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Expectation of the Largest bet size in Labouchere System
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Abstract

For Labouchere system with winning probability p at each coup, we prove that the expecta-
tion of the largest bet size under any initial list is finite if p > 1

2
, and is infinite if p ≤ 1

2
, solving

the open conjecture in [GS01]. The same result holds for a general family of betting systems,
and the proof builds upon a recursive representation of the optimal betting system in the larger
family.
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1 Introduction

The Labouchere system, also known as the cancellation system, is one of the most well-known
betting systems used in roulette. It was popularized by Henry Du Pré Labouchere, an English
politician, writer and journalist. Before the betting, the bettor chooses an initial list L0 of positive
real numbers (e.g., L0 = (1, 2, 3, 4)). During each bet, the bet size equals the sum of the first and
last numbers on the list (if only one number remains on the list, then the bet size equals that
number). After a win, the first and last terms are canceled from the list; after a loss, the amount
just lost is appended to the last term of the list. This system is continued until the list is empty.
Table 1 illustrates an example of Labouchere system.

We introduce the following notations. Let Ln be the list after the n-th coup, ln be the corre-
sponding list length, Bn be the bet size at n-th coup, Tn be the remaining target profit (i.e., the
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Table 1: An illustration of the Labouchere system with initial list L0 = (1, 2, 3, 4).

Coup n Bet Size Bn Result List Ln Target Profit Tn
1, 2, 3, 4 10

1 5 Win 2, 3 5

2 5 Loss 2, 3, 5 10

3 7 Loss 2, 3, 5, 7 17

4 9 Loss 2, 3, 5, 7, 9 26

5 11 Win 3, 5, 7 15

6 10 Loss 3, 5, 7, 10 25

7 13 Win 5, 7 12

8 12 Win ∅ 0

sum of the numbers in the list) after n-th coup, and N be the stopping time that the list first
becomes empty, i.e., LN = ∅. In this paper, we investigate the behavior of the largest bet size
B⋆ , max1≤n≤N Bn (or supn≥1Bn if N = ∞) in the Labouchere system, and in particular, whether
or not B⋆ has a finite expectation.

There is very limited literature on analyzing the Labouchere system. Let p ∈ [0, 1] be the
winning probability at each coup, where we assume that the outcomes at different coups are inde-
pendent. By the standard theory of asymmetric random walk, it is straightforward to show that
N < ∞ almost surely if and only if p ≥ 1

3 and E[N ] < ∞ if and only if p > 1
3 . Downton [Dow80]

found a recursion for the distribution of the stopping time N in the case that the initial list L0

is (1, 2, 3, 4), and Ethier [Eth08] generalized this result to arbitrary initial list and gave an ex-
plicit formula using a generalized version of the ballot theorem [Ber87, Bar87]. Specifically, the
stopping time N has finite k-th moment for any k if and only if p > 1

3 . However, Grimmett and

Stirzaker [GS01, Problem 12.9.15] showed that both max1≤n≤N Tn and
∑N

n=1Bn have infinite ex-
pectations if p = 1

2 . It was also stated in [GS01] that E[B⋆] = ∞, but we were informed by Ethier
that the proof was incomplete (via an email exchange between him and Grimmett in February
2006). Hence, it remains an open conjecture for more than a decade if the largest bet size B⋆ also
has an infinite expectation when 1

3 < p ≤ 1
2 , which is the main focus of this paper.

There is also another betting system which is similar to the Labouchere system, i.e., the Fi-
bonacci system. Instead of considering the first and last numbers in the list at each coup, the
last two numbers are added or canceled in the Fibonacci system. Ethier [Eth10] showed that
EB⋆ = +∞ in Fibonacci system if and only if p ≤ 1

2 . However, the proof heavily relies on the fact
that any list in a Fibonacci system is uniquely determined by its length, which does not hold for
the Labouchere system where the list evolves in a more complicated “history dependent” manner.

