) is Y-pseudo-effective

if
(
D + B; E

)
is Y-big for every Y-big B ∈ ĈDivR(X). We denote(

D; E
)
�Y 0 if

(
D; E

)
is Y-pseudo-effective.

2 Arithmetic restricted volumes

2.1 Adelically normed vector spaces

Let K denote a number field. An adelically normed K-vector space

V ≔
(
V, (‖ · ‖Vv )v∈MK

)

is a couple of a finite-dimensional K-vector space V and a family of norms (‖ ·

‖Vv )v∈MK having the following properties:

9



(a) For every v ∈ Mf
K, ‖ · ‖Vv is a non-Archimedean norm on V ⊗K Kv.

(b) ‖ · ‖V∞ is an Archimedean norm on V ⊗Q C.

(c) For each a ∈ V , ‖a‖Vv 6 1 for all but finitely many v ∈ Mf
K .

(d) Both of

Γ̂s
(
V
)
≔

{
a ∈ V : ‖a‖Vv 6 1 for all v ∈ MK

}
(2.1)

and

Γ̂ss
(
V
)
≔

{
a ∈ Γ̂s(V) : ‖a‖V∞ < 1

}
(2.2)

are finite sets.

Given an adelically normed K-vector space V and a real number λ ∈ R, we set

‖ · ‖
V(λ)
v ≔


‖ · ‖Vv if v ∈ Mf

K,

exp(−λ)‖ · ‖Vv if v = ∞,

and set V(λ) ≔

(
V, (‖ · ‖V(λ)

v )

)
.

Remark 2.1. Yuan [21, Lemma 2.9] has proved the following estimate (see also

[16, Lemma 1.2.2]): Let ∗ = ss or s. For any λ ∈ R>0, one has

0 6 log
(
#̂Γ∗

(
V(λ)

))
− log

(
#̂Γ∗

(
V
))
6 (λ + log(3)) rk V.

Remark 2.2. Let ∗ = ss or s. Let V be an adelically normed K-vector space and let

0→ V ′ → V
r
−→ V ′′ → 0

be an exact sequence of K-vector spaces. We endow V ′ with the subspace norms

induced from V .

(1) One has

log
(
#̂Γ∗

(
V
))
6 log

(
#̂Γ∗

(
V
′
(log(2))

))
+ log

(
#r

(̂
Γ∗

(
V
)))

and

log
(
#̂Γ∗

(
V(log(2))

))
> log

(
#̂Γ∗

(
V
′))
+ log

(
#r

(̂
Γ∗

(
V
)))

(see [21, Proposition 2.8] or [16, Lemma 1.2.2]).

(2) Combining Remark 2.1 and the assertion (1) above, one has

− log(6) rk V 6 log
(
#̂Γ∗

(
V
))
− log

(
#̂Γ∗

(
V
′))
− log

(
#r

(̂
Γ∗

(
V
)))

6 log(6) rk V ′.
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We generalize Remark 2.2 (1) in two ways: Lemmas 2.3 and 2.4 below, which

play key roles in proving Theorem A (see sections 3.3 and 3.2, respectively).

Lemma 2.3. Let l ∈ Z>1, and let ∗ be either ss or s. Let V be an adelically normed
K-vector space, and let

V = V1 ⊃ V2 ⊃ · · · ⊃ Vl+1 = {0}

be a filtration of V. We endow each Vn with the subspace norm induced from V,
and denote the natural projection by rn : Vn → Vn/Vn+1 for each n. We then have

log
(
#̂Γ∗

(
V(log(l))

))
>

l∑

n=1

log
(
#rn

(̂
Γ∗

(
Vn

)))
.

Proof. Let ∗ denote ss (respectively, s). For each n, we fix a section σn : rn

(̂
Γ∗

(
Vn

))
→

Γ̂∗
(
Vn

)
of the surjection rn : Γ̂∗

(
Vn

)
→ rn

(̂
Γ∗

(
Vn

))
. The required inequality fol-

lows from injectivity of the map

l∏

n=1

rn

(̂
Γ∗

(
Vn

))
→ Γ̂∗

(
V(log(l))

)
,

(
a′1, . . . , a

′
l

)
7→

l∑

n=1

σn
(
a′n

)
. (2.3)

Indeed, we have ∥∥∥∥∥∥∥

l∑

n=1

σn
(
a′n

)
∥∥∥∥∥∥∥

V

∞

< l (respectively, 6 l)

for any
(
a′

1
, . . . , a′l

)
∈

∏l
n=1 rn

(̂
Γ∗(Vn)

)
, which assures the existence of the map

(2.3). If we assume
l∑

n=1

σn(rn(a1n)) =

l∑

n=1

σn(rn(a2n))

for (a11, . . . , a1l), (a21, . . . , a2l) ∈
∏l

n=1 Γ̂
∗(Vn), then we have inductively

r1(a11) − r1(a21) = r1


l∑

n=1

σn(rn(a1n)) −

l∑

n=1

σn(rn(a2n))

 = 0,

r2(a12) − r2(a22) = r2


l∑

n=2

σn(rn(a1n)) −

l∑

n=2

σn(rn(a2n))

 = 0,

...

rl(a1l) − rl(a2l) = rl (σl(rl(a1l)) − σl(rl(a2l))) = 0.

�
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Lemma 2.4. Let ∗ either ss or s. Let V be an adelically normed K-vector space,
and let

0 // W̃ // Ṽ // V ′ // 0

0 // W //

r|W

OO

V r′
//

r

OO

V ′ // 0

be a commutative diagram of K-vector spaces where the upper and the lower se-
quences are respectively exact. We endow W with the subspace norm induced from
V. We then have

log
(
#r

(̂
Γ∗

(
V
)))
6 log

(
#r

(̂
Γ∗

(
W(log(2))

)))
+ log

(
#r′

(̂
Γ∗

(
V
)))

and
log

(
#r

(̂
Γ∗

(
V(log(2))

)))
> log

(
#r

(̂
Γ∗

(
W

)))
+ log

(
#r′

(̂
Γ∗

(
V
)))
.

Proof. Let ∗ denote ss (respectively, s), and fix a section σ : r′
(̂
Γ∗

(
V
))
→ Γ̂∗

(
V
)

of the surjection r′ : Γ̂∗
(
V
)
→ r′

(̂
Γ∗

(
V
))

.

The first inequality follows from the fact that the image of the map

r
(̂
Γ∗

(
W(log(2))

))
× r′

(̂
Γ∗

(
V
))
→ Ṽ ,

(
b′, a′

)
7→ b′ + r

(
σ

(
a′

))
, (2.4)

contains r
(̂
Γ∗

(
V
))

. Indeed, given any r(a) ∈ r
(̂
Γ∗

(
V
))

with a ∈ Γ̂∗
(
V
)
, we have

a−σ(r′(a)) ∈ W and ‖a−σ(r′(a))‖V∞ < 2 (respectively, 6 2). Hence, a−σ(r′(a)) ∈

Γ̂∗
(
W(log(2))

)
and

r(a) = r(a − σ(r′(a))) + r(σ(r′(a))).

Similarly, the second follows from the fact that the map

r
(̂
Γ∗

(
W

))
× r′

(̂
Γ∗

(
V
))
→ r

(̂
Γ∗

(
V(log(2))

))
,

(
b′, a′

)
7→ b′ + r

(
σ

(
a′

))
, (2.5)

is injective. Indeed, given any b ∈ Γ̂∗
(
W

)
and a′ ∈ r′

(̂
Γ∗

(
V
))

, we have ‖b +

σ(a′)‖V∞ < 2 (respectively, 6 2), which assures the existence of the above map. If

r(b1) + r(σ(r′(a1))) = r(b2) + r(σ(r′(a2))) for b1, b2 ∈ Γ̂
∗
(
W

)
and a1, a2 ∈ Γ̂

∗
(
V
)
,

then

r′(a1) − r′(a2) = r′(b1) − r′(b2) = 0

and r(b1) = r(b2). �
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2.2 Estimation of Green functions

In this subsection, M denotes a equidimensional complex projective manifold. Let

A =
(
A, gA

)
be a C∞-metrized R-Cartier divisor on M: namely a couple of an

R-Cartier divisor A on M and an A-Green function gA on M. Assume that A is

ample, and that the curvature form c1

(
A
)

is positive pointwise on M. Moreover,

let D be a C∞-metrized R-Cartier divisor on M, and let E ≔
(
E1, . . . , El

)
be a

family of C∞-metrized R-Cartier divisors on M such that E1, . . . , El are effective.

We denote E ≔ (E1, . . . , El), and use the dot-product notation as in Notation and

terminology 2.

We choose an a0 ∈ R>0 such that

A + tD −
l∑

i=1

riEi

is ample with pointwise positive curvature form for every t ∈ R and r ≔ (r1, . . . , rl) ∈

Rl with |t| + ‖r‖ 6 a0. By [17, Theorem 4.6] (see also [3, Theorem 3.4] or [2,

Theorem 1.4]), given any t ∈ R and r ∈ (R>0)l with |t| + ‖r‖ 6 a0, the set of

(A + tD − r ·E)-Green functions,

GPSH∩C0 (A + tD − r ·E)
6gA+tD

≔

{
g 6 gA+tD : g is an (A + tD − r ·E)-Green function of (PSH ∩C0)-type

}
,

admits a unique maximal element gA+tD−r·E
(env)

(see [17, section 4] for the nota-

tion). The following lemma plays an essential role in the proof of Theorem B (see

sections 2.6 and 3.4).

Lemma 2.5. For any ε ∈ R with 0 < ε 6 1, there exists a λε ∈ R>0 such that, for
any t ∈ R and r ∈ (R>0)l with |t| + ‖r‖ 6 a0, one has

gA+tD−r·E
6 gA+tD−r·E

(env)

6 gA+tD−r·E + (ε + λε‖r‖) .

Proof. As gA+tD−r·E is an (A + tD − r · E)-Green function of (PSH ∩ C∞)-type,

one has

gA+tD−r·E
6 gA+tD−r·E

(env)

for any t ∈ R and r ∈ (R>0)l with |t| + ‖r‖ 6 a0.

For each x ∈ M, we can choose an open neighborhood Ux of x on which gA

(respectively, gD, gEi) can be written as

gA = uA,x − log(| fA|)

13



(respectively, gD = uD,x − log(| fD|), gEi = uEi ,x − log(| fEi |) ),

where fA (respectively, fD, fEi ) denotes a local equation defining A (respectively,

D, Ei) on Ux and uA,x (respectively, uD,x, uEi ,x) denotes a smooth plurisubharmonic

function on Ux. By shrinking Ux if it is necessary, we may assume that

|uA,x − uA,x(x)| 6
ε

4

(respectively, |uD,x − uD,x(x)| 6
ε

4a0

, |uEi ,x − uEi ,x(x)| 6 1 ),

holds on Ux.

Let g ∈ GPSH∩C0 (A + tD − r ·E)
6gA+tD , and write

g = vx − log(| fA|) − t log(| fD|) +

l∑

i=1

ri log(| fEi |)

on Ux, where vx denotes a continuous plurisubharmonic function on Ux. Then, the

condition g 6 gA+tD is equivalent to

vx 6 uA,x + tuD,x −

l∑

i=1

ri log(| fEi |).

