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Products in the category of Zj-manifolds

Andrew Bruce and Norbert Poncin*

Abstract

We prove that the category of Z5-manifolds has all finite products. Further, we show
that a Z%-manifold (resp., a Z5-morphism) can be reconstructed from its algebra of global
Zy-functions (resp., from its algebra morphism between global Z3-function algebras).
These results are of importance in the study of Z% Lie groups. The investigation is
all the more challenging, since the completed tensor product of the structure sheafs of two
Z%-manifolds is not a sheaf. We rely on a number of results on (pre)sheaves of topological
algebras, which we establish in the appendix.
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1 Introduction

Zg-Geometry is an emerging framework in mathematics and mathematical physics, which
has been introduced in the foundational papers [CGP16a] and [COP12]. This non-trivial

extension of standard Supergeometry allows for Z3-gradings, where
g:Z;n:ZQX...XZQ and n € N.

The corresponding Z5-commutation rule for coordinates (u?) 4 with degrees degu? € 7 does
not use the product of the (obviously defined) parities, but the scalar product (—, —) of Z% :

uAuB _ (_1)(deguA,deguB>uBuA ) (1)

A brief description of the category Z4Man of Z5-manifolds M = (M, Ops) and morphisms
¢ = (¢, »*) between them can be found in Section Pl For n = 1, one recovers the category
SMan of supermanifolds. A survey on Z5-Geometry is available in [Ponl6]. The differential
calculus and the splitting theorem for Z§-manifolds have been investigated in [CKP16]| and
[CGP16D], respectively. In the introduction of [BP18|, the reader finds motivations for the
study of ZZ-Geometry. The present paper uses the main results of [BP1§].

Applications of Z5-Geometry are based in particular on Z5 Lie groups and their actions on
Zy-manifolds (supergravity), on Z% vector bundles and their sections (Z% Lie algebroids), on
the internal Hom functor in Z5Man (Z"-gradings and Zj5-parities in field theory), ... All these
notions rely themselves on products in the category ZjMan. On the other hand, a comparison of
different approaches to Z vector bundles is more challenging than in the supercase [BCC11].
A generalization to Z3-manifolds of the Schwarz-Voronov-Molotkov embedding is needed. This
extension, which embeds Z5Man into the category of contravariant functors from Zg5-points to
a specific category of Fréchet manifolds, uses the reconstructions of Z5-manifolds and Z3-
morphisms from the Z7-commutative associative unital R-algebras of global Z5-functions and
the Z5-graded unital algebra morphisms between them, respectively.

The existence of categorical products and the mentioned reconstruction theorems are the
main topics of the present paper. The text is organized as follows. Section [Blcontains the proofs
of the above-mentioned Z% reconstruction results. The definition of a product Z3-manifold
and the proof of its meaningfulness are rather obvious, see Definition I3l However, the proof
of the existence of categorical products in ZjMan is quite tough. It relies on the generalization

of the well-known isomorphism of topological vector spaces
COO(Q/)® COO(Q//) ~ COO(Q/ % QII)

(for open subsets ' C R, Q" C R") to an isomorphism of locally convex topological algebras
of formal power series

C(Q)[[E]] @ C(Q)[[nl] = C* (' x Q")][€, 7] (2)
(for Z5-domains UPI9 = (', CE[[€]]) and V"I = (7, CS5[[n]]), with

£=(&,-- - 8n) and = (N1, ,0N(s))) 5



Products in the category of Zy-manifolds 3

see Theorem [[4l The issue here is the formal power series, which replace the polynomials of
standard Supergeometry. Moreover, if M = (M, Oyps) and N = (N, Oy) are two Z3-manifolds,
and M x N = (M x N, Oprxn) is their product ZJ-manifold, one gets from (2)) that, for an
open subset u x v C M x N of the basis 8 made of products of Zy-chart domains, we have

E(uxv) ~Opxn(uxv),

where £ is the B-presheaf
E(ux v) = Op(u) @ On(v) .

Let now F be the standard extension of the B-presheaf F that assigns to any open subset
UxV CMx N (where U C M and V C N are not necessarily chart domains) the algebra

FUXV)=0yU)8 On(V).

The presheaf F and the sheaf Oy« n are thus two extensions of the B-presheaf £. However,
this does not mean that F ~ Op;«n and that F is a sheaf. Indeed, B-sheaves have unique
extensions, but B-presheaves do not. Also the reconstruction results mentioned above do not
allow us to prove that F is a sheaf. Hence, we prove the next best result, i.e., the existence of
an isomorphism of sheaves of algebras

Onsn = F7T (3)

between the structure sheaf of the product Z3-manifold and the sheafification of the presheaf
F, see Theorem[I6l In the case n = 1, we thus recover the definition of a product supermanifold
used in [BBHO91]. The isomorphism (B]) allows us to prove the existence of all finite categorical
products in Z5Man, see Theorem The proof uses the results on sheafification and presheaves
of locally convex topological algebras proven in Subsections [5.4] and of the Appendix.
Products of Z5-morphisms are obtained from the universality property of categorical products.
They are explicitly described in Proposition

2 Zy-manifolds and their morphisms

We denote by Z5 the cartesian product of n copies of Zs. Further, we use systematically
the following standard order of the 2™ elements of Z5: first the even degrees are ordered
lexicographically, then the odd ones are also ordered lexicographically. For example,

73 = {(0,0,0),(0,1,1),(1,0,1),(1,1,0),(0,0,1),(0,1,0), (1,0,0),(1,1,1)} .

A Z3-domain has, aside from the usual coordinates = = (x!, ..., 2P) of degree degx’! =0 €
7, also formal coordinates or parameters & = (£1,...,6%9) of non-zero degrees deg¢® € Z5.
These coordinates u = (z,£) commute according to the generalized sign rule

uAuB — (_1)(deguA,deguB)uBuA ’ (4)
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where (—, —) denotes the standard scalar product. For instance,
((0,1,1),(1,0,1)) =1.

Observe that, in contrast with ordinary Zs- or super-domains, even coordinates may anticom-
mute, odd coordinates may commute, and even nonzero degree coordinates are not nilpotent.
Of course, for n = 1, we recover the classical situation. We denote by p the number of coordi-
nates 2 of degree 0, by ¢; the number of coordinates £€* which have the first non-zero degree
of Z%, and so on. We get that way a tuple q = (q1,...,qn) € NV with N := 2" — 1. The
dimension of the considered Z5-domain is then given by p|q. Clearly the @ above is the sum

N
lal = > il ¢

We recall the definition of a Z4-manifold.

Definition 1. A locally Z5-ringed space is a pair (M,Opn) made of a topological space M
and a sheaf of ZY-graded ZY-commutative (in the sense of (@)) associative unital R-algebras
over it, such that at every point m € M the stalk Oy, is a local graded ring.