2 Main Results

To study the Labouchere system, we first introduce a larger family of betting systems called (a, b)-
list systems:

Definition 1 ((a, b)-List System). Let a < 0 ≤ b be integers. An (a, b)-list system consists of a
target sequence {Tn}, a bet sequence {Bn} and a length sequence {ln}, which evolve as follows:

1. At the beginning, T0 > 0 and l0 ∈ {1, 2, · · · };
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2. At n-th coup, the system makes a bet size Bn ∈ [0, Tn−1] which may depend on the entire
history. Then the target and length sequences evolve as

Tn =

{

Tn−1 −Bn if wins

Tn−1 +Bn if loses
, ln =

{

(ln−1 + a)+ if wins

ln−1 + b if loses
.

3. Termination condition: let N = inf{n : ln = 0} be the stopping time that the length becomes
zero, we must have Tn = ln = 0 for any n ≥ N and Bn = 0 for any n > N .

In such a list system, target Tn represents the remaining amount of money one would like to
earn at the end of n-th coup; consequently, Tn shrinks after a win, and increases after a loss. Length
ln represents the length of the “list” at n-th coup, where it may be some real/virtual list which
governs the betting process. For example, the well-known martingale system (where the bet is
doubled after each loss) belongs to the (−1, 0)-list system with l0 = 1 and Bn = Tn−1, and both
Labouchere and Fibonacci systems fall into the category of (−2, 1)-list systems. The termination
condition ensures that, as long as the list length ln hits zero, the target must be fulfilled as well
(i.e., Tn = 0), and the betting process terminates.

In this paper, we only consider (−2, 1)-list systems where the Labouchere system is included,
but our results and proof techniques are generalizable to general (a, b)-list systems. Our first result
characterizes the behavior of the largest bet size B⋆ under general list systems:

Theorem 1. For any (−2, 1)-list system, the following holds:

1. If p > 1
2 , we have E[B⋆] <∞;

2. If 1
3 < p < 1

2 , we have E[B⋆] = ∞;

3. If p ≤ 1
3 and Bn ≥ c1ln−1 + c2 for some constants c1 > 0, c2 ∈ R almost surely, we have

E[B⋆] = ∞.

Theorem 1 shows that for any (−2, 1)-list systems, the expectation E[B⋆] of the largest bet size
B⋆ has a phase transition at p = 1

2 : the expectation is finite if the player is favored, and is infinite
if the house takes the advantage. Consequently, we have the following corollary:

Corollary 1. For the Labouchere system with any initial list, we have E[B⋆] < ∞ if p > 1
2 and

E[B⋆] = ∞ if p < 1
2 .

The fair-game case p = 1
2 requires more delicate analysis, and is summarized in the following

theorem:

Theorem 2. Let (bl)
∞
l=1, (bl)

∞
l=1 be two sequences taking value in [0, 1]. Suppose that a (−2, 1)-list

system satisfies Tn−1bln−1
≤ Bn ≤ Tn−1bln−1

for any n, and one of the following conditions holds:

1. liml→∞ bl = 0;

2. inf l bl > 0,

we have E[B⋆] = ∞ under p = 1
2 .

Note that Bn/Tn−1 is the bet proportion at n-th coup, and general (−2, 1)-list systems corre-
spond to the case where bl = 1, bl = 0 for any l. Theorem 2 shows that, if the bet proportion either
vanishes or is lower bounded from below as the list length l grows, the largest bet size still has an
infinite expectation in a fair game. The following corollary follows from Theorem 2:
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Corollary 2. For the Labouchere system with any initial list, E[B⋆] = ∞ if p = 1
2 .

Combining Corollaries 1 and 2, we conclude that for the Labouchere system, E[B⋆] = ∞ if and
only if p ≤ 1

2 , solving the open conjecture in [GS01]. It also follows directly from Theorems 1 and
2 that for the Fibonacci system, E[B⋆] = ∞ if and only if p ≤ 1

2 , recovering the result in [Eth10].
Generalizing the arguments to (−1, 0)-list systems, this also recovers the famous St. Petersburg
paradox that E[B⋆] = ∞ in the martingale system under p = 1

2 .
Based on Theorem 2, a natural question would be that whether E[B⋆] = ∞ holds in any

(−2, 1)-list systems. We have the following partial result:

Theorem 3. For any (−2, 1)-list system and ǫ > 0, the following holds under p = 1
2 :

E

[

B⋆(1 ∨ logB⋆)−(1+ǫ)
]

<∞, E[B⋆(1 ∨ logB⋆)] = ∞.

