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Size reconstructibility of graphs
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Abstract

The deck of a graph G is given by the multiset of (unlabelled) sub-
graphs {G − v : v ∈ V (G)}. The subgraphs G − v are referred to as
the cards of G. Brown and Fenner recently showed that, for n ≥ 29,
the number of edges of a graph G can be computed from any deck
missing 2 cards. We show that, for sufficiently large n, the number of
edges can be computed from any deck missing at most 1

20

√
n cards.

1 Introduction

Throughout this paper, all graphs are finite and undirected with no loops or
multiple edges. The order of a graph is the number of vertices in the graph;
the size of a graph refers to the number of edges.

Given a graph G and any vertex v ∈ V (G), the card G−v is the subgraph
of G obtained by removing the vertex v and all edges incident to v. The
multiset D(G) of all unlabelled cards of G is called the deck and has size n.

It is natural to ask whether it is possible for two non-isomorphic graphs
to have the same deck. Kelly and Ulam [8, 9, 15] proposed the following
Reconstruction Conjecture.

Conjecture 1.1. For n > 2, two graphs G and H of order n are isomorphic

if and only if D(G) = D(H).

The Reconstruction Conjecture remains open, although it is known to be
true for a few classes of graphs (for example, trees [9]). Moreover, almost
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every graph can be reconstructed [2, 11, 12]. For more background, see
[1, 3, 4, 10, 14].

A more general problem is to determine which parameters of a graph can
be calculated from its deck. Such parameters are said to be reconstructible.
Given a full deck of cards, it is easy to reconstruct the number of edges m:
summing over the edges present in all of the cards gives m(n − 2), where n
is the number of vertices. It is also well known that connectedness and the
degree sequence are reconstructible.

Some parameters are reconstructible even if there is not a full deck of
cards. For example, Bowler, Brown, Fenner and Myrvold [6] showed that any⌊
n
2

⌋
+ 2 cards suffice to determine whether the graph is connected. Myrvold

[13] also found that the degree sequence is reconstructible from any n − 1
cards.

In this paper, we are concerned with reconstructing the number of edges.
Myrvold’s result [13] on the degree sequence immediately implies that the
size is reconstructible from any n − 1 cards. In a recent paper, Brown and
Fenner [7] showed that, for n ≥ 29, the size of a graph can be reconstructed
from any n− 2 cards.

Woodall [16] found that, for any p ≥ 3 and n sufficiently large, if two
graphs on n vertices have n− p common cards, then the number of edges in
these two graphs differs by at most p− 2.

In Section 2, we will improve on both results by showing that the size of
a graph is reconstructible with up to 1

20

√
n missing cards. In particular, we

will prove the following theorem.

Theorem 1.2. For n sufficiently large and k ≤ 1
20

√
n, the number of edges

m of a graph G on n vertices is reconstructible from any n− k cards.

We will also consider the following adversarial version of the problem.
An adversary chooses a graph G of order n and gives us a collection of n
cards, each showing a graph on n − 1 vertices. We are told that there are
n − k true cards, which come from the deck D(G). The other k cards are
false cards, which can depict any graph of order n − 1. For which k can we
reconstruct the size of G, regardless of the graph G and the cards given by
the adversary? Theorem 1.2 immediately implies the following.

Corollary 1.3. Let n be sufficiently large and k ≤ 1
40

√
n. The number of

edges m of a graph G on n vertices is reconstructible from any collection C
of cards where n− k are true and k are false.

Proof. Suppose that G and H are two graphs on n vertices and each has at
least n − k cards in common with a deck of cards C. Then G and H must
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have at least n− 2k cards in common. We may apply Theorem 1.2 to these
n− 2k common cards. If n is sufficiently large and 2k ≤ 1

20

√
n, then G and

H must have the same number of edges. �

The rest of the paper is organised as follows. Theorem 1.2 is proved in
Section 2 and some open problems are given in Section 3.

2 Size reconstruction from n− k cards

We first give the relevant definitions in Section 2.1 followed by an outline of
our proof in Section 2.2. Some of the auxiliary results are given in Section
2.3 and the main proof is presented in Section 2.4.