A smooth Z5-manifold of dimension p|q is a locally Z5-ringed space M = (M, Oypr), which
is locally isomorphic to the smooth Z3-domain RPI9 .= (RP, C[[£]]), and whose underlying
topological space M is second-countable and Hausdorff. Sections of the structure sheaf Cg[[€]]
are formal power series in the Z4-commutative parameters £, with coefficients in smooth func-
tions:

CHOE) = D fal@)€ [ fa€CZ(WU) p (U open in RP).
acNxlal

Z5-morphisms between Z5-manifolds are just morphisms of Zy-ringed spaces, i.e., pairs
O = (¢,0") : (M,0p) — (N,On) made of a continuous map ¢ : M — N and a sheaf
morphism ¢* : Oy — 0.0, i.e., a family of Z5-graded unital R-algebra morphisms, which
commute with restrictions and are defined, for any open V C N, by

¢y On(V) = Om(¢7H(V)) -
We denote the category of Zy-manifolds and Z%-morphisms between them by ZyMan.

Remark 2. Let us stress that the base space M corresponds to the degree zero coordinates
(and not to the even degree coordinates), and let us mention that it can be proven that the
topological base space M carries a natural smooth manifold structure of dimension p, that the
continuous base map ¢ : M — N is in fact smooth, and that the algebra morphisms

between stalks, which are induced by the considered Z%5-morphism ® : M — N, respect the
unique homogeneous mazimal ideals of the local graded rings Oy ) and Op,.
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3 Reconstructions of Zj-manifolds and Z5-morphisms

In this section, we reconstruct a Z5-manifold (M, Oyr) from the Z3-commutative unital
algebra O (M) of global sections of its function sheaf. We also reconstruct a Z§-morphism

from its pullback Zg-graded unital algebra morphism
¢n : ON(N) = On (M)

between global sections.

3.1 Reconstruction of the topological base space

Algebraic characterizations of spaces can be traced back to I. Gel’fand and A. Kolmogoroff
[GK39]. In that paper, compact topological spaces K are characterized by the algebras C°(K)
of continuous functions on them. In particular, the points m of these spaces are identified with

the maximal ideals
In ={f € C°(K) : f(m) =0}

of these algebras. A similar characterization holds for the points of second countable Hausdorff

smooth manifolds.

Let M = (M,Oyps) be a Zy-manifold. We denote the maximal spectrum of O(M) (sub-
script omitted) by Spm(O(M)) (we actually consider here the real maximal spectrum, in the
sense that the quotient O(M)/u by an ideal p in the spectrum is isomorphic to the field R of
real numbers). Note that any m € M induces a map

Em :OM)> f(emf)im) eR,
which is referred to as the evaluation map at m and is a Ziy-graded unital R-algebra morphism
Em c HomZgUAlg(O(M), R) .

The kernel
pm =kere,, = {f € O(M) : (epr f)(m) = 0} € Spm(O(M))

is a maximal ideal. More generally, the kernel of an arbitrary algebra morphism
w & HomZSUAlg(O(M), R)

is a maximal ideal, since O(M)/kervy ~ R. Indeed, to any class [f] in the quotient we can
associate the real number ¢ (f). This map is well-defined and injective. It is also surjective,
since, for any r € R, the image of [r - 1o(s)] is 7. It follows in particular that any class in the
quotient is of type [r - 1o(ap)] for a unique r € R. We have the following
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Proposition 3. The maps
b:M>m— u, <€ Spm(O(M))
and
>+ Homzguug(O(M), ) 3 ker ¥ € Spm(O(M))
are 1:1 correspondences.

Proof. To prove that b is bijective, consider a maximal ideal p € Spm(O(M)). The image
epm(p) € C°(M) is a maximal ideal. Indeed, it is an ideal, since the map &) is surjective
(the short sequence of sheafs [BP18, Equation (3)] is exact for the good reason that it is
exact for any open subset of M). To see that it is maximal, assume there is an ideal v, such
that epr(u) C v € C®(M), so that p C &3/ (v) C Op(M). Tt follows that £y} (v) = p or
eyt (V) = Op (M), and that v = ey (1) or v = C>°(M). Hence,

em(p) = Im = {f € C=(M) : f(m) =0},

since any maximal ideal of C*°(M) is known to be of type I,,, for a unique m € M. Finally,
we get

pCey(In) = {f € OM) : (enf)(m) = 0} = iy C O(M) .
Since pi, # O(M), we have u = pi,,, which proves the bijectivity of b. Indeed, if u = p,, we
obtain e (pn) C I, C C*®°(M), so that

I, = 5M(ﬂn) = 5M(Nm) = I,

and m = n.

Since any p € Spm(O(M)) reads p = py, = kere,, = b(ey,), the map b is surjective. Let
1, ¢ be unital algebra morphisms, such that kert¢ = ker¢ = u. For any f € O(M), there
exists a unique r € R, such that [f] = [r- 1ps)]. Thus ¥(f) =7 = ¢(f) and 1 = ¢, so that b
is also injective. O

Proposition 4. The map
ey Spm(C™(M)) 2 Iy, = ey (In) = ptm € Spm(O(M))

is a homeomorphism with inverse epr, both, if the mazximal spectra are endowed with their
Zariski topology and if they are endowed with their Gel’fand topology. Hence, the Zariski and
Gel’fand topologies coincide on Spm(O(M)). Further, the bijection

b:M>m— py, € Spm(O(M))

1s a homeomorphism.
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Proof. The maps

eyt Spm(C®(M)) 3 Iy, + €3} (In) = pm € Spm(O(M))
and

en  Spm(O(M)) 3 pim = enr(pm) = I, € Spm(C™(M))
are inverses of each other.

We first equip the spectrum Spm(C°°(M)) as usual with the Zariski topology, which is
defined by its basis of open subsets Voeo (f), f € C*°(M), given by

Voo (f) = {Im € Spm(C*(M)) : f ¢ Im}

and we proceed similarly for Spm(O(M)). It is straightforwardly checked that, if f = ey (F),
we have

ext (Vo (£) = Vo(F)  and ey (Vo (F)) = Vee(f) -
Hence the announced homeomorphism result for the Zariski topologies.
The Gel’fand topology of Spm(C>°(M)) is defined by the basis of open subsets Bgeo (m, €;
fiy---y fn), indexed by m € M, e >0, n € N, and f1,..., fn, € C°(M), and defined by
Beeo(m, € f1, .., fn) = {In € Spm(C™(M)) : | fi(n) — fi(m)| < €,Vi} .

The Gel’'fand topology of Spm(O(M)) is defined analogously by

Bo(m, € Fi, .., Fa) = {in € Spm(O(M) : [(ex F)(n) — (earFi) (m)] < 6,¥i}
where F; € O(M). If f; = ep(F;), we have obviously

61\7/[1(3000(771,6;]01,... ’fn)) = BO(m’E;Fla--- aFn) ;

and similarly for s, so that the homeomorphism result holds also for the Gel’fand topologies.

Since the Zariski and Gel'fand topologies coincide on Spm(C*°(M)), it follows from the
above that there is a homeomorphism from Spm(O(M)) endowed with the Zariski topology
to itself endowed with the Gel’fand topology.