Theorem 3 shows that, the moment E[(B⋆)α] always has a phase transition at α = 1 in a fair
game. However, the exact answer for α = 1 is still unknown, and we leave it as a conjecture:

Conjecture 1. For any (−2, 1)-list systems, E[B⋆] = ∞ under p = 1
2 .

3 Proof of Theorems 1 and 3

In this section, we first prove Theorem 3, and then apply Theorem 3 to proving Theorem 1.

3.1 Proof of Theorem 3

We make use of the asymptotic tail behavior of the stopping time N in the (−2, 1)-list system.

Lemma 1. [Eth08] For p > 1
3 , we have

Pl0(N ≥ n+ 1) ∼ Dl0(n)n
− 3

2κ
n

3

where l0 is the length of the initial list, Dl0(n) is a constant only depending on l0 and n (mod 3),
and κ , 27

4 p(1− p)2 < 1.

Based on Lemma 1, we are about to prove Theorem 3. We first show that E
[

B⋆(1 ∨ logB⋆)−(1+ǫ)
]

<
∞. Under p = 1

2 , the target sequence {Tn} is a martingale, with E[Tn] = T0. By Doob’s maximal
inequality, for any λ > 0,

P

(

max
0≤m≤n

Tm ≥ λ

)

≤ E[Tn]

λ
=
T0
λ
.

Note that Bn ≤ Tn−1, for λ ≥ 2 we therefore have

P

(

max
1≤m≤n

Bm(1 ∨ logBm)−(1+ǫ) ≥ λ

)

= P

(

max
1≤m≤n

Bm ≥ Cλ(log λ)1+ǫ

)

≤ P

(

max
0≤m≤n−1

Tm ≥ Cλ(log λ)1+ǫ

)

≤ T0
Cλ(log λ)1+ǫ

4



where C > 0 is some universal constant. As a result,

E

[

max
1≤m≤n

Bm(1 ∨ logBm)−(1+ǫ)

]

=

∫ ∞

0
P

(

max
1≤m≤n

Bm(1 ∨ logBm)−(1+ǫ) ≥ λ

)

dλ

≤ 2 +

∫ ∞

2

T0
Cλ(log λ)1+ǫ

dλ <∞

where in the last step we have used that

∫ ∞

2

dx

x(log x)1+ǫ
<∞.

Choosing n→ ∞, by monotone convergence we arrive at E
[

B⋆(1 ∨ logB⋆)−(1+ǫ)
]

<∞.
Now we show that E[B⋆(1 ∨ logB⋆)] = ∞. We recall the following Fenchel–Young inequality:

xy ≤ ψ(x) + ψ⋆(y)

where ψ(·) is convex, and ψ⋆(y) = supx(xy −ψ(x)) is the Fenchel–Legendre dual of ψ. For ψ(x) =
ecx with c > 0, we have

ψ⋆(y) = sup
x∈R

(xy − ecx) =
y

c

(

log
y

c
− 1
)

,

and therefore

E[NB⋆] ≤ E[ψ(N)] + E[ψ⋆(B⋆)] = E[ecN ] +
1

c
E

[

B⋆

(

log
B⋆

c
− 1

)]

.

By Lemma 1, for c > 0 sufficiently small we have E[ecN ] <∞. Moreover, [GS01] shows that

E[NB⋆] ≥ E

[

N
∑

n=1

Bn

]

= ∞.

A combination of the previous two inequalities yields E[B⋆(1 ∨ logB⋆)] = ∞.