2.1 Notation and definitions

Throughout Section 2, G is a graph of order n and size m = e(G), where m
is unknown. The vertex set of G is V (G) = {v1, . . . , vn} and we write Gi for
the card G− vi. We may assume that we are given the cards G1, . . . , Gn−k.
In the proof of the main result, we will assume that k ≤ 1

20

√
n.

For any graph H , let the number of vertices of degree t be

dt(H) = |{v ∈ V (H) : dH(v) = t}|

where dH(v) denotes the degree of v in H . For convenience, we write dt =
dt(G) and d(v) = dG(v). Note that dt is unknown for every t and that we
know dt(G1), . . . , dt(Gn−k).

Let st =
∑n

i=1 dt(Gi). As we will note below (Lemma 2.2), it is easy to
see that

st =

n∑

i=1

dt(Gi) = (n− 1− t)dt + (t + 1)dt+1. (1)

As we progress in the proof, we will use various estimates determined
from the cards for quantities of interest. We set

m̃ =

⌊
1

n− 2− k

n−k∑

i=1

e(Gi)

⌋

as an estimate of the number of edges m,

d̃t = |{i ∈ {1, . . . , n− k} : m̃− e(Gi) = t}|
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as an estimate of the number dt of vertices of degree t, and

s̃t =

n−k∑

i=1

dt(Gi)

as an estimate of st =
∑n

i=1 dt(Gi) (thus st is the number of degree t vertices
in the full deck of cards, while s̃t is the number of degree t vertices on the
cards that we are allowed to see).

We use the short-hand [n] = {1, . . . , n} and slightly abuse notation by
writing [a, b] = [a, b] ∩ Z for the set of integers in the corresponding real
interval.

2.2 Proof overview

We first show that our estimate m̃ on the number of edges m is an upper
bound on m satisfying 0 ≤ m̃ − m < 2k. Our goal is then to determine
α = m̃−m from the cards, since this allows us to compute m from m̃.

If we knew the number of edges m, then we could calculate the degree of
vertex vi from its card Gi by setting d(vi) = m− e(Gi). Instead, we estimate
the degree of the vertex corresponding to each card by

d̃(vi) = m̃− e(Gi)

and count the number of vertices with estimated degree t

d̃t = |{i ∈ [n− k] : m̃− e(Gi) = t}|.

Since m ≤ m̃, our estimate d̃(vi) may be larger than the actual degree of
vertex vi. This means that the actual sequence (dt) has been shifted to the
right by α. Moreover, k degrees did not get counted due to the missing cards.
It is important to notice here that we know the shift is equal to α, even when
we might not know any of the dt or α itself.

We note that dt − k ≤ d̃t+α ≤ dt. Hence, if we were told that dt > k
and dt+1 = · · · = dt+2k = 0, then we could determine the shift α from (d̃t)

(namely, α would be the largest i ∈ {0, . . . , 2k} for which d̃t+i > 0). Aiming
for a situation like this, we reconstruct dt exactly from the cards for many
values of t. If we know dt+1, then the formula given in (1) makes it possible
to compute dt from st. Unfortunately, we cannot determine st exactly but
an estimate s̃t suffices in many cases: if we can compute an estimate for the
integer dt with error less than 1

2
, then we can round away the error. This is

made precise in Claim 1.

4



In Lemma 2.5, we show that, for many values of t, we can “guess” the
integers dt and dt+1 from s̃t. We require the value t+1

n
to be bounded away

from certain fractions (that do not depend on G). Moreover, we need dt and
dt+1 to be small (to improve the estimate s̃t and to have fewer values to guess
between). In order to find a t for which dt and dt+1 are small, we compute
yet another estimate d∗t from the cards in Lemma 2.4.

Using our reconstructed values for dt, we reconstruct the shift α = m̃−m
which allows us to determine m.

2.3 Preliminary results

As noted above, we set

m̃ =

⌊
1

n− 2− k

n−k∑

i=1

e(Gi)

⌋
.

We will use m̃ as an estimate for the number of edges in G. Let

α = m̃−m.

We can calculate m̃ from the cards G1, . . . , Gn−k. Thus in order to determine
m, it is enough to determine the “shift” α.

Lemma 2.1. 0 ≤ m̃−m ≤ k(n−1)
n−2−k

.

Note that, if k = o(n), then α = m̃−m ≤ (1 + o(1))k.