Hence, by [17, Lemma 4.1], we can find an open neighborhood Vx ⊂ Ux of x and

a constant λx ∈ R>0, which depend only on E1, . . . , El and Ux, such that

vx 6

(
uA,x(x) + tuD,x(x) +

ε

2

)
+ λx‖r‖ 6 uA,x + tuD,x + (ε + λx‖r‖),

thus,

g 6 gA+tD−r·E + ε +

l∑

i=1

ri(λx + uEi ,x(x) + 1)

holds on Vx for every g ∈ GPSH∩C0 (A + tD − r ·E)
6gA+tD .

Since M is compact, we can find a finite number of points x1, . . . , xn ∈ M such

that (Vxi )i covers M. Set

λε ≔ max
i, j

{
λx j + uEi ,x j (x j) + 1

}
.

Then, we have

gA+tD−r·E
(env)

6 gA+tD−r·E + (ε + λε‖r‖)

as desired. �
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2.3 Arithmetic restricted volumes

Let X be a normal, projective, and geometrically connected K-variety, and let(
D; E

)
∈ ĈDivR,R(X). For each v ∈ MK and φ ∈ H0(D − E) ⊗K Kv, the D-Green

function gD
v defines a metric as

|φ|Dv (x) ≔ |φ|(x) exp

(
−gD

v (x)

)
= exp

(
−gD+(̂φ)

v (x)

)
(2.6)

for x ∈ Xan
v , and the supremum norm ‖ · ‖Dv,sup on H0(D − E) ⊗K Kv as

‖φ‖Dv,sup ≔ sup
x∈Xan

v

{
|φ|Dv (x)

}
(2.7)

(see Notation and terminology 5). We set

Γ̂f
(
D; E

)
≔

{
φ ∈ H0(D − E) : ‖φ‖Dv,sup 6 1, ∀v ∈ Mf

K

}
, (2.8)

Γ̂s
(
D; E

)
≔

{
φ ∈ Γ̂f

(
D; E

)
: ‖φ‖D∞,sup 6 1

}
, (2.9)

and

Γ̂ss
(
D; E

)
≔

{
φ ∈ Γ̂f

(
D; E

)
: ‖φ‖D∞,sup < 1

}
(2.10)

(see Notation and terminology 7).

Let Y be a closed subscheme of X, and assume that
(
D; E

)
∈ ĈDivZ,R(X) and

E > 0. We set

H0
X|Y(D) ≔ Image

(
H0(D)→ H0 (OX(D)|Y )

)
(2.11)

and

Γ̂∗X|Y

(
D; E

)
≔ Image

(̂
Γ∗

(
D; E

)
→ H0 (OX (D − ⌈E⌉)|Y )

)
(2.12)

for ∗ = f, s, and ss. Here ⌈E⌉ denotes the round-up Weil divisor of E. In the rest of

this paper, we only treat the case where ⌈E⌉ is also a Cartier divisor. We set

ℓ̂∗X|Y

(
D; E

)
≔ log

(
#̂Γ∗X|Y

(
D; E

))
(2.13)

for ∗ = s and ss.

Definition 2.6. Let ∗ be either ss or s, and let
(
D; E

)
∈ ĈDivZ,Z(X) with E > 0.

(1) We define the CL-hull of the finite set Γ̂∗X|Y

(
D; E

)
as the intersection

Γ̂∗CL(X|Y)

(
D; E

)
≔

〈̂
Γ∗X|Y

(
D; E

)〉
Z
∩ ConvR

(̂
Γ∗X|Y

(
D; E

))
, (2.14)
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where
〈̂
Γ∗X|Y

(
D; E

)〉
Z

denotes the Z-submodule generated by Γ̂∗X|Y

(
D; E

)
and

ConvR
(̂
Γ∗X|Y

(
D; E

))
denotes the convex hull of Γ̂∗X|Y

(
D; E

)
in the R-vector

space generated by Γ̂∗X|Y

(
D; E

)
. We set

ℓ̂∗CL(X|Y)

(
D; E

)
≔ log

(
#̂Γ∗CL(X|Y)

(
D; E

))
, (2.15)

and define the arithmetic restricted volume of (D; E) along Y as

v̂olX|Y(D; E) ≔ lim sup
m∈Z>1,
m→∞

ℓ̂ss
CL(X|Y)

(
mD; mE

)

mdim Y+1/(dim Y + 1)!
. (2.16)

(2) We endow H0
X|Y(D−E)⊗QR with the quotient norm ‖ · ‖D

∞,sup,quot(X|Y)
induced

from
(
H0(D − E), ‖ · ‖D∞,sup

)
, and set

Γ̂ss
quot(X|Y)

(
D; E

)
≔

{
φ ∈ Γ̂f

X|Y

(
D; E

)
: ‖φ‖D

∞,sup,quot(X|Y) < 1

}
.

We set

ℓ̂ss
quot(X|Y)

(
D; E

)
≔ log

(
#̂Γss

quot(X|Y)

(
D; E

))
,

and define

v̂olquot(X|Y)

(
D; E

)
≔ lim sup

m∈Z>1,
m→∞

ℓ̂ss
quot(X|Y)

(
mD; mE

)

mdim Y+1/(dim Y + 1)!
. (2.17)

Remark 2.7. Note that the arithmetic restricted volumes defined in Definition 2.6

have the same basic properties as described in [10, section 7]. In particular, for(
D; E

)
,
(
D
′
; E′

)
∈ ĈDivZ,Z(X) with min{E, E′} > 0, if s ∈ Γ̂∗CL(X|Y)

(
D; E

)
and

s′ ∈ Γ̂s
X|Y

(
D
′
; E′

)
, then s · s′ ∈ Γ̂∗CL(X|Y)

(
D + D

′
; E + E′

)
.

Lemma 2.8. Let A be a w-ample adelic Cartier divisor on X, and let E ≔ (E1, . . . , El)

be a family of effective Cartier divisors on X. There then exist an ε0 ∈ R>0, an
r0 ∈ Q with 0 < r0 6 1, and a p0 ∈ Z>1 such that

H0(pA − q · EEE) =
〈̂
Γss

(
p
(
A(−ε0)

)
;q ·E

)〉
Q

for every (p, q) ∈ (Z>0)l+1 with p > p0 and ‖q‖ 6 r0 p.
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Proof. We take any ε0 ∈ R>0 such that A
′
≔ A(−ε0) is also w-ample, and choose

an a0 ∈ Z>1 such that a0A − Ei is ample for every i. We set

V ≔ OX(A) ⊕

l⊕

i=1

OX (a0A − Ei) ,

and consider the projective bundle

X̃ ≔ P(V) = ProjOX

(
Sym(V)

)
.

By [13, Lemma 2.3.2], the tautological sheaf OX̃(1) is also ample. Hence we can

choose an m0 ∈ Z>1 such that the section algebra

∞⊕

m=0

H0
(
OX̃(m)

)

is generated by sections in

H0
(
OX̃(m)

)
=

⊕

q0+‖q‖=m

H0 ((q0 + a0‖q‖) A − q · EEE)

with m 6 m0. We can choose a sufficiently large integer multiple b0 of m0 such that

H0(pA − q · EEE) =
〈̂
Γss

(
pA;q · EEE

)〉
Q

for every p > b0 and every q ∈ (Z>0)l with ‖q‖ 6 m0. Thus, if we take p0 > b0 and

r0 6 1/(a0m0 + 2b0), then we obtain the desired assertion. �

Proposition 2.9. Let Y be a prime Cartier divisor on X, let A be a w-ample adelic
Cartier divisor on X, and let E ≔ (E1, . . . , El) be a family of effective Cartier
divisors on X such that ordY(E j) = 0 for every j. There then exists a ρ0 ∈ Q>0 such
that, given any ε ∈ R>0, one can find a p0(ε) ∈ Z>1, which depends on A, D, E,
and ε, such that

Γ̂ss
quot(X|Y)

(
pA; rY + q ·E

)
⊂ Γ̂ss

X|Y

(
p
(
A(ε)

)
; rY + q ·E

)

and
Γ̂ss

quot(X|Y)

(
p
(
A(−ε)

)
; rY + q ·E

)
⊂ Γ̂ss

X|Y

(
pA; rY + q ·E

)

for every (p, q, r) ∈ (Z>0)l+2 with p > p0(ε) and r + ‖q‖ 6 ρ0 p.
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Proof. By Lemma 2.8, there exist an ε0 ∈ R>0, a ρ′
0
∈ Q>0, and a p′

0
∈ Z>1 such

that

H0 (pA − rY − q ·E) =
〈̂
Γss

(
p
(
A(−ε0)

)
; rY + q ·E

)〉
Q

for every (p, q, r) ∈ (Z>0)l+2 with p > p′
0

and r + ‖q‖ 6 ρ′
0
p. We set ρ0 ≔ ρ

′
0
/2,

and choose a sufficiently large p0(ε) > max{p′
0
, 1/ρ0} such that

I(A)pdim Xe−pε0/2 6 1, (2.18)

1 + I(A)pdim Xe−pε0/2 6 epε, (2.19)

and

e−pε + I(A)pdim Xe−pε0/2 6 1 (2.20)

for every p > p0(ε).

As

Γ̂f
(
pA; (r + 1)Y + q ·E

)
= Γ̂f

(
pA; rY + q ·E

)
∩ H0(pA − (r + 1)Y − q ·E)

under the natural inclusion H0(pA − (r + 1)Y − q ·E) ⊂ H0(pA − rY − q ·E), we

obtain the exact sequence

0→ Γ̂f
(
pA; (r + 1)Y + q ·E

)
→ Γ̂f

(
pA; rY + q ·E

) π
−→ Γ̂f

X|Y

(
pA; rY + q ·E

)
→ 0

of Z-modules. Let ep,q,r
1

, . . . , ep,q,r
M ∈ Γ̂ss

(
p
(
A(−ε0/2)

)
; (r + 1)Y + q ·E

)
be a

Z-basis for Γ̂f
(
pA; (r + 1)Y + q ·E

)
as in [23, Lemma 1.7] (see also (2.18)), and

take Z-linearly independent sections f p,q,r
1

, . . . , f p,q,r
N ∈ Γ̂f

(
pA; rY + q ·E

)
such

that π( f p,q,r
1

), . . . , π( f p,q,r
N ) are all nonzero and generate Γ̂f

X|Y

(
pA; rY + q ·E

)
.