3.2 Proof of Theorem 1 and Corollary 1

Now we prove Theorem 1 using Theorem 3 and change of measure.
Fix any p > 1

2 , let P be the probability measure over the betting process under winning
probability p, and Q be the counterpart under winning probability 1

2 . Note that for any sample
path ω with stopping time N = n, there must be n

3 + c wins and
2n
3 − c losses, where c is a constant

depending only on the initial length l0 and n (mod 3). As a result, the likelihood ratio is

dP

dQ
(ω) =

p
n

3
+c(1− p)

2n

3
−c

2−n
=

(

p

1− p

)c

·
(

p(1− p)2

1
2(1− 1

2)
2

)
n

3

≤ Cρn

where C > 0, ρ ∈ (0, 1) are numerical constants independent of n, and we have used that the
function p 7→ p(1− p)2 is strictly decreasing in p ∈ [13 , 1]. As a result,

EP [B
⋆] = EQ

[

B⋆ · dP
dQ

]

≤ C · EQ[ρ
NB⋆].
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Since Tn ≤ Tn−1 +Bn ≤ 2Tn−1 in any list system, B⋆ ≤ max0≤n≤N Tn ≤ T0 · 2N , and therefore

EQ[ρ
NB⋆] ≤ T ǫ

0 · EQ[(ρ2
ǫ)N (B⋆)1−ǫ]

for any ǫ > 0. Choosing ǫ > 0 small enough such that ρ2ǫ < 1, by Theorem 3 we conclude that
EP [B

⋆] <∞.
For p ∈ (13 ,

1
2), we use the same argument to obtain dP

dQ
≥ CρN for some ρ > 1. Then

EP [B
⋆] ≥ C · EQ[ρ

NB⋆] ≥ CT−ǫ
0 · EQ[(ρ2

−ǫ)N (B⋆)1+ǫ],

and by choosing ǫ > 0 small enough, Theorem 3 yields EP [B
⋆] = ∞.

Finally, for p ≤ 1
3 , we have E[sup0≤n<N ln] = ∞ by the theory of asymmetric random walk.

Hence, by assumption we have

E[B⋆] ≥ c1E[ sup
0≤n<N

ln] + c2 = ∞

as desired. The proof of Theorem 1 is completed.
As for Corollary 1, it suffices to verify that the condition Bn ≥ c1ln−1 + c2 holds for the

Labouchere system. Let a > 0 be the minimum number in the initial list L0, a simple induction on n
yields that Bn ≥ a(ln−1−l0)+, which shows that the condition is fulfilled with c1 = a > 0, c2 = −al0.

4 Proof of Theorem 2 and Corollary 2

In this section, we first use a recursive representation of the optimal list system to prove Theorem 2.
Then we investigate the specific properties of the Labouchere system and show that the condition
in Theorem 2 holds, thereby proving Corollary 2.

4.1 Proof of Theorem 2

If infl bl ≥ c > 0, we have B⋆ ≥ cmax0≤n≤N Tn, which has an infinite expectation [GS01]. Now we
assume that liml→∞ bl = 0 and prove Theorem 2 by contradiction. We first introduce the following
definition:

Definition 2. For any x > 0 and l ∈ {1, 2, · · · }, we define f(x, l) to be the infimum of E[B⋆] over
all possible (−2, 1)-list systems with initial target x and initial length l, such that Bn ≤ bln−1

Tn−1

for any n.

Definition 2 considers an optimal (−2, 1)-list system with initial target x and initial length l,
where optimality is measured in terms of a smallest expectation of the largest bet size B⋆. The
quantity f(x, l) ∈ R+ ∪ {+∞} is the corresponding expectation, and it is well-defined even if the
optimal list system does not exist. The next lemma presents recursive relations between f(x, l)
with different l.

Lemma 2. There exists some sequence {al} taking value in R+ ∪ {+∞} such that f(x, l) = xal
for any x > 0. Moreover, the sequence {al} satisfies the following inequalities:

al ≥ min
b∈[0,bl]

max{b, (1 − b)al−2}+max{b, (1 + b)al+1}
2

, l ≥ 3

a1 ≥ a2 +
1

2
≥ a3 + 1.

6



Proof. When the initial target x is scaled by λ > 0, we may always scale all bet sizes by λ to arrive
at a new list system with the initial target λx, and vice versa. Hence, f(x, l) is proportional to x,
and f(x, l) = xal.