Proof of Lemma 2.1. Suppose that we have the entire deck of G. Every
edge of G is on exactly n − 2 cards and therefore

∑n

i=1 e(Gi) = (n − 2)m.
Furthermore, for every vi ∈ V (G), we have that e(Gi) = m−d(vi). It follows
that

n−k∑

i=1

e(Gi) = (n− 2)m−
n∑

i=n−k+1

e(Gi)

= (n− 2− k)m+

n∑

j=n−k+1

d(vj).

The claimed bounds follows from the fact that 0 ≤ d(v) ≤ n − 1 for all
v ∈ V (G). �
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For t ∈ {0, . . . , n− 1}, recall that st =
∑n

i=1 dt(Gi) and

s̃t =

n−k∑

i=1

dt(Gi) =

n−k∑

i=1

|{v ∈ V (Gi) : dGi
(v) = t}|.

Note that s̃t can be calculated from the given cards.

Lemma 2.2. We have dt(Gi) ≤ dt + dt+1 and

st =
n∑

i=1

dt(Gi) = (n− 1− t)dt + (t + 1)dt+1. (2)

In particular, 0 ≤ st − s̃t ≤ k(dt + dt+1).

Proof. A vertex of degree t on a card Gi can either have degree t in the graph
G or degree t+1 (in the case where it is a neighbour of vi). This shows that
dt(Gi) ≤ dt + dt+1 for all i.

A vertex of degree t+1 gets counted exactly once in
∑n

i=1 dt(Gi) for each
of its neighbours; a vertex of degree t gets counted on all cards except for its
own and those of its neighbours. This proves (2). The last claim follows by
combining the fact that st − s̃t =

∑n

j=n−k+1 dt(Gj) with the first claim. �

As noted by Brown and Fenner [7] and others, any result for a graph G
implies a corresponding result for its complement G.

Observation 2.3. If D(G) = {G1, . . . , Gn}, then D(G) = {G1, . . . , Gn}.
Moreover, we have that dt(G) = dn−1−t(G) for any t ∈ {0, . . . , n− 1}.

The result below will be used to find values of t for which dt is guaranteed
to be small.

Lemma 2.4. Suppose that k ≤ n
3
. For each t ∈ {0, . . . , n − 1} we can

calculate a value d∗t from the cards that satisfies 1
4
dt−1 ≤ d∗t ≤ dt−1+dt+dt+1.

Proof. We will consider two cases: when t < n
2
and when t ≥ n

2
.

Case 1: t < n
2
.

Define
d∗t = d∗t (G) = max{dt(Gi) : 1 ≤ i ≤ n− k}. (3)

Note that d∗t can be calculated from the given cards and that d∗t ≤ dt + dt+1

by Lemma 2.2.
Let N be the number of times a vertex of degree t in G is seen as a vertex

of degree t − 1 in the cards G1, . . . , Gn−k. We will find upper and lower
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bounds for N . For the upper bound, note that a vertex of degree t appears
as a vertex of degree t− 1 on the card Gi = G− vi if and only if vi is one of
its neighbours. Therefore, N ≤ tdt.

Now consider the card Gi for some i ∈ [n − k]. We claim that there are
at least dt − 1− dt(Gi) vertices that have degree t− 1 in Gi but degree t in
G. Indeed, the only missing vertex is vi (which might have degree t) and at
most dt(Gi) of the other vertices with degree t in G have degree t in Gi. It
follows that N ≥

∑n−k

i=1 (dt − 1− dt(Gi)). We combine these bounds on N to
get

tdt ≥ N ≥
n−k∑

i=1

(dt − 1− dt(Gi)) ≥ (n− k)(dt − d∗t − 1).

Rearranging and using the assumptions that t < n
2
and n− k ≥ 2n

3
, we find

2
3
d∗t ≥ 1

6
dt − 2

3
. It follows that d∗t ≥ 1

4
dt − 1.

Case 2: t ≥ n
2
.

Define
d∗t = d∗n−1−t(G). (4)

As n− 1− t < n
2
, this is well-defined. From the argument above, we have

1

4
dn−1−t(G)− 1 ≤ d∗n−1−t(G) ≤ dn−1−t(G) + dn−t(G).

By Observation 2.3, we see that

1

4
dt(G)− 1 ≤ d∗n−1−t(G) = d∗t ≤ dt(G) + dt−1(G).