Each section in Γ̂ss
quot(X|Y)

(
pA; rY + q ·E

)
is an image via π of a section s ∈

H0(pA − rY − q ·E) ⊗Q R that can be written in the form

s =
M∑

i=1

αie
p,q,r
i +

N∑

j=1

β j f p,q,r
j

(αi ∈ R, β j ∈ Z) and that satisfies ‖s‖pA
∞,sup < 1. As

∥∥∥∥∥∥∥∥

M∑

i=1

⌊αi⌋e
p,q,r
i +

N∑

j=1

β j f p,q,r
j

∥∥∥∥∥∥∥∥

pA

∞,sup

< 1 + I(A)pdim Xe−pε0/2 6 epε

by (2.19), we have Γ̂ss
quot(X|Y)

(
pA; rY + q ·E

)
⊂ Γ̂ss

X|Y

(
p
(
A(ε)

)
; rY + q ·E

)
.
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Similarly, each section in Γ̂ss
quot(X|Y)

(
p
(
A(−ε)

)
; rY + q ·E

)
is an image via π of

a section s′ ∈ H0(pA − rY − q ·E) ⊗Q R that can be written in the form

s′ =
M∑

i=1

αie
p,q,r
i +

N∑

j=1

β j f p,q,r
j

(αi ∈ R, β j ∈ Z) and that satisfies ‖s′‖pA
∞,sup < e−pε. As

∥∥∥∥∥∥∥∥

M∑

i=1

⌊αi⌋e
p,q,r
i +

N∑

j=1

β j f p,q,r
j

∥∥∥∥∥∥∥∥

pA

∞,sup

< e−pε + I(A)pdim Xe−pε0/2 6 1

by (2.20), we have Γ̂ss
quot(X|Y)

(
p
(
A(−ε)

)
; rY + q ·E

)
⊂ Γ̂ss

X|Y

(
pA; rY + q ·E

)
as

desired. �

Lemma 2.10. Let X be a normal, projective, and arithmetic variety, let Y be a

reduced closed subscheme of X , and let D ≔

(
D , gD

)
be an arithmetic Cartier

divisor on X , and let E = (E1, . . . ,El) be a family of effective Cartier divisors on

X . There then exist another D-Green function gD
′

and an Ei-Green function gE
′

i

on X an
∞ for each i such that

Image
(̂
Γs

(
pD ;q ·EEE

)
→ H0

(
OX

(
pD − q · EEE

)∣∣∣
Y

))
⊂ Γ̂s

(
OX

(
pD
′
− q · EEE

′
)∣∣∣∣∣

Y

)

for every (p, q) ∈ (Z>0)l+1, where D
′
≔

(
D , gD

′
)

and EEE
′
≔

((
E1, gE

′

1

)
, . . . ,

(
El, gE

′

l

))
.

Proof. Given any continuous and nonnegative function f on X an
∞ that is invariant

under the complex conjugation, we have

Γ̂s
(
pD ;q · EEE

)
⊂ Γ̂s

(
p
(
D( f )

)
;q · EEE

)

for any (p, q) ∈ (Z>0)l+1 (see Notation and terminology 6). Hence, we can assume

that D is of C∞-type. Let 1Ei denote the canonical section of OX (Ei). We endow

each Ei with any Ei-Green function gEi of C∞-type, and consider the family EEE ≔(
E1, . . . ,El

)
of arithmetic Cartier divisors of C∞-type. We choose a suitable real

number α such that 0 < α < 1 and such that the open subset

U ≔
{
x ∈X

an
∞ :

∣∣∣1Ei

∣∣∣Ei

∞
(x) > α for every i

}
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is nonempty. By [15, Lemma 1.1.4], there exists a constant C > 1, depending only

on D , EEE , U, and X , such that

C−(p+‖q‖)‖φ‖
pD−q·EEE
∞,sup 6 sup

x∈U

{
|φ|

pD−q·EEE
∞ (x)

}

holds for any φ ∈ H0 (
pD − q ·EEE

)
⊗Z R. Hence

∥∥∥∥φ · 1q1

E1
· · · 1

ql

El

∥∥∥∥
pD

∞,sup
> sup

x∈U

{∣∣∣∣φ · 1q1

E1
· · · 1

ql

El

∣∣∣∣
pD

∞
(x)

}

> α‖q‖ · sup
x∈U

{
|φ|

pE −q·EEE
∞ (x)

}

>

(
α−1C

)−(p+‖q‖)
· ‖φ‖

pD−q·EEE
∞,sup (2.21)

for any φ ∈ H0 (
pD − q · EEE

)
⊗Z R. If we set gD

′

≔ gD + log
(
α−1C

)
and gEi

′

≔

gEi − log
(
α−1C

)
for each i, then

Γ̂s
(
pD ;q · EEE

)
⊂ Γ̂s

(
pD
′
− q · EEE

′
)
.

�

2.4 Yuan’s estimates

Given X, Y as in the previous subsection, and given a pair
(
D, E

)
∈ ĈDivZ,Z(X),

we choose a model X (respectively, Y ) of X (respectively, Y) and an arithmetic

Cartier divisor M on X in the following way:

By [18, Theorem 4.1.3], we can find a normal and projective OK-model X

of X and a pair
(
D ; E

)
consisting of an arithmetic Cartier divisor D on X and a

horizontal Cartier divisor E on X such that

(
D; E

)
6Y

(
D ; E

)ad

(see Notation and terminology 6). Let Y be the Zariski closure of Y in X . By

Lemma 2.10, there exists an arithmetic Cartier divisor M on X such that

Γ̂f
X|Y

(
mD; mE

)
⊂ H0 (OX (mM )|Y ) (2.22)

and

Γ̂ss
X|Y

(
mD; mE

)
⊂ Γ̂s

(
OX

(
mM

)∣∣∣∣
Y

)
(2.23)

for any m ∈ Z>0. In the rest of this subsection, we fix any triplet
(
X ,Y ,M

)

satisfying the above conditions.
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Remark 2.11. In the terminology of [16], Γ̂ss
X|Y

(
mD; mE

)
is an arithmetic linear

series of OX

(
mM

)∣∣∣∣
Y

.

Definition 2.12. Let Z be a projective arithmetic variety. A good flag on Z over
a prime number p is a flag

F>1 : Z = F1 ⊃ F2 ⊃ · · · ⊃ Fdim Y +1

on Z (see Notation and terminology 3) such that the condition (∗) below is satis-

fied.

(∗) Let π : Z → Spec(R) denote a Stein factorization of the structure morphism

of Z . There exists a prime ideal p of R having the following properties:

(a) Rp is a discrete valuation ring.

(b) p ∩ Z = pZ and Fp → R/pR is isomorphic.

(c) F2 = π
−1(p).

(d) The closed point Fdim Y +1 is regular and Fp-rational.

Moreover, we introduce the following constants, which will be used throughout

this paper.

Definition 2.13. (1) Given an R-Cartier divisor N on X, we set

I(N) ≔ sup
m∈Z>1

{
rkK H0(mN)

mdim X

}
. (2.24)

(2) Given any adelic R-Cartier divisor N on X, we set

δ
(
N
)
≔ inf

A



d̂eg

(
N · A

· dim X
)

vol(A)


, (2.25)

where the infimum is taken over all nef adelic R-Cartier divisors A on X such

that vol(A) is positive.

(3) Given an adelic R-Cartier divisor N on X, a prime number p, and an m ∈ Z>0,

we set

C
(
N, X, p,m

)
≔ [K : Q]I(N)

×

log(4)δ
(
N
)
+

log(4p) log
(
4pI(N)mdim X

)

m

 . (2.26)

21



(4) Given an adelic R-Cartier divisor N on X, we set

C′
(
N, X

)
≔ [K : Q]I(N)δ

(
N
)

log(4). (2.27)

A result of Yuan and Moriwaki [21, 16, 10]1 then asserts the following:

Theorem 2.14. Let X be a normal, projective, and geometrically connected K-
variety, let Y be a closed subvariety of X, and let

(
D; E

)
∈ ĈDivZ,Z(X) with E > 0.

Let ? denotes either CL(X|Y) or quot(X|Y). Choose a model
(
X ,Y ,M

)
as above,

and let F>1 be a good flag on Y over a prime number p. If Γ̂ss
?

(
mD; mE

)
, {0},

then ∣∣∣∣̂ℓss
?

(
mD; mE

)
− #wF>1

(̂
Γss

?

(
mD; mE

)
\ {0}

)
log(p)

∣∣∣∣

6

C

(
M

ad
∣∣∣∣∣
Y
, Y, p,m

)

log(p)
mdim Y+1

for any m ∈ Z>0.

Proof. Let ν : Y ′ → Y be the relative normalization of Y in Y and let ν−1
∗ F>1 be

the pullback of F>1 via ν (see [10, Lemma 6.3]), where we note that ν is isomor-

phic around the closed point Fdim Y +1. Then we obtain the result by applying [16,

Theorem 2.2] to Y ′, ν−1
∗ F>1, OX

(
M

)∣∣∣∣
Y ′

, and Γ̂ss
?

(
mD; mE

)
for each m ∈ Z>0

(see also [10, Theorem 6.6]). �

Corollary 2.15 ([16, Corollary 2.3]). We use the same notation as in Theorem 2.14.
We have

lim sup
m→∞

∣∣∣∣∣∣∣∣

ℓ̂ss
?

(
mD; mE

)

mdim Y+1
−

#wF>1

(̂
Γss

?

(
mD; mE

)
\ {0}

)
log(p)

mdim Y+1

∣∣∣∣∣∣∣∣

6

C′
(
M

ad
∣∣∣∣∣
Y
, Y

)

log(p)
.

Definition 2.16. Let ? denote either CL(X|Y) or quot(X|Y), and let
(
D; E

)
∈ ĈDivZ,Z(X)

with E > 0. Then we set

∆̂
F>1

?

(
D; E

)
≔


⋃

m∈Z>1

1

m
wF>1

(̂
Γss

?

(
mD; mE

)
\ {0}

)
.

1In [10, Theorem 6.7], “any symmetric CL-subset of Γ̂f(L)” should be read as “any symmetric

CL-subset of Γ̂s(L)” and, in [10, Definition 7.2, Propositions 7.9, and 7.10], “̂Γss
X|Y (mL)” should be

read as “ĈLX|Y (mL)”. The author apologizes for any inconvenience.
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More generally, given any
(
D; E

)
∈ ĈDivQ,Q(X), we set

∆̂
F>1

?

(
D; E

)
≔

1

n
∆̂

F>1

?

(
nD; nE

)
,

where n denotes any positive integer such that
(
nD; nE

)
∈ ĈDivZ,Z(X).

If
(
D; E

)
is Y-big, then the same arguments as in [16, Propositions 5.1 and 5.2]

(see also [10, Proposition 7.7]) will lead to

volRdim Y+1

(
∆̂

F>1

?

(
D; E

))
= lim

m∈Z>1,
m→∞

#wF>1

(̂
Γss

?

(
mD; mE

)
\ {0}

)

mdim Y+1
∈ R>0. (2.28)

Corollary 2.17. Let X be a normal, projective, and geometrically connected K-
variety, let Y be a closed subvariety of X, and let

(
D; E

)
,
(
D
′
; E′

)
∈ ĈDivQ,Q(X) be

Y-big pairs on X with min{E, E′} > 0. Let ? denote either X|Y or quot(X|Y).

(1) If
(
D; E

)
∈ ĈDivZ,Z(X), then the sequence


ℓ̂ss

CL(X|Y)

(
mD; mE

)

mdim Y+1/(dim Y + 1)!


m∈Z>1

(respectively,


ℓ̂ss

quot(X|Y)

(
mD; mE

)

mdim Y+1/(dim Y + 1)!


m∈Z>1

)

converges to v̂olX|Y

(
D; E

)
(respectively, v̂olquot(X|Y)

(
D; E

)
).

(2) If
(
D; E

)
∈ ĈDivZ,Z(X), then

v̂ol?
(
aD; aE

)
= adim Y+1 · v̂ol?

(
D; E

)

for every a ∈ Z>1. In particular, we can define v̂ol?
(
D; E

)
for any Y-big pair(

D; E
)
∈ ĈDivQ,Q(X).