It is well-known that the map bee : M > m — I, € Spm(C*°(M)) is a homeomorphism.
Hence, the bijection b = 6]}[1 0 boee is a homeomorphism as well. O

3.2 Reconstruction of the structure sheaf

Proposition 5. Let (M,Onr) be a Zy-manifold and let U C M be open. A Zy-function
F e Oy (U) is invertible if and only if its base projection f = ey (F) € C3(U) is invertible.
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Proof. Tt is obvious that f is invertible if F' is. Assume now that there exists f~1 € C*°(U) and
consider a cover of U by Z%-chart domains V;. For any 4, we have f~![y, = (f|y,)"!, i.e., the
base function ey, (F'|y;) = ey (F)|v; is invertible in C*°(V;), so that Fy, € O(V;) ~ C*(V;)[[¢]]
has an inverse Gy, € O(V;). It follows that, for any V; and V; with intersection Vjj,

Gvilv, = (Flv,,) ™" =Gyl -

Hence, there is a unique Zj-function G € O(U), such that G|y, = Gy;. It is clear that G is
the inverse of F. O

Reconstructions of a sheaf from its global sections have been thoroughly studied in algebraic
and differential geometry. A survey on such results can be found in [BPP18| and [BPP15|]. The
probably best known example is the construction of the structure sheaf Ox of an affine scheme
X = Spec R from its global sections commutative unital ring Ox (X) = R. In this case, the ring
Ox (Vy) of functions on a Zariski open subset Vy, f € R, is defined as a localization of Ox (X).
In the case of a Zj-manifold (M, Oyr), we reconstruct Ops(U) as the localization of Oy (M)
with respect to the multiplicative subset Sy = {F € Op (M) : (ep F)|v is invertible }. The
chosen localization comes with a morphism that sends global sections with invertible projection
in C32(U) to invertible sections in O (U), see Proposition

We briefly address localization in the Zj-commutative setting. Let R be a Z5-commutative
associative unital R-algebra and let S be a multiplicative subset of R, whose elements are
homogeneous even vectors. In the following, we consider right fractions rs=' € RS~ (left
ones would work as well) and denote the degree of any element by the same symbol as the
element itself. We define the equivalence rs~! ~ 7/s'~1 of two fractions by requiring the

existence of some o € S such that
(rs' — (=1)**)'s)o =0. (5)

It can be checked that the relation ~ is an equivalence. The addition of fractions is defined
by
rs 4 rld Tl = (T‘S/ + (—1)<s’s/>r/s) (ss)7L. (6)

The definition is independent of the chosen representatives. The multiplication of fractions is
given by
rs ol = (—1)<r/+8/’5> rr'(ss’) 7L, (7)

provided 7’ is homogeneous. Again the result is invariant under a change of representatives.
If 7" is not homogeneous, it uniquely reads r" = > ™ (y € Z3). In view of (@), we get
r's' =t = > (s ~1), so that we can extend the definition (7)) by linearity. Finally, the scalar
multiplication by v € R is

t(rs™t) = (vr)st. (8)

For our purpose, it will actually be sufficient to consider the multiplicative subset

Sy ={F € OY) (M) : () F)|y is invertible } € Opr(M)
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of the ZY-commutative associative unital R-algebra Ops(M). Since the Z5-functions of this
subset are not only even, but of degree 0, the signs in the equivalence (Bl and the operations

(6) and (7)) disappear.

Proposition 6. The operations ([6), (@), and &) (without signs) endow the localization
Op(M) - S&l with a Zy-commutative associative unital R-algebra structure, whose grading
is naturally induced by the grading of Op(M) ( for a homogeneous r, the degree of rs~! is the
degree of v), and whose zero (resp., unit) is represented by 01=% (resp., 1171).

Proof. Straightforward verification. O

We thus get a presheaf
Ly : Open(M) 5 U = Oy (M) - St € Z3UAlg

on M valued in the category of Zj-commutative associative unital R-algebras. Indeed, if
V C U is open, the obvious inclusion L‘[f : Sy — Sy provides a natural well-defined restriction

U Ly (U) s Fs s F(Ys)™ e Ly(V),

and these restrictions satisfy the usual cocycle condition.

As indicated above, we will show (in several steps) that the presheaf £y coincides with
the structure sheaf O,y.

First, since it follows from Proposition [ that, for any s € Sy, the restriction s|y is
invertible in O/ (U), we have a map

AU : ﬁM(U) = FS_l — F‘U(S’U)_l S OM(U) .

This map is well-defined. Indeed, if F's™! = F's'~! there is 0 € Sy, such that (F|ys'|y —
F'|uys|v) oy = 0. Since the restrictions s|y, s'|y, and o|y are invertible in Oy (U), the claim
follows. Further, it can be straightforwardly checked that Ay is a morphism of Zy-graded
unital R-algebras.

In fact:

Proposition 7. For any open U C M, the localisation map Ay : Lyp(U) — Op(U) is a
5 -graded unital R-algebra isomorphism.

The proof of this result uses a method that can be found in various works, see for instance
[BBHO1|, [CCF11], and [NSO3|. We give this proof for completeness, as well as to show that
it goes through in our Z3-graded stetting.

Proof. Tt suffices to explain why Ay is bijective.
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1. Injectivity: Assume that F|y(s|y)~! = 0, i.e., that F|y = 0, and show that Fs~! ~ 0171,
i.e., that there is o € Sy, such that Fo = 0. Let (V;,%;) be a partition of unity of M,
such that the V; are Zj-chart domains, so that Oy, >~ C37lv;[[€]]. For any i, we have

F‘Uﬁ\/, X f ZF ’UQVZ = , z'.e., Fa’UﬂVi = O, VO( .

Let
o; € C%(Vi) € 0% (Vi), such that oyyny, >0 and ailv\@wnvy) = 0.

It follows that F|y,0; = 0. The Z3-function o = Y, 03¢h; € O;(M) has the required
properties. Indeed, the open subsets V; and ; = M \ suppv; cover M and Fo;1);
vanishes on both, V; and €2, so that Fo =), Fo;; = 0. In addition, for any m € U,
we have (e1;)(m) > 0, for all 4, and there is at least one j, such that (e1;)(m) > 0.
Since (evj)|a, = 0, we get m € U NV}, so that (o ey;)(m) >0,

(e0)(m) =Y (o7e)(m) >0,

7
and o € Sy.

2. Surjectivity: We must express an arbitrary f € Oy (U) as a product f = F|y(s|y)~!,
with ' € Oy (M) and s € Sy. To construct the global sections F' and s, consider an
increasing countable family of seminorms p,, that implements the locally convex topology
of the Fréchet space Opr(M). Take also a countable open cover U, of U, such that
U, C U, as well as bump functions v, € OY/(M), which satisfy v,|y, = 1 (which
implies that (epxrv,)|v, = 1), suppy, C U, and ey, > 0. The following series converge
in Oy (M) and provide us with the required global sections:

e} (e o]

! Y f and s := ! Tn

F = — on .
e 27 1+ pp(vn) + Pn(Yn f) n—0 2" 14 pu(m) + pn(n f)

Indeed, convergence follows, if we can show that the series are Cauchy, i.e., if they are

Cauchy with respect to each p,,. If r,s = 0o, we get r > m, and, since the seminorms

are increasing, we have

S S
1 Yo f 1 Pn(n f)
— 7 < ——>0
pm( 271+ po(n) + Pu(yn f ) ;2 +pn )+ P (Y f Z

whether the factor f is present or not. On the other hand, as restrictions are continuous,
it is clear that F|y = fs|y, so that f = F|y(s|y) ™!, provided we show that s € O, (M)
belongs to Sy, i.e., that (ear8)(m) # 0, for all m € U. Too see this, remark that (id, ) :
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(M,C59) — (M,Oyr) is a morphism of Zy-manifolds, so that ey : On (M) — CRF(M)
is continuous, see [BP18, Theorem 19|. For any U, of the cover of U, we thus get

e}

1 (Erryn)lv,,
=0 2" 1+ pn(yn) + Pn(n f)

(5M3)’Um = >0 s

in view of the properties of .
O

Theorem 8. The Z5-commutative associative unital R-algebra Opr(M) of global sections of
the structure sheaf of a Z%-manifold (M, Opr) fully determines this sheaf. More precisely, there
is a presheaf isomorphism A : Lar — Opp, so that the presheaf Lar, which is obtained from
On (M), is actually a sheaf, which is isomorphic to the structure sheaf Opy.