As dt−1 and dt+1 are both non-negative for every value of t, the result follows.
�

In the proof of Theorem 1.2, we will compare the unknown sequence (dt) to

a sequence (d̃t) that can be calculated from the cards. In order to do this,
we will need to know some values of dt exactly. For the proof we will only
need the following lemma in the case when β = 1

2
and t lies in the interval

[n
3
, 2n

3
]. However, the result may be useful elsewhere and so we state it in a

more general form.

Lemma 2.5. Suppose 0 ≤ β < 1 and let γ = 3
4
+ 1

4
β. Suppose n is sufficiently

large and k = O(nβ). Then, for any graph G of order n and any deck of n−k
cards, the value of dt can be calculated exactly for all but O(nγ) values of t.

7



Proof. Recall from Lemma 2.2 that

st =

n∑

i=1

dt(Gi) = (n− 1− t)dt + (t+ 1)dt+1

and that s̃t =
∑n−k

i=1 dt(Gi) approximates st where 0 ≤ st − s̃t ≤ k(dt+ dt+1).
Let q = t+1

n
∈ [0, 1]. Then st

n
= (1− q)dt + qdt+1 and

∣∣∣∣
st
n
− s̃t

n

∣∣∣∣ ≤
k(dt + dt+1)

n
.

Our goal will be to find values of t for there is only one choice of (a, b) such

that
∣∣(1− q)a + qb− s̃t

n

∣∣ ∈
[
0, k(dt+dt+1)

n

]
.

To achieve this, we first restrict to those values of t for which we can
calculate an upper bound on dt and dt+1 from the cards. Assume that n is
sufficiently large to ensure k ≤ n

3
. Lemma 2.4 then applies to ensure that, for

all t the quantity d∗t (which is defined in (3) and (4) and can be calculated
from the cards) satisfies 1

4
dt−1 ≤ d∗t ≤ dt−1+dt+dt+1. By the lower bound,

if d∗t is small then dt is small as well. We use the upper bound to show that
d∗t is small for most values of t. Indeed, let K = n1−γ , I = {0, . . . , n−1} and
A = {t ∈ I : d∗t + 1 ≥ 1

4
K}. Then

1

4
K|A| ≤

∑

t∈A

(d∗t + 1) ≤
∑

t∈A

(dt−1 + dt + dt+1 + 1) ≤ 4n.

and hence |A| ≤ 16n/K = 16nγ. For all t in the set I ′ = {t ∈ I : t, t+1 6∈ A},
we know that dt, dt+1 < K. Since |A| = |{a : a + 1 ∈ A}|, by restricting to
I ′, we remove at most O(nγ) potential t.

For all t ∈ I ′, we know that

0 ≤ (1− q)a+ qb− s̃t
n

≤ k(dt + dt+1)

n
<

2Kk

n

It remains to determine for which q = t+1
n

the following holds: any two
elements in X = {(1− q)a+ qb : a, b ∈ {0, . . . ⌊K⌋}} take values that are at
least 4Kk

n
apart, so that there is at most one (1 − q)a + qb ∈ X within 2Kk

n

of s̃t. For all such t ∈ I ′, we can then reconstruct dt and dt+1 from the cards
as the unique choices for a and b.

Let M = 4Kk
n

. Suppose that, for some δ < M , we are able to find
elements a > a′ and b < b′ within {0, . . . , ⌊K⌋} satisfying a(1 − q) + bq =
a′(1− q) + b′q + δ. Rearranging, we get

a− a′ = (b′ − b+ a− a′)q + δ.
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In particular, (b′−b+a−a′)q+δ is an integer. As b′−b+a−a′ ∈ {1, . . . , ⌊2K⌋},
it suffices to ensure that, for all y ∈ {1, . . . , ⌊2K⌋}, yq is at distance at least
M from all integers x ∈ {1, . . . , ⌊K⌋}. Let

R =

{
x

y
: x ∈ {1, . . . , ⌊K⌋} , y ∈ {1, . . . , ⌊2K⌋}

}

and

S =

{
t : ∃r ∈ R such that

∣∣∣∣
t + 1

n
− r

∣∣∣∣ < M

}
.