(3) The Brunn–Minkowski inequality holds true for arithmetic restricted vol-
umes:

v̂ol?
(
D + D

′
; E + E′

)1/(dim Y+1)

> v̂ol?

(
D; E

)1/(dim Y+1)
+ v̂ol?

(
D
′
; E′

)1/(dim Y+1)
.

(4) Assume that Y has codimension one in X. LetA ≔
(
A1, . . . , Am

)
∈ ĈDivQ(X)×m,

and let B ≔ (B1, . . . , Bn) ∈ CDivQ(X)×n. Assume that one of the following
two conditions is satisfied.
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(a) ordY(E) > 0.

(b) ordY(B j) = 0 for every j.

Then one has

lim
εεε∈Qm, δδδ∈Qn,
εεε, δδδ→0

v̂ol?
(
D + εεε ·A; E + δδδ ·B

)
= v̂ol?

(
D; E

)
.

Proof. Let X , Y , F>1, p, and M be as in Theorem 2.14.

(1): By [16, Proposition 1.4.1], there exist good flags on Y over infinitely

many prime numbers. Thus, given any ε ∈ R>0, we can find a prime number p
such that there exists a good flag on Y over p and

C′
(
M

ad
∣∣∣∣∣
Y
, Y

)

log(p)
6 ε.

Thus, by Corollary 2.15, we obtain

0 6 lim sup
m∈Z>1,
m→∞

ℓ̂ss
CL(X|Y)

(
mD; mE

)

mdim Y+1
− lim inf

m∈Z>1,
m→∞

ℓ̂ss
CL(X|Y)

(
mD; mE

)

mdim Y+1
6 2ε

(respectively, 0 6 lim sup
m∈Z>1,
m→∞

ℓ̂ss
quot(X|Y)

(
mD; mE

)

mdim Y+1
− lim inf

m∈Z>1,
m→∞

ℓ̂ss
quot(X|Y)

(
mD; mE

)

mdim Y+1
6 2ε )

(see Definition 2.16) and conclude the proof.

The assertion (2) is a consequence of the assertion (1).

(3): By Lemma 2.10, one can choose an arithmetic Cartier divisor N on X

such that

Γ̂f
X|Y

(
mD; mE

)
⊂ H0 (OX (mN )|Y ) ,

Γ̂f
X|Y

(
mD

′
; mE′

)
⊂ H0 (OX (mN )|Y ) ,

Γ̂ss
X|Y

(
mD; mE

)
⊂ Γ̂s

(
OX

(
mN

)∣∣∣∣
Y

)
,

and

Γ̂ss
X|Y

(
mD

′
; mE′

)
⊂ Γ̂s

(
OX

(
mN

)∣∣∣∣
Y

)

for all m. Let ε ∈ R>0. By [16, Proposition 1.4.1], there exists a prime number p
such that there exists a good flag on Y over p and such that

C′
(
N

ad
∣∣∣∣∣
Y
, Y

)

log(p)
6 ε. (2.29)
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Applying the classical Brunn–Minkowski inequality to

∆̂
F>1

CL(X|Y)

(
D; E

)
+ ∆̂

F>1

CL(X|Y)

(
D
′
; E′

)
⊂ ∆̂

F>1

CL(X|Y)

(
D + D

′
; E + E′

)

(respectively, ∆̂
F>1

quot(X|Y)

(
D; E

)
+ ∆̂

F>1

quot(X|Y)

(
D
′
; E′

)
⊂ ∆̂

F>1

quot(X|Y)

(
D + D

′
; E + E′

)
),

we obtain, by Corollary 2.15,

v̂olX|Y

(
D + D

′
; E + E′

)1/(dim Y+1)

> v̂olX|Y

(
D; E

)1/(dim Y+1)
+ v̂olX|Y

(
D
′
; E′

)1/(dim Y+1)
− 3ε

(respectively, v̂olquot(X|Y)

(
D + D

′
; E + E′

)1/(dim Y+1)

> v̂olquot(X|Y)

(
D; E

)1/(dim Y+1)
+ v̂olquot(X|Y)

(
D
′
; E′

)1/(dim Y+1)
− 3ε ).

(4): Since the cone

{(
D; E

)
∈ ĈDivR,R(X) :

(
D; E

)
is Y-big and ordY (E) > 0

}

is open in ĈDivR,R(X) (see [11, Theorem 2.21(2)]), the case (a) follows from the

assertion (3) and [6, Theorem 5.2] (see also [16, Proposition 1.3.1]).

To show the case (b), we may assume without loss of generality that B j’s are

all effective. We endow each B j with an adelic B j-Green function such that B j is

effective. The assertion follows from the estimate

v̂ol?
(
D + εεε ·A − |δδδ| ·B; E

)
6 v̂ol?

(
D + εεε ·A; E + δδδ ·B

)

6 v̂ol?
(
D + εεε ·A + |δδδ| ·B; E

)

(see Notation and terminology 1). �

Proposition 2.18. Let
(
D; E

)
∈ ĈDivQ,Q(X) be a Y-big pair on X, let S ⊂ MK be

a finite subset, and let γγγ ≔ (γv)v∈S be a family of real numbers. Then
∣∣∣∣∣∣∣
v̂olquot(X|Y)

D +

0,
∑

v∈S

γv[v]

 ; E

 − v̂olquot(X|Y)

(
D; E

)
∣∣∣∣∣∣∣

6 (dim X + 1)[K : Q] volX|Y(D − E)‖γγγ‖.

Proof. See [18, Proposition 5.1.2]. �
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2.5 Arithmetic restricted positive intersection numbers

Let X be a normal, projective, and geometrically connected K-variety, let Y be

a closed subvariety of X, and let
(
D; E

)
∈ ĈDivR,R(X) be a Y-big pair. A Y-

approximation of
(
D; E

)
is defined as a couple

(
π : X′ → X,M

)
consisting of a

birational K-morphism of projective varieties π : X′ → X and a nef adelic R-Cartier

divisor M on X′ having the following properties:

(a) X′ is smooth and π is isomorphic around the generic point of Y .

(b) Let π−1
∗ (Y) denote the strict transform of Y via π. Then M is π−1

∗ (Y)-big and(
π∗D − M; E

)
is π−1
∗ (Y)-pseudo-effective.

We denote the set of all Y-approximations of
(
D; E

)
by Θ̂Y

(
D; E

)
. Moreover, we

set

Θ̂rw
Y

(
D; E

)

≔

(π,M) ∈ Θ̂Y

(
D; E

)
:

M ∈ ĈDivQ(X′), M is w-ample,

and
(
π∗D − M; E

)
is π−1
∗ (Y)-big

 .

We define the arithmetic restricted positive intersection number of
(
D; E

)
along

Y as
〈(

D; E
)·(dim Y+1)

〉∣∣∣∣∣
Y
≔ sup

(π,M)∈Θ̂Y

(
D;E

)

{
d̂eg

((
M|π−1

∗ (Y)

)·(dim Y+1)
)}
, (2.30)

where the restriction of M is defined up to arithmetic R-linear equivalence.

Remark 2.19. (1) An arithmetic restricted positive intersection number is actu-

ally given as a limit as in [9, Proposition 4.4].

(2) The same arguments as in [11, Proposition 3.9] will lead to

〈(
D; E

)·(dim Y+1)
〉∣∣∣∣∣

Y
= sup

(π,M)∈Θ̂rw
Y

(
D;E

)

{
d̂eg

((
M|π−1

∗ (Y)

)·(dim Y+1)
)}
.

(3) If
(
D1; E1

)
�Y

(
D2; E2

)
, then

〈(
D1; E1

)·(dim Y+1)
〉∣∣∣∣∣

Y
6

〈(
D2; E2

)·(dim Y+1)
〉∣∣∣∣∣

Y
.

(4) For any a ∈ R>0, one has

〈(
aD; aE

)·(dim Y+1)
〉∣∣∣∣∣

Y
= adim Y+1

〈(
D; E

)·(dim Y+1)
〉∣∣∣∣∣

Y
.
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(5) The arithmetic restricted positive intersection numbers fit into the Brunn–

Minkowski inequality:

〈(
D1; E1

)·(dim Y+1)
〉∣∣∣∣∣

1/(dim Y+1)

Y
+

〈(
D2; E2

)·(dim Y+1)
〉∣∣∣∣∣

1/(dim Y+1)

Y

6

〈(
D1 + D2; E1 + E2

)·(dim Y+1)
〉∣∣∣∣∣

1/(dim Y+1)

Y

for any Y-big pairs
(
D1; E1

)
,
(
D2; E2

)
∈ ĈDivR,R(X) (see for example [9,

Theorem 2.9(4)]).

(6) Assume that Y has codimension one in X. Let
(
D; E

)
∈ ĈDivR,R(X) be a Y-

big pair, let D ≔
(
D1, . . . ,Dm

)
∈ ĈDivR(X)×m, and let E ≔ (E1, . . . , En) ∈

CDivR(X)×n. Assume that one of the following two conditions is satisfied.

(a) ordY(E) > 0.

(b) ordY(E j) = 0 for every j.

Then one has

lim
εεε, δδδ→0

〈(
D + εεε ·D; E + δδδ ·E

)· dim X
〉 ∣∣∣∣∣∣

Y

=

〈(
D; E

)· dim X
〉∣∣∣∣∣

Y

(see Corollary 2.17 (4)).

Proposition 2.20. If
(
D; E

)
∈ ĈDivQ,Q(X) is a Y-big pair on X and E > 0, then

v̂olX|Y

(
D; E

)
=

〈(
D; E

)·(dim Y+1)
〉∣∣∣∣∣

Y
.

Proof. The proof is almost the same as [10, Proof of Theorem 8.4], so we are going

to only outline it. Obviously, it suffices to show the inequality 6. By homogeneity

(see Corollary 2.17 (2) and Remark 2.19 (4)), we can assume
(
D; E

)
∈ ĈDivZ,Z(X).

We regard Γ̂ss
(
mD; mE

)
⊂ H0 (OX (m (D − E))), and set

b̂m ≔ Image
(〈̂
Γss

(
mD; mE

)〉
K
⊗K OX (−m (D − E))→ OX

)
(2.31)

for each m ∈ Z>1. Let πm,K : Xm → X be a desingularization of the blow-up along

b̂m (see [8]), let Ym ≔ π
−1
m,K∗(Y) denote the strict transform of Y via πm,K, and let

OXm(Fm) ≔ HomOXm

(̂
bmOXm ,OXm

)
.
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We define an adelic Fm-Green function gggFm by

gFm
v (x) ≔ min

φ∈Γ̂ss
(
mD;mE

)
\{0}

{
gmD+(̂φ)

v

(
πan

m,K,v(x)
)}

for v ∈ MK and x ∈ Xan
m,v. Then

(
Fm; mE

)
is effective and Mm ≔ π

∗
m,K

(
mD

)
− Fm

is nef. Moreover, by the same arguments as in [10, Proposition 4.7], we have

Mm 6Ym

(
π∗m,K

(
mD

)
; mE

)
,

and the natural images of Γ̂ss
Xm|Ym

(
Mm

)
and of Γ̂ss

X|Y

(
mD; mE

)
coincide in H0

(
π∗m,K (m (D − E))

)

for every m ∈ Z>1.