Proof. 1t suffices to check that the family Ay : Ly (U) = Op(U), U € Open(M), of Z3-
graded unital R-algebra isomorphisms, commutes with the restrictions rg in Lp; and pg in
Oy (V C U,V € 0pen(M)). This is actually obvious:

Av(r(Fs™) = Flv(sly) ™' = pi(Au(Fs™h) .

3.3 Reconstruction of a Zj-morphism

In algebraic geometry, any commutative unital ring morphism v : S — R defines a mor-
phism of affine schemes ® = (¢, ¢*) : (Spec R, Ogpec r) — (Spec S, Ogpec 5), Whose continuous
base map ¢ associates to each prime ideal p the prime ideal 1)~ (p). A similar result exists in
the category of Z4-manifolds and Zy-morphisms, with the same definition of the continuous
base map.

Theorem 9. Let M = (M,Op) and N = (N,Op) be Z5-manifolds. The map
,8 : HomZgMan(./\/l,./\/) 50 = (¢, ¢*) — (ﬁ#j\/ S HomZgUAlg((’)N(N), OM(M))
s a bijection.

Proof. To show that 3 is surjective, we consider 1 € Homzpuyaig(On(N), Onr(M)) and con-
struct ® € Homzpyan (M, N), such that ¢ = 9.

Since M (resp., N) endowed with its base space topology is homeomorphic to Spm(Opy;(M))
(resp., Spm(On(N))) endowed with the Zariski topology, we define ¢ by

¢ : Spm(Opr(M)) > kerey, — ker(gy, 09p) = kere,, € Spm(On(N)) ,

see Propositions @l and Bl This map is continuous. Indeed, for any F' € On(N), the preimage
by ¢ of the open subset

V(F) = {kere,, € Spm(On(N)) : e, (F) # 0}
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is the subset

¢~ (V(F)) = {ker ey, € Spm(Opr(M)) : em($(F)) # 0} = V(¥(F)) -

To define, for any open V' C N, a Zj-graded unital R-algebra morphism

oy : ON(V) = (0:0Mm) (V) ,

we rely on the isomorphism of Z5-graded unital R-algebras On (V) ~ L (V') and the similar
isomorphism in M. Hence, we define ¢j, by

¢y Ln(V) 2 Fs™h s p(F)(s) ™" € La(o7 (V) .

This map is actually well-defined. Since s ¢ kere,, for all n € V| we have s ¢ ker(e,, o ),
for all m € ¢~1(V), what means that ¢(s) € Sg-1(yy. In view of this, it is easy to see that
the image is independent of the representative. The map ¢y, is a Zj-graded unital R-algebra
morphism, because v is.

As the family ¢f,, V € Open(N), commutes obviously with restrictions, the continuous
base map ¢ and the family of algebra morphisms ¢j,, V' € Open(XN), define a Z3-morphism
@ : M — N . Too see that (@) = ¢§ = ¥, it suffices to note that Ay : Ln(N) — On(N)
sends the fraction Fs~! to the section F's~! (and similarly for M), so that ¢ and 1 coincide.

It remains to prove that f is injective. Let thus ® = (¢, ¢*) and ¥ = (1, ¢*) be two
Zy-morphisms from M to N, such that ¢} = 1}. Since the pullbacks by a Z5-morphism
commute with the base projections, we get, for any m € M,

P(m) = ker €g(m) = {FeO(N): (enF)ogp)(m)=0} ={F € O(N) : (ep(¢pnF))(m) =0} .

Hence, the continuous base maps ¢ and @ coincide. Similarly, for any open V' C N, each
Fy € On(V) reads uniquely Fyy = Ay (Fs™1) = F|y(s|ly)™!, with F € Oy(N) and s € Sy C
OnN(N), see Proposition [[l As the family of pullbacks ¢* commutes with restrictions, we
obtain

ov(Fv) = @V Flv) (67slv) ™ = (08 F)lg-1v) (08|52 vy -
Hence ¢y, = 97, O

The preceding theorem, which allows us to characterize M-points HongMan(.M,N ) of a
Z%-manifold N by algebra morphisms, has some noteworthy corollaries.

Corollary 10. The covariant functor
F : ZyMan — Z5UA1g®P

which is defined on objects by F(M) = On (M) and on morphisms by F(®) = ¢}, is fully
faithful, so that ZiMan can be viewed as full subcategory of ZyUAlg®P.
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The statement regarding the full subcategory is based on the well-known fact that any
fully faithful functor is injective up to isomorphism on objects. This means that the existence
of an isomorphism Oy (M) ~ On(N) of Z§-graded unital R-algebras implies the existence of

an isomorphism M ~ N of ZJ-manifolds.

Corollary 11. Let M = (M,Oy) and N = (N,On) be Zy-manifolds. The Z5-manifolds
M and N are diffeomorphic if and only if their Z%-commutative associative unital R-algebras
On (M) and On(N) of global Zy -functions are isomorphic.

Such Pursell-Shanks type results have been studied extensively by one of the authors of
this paper. Algebraic characterizations similar to Corollary [I1] exist for instance for the Lie
algebras of first order differential operators, of differential operators, and symbols of differential
operators on a smooth manifold, for the super Lie algebras of vector fields and first order
differential operators on a smooth supermanifold, as well as for the Lie algebra of sections of
an Atiyah algebroid, see [GP04], [GKP10|, [GKP11], [GKP13].

Corollary 12. The Z3-manifold £ = (0,0) (resp., R = ({pt},R)) is the initial ( resp.,
terminal) object of the category of Z5-manifolds.

Proof. For any Z5-manifold M = (M, Oyy), we have bijections
HongMan(E, M) ~ HomZELUAlg((’)M(M), 0) ~ {F — O}

and
HongMan(M,RO\O) ~ HomZSUAlg(R, OM(M)) ~ {7" . 1} .

4 Finite products in the category of Zj-manifolds

4.1 Cartesian product of ZJ-manifolds

Let M = (M,0)) and N = (N,On) be two ZJ-manifolds of dimension p|q and r|s,
respectively. The products U x V', U C M and V C N open, form a basis B of the (second-
countable, Hausdorff) product topology of M x N. Better, since the Z§-chart domains U; in
M (resp., V; in N) are a basis of the topology of M (resp., of N), the products U; x V; form
a basis B of the product topology of M x N. As Z5-chart domains are diffeomorphic to open
subsets of some coordinate space R", we identify the U; and the V; with the diffeomorphic
Ui C RP and V; C R". Further, we denote the coordinates of the charts with domains U;
(resp., Vj) by (z,&) (resp., (y;,7;)), or, in case we use only two domains U; (resp., V}), we
write also (z,€) and (2/,¢) (resp., (y,n) and (v',7n)).