As argued above, for each t ∈ I ′ \ S we are able to “guess” the values of
dt and dt+1. It remains to bound the size of S. The set R has size less
than 2K2. For each choice of r ∈ R, there are at most 2Mn elements of
the form i

n
with i ∈ {0, . . . , n− 1} that are within M of r. This shows that

|S| ≤ 2Mn|R| ≤ 16kK3. Recall that k = O(nβ), 16K3 = O(n3(1−γ)) and
γ = 3

4
+ 1

4
β. We calculate

β + 3(1− γ) = β + 3

(
1

4
− 1

4
β

)
= γ.

Let J = I ′ \ S. For every t ∈ J , we can calculate dt exactly and furthermore
|I \ J | = |(I \ I ′) ∪ S)| = O(nγ) as desired. �

Since γ < 1, the result shows that we can reconstruct dt for all but o(n) of
the t ∈ [0, n].

2.4 Proof of main result

We are now ready to prove Theorem 1.2, which is restated below.

Theorem 1.2. For n sufficiently large and k ≤ 1
20

√
n, the number of edges

m of a graph G on n vertices is reconstructible from any n− k cards.

Proof. Let n be sufficiently large and k = ⌊ 1
20

√
n⌋. Let G be a graph on n

vertices and let G1, . . . , Gn−k be the n− k cards of G that we are given.
Our goal is to determine dt for many values of t. We will handle values of

t for which dt >
√
n separately from those t where dt ≤

√
n. For this reason,

it will be convenient to say that dt is big if dt >
√
n and little if dt ≤ 3

4

√
n.

Claim 1. Suppose that, for some t ≤ 2n
3
− 1, the value of dt+1 is known

exactly and is not big. Then either dt can be calculated exactly or dt can be

identified as being big.
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Proof. Since we can calculate s̃t =
∑n

i=n−k+1 dt(Gi) from the cards, if dt+1 is
known, then we can calculate

d′t =
1

n− 1− t
(s̃t − (t + 1)dt+1)

from the cards. By Lemma 2.2,

dt = d′t +
st − s̃t

n− 1− t

where 0 ≤ st − s̃t ≤ k(dt + dt+1). In particular dt ≥ d′t, so we recognise that
dt is big if d′t >

√
n. We now show that, if d′t ≤

√
n, then the closest integer

to d′t equals dt.
Since t + 1 ≤ 2n

3
and dt+1 is not big,

st − s̃t
n− 1− t

≤ 3

n
k(dt + dt+1) ≤

3

n
k(dt +

√
n) ≤ 3

20
√
n
(dt +

√
n). (5)

We conclude that dt − d′t <
1
2
if dt ≤ 2

√
n. Hence the closest integer to d′t

equals dt in this case.
From the calculation in (5) we also find

d′t ≥ dt −
st − s̃t

n− 1− t
> dt −

3

20
√
n
(dt +

√
n) ≥ 1

2
dt >

√
n

if dt > 2
√
n. Hence either d′t >

√
n (in which case dt is big) or rounding it

to the nearest integer gives us dt exactly. ♦

Claim 2. Suppose that, for some t ≥ n
3
+1, the value of dt−1 is known exactly

and is not big. Then either dt can be calculated exactly or dt can be identified

as being big.

Proof. If t ≥ n
3
+ 1, then n − t − 1 ≤ 2n

3
− 1. By Observation 2.3, we have

dn−t(G) = dt−1(G). Apply Claim 1 to G to see that either dt(G) = dn−t−1(G)
can be calculated exactly or it can be identified as being big. ♦

Claim 3. The interval [n
3
, 2n

3
] contains 2k consecutive values of t such that

every dt can be calculated exactly and they are all little.

Proof. Let I = [n
3
, 2n

3
] ∩ N. Lemma 2.5 with β = 1

2
gives a set J ⊆ I and a

constant c such that |J | ≤ cn
7

8 and we can calculate dt exactly if t ∈ I \ J .
Partition I into

⌊
n
6k

⌋
intervals of length 2k. At most

⌊
cn7/8

2k

⌋
of them

are completely contained in J . For n sufficiently large,
⌊

n
6k

⌋
−

⌊
cn7/8

2k

⌋
≥ n

8k
.
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Therefore, for these values of n, there are at least n
8k

intervals which are not
completely contained within J . By Claims 1 and 2, we are able to calculate
dt exactly for all values of t in each of these intervals unless the interval
happens to contain a value of t for which dt is big.