By Fekete’s lemma, the sequence


v̂olXm|Ym

(
Mm

)

mdim Y+1


m∈Z>1

converges (see [10, Claim 8.6]). We choose a normal and projective OK-model X

of X (respectively, Xm of Xm) having the following properties:

(a) The Zariski closure Y (respectively, Ym) of Y in X (respectively, in Xm) is

Cartier.

(b) There exists an arithmetic Cartier divisor M on X such that

Γ̂f
X|Y

(
mD; mE

)
⊂ H0 (OX (mM )|Y )

and

Γ̂ss
X|Y

(
mD; mE

)
⊂ Γ̂s

(
OX

(
mM

)∣∣∣∣
Y

)

for every m ∈ Z>1.

(c) There exists a projective and birational morphism πm : Xm →X extending

πm,K.

(d) There exists a Zariski closed subset Z of X such that πm is isomorphic over

X \Z for every m ∈ Z>1.

Let π′m : Ym → Y be the morphism induced from πm. Given any ε ∈ R>0, we can

take a prime number p such that

C′
(
M

ad
∣∣∣∣∣
Y
, Y

)

log(p)
6 ε (2.32)
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and such that there exists a good flag

F>1 : Y = F1 ⊃ F2 ⊃ · · · ⊃ Fdim X

on Y over p such that Fdim X is not contained in Z (see [10, Lemma 6.4]). Let

π′−1
m∗ (F>1) : Ym ⊃ π

′−1
m∗ (F2) ⊃ · · · ⊃ π′−1

m∗ (Fdim X )

denote the flag on Ym obtained by taking the strict transforms of F>1 (see [10,

Lemma 6.3(2)]), and set

∆(m) ≔


⋃

k>1

1

km
wπ′−1

m∗ (F>1)

(̂
Γss

CL(Xm |Ym)

(
kMm

)
\ {0}

)


for every sufficiently large m ∈ Z>1. Then, by [4, Théorème 1.15], we have

volRdim Y+1 (∆(m)) log(p) > volRdim Y+1

(
∆̂

F>1

CL(X|Y)

(
D; E

))
log(p) − ε

for every sufficiently large m. On the other hand, by Corollary 2.15, we have

volRdim Y+1

(
∆̂

F>1

CL(X|Y)

(
D; E

))
log(p) >

v̂olX|Y

(
D; E

)

(dim Y + 1)!
− ε

and
v̂olXm |Ym

(
Mm

)

(dim Y + 1)!mdim Y+1
> volRdim Y+1 (∆(m)) log(p) − ε.

Thus

lim
m→∞

v̂olXm |Ym

(
Mm

)

mdim Y+1
> v̂olX|Y

(
D; E

)
− 3(dim Y + 1)!ε.

Hence, by [10, Proposition 8.1], we have

〈(
D; E

)·(dim Y+1)
〉∣∣∣∣∣

Y
> v̂olX|Y

(
D; E

)
. �

2.6 Proof of Theorem B

Let X be a normal, projective, and arithmetic OK-variety with smooth generic

fiber X. Let A be an arithmetic Cartier divisors of C∞-type on X such that A

is ample, A
ad

is w-ample, and the curvature form c1

(
A

)
is positive pointwise on

Xan
∞ . Let EEE ≔

(
E 1, . . . ,E l

)
be a family of horizontal arithmetic Cartier divisors of

C∞-type on X .

By Lemma 2.8, one can find a p0 ∈ Z>1 and an a0 ∈ Q>0 such that, for every

(p, q) ∈ (Z>0)l+1 with p > p0 and ‖q‖ 6 a0 p, the following three conditions are

satisfied:
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(a)
(
pA − q · EEE

)ad
is ample with pointwise positive curvature form.

(b) The evaluation map

H0
( (

pA − q · EEE
)∣∣∣

X

)
⊗K OX → OX

( (
pA − q · EEE

)∣∣∣
X

)
(2.33)

is surjective.

(c) H0(pA − q · EEE ) is generated by the strictly small sections over Q: namely

H0(pA − q · EEE ) ⊗Z Q =
〈̂
Γss

(
pA ;q · EEE

)〉
Q
. (2.34)

Given any (p, q) ∈ (Z>0)l+1 with p > p0 and ‖q‖ 6 a0 p, we endow q ·EEE with a

Green function as

q ·EEE
(p,q)
≔

q · EEE , min
φ∈Γ̂ss

(
pA ;q·EEE

)
\{0}

{
gpA +(̂φ)

} ,

which is an effective arithmetic Cartier divisor on X having the following two

properties (see Proof of Proposition 2.20):

(a) pA − q · EEE
(p,q)

is of (PSH ∩ C0)-type (see [17, section 2.3]).

(b) Γ̂ss
X |Y

(
pA ;q · EEE

)
⊂ Γ̂ss

X |Y

(
pA − q · EEE

(p,q)
)
.

Lemma 2.21. Let p0 ∈ Z>1 and a0 ∈ Q>0 be as above. Fix any ε ∈ R with
0 < ε 6 1, and let λε ∈ R>0 be as in Lemma 2.5. Then one has

Γ̂ss
X |Y

(
pA ;q · EEE

)
⊂ Γ̂ss

( (
p
(
A (ε)

)
− q ·

(
EEE (−λε)

))∣∣∣∣
Y

)

for any (p, q) ∈ (Z>0)l+1 with p > p0 and ‖q‖ 6 a0 p.

Proof. By Lemma 2.5, we have gpA −q·EEE
(p,q)

6 gpA −q·EEE + pε + ‖q‖λε. Hence

Γ̂ss
X |Y

(
pA ;q · EEE

)
⊂ Γ̂ss

X |Y

(
pA − q · EEE

(p,q)
)
⊂ Γ̂ss

((
p
(
A (ε)

)
− q ·

(
EEE (−λε)

))∣∣∣∣
Y

)
.

�

Proposition 2.22. Let X be a normal, projective, and arithmetic OK-variety with
smooth generic fiber X, and let Y be a prime Cartier divisor on X. Let A be an
arithmetic Cartier divisor of C∞-type on X such that A is ample and such that
the curvature form c1

(
A

)
is positive pointwise on Xan

∞ . Let DDD ≔
(
D1, . . . ,Dm

)
be
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a family of arithmetic Cartier divisors of C∞-type on X , and let EEE = (E1, . . . ,En)

be a family of effective horizontal Cartier divisor on X . Then we have

lim
t→0,
r↓0

〈((
A + t ·DDD ; r ·EEE

)ad
)· dim X

〉∣∣∣∣∣∣
Y

6

〈(
A

ad
)· dim X

〉∣∣∣∣∣∣
Y

.

Proof. Let p0 ∈ Z>1 and a0 ∈ Q>0 be as above. We fix any ε ∈ R>0 with 0 < ε 6 1,

and let λε ∈ R>0 be as in Lemma 2.5. We fix a b0 ∈ Z>1 such that D
ad

i �Y b0A
ad

for every i. For each j, we fix an E j-Green function of C∞-type. By Lemma 2.21,

we have

Γ̂ss
X |Y

(
pA ;q · EEE

)
⊂ Γ̂ss

X |Y

((
p
(
A (ε)

)
− q ·

(
EEE (−λε)

))∣∣∣∣
Y

)

for every (p, q) ∈ (Z>0)n+1 with p > p0 and ‖q‖ 6 a0 p. Hence

v̂olX|Y

((
A + t ·DDD ; r · EEE

)ad
)
6 v̂ol

((
(1 + ‖t‖b0)A (ε) − r · EEE (−λε)

)ad
∣∣∣∣∣
Y

)

for every t ∈ Qm and r ∈ (Q>0)n with ‖r‖ 6 a0. By taking t→ 0 and r ↓ 0,

lim
t→0,
r↓0

〈((
A + t ·DDD ; r · EEE

)ad
)· dim X

〉∣∣∣∣∣∣
Y

6 v̂ol

( (
A (ε)

)ad
∣∣∣∣∣
Y

)

=

〈(
A

ad
)· dim X

〉∣∣∣∣∣∣
Y

+ ε(dim X)[KY : Q] vol (A |Y)

(see [16, Corollary 7.2 (1)]). Hence we conclude the proof by taking ε ↓ 0. �

Proof of Theorem B. We start proving Theorem B. We may assume without loss of

generality that E j’s are all effective. Let gggY (respectively, gggE j) be an adelic Green

function such that Y ≔
(
Y,gggY

)
is effective (respectively, E j ≔

(
Ei,gggE j

)
is effective

for every j). Then

lim
t,u→0,

r↓0

〈(
A + t ·D; rY + u ·E

)· dim X
〉∣∣∣∣∣

Y

> lim
t,u→0,

r↓0

〈(
A + t ·D − rY − |u| ·E

)· dim X
〉∣∣∣∣∣

Y
=

〈
A
· dim X

〉∣∣∣∣∣
Y
.

Hence it suffices to show the reverse inequality.
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First, we treat the case where A, D, and E are all integral and A is ample.

Let ϕ : X1 → X be a resolution of singularities of X (see [8]), and let ϕ−1
∗ :

CDivR(X)→ CDivR(X1) denote the strict transform via ϕ. Then

〈(
A + t ·D; rY + u ·E

)· dim X
〉∣∣∣∣∣

Y
=

〈(
ϕ∗

(
A + t ·D

)
; rY + u ·E

)· dim X
〉∣∣∣∣∣
ϕ−1
∗ (Y)

for every r ∈ Q, t ∈ Qm, and u ∈ Qn (see [11, Lemma 2.15]). Hence we may

assume that X is smooth. We can take a finite subset S ⊂ MK containing {∞} such

that
(
gA

v

)
v∈MK\S

is defined on a suitable OK-model of X. We fix any sufficiently

small γ0 ∈ R with 0 < γ0 < 1 such that

A
(
−γγγS

)
≔ A −

0,
∑

v∈S

γ[v]



is w-ample for every γ ∈ R with 0 6 γ 6 γ0. Given such a γ ∈ R, we can find,

by using [18, Proposition 4.4.2] and [17, Theorem 4.6], an OK-model
(
Xγ,Bγ

)

consisting of a normal and projective OK-model Xγ of X and an arithmetic Q-

Cartier divisor Bγ of C∞-type on Xγ having the following properties (see also [9,

Proposition 3.1]):

(a) Bγ is ample.

(b) The curvature form c1

(
Bγ

)
is positive pointwise on Xan

γ,∞.

(c) (1 − γ)A
(
−γγγS

)
�Y Bγ

ad
�Y A.

(d) The Zariski closure Yγ of Y in Xγ is Cartier.

Let α0 be an integer such that α0A−Di are w-ample for all i (see [10, Lemma 5.3]).

Applying Proposition 2.9 to A
(
−γγγS

0

)
, we can find a ρ0 ∈ Q>0 such that

〈(
A

(
−γγγS

)
+ α0‖t‖A; rY + u ·E

)· dim X
〉∣∣∣∣∣

Y

= v̂olquot(X|Y)

(
A

(
−γγγS

)
+ α0‖t‖A; rY + u ·E

)

for every γ ∈ R, r ∈ Q>0, t ∈ Qm, and u ∈ Qn with 0 6 γ 6 γ0 and r + ‖u‖ 6 ρ0.