Definition 13. Let M = (M,Oyr) and N = (N,On) be two Z5-manifolds of dimension p|q
and r|s, respectively. The product Zj-manifold M x N, of dimension p+r|q+s, is the locally

Z5-ringed space (M x N,Oprxn ), where M x N is the product topological space and where the
sheaf Opnrx N is glued from the sheaves C’f}‘i’xvj(:ci,yj)[[&,nj]] associated to the basis *B:

Omxn|uixv; = CFxv; (i, y)[[& ] - (9)
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Recall that sheaves can be glued. More precisely, if (U;); is an open cover of a topological
space M, if F; is a sheaf on U;, and if ¢j; : ]-"i]UmUJ. — fj’U,ﬂUj is a sheaf isomorphism such
that the usual cocycle condition ¢y; ¢j;i = g holds, then there is a unique sheaf F on M
such that F|y, ~ F;. In the following, we set U;; = U; N Uj.

Let now Gy, [[€,m]] be the standard sheaf of Zf5-graded Zy-commutative associative
unital R-algebras of formal power series in (£,n) with coefficients in sections of the sheaf
Cr; XV The isomorphisms j; ;; between the appropriate restrictions of the sheaves of algebras
C’f}fxvj[[é,n]] on the open cover (U; x Vj);; of M x N are induced as follows. Since M is a

Z4-manifold, there are Z4-isomorphisms
®; = (¢i, ;) : (Ui, Omtlu,) — (Ui, CRIEND)
which induce Z5-isomorphisms or coordinate transformations
Ui = &0, ¢ (Usi, CF o, [1€]) = (Usi, CFlu, [1€7]]) -

As we view Uj; as both, an open subset of M and an open subset of RP, we implicitly identify U;
with its diffeomorphic image ¢;(U;), so that ¢; = idy,. Hence, the coordinate transformations
reduce to the isomorphisms

o = (67)167 (10)
of sheaves of Z§-commutative R-algebras:
v Ol l[€] = (1€ - (11)
Similar coordinate transformations exist for N:
Ui 2 CF vy '] = €l [[n]] - (12)

We denote the base coordinates in U; (resp., U;) by z (resp., 2/) and those in V; (resp., Vj)
by y (resp., ¥'). The coordinate transformations (), x = z(2',¢),& = £(2/, &), and (12,
y=y,n"),n=mn(y,n), implement coordinate transformations or isomorphisms of sheaves

of Z5-commutative R-algebras
Giiij = Vi X W 1 Oy luaxvy 1€ 0'T) = CF e, lusxvs 1€, m]] -

In view of (I0), the ¢j;; satisfy the cocycle condition. We thus get a unique glued sheaf
Onmxn of Z5-commutative R-algebras over M x N which restricts on U; x Vj to

OMXN’U,'XVJ- = C[C}(;XVJH&HH )

i.e., we obtain a Z5-manifold, which we refer to as the product M x N of M and N.
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4.2 Fundamental isomorphisms

Theorem 14. Let RPIY (resp., R"IS) be the usual Z5-domain (RP, CS5[[€]]) (resp., (R”, O
(M), and let ' C RP and Q" C R" be open. There is an isomorphism of topological algebras

Co ([l ® C& ()0l = C5 e (' x Q)€ m]] (13)

where the completion is taken with respect to any locally convex topology on the algebraic tensor

product Cgy ()[[€]] © Cgz (") [[n]]-

Proof. Let R be a commutative von Neumann regular ring. For any families (M), and (Ng)g
of free R-modules, the natural R-linear map

HM ®r ([[Ns) = [[(Ma ®r Np)
B op
is injective, if and only if R is injective as a module over itself [Goo72|. Since any field is
von Neumann regular, the regularity and injective module conditions are satisfied for R = R.
Hence, the linear map

is injective. Further, in view of [BP18| Corollary 17|, the map

COE(E] 2 ) fal@)E* = (fa)aca € [] C() (14)
acA acA
is a TVS-isomorphism between the source and the target equipped with the standard topology
and the product topology of the standard topologies, respectively. In the sequence of canonical
maps

c=@)lghec= @) =~ ([T cx@ne (o=@~ [I ©@)ec*@) -
acA peB a€A, BeEB

[ O x @) = C( x Q)le,n] (15)
acA, peB
the first ~ is a linear bijection, the first — is a linear injection, and the second =~ is a TVS-
isomorphism for the topologies used in (I4]). In

C=(Q) @ C(Q) = O () CX(Q) ~ O (Y x Q) (16)

the isomorphism ~ is the well-known TVS-isomorphism [Gro52| (the target is endowed with
its standard topology and the source with the topology of the completion with respect to any
(C°°(Y) is nuclear) locally convex topology on C®(Q)) ® C*(C') — we will not specify the
latter topology), and the arrow — is the continuous linear inclusion (any TVS is a topological
vector subspace (TVSS) of its completion, see Proposition 26]). This — induces the second —
in (I, which is the inclusion of the source vector subspace into the target vector space. The
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source becomes a TVSS of the target when endowed with the induced topology (the induced
topology is coarser than the product topology of the induced topologies). Finally, we equip
the first space in (IH) with the initial topology with respect to the first —, so that the first
space gets promoted to a TVSS of the second, see Proposition 24] and the first — becomes the
continuous linear inclusion. The composite

v O (Q)lE]] @ 0 aZfasae@ng '—>Zfa®96§a7766000( X Q) [[E ]

of the maps of (I5) is now the inclusion of a the source TVSS into the target TVS.

Note that, since the target is a LCTVS, see [BP18, Lemma 16|, the source TVSS is also a
LCTVS, see Proposition 29 (since C*°(')[[£]] is nuclear, see [BP18, Lemma 16], the completion
of the source is independent of the chosen locally convex topology). In view of Proposition 28]
the completion of the source is a TVSS of the completion of the target, which, as the target
is complete, see [BP18, Lemma 16|, can be identified with the target due to Remark In
other words, the continuous extension

i C(Q)[E]]® C=(Q) (] — C(Q x Q")[[€, )] (17)

of the inclusion 2 is an injective continuous linear map, see text above Proposition We will

now prove that this map is surjective.