For l ≥ 3 and any (−2, 1)-list system, let b ∈ [0, bl] be any bet size at the first coup with initial
target T0 = 1 and initial length l. Let B⋆

1 , B
⋆
2 be the largest bet sizes (excluding the first bet) after

winning/losing the first coup, respectively. Then by definition of f(x, l), we have

EB⋆
1 ≥ f(1− b, l − 2) = (1− b)al−2,

EB⋆
2 ≥ f(1 + b, l + 1) = (1 + b)al+1.

Note that B⋆ is either max{b,B⋆
1} or max{b,B⋆

2}, we have

E[B⋆] =
Emax{b,B⋆

1}+ Emax{b,B⋆
2}

2

≥ max{b,EB⋆
1}+max{b,EB⋆

2}
2

≥ max{b, (1 − b)al−2}+max{b, (1 + b)al+1}
2

where the first inequality is due to the convexity of x 7→ max{b, x}. Note that this inequality holds
for any list systems, taking infimum over the LHS gives the desired inequality for l ≥ 3. The other
inequalities for l ≤ 2 can be established analogously.

Based on Lemma 2, we may investigate more properties of al. If a1 = ∞, it is obvious that
al = ∞ for any l ∈ N (since any initial list may evolve into length one with non-zero probability),
and Theorem 2 holds. Next we show that a1 < ∞ is impossible. Assume by contradiction that
a1 <∞, we will have the following lemma.

Lemma 3. If a1 <∞, the sequence {al} will be strictly decreasing, i.e., a1 > a2 > a3 > · · · .

Proof. For l ≥ 3, by Lemma 2 we have

al ≥ min
b∈[0,bl]

(1− b)al−2 + (1 + b)al+1

2

≥ min
b∈[0,1]

(1− b)al−2 + (1 + b)al+1

2

= min

{

al−2 + al+1

2
, al+1

}

,

where in the last step we have used the fact that an affine function attains its minimum at the
boundary. Consequently, if we already know that a1 ≥ a2 ≥ · · · ≥ al, we must also have al ≥ al+1.
Hence, by induction on l, the sequence {al} is decreasing.

To show strict decreasing property, by Lemma 2 again we have

al ≥ min
b∈[0,bl]

max{b, (1 − b)al−2}+ (1 + b)al+1

2

≥ min
b∈[0,1]

max{b, (1 − b)al−2}+ (1 + b)al+1

2

=
1

2
min
b∈[0,1]

max{b+ (1 + b)al+1, (1− b)al−2 + (1 + b)al+1}.
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For real numbers r1, r2, s1, s2 with r1 > 0 ≥ r2, s1 ≤ s2, r1 + s1 ≥ r2 + s2, straightforward compu-
tation yields

min
x∈[0,1]

max{r1x+ s1, r2x+ s2} =
r1s2 − r2s1
r1 − r2

.

Hence,

al ≥
2al−2al+1 + al−2 + al+1

2(al−2 + 1)
= al+1 +

al−2 − al+1

2(al−2 + 1)
.

If we have al = al+1, we will also have al−2 = al+1 based on the previous inequality. Due to the
decreasing property of {al}, al−1 = al also holds, and repeating this process yields a2 = a3, a
contradiction to Lemma 2. Hence al > al+1 for any l.

Based on Lemmas 2 and 3, we are about to arrive at the desired contradiction. Fix any ǫ > 0
such that ρ , 1−ǫ

1+ǫ
+ (1−ǫ

1+ǫ
)2 > 1. Since liml→∞ bl = 0, we take l0 > 0 large enough such that bl < ǫ

for any l > l0. Then for l > l0, Lemma 2 yields

al ≥ min
b∈[0,bl]

(1− b)al−2 + (1 + b)al+1

2

≥ min
b∈[0,ǫ]

(1− b)al−2 + (1 + b)al+1

2

= min
b∈[0,ǫ]

(al+1 − al−2)b+ al+1 + al−2

2

=
(al+1 − al−2)ǫ+ al+1 + al−2

2

where in the last step we have used al+1 ≤ al−2 by Lemma 3. A rearrangement of the previous
inequality gives

al − al+1 ≥
1− ǫ

1 + ǫ
· (al−2 − al)

for any l > l0. Similarly,

al+1 − al+2 ≥
1− ǫ

1 + ǫ
· (al−1 − al+1)

≥ 1− ǫ

1 + ǫ
· (al − al+1)

≥
(

1− ǫ

1 + ǫ

)2

· (al−2 − al).