By Remark 2.19 (4) and Proposition 2.18,

(1 − γ)dim X
(〈(

(1 + α0‖t‖) A; rY + u ·E
)· dim X

〉∣∣∣∣∣
Y

− (dim X + 1)[K : Q] volX|Y ((1 + α0‖t‖)A − rY − u ·E) #S γ

)
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6

〈((
(1 + α0‖t‖) Bγ; (1 − γ)rYγ

)ad
)· dim X

〉∣∣∣∣∣∣
Y

.

Taking r ↓ 0, t→ 0, u→ 0, and γ ↓ 0, we obtain the theorem by Proposition 2.22.

Next, we treat the general case. By the previous arguments, we obtain

lim
t,u→0,

r↓0

〈(
A + t ·D; rY + u ·E

)· dim X
〉∣∣∣∣∣

Y

6 lim
t,u→0,

r↓0

〈(
A
′
+ t ·D; rY + u ·E

)· dim X
〉∣∣∣∣∣

Y
=

〈
A
′· dim X

〉∣∣∣∣∣
Y

for every ample adelic Q-Cartier divisor A
′

such that A �Y A
′
. Hence the theorem

follows from continuity (see Remark 2.19 (6)). �

3 Proof of Theorem A

In this section, we shall give an upper and a lower bounds for the one-sided direc-

tional derivatives of the arithmetic volume function along the directions defined by

prime Cartier divisors (see Corollary 3.5 and Theorem 3.11, respectively). Theo-

rem A is a direct consequence of these two estimates.

3.1 Differentiability of concave functions

Definition 3.1. (1) For r ∈ R>0 and v ∈ Rn, we set

Br(v) ≔
{
p ∈ Rn : ‖p − v‖ < r

}

(see Notation and terminology 1). Let C be a nonempty open subset of Rn

and let K denote either Q or R. A function f : C ∩ Kn → R is said to be

locally Lipschitz-continuous on C if, given any a ∈ C, there exist an ε ∈ R>0

and an L ∈ R>0 such that Bε(a) ⊂ C and

| f (p) − f (q)| 6 L‖p − q‖

for all p, q ∈ Bε(a) ∩ Kn.

(a) As is well known, any concave function defined on C ∩ Qn is locally

Lipschitz-continuous on C and extends uniquely to a continuous func-

tion defined on C (see [16, section 1.3]).

33



(b) Suppose that f , g : C → R are locally Lipschitz-continuous functions

on C. The product f · g : C → R is also locally Lipschitz-continuous

on C. If g(p) , 0 for all p ∈ C, then the quotient f /g : C → R is also

locally Lipschitz-continuous on C.

(2) Let ei = (0, . . . , 0,
i
1, 0, . . . , 0) denote the i-th standard basis vector of Rn, and

let f be a concave function defined on a nonempty convex open subset C of

Rn. Then the i-th right (respectively, left) partial derivative of f exists and is

denoted by

fxi+(p) ≔ lim
r↓0

f (p + rei) − f (p)

r

(respectively, fxi−(p) ≔ lim
r↑0

f (p + rei) − f (p)

r
)

for each p ∈ C.

Lemma 3.2. Let C be a nonempty convex open subset of a Euclidean space Rn and
let f : C → R be a concave function. Suppose that the function fxn+ : C∩Qn → R is
locally Lipschitz-continuous on C. Then fxn exists at any point in C and fxn : C →
R is continuous on C.

Proof. By hypothesis, there exists a unique continuous function g on C such that

fxn+ = g on C ∩ Qn. Denote a point in C by a = (a′, b) with a′ ∈ Rn−1 and b ∈ R.

We show the following claim:

Claim 3.3. If a′ ∈ Qn−1, then fxn exists at a and fxn (a) = g(a).

Proof of Claim 3.3. Indeed, suppose that fxn does not exist at a. Then one has

fxn+(a) < fxn−(a) (see [7, page 26, Theorem 2.7]). Since fxn+ : C ∩ Qn → R is

locally Lipschitz-continuous on C, there exist an ε ∈ R>0 and an L ∈ R>0 such that

Bε(a) ⊂ C and

| fxn+(x) − fxn+(y)| 6 L‖x − y‖ (3.1)

for all x, y ∈ Bε(a) ∩ Qn. Set ε′ ≔ min{ε, ( fxn−(a) − fxn+(a))/2L}, and choose two

rational numbers p, q ∈ Q such that b − ε′ < q < b < p < b + ε′. Then

fxn+(a′, p) 6 fxn+(a) < fxn−(a) 6 fxn+(a′, q),

which contradicts the property (3.1). The assertion that fxi (a) = g(a) is then obvi-

ous (see for example [7, page 27, Theorem 2.8]). �
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We set

F(x′, xn) ≔ f (x′, b) +

∫ xn

b
g(x′, r) dr,

which is defined on a suitably small open neighborhood U of a. Since both f and

F are continuous on U and coincide on U ∩ (Qn−1 × R), they are identical on U.

Hence fxn exists at a and fxn (a) = Fxn (a) = g(a). �

3.2 Upper bound

Theorem 3.4. Let ∗ denote either ss or s. Let X be a normal, projective, and
geometrically connected K-variety and let Y be any effective Cartier divisor on
X. We fix an adelic Cartier divisor A on X such that Γ̂s

X|Y

(
A
)
, {0} and such that

Γ̂s
X|Y

(
A; Y

)
, {0}. Then, for any

(
D; E

)
∈ ĈDivZ,Z(X) with E > 0 and for any

n ∈ Z>0, we have

0 6 ℓ̂∗
(
D; E

)
− ℓ̂∗

(
D; E + nY

)

6 n̂ℓ∗X|Y
(
D(log(2)) + nA; E + nY

)
+ log(6) rkQ H0(D)

and

0 6 ℓ̂∗
(
D; E − nY

)
− ℓ̂∗

(
D; E

)

6 n̂ℓ∗X|Y
(
D(log(2)) + nA; E

)
+ log(6) rkQ H0(D).

Proof. Let 1Y denote the canonical section of OX(Y). By applying Remark 2.2 (2)

to the exact sequence

0→ H0 (D − E − nY)
⊗1⊗n

Y
−−−−→ H0 (D − E)→ H0

X|nY (D − E)→ 0,

one obtains

ℓ̂∗
(
D; E

)
− ℓ̂∗

(
D; E + nY

)
6 ℓ̂∗X|nY

(
D; E

)
+ log(6) rkQ H0(D). (3.2)

We are going to estimate the term ℓ̂∗X|nY

(
D; E

)
. Applying Lemma 2.4 to the diagram

0 // H0
X|Y (D − E − kY) // H0

X|(k+1)Y (D − E) // H0
X|kY (D − E) // 0

0 // H0 (D − E − kY)
⊗1⊗k

Y
//

OO

H0 (D − E) //

OO

H0
X|kY (D − E) // 0,

one has

ℓ̂∗X|(k+1)Y

(
D; E

)
− ℓ̂∗X|kY

(
D; E

)
6 ℓ̂∗X|Y

(
D(log(2)); E + kY

)
(3.3)
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for each k. By adding (3.3) for k = 1, 2, . . . , n − 1, one obtains

ℓ̂∗X|nY

(
D; E

)
6

n−1∑

k=0

ℓ̂∗X|Y

(
D(log(2)); E + kY

)

6 n̂ℓ∗X|Y
(
D(log(2)) + nA; E + nY

)

as required. To show the second inequality, we may assume 0 6 n 6 ordY (E). It

also follows from the same arguments as above by replacing E with E − nY . �

Corollary 3.5. Let X be a normal, projective, and geometrically connected K-
variety, let Y be a prime Cartier divisor on X, and let

(
D; E

)
∈ ĈDivQ,Q(X) be a

Y-big pair. If ordY(E) > 0, then

lim
r↓0

v̂ol
(
D; E

)
− v̂ol

(
D; E + rY

)

r
6 (dim X + 1)

〈(
D; E

)· dim X
〉∣∣∣∣∣

Y
.

Proof. One may assume
(
D; E

)
∈ ĈDivZ,Z(X) and E > 0 by homogeneity (see

[12, Corollary 3.25] and Corollary 2.17 (2)). Let A be any adelic Cartier divisor

on X such that Γ̂s
X|Y

(
A
)
, {0} and Γ̂s

X|Y(A; Y) , {0}, and set A
′
≔ A(log(2)).

By continuity of the arithmetic volume functions (see [12, Main Theorem] and

Remark 2.19 (6)), one has

v̂ol
(
D; E

)
− v̂ol

(
D; E + rY

)

r
6 (dim X + 1)

〈(
D + rA

′
; E + rY

)· dim X
〉∣∣∣∣∣

Y

for any sufficiently small r ∈ R>0 by Theorem 3.4 and Proposition 2.20. By taking

r ↓ 0, one obtains the assertion by using Remark 2.19 (6) again. �

3.3 Estimation of Newton–Okounkov bodies

Definition 3.6. Let X be a normal and projective OK-model of X such that there

exists an arithmetic Cartier divisor A on X such that A 6 A
ad

and A ∩ X = A
and such that the Zariski closure Y of Y in X is Cartier.

Let ρ0 ∈ Q>0 be as in Proposition 2.9. By Lemma 2.10, there exists a A -Green

function gA
′

and a Y -Green function gY such that

Γ̂ss
X|Y

(
mA; nY

)
⊂ Γ̂s

(
OX

(
mA

′
− nY

)∣∣∣∣
Y

)

for every m, n ∈ Z>0, where A
′
≔

(
A , gA

′
)
. Let M 0 be a Y -effective arithmetic

Cartier divisor on X such that OX

(
M 0 + Y

)
is also Y -effective, and set M ≔
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A + ⌈ρ0⌉M 0. Then we obtain a natural inclusion

Γ̂ss
X|Y

(
mA; mrY

)
⊂ Γ̂s

(
OX

(
mM

)∣∣∣∣
Y

)

for any m ∈ Z>0 and r ∈ R with 0 6 r 6 ρ0.

Fix a flag

F• : F0 ≔X ⊃ F1 ≔ Y ⊃ F2 ⊃ · · · ⊃ Fdim X = {ξ}

on X such that

F>1 : Y = F1 ⊃ F2 ⊃ · · · ⊃ Fdim X = {ξ}

is a good flag on Y over a prime number p (see Definition 2.12), and let wF•

denote the valuation map attached to F•.

Given an adelic R-Cartier divisor M on X, an R-Cartier divisor N on X, a prime

number p, and an ε ∈ R>0, we set

C̃
(
M,N, X, p, ε

)
≔

[K : Q]I(M)
(
log(4)δ

(
M

)
+ ε

)

log(p)
+ ε[K : Q]I(N) (3.4)

(see Definition 2.13).