Let

S =3 Fas &’ € C(Q x Q)€ )]
af

be a formal series in the target space. In view of (I6), we have [Gro52], for any (a, 8) € A X B,

Fop = Nl—lg-loozfaﬁ ® gag )
where fiﬁ € C*(fY) and gg{ﬁ € C*(Q"), and where the limit is taken in C°(Q' x Q”). Recall

that A = N*l9'l x Z;'q”‘, and similarly for B. The product A x B is countable, since it is a
finite product of countable sets. Let I : A x B — N be an injective map valued in N. The map
J: Ax B — I, with Z = I(A x B), is thus a 1:1 correspondence. We identify A x B with Z
via J. For any j € N, we set,

e for any a € A and any i € Z,

COO(Q/)B(ﬁ?M:{ 71f22(7’5)7é(a75)’ and,
Fls ifi = (7,0) = (a,0)

e for any § € B and any i € 7,

0, if i > (v,0) # (v, 8) ,

COO QI/ — .
() 3 vy = {g%,ifz':(%5)=(%ﬁ)'



Products in the category of Zy-manifolds 17

Note that Z is a finite set {0,1,...,L}, L € N, (resp., is N), if A x B is finite (resp., if A x B
is countably infinite). For all j € N and all (o, 5) € A x B, we get

Z¢éz®¢ fo6® Ghs

when M € T N [J(a, B), +00|. Indeed, if i > (v,6) # (a, B), then, either v # a and gb
or § # [ and ¢iﬁ = 0. However, if i ~ (v,0) = (a, ), then gb] = fj and %B =g g SO that
the announced result follows. Hence, for any j € N and any (a, ) € A x B, we have

pim Z¢ I =15 ® 005

where the sequence is constant for M > J(a, ) and where the limit is computed in the
topology of C°(2 x Q). If a finite number of sequences of a TVS do converge, then their
sum converges to the sum of the limits. It follows that, for any (o, ) € Ax B and any N € N,

N M N
- P N" i o
DI BALL z;)fa6®ga6’
.]:

§=0 i=0

so that, for all (o, ) € A x B,

N
; ; J J o n J J o
N1—1>I—I|—loo Mlifﬁoo Z Z (bai ® 1/}26 B N1—1>I-Ii-loo Z faﬁ ®© gaﬁ B Faﬁ
j=0 =0 7=0
in C*(Y x Q"), and
N M
NLHEOO Mlirgoo Z Z qu ® ¢ - (Faﬁ)(aﬁ)e-AXB (18)
7=0=0 (uB)EAXB

in the product topology of [],;C*(Q" x Q), ie., in the topology of the TVS C*(Q" x
Q)[[€,n]]. Therefore, the sequence

M:

N M ' ‘ N
DB ALLT =

7=0 =0 (a,f) 7=01

PO ®Z%n € C(Q[iE]] ® C=(Q")][n]]

o

Il
o

is a Cauchy sequence in C°(2' x Q")[[¢,n]], so a Cauchy sequence in the TVSS C*°(Q)[[¢]] ®
C>® (") [[n]], and also in the topological vector supspace C()[[£]]® C°°(2")[[n]]. Since this
completion is sequentially complete, the Cauchy sequence considered converges in this space:

N M
Vim 303 (Sl o v’ | € @IS @I
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where the limit is taken in the topology of C°°(Q)[[¢]]® C>(2")[[n]]. Since the inclusion %,
see Equation (I7), is sequentially continuous, we get

N M
iNETwM&TmZZ Z¢ £a®z¢w7] =

=0 i=0 a

N M
Nl—ifilooMl—ionozzz Z¢ 5“®Z%s’7 -

_]:0 1=0 [

N M

Nli}I-Il-looMgH-‘:ooZZ Z®¢ 504 B_ZF é‘a ﬁ_

o
af j=01=0 af

in view of (I8). This shows that the continuous linear inclusion
i : Co(@)[[EN® C=(Q)[n)] — C(Q x Q)][&, 7]

is bijective, so that the source TVSS of the target coincides with the target as TVS.

Since the completed tensor product of two nuclear Fréchet algebras is again a nuclear
Fréchet algebra [Emel7, Lemma 1.2.13], the source and target are actually topological algebras.
We leave it to the reader to check that the preceding identification respects the multiplications.

O

Remark 15. If plq = p|0 and r|s = 0Js, it follows from Theorem [T that
Ce(Q)@rR[E]] = O ()],
and, if plq = 0|q and r|s = 0|s, we get
R([]|&r R[] ~ R]E, 7] -

Conversely, the general isomorphism of Theorem[1]]is a consequence of the preceding particular
cases and the fact that the category of complete nuclear spaces is a symmetric monoidal category
with respect to the completed tensor product [Cosll].

Theorem 16. There is an isomorphism of sheaves of Z%-commutative R-algebras
Onxn ~ (Ou®O0N)~ "

between the structure sheaf of a product Zy-manifold and the sheafification of the standard
extension of the B-presheaf

OM(§> ON U XV OM(U)® ON(V) .
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Proof. Recall that B (resp., B) is the basis of the product topology of M x N made of the
rectangular subsets U x V, where U C M and V C N are open (resp., of the rectangular
subsets U; x Vj, where U; C M and V; C N are Zj-chart domains). Let

FU xV):= 0y (U)ROn(V) (19)

be the completed tensor product of the nuclear Z5-graded Fréchet algebras O (U) and Oy (V')
(with respect to any (reasonable) locally convex topology, e.g., the projective one). If U'x V' C
U x V, the restrictions pY, : Op(U) — Op(U’) and pV, : On(V) — On (V') of the Fréchet
sheaves Op; and Oy are continuous linear maps. The continuous extension of the continuous
linear map pY, ® p{., is a continuous linear map [Gro52)

i@ pire s On(U)& On (V) = On (U@ On (V')

which we denote by
Pl FU X V) = F(U x V).

Since the pg, and the p“f, satisfy the standard presheaf conditions and the linear maps pg,xx‘(,,

are continuous, it is clear that the latter satisfy these conditions as well. Hence, the pair (F, p)
is a Set-valued B-presheaf.

This B-presheaf can be extended to a Set-valued presheaf (F, p). Indeed, set, for any open
QCMXxN,

F(Q) = {(fab)ab : fab € F(Ua x Vp),Ua x Vi, C Q,such that py >0 (fan) = pgt s (fav)}
(20)
and consider, for any €' C Q, the map

PR F(Q@) - F@)

which sends any element of F(Q) to the element of F(2) that we obtain by suppressing
the f,, for which U, x Vj is not a subset of Q. The p 8, satisfy of course the standard

presheaf conditions. Further, the presheaf (F,p) extends the B-presheaf (F,p). Indeed, for

Q=UxV, any f € F(Q) provides a unique family f,; = pgaXXV%(f) in F(12), thus defining a

map b : F(Q) — F(Q). If bo(f) = ba(g), then, in particular,
f=gw () =rpv9) =g

In fact bg is a 1:1 correspondence. Indeed, any family f,, in F(Q) contains f € F(Q), and
Jab = pgjx"vb(f), so that bo(f) = (fap)apr- Hence,

bUXv:]:(UXV);)]}(UXV). (21)
Moreover, if Q' =U'x V' Cc Q=U xV,and if f € F(U x V), then

ﬁgzxx‘(/,(mbV(f)) = bU’xV’(pg/XX‘(//(f)) ’
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since both sides are made of the family of restrictions pgjxvvb( f),forall U, x V, U x V.