We know that there are at most 4
3

√
n values of t ∈ {0, . . . , n−1} for which

dt is not little. Therefore, as
n
8k

≥ 5
2

√
n > 4

3

√
n, there exists an interval which

is not completely contained within J and which only contains values of dt
that are little, each of which we can calculate exactly. ♦

By Claim 3, we can find an interval I = {b, b + 1, . . . , b + 2k − 1} ⊂ [n
3
, 2n

3
]

such that, for every t ∈ I, we can calculate dt exactly and it is little. We may
then recursively apply Claim 1, starting with t + 1 = b. We continue until
either we reach d0 or we hit a big vertex dtℓ for some tℓ < b. Similarly, we
may recursively apply Claim 2, starting with t−1 = b+2k−1. Again, we will
either calculate dn−1 or we will identify that dtr is big for some tr > b+2k−1.

If we are able to calculate both d0 and dn−1, then we will know dt for
every t ∈ {0, . . . , n − 1}. This tells us the degree sequence of G and hence
we can directly calculate m.

Therefore, we may assume that we have the following situation: there
exists an interval J ⊇ I with endpoints tℓ and tr such that tℓ < tr. For
every t ∈ J \ {tℓ, tr}, the value dt is known exactly and is not big. At least
one of dtℓ and dtr has been identified as being big. By Observation 2.3, we
may assume that dtℓ is big.

By Lemma 2.1, the estimate m̃ for m that we can obtain from the cards

G1, . . . , Gn−k satisfies m̃ = m+ α with 0 ≤ α ≤
⌊
k(n−1)
n−2−k

⌋
. For n sufficiently

large, we have n− 1 < 2(n− 2− k) and hence α < 2k. Recall from the proof

overview that d̃t = |{i ∈ {1, . . . , n − k} : m̃ − e(Gi) = t}| can be calculated
from the cards and that our goal is to discover the “shift” α = m̃−m in this
sequence. The overall shape of d̃0, . . . , d̃n−1 will be the same as the overall
of shape of d0, . . . , dn−1 but shifted to the right by α. Moreover, we are
“missing” k values, so that

∑n−1
t=0 |dt − d̃t+α| = k. (Note that we need to

calculate d̃t for 0 ≤ t ≤ n+2k and that, for t+ α ≥ n, it is possible for d̃t+α

to take a non-zero value.)
Although we do not know the exact value of dtℓ , it is sufficient to redefine

each dt and d̃t to be the minimum of their current value and
√
n. After doing

this, we still have
∑n−1

t=0 |dt− d̃t+α| ≤ k. It follows that
∑tr−1

t=tℓ
|dt− d̃t+α| ≤ k.

We now show that α can be recognised as the unique “shift” s in a given
interval that ensures d̃t+s is sufficiently close to dt.

Claim 4. For s ∈ {0, . . . , 2k−1},
∑tr−1

t=tℓ
|dt− d̃t+s| ≤ k if and only if s = α.
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Proof. Fix s ∈ {0, . . . , 2k − 1}. We noted above that
∑tr−1

t=tℓ
|dt − d̃t+α| ≤ k.

It remains to show that
∑tr−1

t=tℓ
|dt − d̃t+s| > k if s 6= α. Let s ∈ {0, . . . , 2k −

1} \ {α}. We have

tr−1∑

t=tℓ

|dt − d̃t+s| =
tr−1∑

t=tℓ

|dt − dt+s−α + dt+s−α − d̃t+s|

≥
tr−1∑

t=tℓ

|dt − dt+s−α| −
tr−1∑

t=tℓ

|dt+s−α − d̃t+s|. (6)

Since
∑n−1

t=0 |dt − d̃t+α| ≤ k, it follows that

tr−1∑

t=tℓ

|dt+s−α − d̃t+s| =
tr+s−α−1∑

t=tℓ+s−α

|dt − d̃t+α| ≤ k.

Hence, (6) will be strictly greater than k whenever
∑tr−1

t=tℓ
|dt − dt+s−α| > 2k.