Theorem 3.7. Let X be a normal, projective, and geometrically connected K-
variety, let Y be a prime Cartier divisor on X, and let A be a w-ample adelic
Cartier divisor on X. We use the same notation as in Definition 3.6. Let ρ0 be as
in Proposition 2.9. Let M be a Y -effective arithmetic Cartier divisor on X such
that H0

X|Y(M |X + Y) , {0} and such that

Γ̂f
X|Y

(
mA; mrY

)
⊂ H0 (OX (mM )|Y )

and
Γ̂ss

X|Y

(
mA; mrY

)
⊂ Γ̂s

(
OX

(
mM

)∣∣∣∣
Y

)

for any m ∈ Z>0 and r ∈ R with 0 6 r 6 ρ0. Fix an ε ∈ R with 0 < ε 6 1. There
then exist a λ(ε, p) ∈ Z>1, which depends on A, M , Y, X, ε, and p, and positive
real numbers S , S ′, which depend only on A, M , Y, and X, such that

− rC̃

(
M

ad
∣∣∣∣∣
Y
, A|Y + ρ0M |Y , Y, p, ε

)
mdim X+1

− [K : Q]I(A)mdim X log(m) − S mdim X

6 ℓ̂ss
(
mA

)
− ℓ̂ss

(
mA; mrY

)
− #wF•

(̂
Γss

(
mA

)
\ {0}

)
log(p)
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+ #wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)
log(p)

6 rC̃

(
M

ad
∣∣∣∣∣
Y
, A|Y + ρ0M |Y , Y, p, ε

)
mdim X+1 + S ′mdim X

for any m ∈ Z and r ∈ R with m > λ(ε, p) and 0 < r 6 ρ0, respectively.

Proof. Let M ≔M
ad

. We divide the proof into three steps.

Step 1. Obviously, we have

#wF•

(̂
Γss

(
mA

)
\ {0}

)
− #wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)

=

⌈mr⌉−1∑

n=0

#wF>1

(̂
Γss

X|Y

(
mA; nY

)
\ {0}

)
.

For the given ε ∈ R>0, we can find a λ′(ε, p) ∈ Z>1 such that

log(4p)
(
log(4p) + log

(
I(M|Y)mdim Y

))
6 εm (3.5)

for any m ∈ Z with m > λ′(ε, p). By Proposition 2.9, there exists an integer λ(ε, p)

such that λ(ε, p) > max {λ′(ε, p), 1/ρ0} and such that

Γ̂ss
quot(X|Y)

(
m

(
A(−ε)

)
; nY

)
⊂ Γ̂ss

X|Y

(
mA; nY

)

and

Γ̂ss
quot(X|Y)

(
mA; nY

)
⊂ Γ̂ss

X|Y

(
m

(
A(ε)

)
; nY

)

hold for any m, n ∈ Z>1 with n/m 6 ρ0 and m > λ(ε, p).

Put

C̃0

(
M|Y , Y, ε

)
≔ [KY : Q]I(M|Y)

(
log(4)δ

(
M|Y

)
+ ε

)
. (3.6)

By Theorem 2.14 and Remark 2.1, we have

⌈mr⌉−1∑

n=0

ℓ̂ss
quot(X|Y)

(
mA; nY

)
− (εm + log(3))

⌈mr⌉−1∑

n=0

rkQ H0
X|Y(mA − nY)

−
C̃0

(
M|Y , Y, ε

)

log(p)
mdim X(mr + 1)

6

⌈mr⌉−1∑

n=0

ℓ̂ss
quot(X|Y)

(
m

(
A(−ε)

)
; nY

)
−

C̃0

(
M|Y , Y, ε

)

log(p)
mdim X(mr + 1)

6

⌈mr⌉−1∑

n=0

#wF>1

(̂
Γss

quot(X|Y)

(
m

(
A(−ε)

)
; nY

)
\ {0}

)
log(p)
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6 #wF•

(̂
Γss

(
mA

)
\ {0}

)
log(p)

− #wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)
log(p)

6

⌈mr⌉−1∑

n=0

#wF>1

(̂
Γss

quot(X|Y)

(
mA; nY

)
\ {0}

)
log(p)

6

⌈mr⌉−1∑

n=0

ℓ̂ss
quot(X|Y)

(
mA; nY

)
+

C̃0

(
M|Y , Y, ε

)

log(p)
mdim X(mr + 1). (3.7)

Step 2. In this step, we show the lower bound. For that purpose, we consider

the filtration by natural inclusions

H0(mA) ⊃ H0(mA − Y) ⊃ · · · ⊃ H0(mA − ⌈mr⌉Y) ⊃ {0}

and apply Lemma 2.3 to it. By using Remark 2.1 again, we have

ℓ̂ss
(
mA

)
− ℓ̂ss

(
mA; mrY

)

> ℓ̂ss
((

mA
)

(log(⌈mr⌉))
)
− ℓ̂ss

(
mA; mrY

)
− log(3⌈mr⌉) rkQ H0(mA)

>

⌈mr⌉−1∑

n=0

ℓ̂ss
X|Y

(
mA; nY

)
− log(3⌈mr⌉) rkQ H0(mA)

>

⌈mr⌉−1∑

n=0

ℓ̂ss
quot(X|Y)

(
m

(
A(−ε)

)
; nY

)
− log(3⌈mr⌉) rkQ H0(mA)

>

⌈mr⌉−1∑

n=0

ℓ̂ss
quot(X|Y)

(
mA; nY

)
− (εm + log(3))

⌈mr⌉−1∑

n=0

rkQ H0
X|Y(mA − nY)

− log(3⌈mr⌉) rkQ H0(mA),

which implies by (3.7) that

ℓ̂ss
(
mA

)
− ℓ̂ss

(
mA; mrY

)
− #wF•

(̂
Γss

(
mA

)
\ {0}

)
log(p)

+ #wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)
log(p)

> −
C̃0

(
M|Y , Y, ε

)

log(p)
mdim X(mr + 1)

− (εm + log(3))

⌈mr⌉−1∑

n=0

rkQ H0
X|Y(mA − nY) − log(3⌈mr⌉) rkQ H0(mA)

> −rC̃
(
M|Y , A|Y + ρ0M|Y , Y, p, ε

)
mdim X+1 − [K : Q]I(A)mdim X log(m)

39



− S mdim X

for any m > λ(ε, p). Here we set

S ≔
C̃0

(
M|Y , Y, 1

)

log(2)
+ (1 + (ρ0 + 1) log(3))[KY : Q]I(A|Y + ρ0M|Y)

+ log(3(ρ0 + 1))[K : Q]I(A).

Step 3. Applying Remark 2.2 (2) to the exact sequence

0→ H0(mA − ⌈mr⌉Y)
⊗1
⊗⌈mr⌉
Y

−−−−−→ H0(mA)→ H0
X|⌈mr⌉Y(mA)→ 0,

we obtain

− log(6) rkQ H0(mA) 6 ℓ̂ss
(
mA

)
− ℓ̂ss

(
mA; mrY

)
− ℓ̂ss

X|⌈mr⌉Y

(
mA

)

6 log(6) rkQ H0(mA − ⌈mr⌉Y). (3.8)

By applying Lemma 2.4 to the diagram

0 // H0
X|Y(mA − nY) // H0

X|(n+1)Y(mA) // H0
X|nY(mA) // 0

0 // H0(mA − nY)
⊗1⊗n

Y
//

OO

H0(mA) //

OO

H0
X|nY(mA) // 0

for each n ∈ Z>1, we have

ℓ̂ss
X|(n+1)Y

(
mA

)
− ℓ̂ss

X|nY

(
mA

)
6 ℓ̂ss

X|Y

((
mA

)
(log(2)); nY

)

6 ℓ̂ss
quot(X|Y)

(
mA; nY

)
+ log(6) rkQ H0

X|Y(mA − nY) (3.9)

by Remark 2.1. Therefore, by summing up (3.9) for n = 1, . . . , ⌈mr⌉ − 1, we have

ℓ̂ss
X|⌈mr⌉Y

(
mA

)

6

⌈mr⌉−1∑

n=0

ℓ̂ss
quot(X|Y)

(
mA; nY

)
+ log(6)

⌈mr⌉−1∑

n=1

rkQ H0
X|Y(mA − nY),

which leads to the upper bound of the theorem as

ℓ̂ss
(
mA

)
− ℓ̂ss

(
mA; mrY

)
− #wF•

(̂
Γss

(
mA

)
\ {0}

)
log(p)

+ #wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)
log(p)
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6

C̃0

(
M|Y , Y, ε

)

log(p)
mdim X(mr + 1) + (εm + log(18))

⌈mr⌉−1∑

n=0

rkQ H0
X|Y(mA − nY)

+ log(6) rkQ H0(mA − ⌈mr⌉Y)

6 rC̃
(
M|Y , A|Y + ρ0M|Y , Y, p, ε

)
mdim X+1 + S ′mdim X

for any m > λ(ε, p) by (3.7). Here we set

S ′ ≔
C̃0

(
M|Y , Y, 1

)

log(2)
+ (1 + (ρ0 + 1) log(18))[KY : Q]I(A|Y + ρ0M|Y)

+ log(6)[K : Q]I(A).

�

3.4 Yuan-type inequality

Definition 3.8. Let X be a normal, projective, and geometrically connected K-

variety, let Y be a prime Cartier divisor on X, and let
(
D; E

)
∈ ĈDivZ,Z(X) be a

Y-big pair on X. We choose a ρ′
0
∈ Q>0 such that

(
D; E + rY

)
is Y-big for every

r ∈ R with 0 6 r 6 ρ′
0
. As in Definition 3.6, there exists a normal and projective

OK-model X of X such that the Zariski closure Y of Y in X is Cartier and such

that there exists a Y -effective arithmetic Cartier divisor M on X such that

Γ̂f
X|Y

(
mD; mE + mrY

)
⊂ H0 (OX (mM )|Y )

and

Γ̂ss
X|Y

(
mD; mE + mrY

)
⊂ Γ̂s

(
OX

(
mM

)∣∣∣∣
Y

)

for every m ∈ Z>0 and r ∈ R with 0 6 r 6 ρ′
0
. Let F• be as in Definition 3.6, and

let wF• denote the valuation map attached to F•. We then define

∆̂
F•

YM

(
D; E

)
≔


⋃

m∈Z>1

1

m
wF•

(̂
Γss

(
mD; mE

)
\ {0}

)
.

More generally, for any Y-big pair
(
D; E

)
∈ ĈDivQ,Q(X), we define

∆̂
F•

YM

(
D; E

)
≔

1

n
∆̂

F•

YM

(
nD; nE

)
,

where n denotes any positive integer such that
(
nD; nE

)
∈ ĈDivZ,Z(X).
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Lemma 3.9. We use the same notation as in Definition 3.8.

(1) ∆̂F•

YM

(
D; E

)
is a compact convex body in Rdim X+1.

(2) If
(
D; E

)
∈ ĈDivZ,Z(X), then one has

volRdim X+1

(
∆̂

F•

YM

(
D; E

))
= lim

m∈Z>1,
m→∞

#wF•

(̂
Γss

(
mD; mE

)
\ {0}

)

mdim X+1
∈ R>0.

Proof. (1): We may assume that
(
D; E

)
∈ ĈDivZ,Z(X). Let B be an ample Cartier

divisor on X. If Γ̂ss
(
mD; nE

)
, {0}, then

deg
(
(mD − mE − nY) · B·(dim X−1)

)
> 0.

Thus

−m ordY(D − E) 6 w1(φ) 6 m
deg

(
(D − E) · B·(dim X−1)

)

deg
(
Y · B·(dim X−1)

)

for any φ ∈ Γ̂ss
(
mD; mE

)
\ {0} (see Notation and terminology 3). Moreover,

by [21, Lemma 2.4] applied to OX

(
M

)∣∣∣∣
Y

, one can find a, b ∈ R>0 such that

∆̂
F•

YM

(
D; E

)
⊂ [−a, b]dim X+1.