Adding them together yields

al − al+2 ≥
[

1− ǫ

1 + ǫ
+

(

1− ǫ

1 + ǫ

)2
]

· (al−2 − al) = ρ(al−2 − al).

Our choice of ǫ implies ρ > 1, and therefore al+2k−2 − al+2k ≥ ρk(al−2 − al) for any k ∈ N and
l > l0. Since al+2k−2 − al+2k ≤ a1, and al−2 > al by Lemma 3, this inequality implies that

a1 ≥ ρk(al−2 − al)

for any k = 1, 2, · · · , a contradiction to the assumption a1 < ∞. The proof of Theorem 2 is
complete.
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4.2 Proof of Corollary 2

First we observe that it suffices to prove the case where the initial list consists of a single positive
number. This observation is due to that there is a positive probability to reduce the list length to
ln = 1 after finitely many coups for any initial list L0.

To study the combinatorial properties of the Labouchere system, we introduce the following
definition:

Definition 3. A list of positive real numbers (a1, a2, a3, · · · , an) is called good if it satisfies the
following conditions:

• Every element in the list is positive, i.e., ai > 0 for any i;

• The list is non-decreasing, i.e., a1 ≤ a2 ≤ · · · ≤ an;

• The difference of the list is non-decreasing with difference at most a1, i.e., a2−a1 ≤ a3−a2 ≤
· · · ≤ an − an−1 ≤ a1.

The key properties of a good list are summarized in the following lemmas.

Lemma 4. If the initial list L0 is good, the list Ln after n-th coup is also good for any n.

Proof. It suffices to prove that, if Ln−1 = (a1, · · · , al) is a good list, so is Ln. Based on the outcome
at n-th coup, there are only two possibilities:

• Ln = (a1, a2, · · · , al, a1 + al), or

• Ln = (a2, a3, · · · , al−1).

In either case, one can check from Definition 3 directly that Ln is a good list, as desired.

Lemma 5. If the list Ln−1 is good and has length l ≥ 2, in Labouchere system we have

Bn

Tn−1
≤
√

2

l
+

2

l
.

Proof. Let Ln−1 = (a1, · · · , al). By definition, for any k ≤ l we have

al ≤ al−1 + a1 ≤ al−2 + 2a1 ≤ · · · ≤ al−k + ka1.

As a result,

al ≤
1

k

k
∑

j=1

(al−j + ja1) ≤
1

k

l
∑

j=1

aj +
k + 1

2
· a1.

Note that the current bet size is Bn = a1+al, and the current target is Tn−1 =
∑l

j=1 aj . Hence,
for any k ≤ l we have

Bn

Tn−1
=

a1 + al
∑l

j=1 aj
≤ (k + 3)a1

2
∑l

j=1 aj
+

1

k
≤ k + 3

2l
+

1

k
.

Setting k = ⌈
√
2l⌉ ≤ l arrives at

Bn

Tn−1
≤ ⌈

√
2l⌉+ 3

2l
+

1

⌈
√
2l⌉

≤
√
2l + 4

2l
+

1√
2l

=

√

2

l
+

2

l
,

as claimed.
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Note that the initial list L0 consisting of a single positive number is good, by Lemma 4 we know
that all future lists Ln are also good. Moreover, by setting

bl = min

{

√

2

l
+

2

l
, 1

}

,

by Lemma 5 we know that Bn ≤ bln−1
Tn−1 always holds. Note that liml→∞ bl = 0, Theorem 2

yields E[B⋆] = ∞ in Labouchere system, as desired.
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