Recall that the interval [tℓ, tr − 1] contains some interval I of 2k consec-
utive values of t such that every dt is little. As s ≤ 2k − 1 and s 6= α, there
exists some η ∈ Z such that tℓ + η(s − α) ∈ I, where η(s − α) > 0. First
assume η > 0. Since dtℓ is big and dtℓ+η(s−α) is little, we find

tr−1∑

t=tℓ

|dt − dt+s−α| ≥
η−1∑

i=0

|dtℓ+i(s−α) − dtℓ+(i+1)(s−α)|

≥ |dtℓ − dtℓ+η(s−α)|

≥
√
n− 3

4

√
n =

1

4

√
n

> 2k.

If η < 0, then α− s > 0 and

tr−1∑

t=tℓ

|dt − dt+s−α| ≥
−η∑

i=0

|dtℓ+(i+1)(α−s) − dtℓ+i(α−s)| ≥ |dtℓ−η(α−s) − dtℓ|.

The result then follows in a similar fashion. ♦

By Claim 4, we see that α is the only value s ∈ {0, . . . , 2k − 1} satisfying∑tr−1
t=tℓ

|dt− d̃t+s| ≤ k. As we have calculated (dt)
tr
t=tℓ

and (d̃t) from the cards,
and we know k as well, we are able to find the value s ∈ {0, . . . , 2k − 1}
satisfying

∑tr−1
t=tℓ

|dt−d̃t+s| ≤ k, and hence identify α. Once we have identified
α, we can then calculate m = m̃− α, the number of edges in G. �
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3 Conclusion

We have shown that the size of a graph can be reconstructed if we are given
a deck from which either at most 1

20

√
n cards are missing or at most 1

40

√
n

cards are false. The constants can be improved a little, although we do
not know whether the result remains true with

√
n missing cards. However,

we suspect that stronger results could be proved by using more information
about the degree sequences on the cards.

We also note that c
√
n is still very far away from the best known lower

bounds, which are linear. For example, for n = 3p + 1, Bowler, Brown and
Fenner [5] have given the following two graphs which differ in the number of
edges but have 2

3
(n − 1) cards in common: the graphs G = 2Kp+1 + Kp−1

and H = Kp+1 + 2Kp both have 3p + 1 vertices and at least 2p cards of the
form Kp+1 + Kp + Kp−1. We suspect that the lower bound is closer to the
truth and propose the following question.

Problem 3.1. Does there exist some ε > 0 such that, for any graph G on n
vertices, we can reconstruct the number of edges of G from any subset of at

least (1− ε)n cards?

Another direction for future work is to reconstruct other graph param-
eters, such as the degree sequence or the number of triangles. Although
our techniques do not immediately extend to this setting, we conjecture this
should be possible from a partial deck as well.

Conjecture 3.2. Fix k ∈ N and a graph H and let n be sufficiently large.

For every graph G on n vertices, the number of subgraphs of G isomorphic

to H is reconstructible given any n− k cards from D(G).

If we are given the entire deck D(G) (i.e. k = 0), then this problem is solved
by Kelly’s Lemma [9], which states that for any two graphs G and H with
|G| > |H|, the number of subgraphs of G isomorphic to H is reconstructible.

If the number of edges is known, then the degree of a vertex can be
calculated from the number of edges on its card. Therefore, by our main
result, if k ≤ 1

20

√
n, then all but k of the degrees are known. If k is larger,

then Lemma 2.5 still allows us to construct most of the degree sequence.
We expect that, for a large range of k, it is possible to determine the whole
degree sequence exactly. As a first step, we make the following conjecture.

Conjecture 3.3. Fix k ∈ N and let n be sufficiently large. For any graph

G on n vertices, the degree sequence of G is reconstructible from any n − k
cards.

13



Note that a positive answer to Problem 3.2 would give a positive answer
to Conjecture 3.3: for fixed k and n sufficiently large, we can find the number
of edges of the graph by Theorem 1.2 and hence determine all but k elements
of the degree sequence. Provided n is sufficiently large, we can reconstruct
the number of copies of the star K1,j for j = 1, . . . , k + 1; this is given by∑

v∈V (G)

(
d(v)
j

)
. By subtracting the terms corresponding to vertices of known

degree, we obtain a sequence of polynomials in the unknown degrees. Adding
constants, these form a basis for all polynomials of degree at most k+1. From
these, it is straightforward to evaluate the remaining degrees.

Acknowledgements. We would like to thank the referees for their helpful
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