(2): Since
(
D; E

)
is Y-big, the semigroup

{(
wF•(φ),m

)
: φ ∈ Γ̂ss

(
mD; mE

)
\ {0}, m ∈ Z>0

}

generates Zdim X+2 (see [16, Proposition 5.2]). Hence the assertions follow from

[14, Proposition 2.1] (see also [4, Corollaire 1.14]). �

Theorem 3.10. Let X be a normal, projective, and geometrically connected K-
variety, let Y be a prime Cartier divisor on X, let

(
D; E

)
∈ ĈDivZ,Z(X) be a Y-

big pair on X, and let A ∈ ĈDivZ(X) be a w-ample adelic Cartier divisor on X.
Suppose that

(
D − A; E

)
is Y-big. Let ρ0 be as in Proposition 2.9. Let M be a

Y -effective arithmetic Cartier divisor on X such that H0
X|Y(M |X + Y) , {0} and

such that
Γ̂f

X|Y

(
mA; mrY

)
⊂ H0 (OX (mM )|Y )

and
Γ̂ss

X|Y

(
mA; mrY

)
⊂ Γ̂s

(
OX

(
mM

)∣∣∣∣
Y

)
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for every m ∈ Z>0 and r ∈ R with 0 6 r 6 ρ0. Fix an ε ∈ R with 0 < ε 6 1. There
then exist a µ(ε, p) ∈ Z>1, which depends on

(
D; E

)
, A, M , Y, X, ε, and p, and a

positive real number S , which depends only on D, A, M , Y, and X, such that

ℓ̂ss
(
mD; mE

)
− ℓ̂ss

(
mD; mE + mrY

)
− #wF•

(̂
Γss

(
mA

)
\ {0}

)
log(p)

+ #wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)
log(p)

> −rC̃

(
M

ad
∣∣∣∣∣
Y
, A|Y + ρ0M |Y , Y, p, ε

)
mdim X+1

− [K : Q]I(D)mdim X log(m) − S mdim X

for every m ∈ Z and r ∈ R with m > µ(ε, p) and 0 < r 6 ρ0, respectively.

Proof. Let M ≔ M
ad

. Given any ε ∈ R>0, there exists a µ′(ε) ∈ Z>1, which

depends on
(
D; E

)
, A, Y , X, and ε, such that

Γ̂ss
quot(X|Y)

(
mA; nY

)
⊂ Γ̂ss

X|Y

(
m(A(ε)); nY

)
, (3.10)

Γ̂ss
quot(X|Y)

(
m(A(−ε)); nY

)
⊂ Γ̂ss

X|Y

(
mA; nY

)
, (3.11)

and

Γ̂s
X|Y

(
mD − mA; mE

)
, {0} (3.12)

for every m, n ∈ Z>1 with n/m 6 ρ0 and m > µ′(ε). Let λ(ε, p) be as in the proof of

Theorem 3.7, and set

µ(ε, p) ≔ max{λ(ε, p), µ′(ε)}.

By the same arguments as in the proof of Theorem 3.7, we obtain

ℓ̂ss
(
mD; mE

)
− ℓ̂ss

(
mD; mE + mrY

)

> ℓ̂ss
(
(mD)(log(⌈mr⌉)); mE

)
− ℓ̂ss

(
mD; mE + mrY

)

− log(3⌈mr⌉) rkQ H0(mD)

>

⌈mr⌉−1∑

n=0

ℓ̂ss
X|Y

(
mD; mE + nY

)
− log(3⌈mr⌉) rkQ H0(mD)

>

⌈mr⌉−1∑

n=0

ℓ̂ss
X|Y

(
mA; nY

)
− log(3⌈mr⌉) rkQ H0(mD)

>

⌈mr⌉−1∑

n=0

ℓ̂ss
quot(X|Y)

(
mA; nY

)
− (εm + log(3))
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×

⌈mr⌉−1∑

n=0

rkQ H0
X|Y(mA − nY) − log(3⌈mr⌉) rkQ H0(mD)

and

#wF•

(̂
Γss

(
mA

)
\ {0}

)
log(p) − #wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)
log(p)

6

⌈mr⌉−1∑

n=0

#wF>1

(̂
Γss

quot(X|Y)

(
mA; nY

)
\ {0}

)
log(p)

6

⌈mr⌉−1∑

n=0

ℓ̂ss
quot(X|Y)

(
mA; nY

)
+

C̃0

(
M|Y , Y, ε

)

log(p)
mdim X(mr + 1).

Hence,

ℓ̂ss
(
mD; mE

)
− ℓ̂ss

(
mD; mE + mrY

)
− #wF•

(̂
Γss

(
mA

)
\ {0}

)
log(p)

+ #wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)
log(p)

> −rC̃
(
M|Y , A|Y + ρ0M|Y , Y, p, ε

)
mdim X+1 − [K : Q]I(D)mdim X log(m)

− S mdim X

for any m > µ(ε, p), where we set

S ≔
C̃0

(
M|Y , Y, 1

)

log(2)
+ (1 + (ρ0 + 1) log(3))[KY : Q]I(A|Y + ρ0M|Y)

+ log(3(ρ0 + 1))[K : Q]I(D).

�

Theorem 3.11. Let X be a normal, projective, and geometrically connected K-
variety, let Y be a prime Cartier divisor on X, and let

(
D; E

)
∈ ĈDivQ,Q(X) be a

Y-big pair on X. Let A ∈ ĈDivQ(X) be any w-ample adelic Q-Cartier divisor on X

such that
(
D − A; E

)
is Y-big. If ordY(E) > 0, then

lim
r↓0

v̂ol
(
D; E

)
− v̂ol

(
D; E + rY

)

r
> (dim X + 1) v̂olX|Y

(
A
)
.

Proof. By homogeneity (see [9, Corollary 3.25] and Corollary 2.17 (2)), one can

assume that
(
D; E

)
∈ ĈDivZ,Z(X) and A ∈ ĈDivZ(X). For the A, one can choose a

ρ0 as in Proposition 2.9. There exists a normal and projective OK-model X such
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that the Zariski closure Y of Y in X is Cartier and such that there exists a Y -

effective arithmetic Cartier divisor M on X such that H0
X|Y(M |X + Y) , {0} and

such that

Γ̂f
X|Y

(
mA; mrY

)
⊂ H0 (OX (mM )|Y )

and

Γ̂ss
X|Y

(
mA; mrY

)
⊂ Γ̂s

(
OX

(
mM

)∣∣∣∣
Y

)

hold for every m ∈ Z>0 and r ∈ R with 0 6 r 6 ρ0. Let M ≔M
ad

.

Fix any ε ∈ R with 0 < ε 6 1 such that A(−ε) is also w-ample. Let p be any

prime number satisfying

p > max

{
3, 4δ

(
M|Y

)
/ε
}
,

and let

F• : X ⊃ Y ⊃ F2 ⊃ · · · ⊃ Fdim X+1 = {ξ}

be a flag on X such that F>1 is a good flag on Y over p. Then

C′
(
M|Y , Y

)

log(p)
6 ε[KY : Q]I(M|Y) (3.13)

and

C̃
(
M|Y , A|Y + ρ0M|Y , Y, p, ε

)
6 ε[KY : Q] (2I(M|Y) + I(A|Y + ρ0M|Y)) . (3.14)

Let wF• be the valuation map attached to F•, and consider the convex body

∆̂
F•

YM

(
A; rY

)
≔


⋃

m∈Z>1

1

m
wF•

(̂
Γss

(
mA; mrY

)
\ {0}

)


for each r ∈ Q with 0 6 r 6 ρ0 (see Definition 3.8).

Claim 3.12. One has

lim
r↓0

volRdim X+1

(
∆̂

F•

YM

(
A
))
− volRdim X+1

(
∆̂

F•

YM

(
A; rY

))

r

> volRdim X

(
∆̂

F>1

CL(X|Y)

(
A(−ε)

))
.

Proof of Claim 3.12. Obviously, one has

lim
r↓0

volRdim X+1

(
∆̂

F•

YM

(
A
))
− volRdim X+1

(
∆̂

F•

YM

(
A; rY

))

r
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> volRdim X

(
∆̂

F•

YM

(
A
)
∩ {w1 = − ordY(A)}

)
,

where the right-hand side denotes the Euclidean volume of the slice of ∆̂
F•

YM

(
A
)

by

the hyperplane {w1 = − ordY(A)}. By Proposition 2.9, one has

volRdim X

(
∆̂

F•

YM

(
A
)
∩ {w1 = − ordY(A)}

)
> volRdim X

(
∆̂

F>1

CL(X|Y)

(
A(−ε)

))

as required (see also [14, Appendix]). �

By taking m→ ∞ in Theorem 3.10, one has

v̂ol
(
D; E

)
− v̂ol

(
D; E + rY

)

r

> (dim X + 1)!
volRdim X+1

(
∆̂

F•

YM

(
A
))
− volRdim X+1

(
∆̂

F•

YM

(
A; rY

))

r
log(p)

− ε[KY : Q](dim X + 1)! (2I(M|Y) + I(A|Y + ρ0M|Y))

for any r ∈ R with 0 < r 6 ρ0 (see Lemma 3.9 and (3.14)). Hence, by taking r ↓ 0,

lim
r↓0

v̂ol
(
D; E

)
− v̂ol

(
D; E + rY

)

r

> (dim X + 1)! volRdim X

(
∆̂

F>1

CL(X|Y)

(
A(−ε)

))
log(p)

− ε[KY : Q](dim X + 1)! (2I(M|Y) + I(A|Y + ρ0M|Y))

> (dim X + 1) v̂olX|Y

(
A(−ε)

)

− ε[KY : Q](dim X + 1)! (3I(M|Y) + I(A|Y + ρ0M|Y))

(see Claim 3.12, Corollary 2.15, and (3.13)), which leads to the required estimate

as ε ↓ 0. �

Proof of Theorem A. Assume
(
D; E

)
∈ ĈDivQ,Q(X). By Corollary 3.5, Theorem 3.10,

and [10, Proposition 8.1], one has

(dim X + 1) d̂eg

((
M|π−1

∗ (Y)

)· dim X
)

6 lim
r↓0

v̂ol
(
D; E

)
− v̂ol

(
D; E + rY

)

r
6 (dim X + 1)

〈(
D; E

)· dim X
〉∣∣∣∣∣

Y

for any (π,M) ∈ Θ̂rw
Y

(
D; E

)
. Hence, by Remark 2.19 (2),

lim
r↓0

v̂ol
(
D; E

)
− v̂ol

(
D; E + rY

)

r
= (dim X + 1)

〈(
D; E

)· dim X
〉∣∣∣∣∣

Y
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for every Y-big pair
(
D; E

)
∈ ĈDivQ,Q(X). Consider a finite dimensional and

Q-rational R-vector subspace of ĈDivR,R(X) containing both
(
D; E

)
and (0; Y).

Since the function
(
D
′
; E′

)
7→ v̂ol

(
D
′
; E′

)1/(dim X+1)
is concave (see [11, Theo-

rem 2.24(3)]) and the function

v̂ol
(
D
′
; E′

)− dim X/(dim X+1)
·

〈(
D
′
; E′

)· dim X
〉∣∣∣∣∣

Y

is locally Lipschitz-continuous (see Remark 2.19 (5)), one obtains the theorem by

Lemma 3.2. �
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