Let now U; x V; € B be a Cartesian product of Zj-chart domains, and let 2 C U; x V; be
any open subset. Recall Definition (20)). Since U, C U; and V;, C V; are Zy-chart domains, we
get in view of (I3) and of (@),

F(Ua x V) = O (Ua)® On (Vo) = C=(Ua)[[&:1)® C™ (V) [[nj]] =~

C>(Ua x V)[[&ismjl] = Omscn(Ua x Vp) (22)

Due to the continuity and linearity of the restrictions pg,xx‘(,/ of F and the restrictions Pg, of
Onrx N, the restrictions in ([20) coincide with the corresponding restrictions P of the structure
sheaf of the product Zy-manifold, as both reduce to the same restrictions of classical functions.
It follows from (20) and [@22) that any family f,, € F(Q) is made of Zj-functions f,, €
Onrsn(Uy x V), which are defined on the cover of € by all the U, x V}, C €, and whose
P-restrictions coincide on all intersections. Hence, any family f,, € F(€) can be glued in the
sheaf Ojps« n and thus provides a unique Zy-function f € Oprx n(§2) such that Pgava(f) = fu.
The resulting map bg : F(2) — Opxn(Q) is clearly injective. It is also surjective, since the
restrictions fgp 1= Pgava(f) of any f € Onxn(Q) define a family f,;, € F(Q) whose image
by bq is f. Therefore, if  C U; x Vj;, we have a 1:1 correspondence

bo : F(Q) = Opxn() . (23)

Moreover,
P obg =bgopi . (24)

Indeed, if (fu)ap € F(Q), the LHS map sends this family fu,, U, x Vj C Q, first to the unique
f € Opxn(Q) such that Pgava(f) = fap, and then to the restriction P, (f). The RHS map
sends this family first to the subfamily f,3, Uy X V3 C €, then to the unique g € Opxn ()
such that Pg;XVB (9) = fap- It is clear that g = P&, (f). Hence,

b: Flu,xv; — Onmxnlu,xv;
is a presheaf isomorphism, so that F lu;xv; is a sheaf.

We denote the sheafification of the presheaf F by ¢ : F — Ft (pT refers to the restrictions
of FT). Recall that any presheaf and its sheafification have the same stalks, i.e., that the maps
(pm,n:-/T:.m,n;>]?Jr

m,n

(m,n) € M x N, induced on stalks by the presheaf morphism ¢ are isomorphisms. Therefore,
the sheaf morphism |y, xv; : F lU;xv; — F +’Uix\/j is a sheaf isomorphism. This means that

o F(Q) = FH(Q)
is an isomorphism, or, here, a 1:1 correspondence, for any open Q2 C U; x Vj, so that

Lo i=bgo 3051 c FHQ) =5 Onxn(Q)
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is also 1:1. In particular, for any U; x V; € B, we have
wixv; t FT (Ui x V) = Open (Ui x Vj) (25)

Since ¢ commutes with restrictions, we get, for any U; x V; C U; x Uj,

,UXV -1 ,+Ui><Uj
Puxv, © ‘PleUJ Puxv,° P Uxv, >

so that, when taking also (24)) into account, we obtain
U;xV; iU
Pva O Ly xV; = LUixV, OP+U:VJ : (26)

Due to ([25) and (28], the map ¢ is a B-sheaf isomorphism between F and Oprxy viewed
as B-sheaves. Since a B-sheaf morphism extends to a unique sheaf morphism, there exists a
sheaf isomorphism

I:Ft = Onxn -

The morphism I is actually an isomorphism of sheaves of Z4-commutative R-algebras. It
suffices to show that ¢ is an isomorphism of B-sheaves of such algebras, i.e., that w,xy; is a
morphism of Zy-graded unital R-algebras. We will prove that 1q, 2 C U; x V}, is an algebra
morphism, leaving the remaining checks to the reader. The space F(U x V') is a nuclear Fréchet
algebra, because it is the completed tensor product of nuclear Fréchet algebras [Emel7, Lemma
1.2.13]. Its multiplication er is continuous. It is given by

Zf,@glonh ® k; —ZZ D) 9h) () @ (g:k;) -
=0 j=0

The multiplication ex induces a multiplication ez on F(Q), Q € M x N, which is defined by

(fab)ab 7 (gav)ab = (fab ®F Gab)ab

Addition and scalar multiplication on F({) are defined similarly. As F is thus a presheaf
of algebras, its sheafification F* is a sheaf of algebras and the ¢q : F(Q) — FT(Q) are
algebra morphisms, see Subsection [5.4] of the Appendix. For 2 C U; x Vj, this morphism ¢q
is an algebra isomorphism and so is @51. The map bq : F(Q) — Oprxn(£2) associates to each

(fab)ab the f such that PU <V, (f) = fab- Hence, the image by bq of a product (fup)ab® 7 (gab)ab
is the function h such that P&va(h) = fub ®F gap- On the other hand, the product f - ¢ in
Omxn () of the images by bg satisfies

Uava(f g) Pgava(f) ) Pgava(g) = fab " Jab = fab ®F Gab

see Theorem [T4l It follows that h = f-¢g. The map bg is in fact an algebra morphism. Finally
19 =bgo <p51 is a morphism of algebras, as needed. U

Remark 17. In view of 23)), 1)), and [I9) ( as well as in view of @) and [I3J) ), it is clear
that, for any U; x V; € B, we have

OMXN(Ui X VJ) = OM(Ui)@) ON(V]') )

but we were unable to convince ourselves that the same holds true for any U x V € B.
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Indeed, it is well-known that tensor products of sheaves (and in particular completed tensor
products of function sheaves) require a sheafification (see [Sar08| Section 3|). However, section
spaces of the sheafification of a presheaf do not agree with the corresponding section spaces of
the presheaf.

On the other hand, attempts to get rid of the problem in Remark [I7] using the reconstruc-
tion results from Section B] below, are not really promising.

Further, although O7«n and F are two presheaves that extend the B-presheaf Oy, R0 N,
they do not necessarily coincide: 8B-sheaves have unique extensions, but B-presheaves do not.
Indeed, to show that Oprxn ~ F, we would have to decompose sections of Oy n into sections
of the B-presheaf and then reglue them in F, which is impossible, since F is only a presheaf.

There is actually a condition for the presheaf F that extends the B-presheaf F = Oy ® On
to be a sheaf.

The explanation of this result needs some preparation.

For any open U x V. C M x N, we set O (U x V) := Op(U). Similarly, for any open
U xV'CcUxV, we define

N OM N (U x V) = O N (U x V)

to be p%, : Opr(U) — Op(U'). 1t is straightforwardly checked that O37, \ is a nuclear Fréchet
sheaf of algebras, hence, in particular a nuclear locally convex topological sheaf of algebras.
The assignment

F:UxV s OM y(UxV)RON NUXV)=0,U)R0NV)
defines a presheaf F on M x N. Applying [Mal70, Equation (2.2)], we would get
OMXN(UX V)ZJ_:—’—(UX V)ZOM(U)®ON(V) s (27)

for any open U x V. C M x N, if O]\%[IxN or Oﬂj\f[xN determined a topologically dual weakly
flabby precosheaf.

Just as a presheaf G on a topological space T" with values in a concrete category C is a
contravariant functor G : Open(T")°? — C, a precosheaf H on T with values in C is a covariant
functor H : Open(T’) — C. The point is that, for open subsets V' C U, there is a C-morphism
eg : H(V) — H(U), which we refer to as extension morphism. The relevant example for our
purpose is the topologically dual precosheaf V' of vector spaces of a topological sheaf V' of

vector spaces on a Hausdorff space T'. This precosheaf is defined, for any open U C T, by
V/(U) = HOHlTvs(V(U), R) s
and, for any open subsets V' C U, by

ey = RY - V(V) 3L [(RY): V(U) 30— L(RYv) e Rl € V(U),
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where Rg denotes the restriction in V. The precosheaf V' is weakly flabby if, for any open
U C T, the morphism €Y. : V/(U) — V/(T) is surjective.

We should prove that the topologically dual precosheaf of V = (’)%X ~ is weakly flabby,
i.e., that, for any open U C M and for any L € Homyys(Op(M),R), there exists ¢ €
Homys (O (U),R), such that ¢ = L. It turns out that this condition is not satisfied,
so that we cannot conclude that (27)) holds. Indeed, assume that the condition is satisfied, so
that it is in particular valid for M = (R, Cg°). Choose now any = € R and any open interval
I C R that does not contain x. The evaluation map

o CE(R) 3 frs f(a) €R

is linear. It is also continuous, since there exists a compact C C R that contains x and
since, for any f € CR°(R), we have |f(x)| < sup¢ |f|. In view of our assumption, there exists
¢ € Hommys(CR°(I),R), such that, for any f € Cg°(R), we have ¢(f|;) = f(z). If we take
now two functions f, g € Cg°(R) that coincide in I and have different values at =, we get the
contradiction

flx) = (fr) = Lglr) = g(x) .
4.3 Categorical products of Zj-manifolds

We recommend to first read Subsections [5.4] and of the Appendix.

Lemma 18. Let My, My € Z3Man. The presheaf F considered in Theorem is an object
of the category PSh(My x Ms,LCTAlg) of presheaves of locally convex topological algebras over
M1 X MQ,

Proof. In the proof of Theorem [I6 we showed that F € PSh(M; x My, Alg) for the obvious
restrictions and algebra operations.

Recall that, for any open Q C Mj x Mo, the algebra F () is given by
]:-(Q) = {(fab)ab fab € -F(Ua X %)a Uy x Vi, C 2, such that pgz;i}/\b/bb (fab) = PZZ:XV&,, (fab)}

and is thus a subalgebra of

[[ Faxvi)= ] Om(Ua)& Om, (V) -
UgxVp,CQ UgxVp,CQ

We equip F() with the topology induced by the product of the topologies of the locally
convex topological algebras (LCTA-s) Oy, (U,) @ O, (V). Since a product of LCTVS-s and a
subspace of a LCTVS are themselves LCTVS-s, the algebra F () is a LCTVS. Its multiplication

(fab)ab 7 (gab)ab = (fab ®F Gab)ab

is continuous, since the multiplication er is, see Proof of Theorem [I] and Lemma Hence,
the space F(Q) is a LCTA.
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A restriction ﬁg, (¥ C Q) — it sends any family (fup)as of F(£2) indexed by the U, x Vj, C
to the family (fup)e of F(£) indexed by the U, x V, C € — is known to be an algebra
morphism. It is continuous, since it is continuous as a map

po: [ FWaxVi)— [] FU.xW),
Ua XV, C Q) UagxV,C QY

in view of the definition of the product topology. O
Theorem 19. The category Z3Man has all finite products.

Proof. Since Z3Man has a terminal object (see Corollary [[2)), it suffices to prove that it has
binary products. Let M, My € ZfMan. We will show that the product Z5-manifold M; x Mo
(see Definition [I3)) is the categorical binary product of M; and Ms.

We first define Z5-morphisms
Il; = (mj, mf) s My x Mg — M, i€ {1,2}.

The base maps 7; : M} x My — M; are the canonical smooth projections. In the following,
we consider the case ¢ = 1 and use the notation introduced above.

The maps

Ty : Oa,(U) > f > fole (mF)U),

U € Open(M;), define a morphism 7' : Op;, — m1F in PSh(M;,LCTALg). Indeed, we have
On,, M« F € PSh(M;,LCTAlg), see [BP18, Theorem 14| and Proof of Proposition It is
easy to see that the maps Ty commute with restrictions and are algebra morphisms. To show
that Ty is continuous, it suffices to check that the linear map

Ty :Opmy(U)s f=f®1€ O (U)R O, (Ms) (28)

is continuous for the projective tensor topology on the target. We apply Theorem and
Proposition BIl Let pc.p ® pr,a be any of the seminorms that induce the projective tensor
topology. Recall that C C U and K C My are compact subsets, and that D and A are
differential operators acting on Opr, (U) and Oy, (Ma), respectively. We must prove that
there is a finite number of seminorms pc, p, on the source and a constant C' > 0, such that

pe,p(f) - pr.a(l) < Cm]?chk,Dk(f) ,

for any f € Op, (U). It suffices to use a single source seminorm pc, p,, namely pc p. Indeed,
if € = pr a(1) = 0, the previous condition is satisfied with C' =1, and if € > 0, it is satisfied
with C = €.

It follows from Proposition 35 that 7" : O]J\r/h — (m1,+F) T is amorphism in Sh(M;,LCTAlg).
Moreover, in view of Proposition B9, there is an Sh(M;, LCTAlg)-morphism ¢ : (my F)" —
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1« F . The composite toT" : OF, — m1 . F " is a morphism in Sh(M;, LCTAlg). Proposition
and Theorem [16] allow us to interpret it as a morphism

7TT = OT+ . OMl — 7'('174< OMl X Mo (29)

in Sh(Mi, Alg). The map 7] is actually a morphism of sheaves of Z3-commutative associative
unital algebras, so that the map II; = (71, 7f) : M1 X Mg — M; is a morphism in ZjMan
(the results of the appendix we use in this proof extend obviously to the graded unital setting:
when speaking in the rest of the proof about algebras, we actually mean Z5-commutative
associative unital algebras).

It remains to check the universality of our construction. Let NV € ZJMan and let ®; =
(i, ¢F) : N = M; be morphisms in Z5Man. We will prove that there exists a unique Z5Man-
morphism ¥ = (¢, ¢*) : N' = My x Ms, such that II; o W = ®;, for both i.

We set ¢ = (¢1,¢02) : N — My x My. As for ¢*, observe that, for any open U; C M;,
the map ¢} : On, (Ui) = On(d; L(Uy)) is a continuous algebra (Z3-graded unital algebra)
morphism, see [BP18, Theorem 19|. Denote now by V' = V; N V4 the open subset

V=VinVa=¢; (U1) Ny (Ua) =9 (U1 x Up) C N,

and denote by my = — - — the multiplication of Oy (V). In view of [BP18, Theorem 14| and
Propositions B7] and B8] the map

puLxus = My 0 (pA® py?) 0 (850, ® ¢5.1,) + Oty (U1)& Oagy (Us) = On(V)

where p“;l and ,0“? are restrictions in Oy, is a continuous algebra morphism between nuclear
Fréchet algebras. The maps

Pty F(ULxU2) 2 ) fi®gi > > ol dt o, fi - P05, g5 € (0.ON)(Ur x Ua)  (30)
j=0 j=0

define a morphism of B-presheaves of locally convex topological algebras. The latter extends to
a morphism p : F — 1,Op of presheaves of locally convex topological algebras over My x M .

In view of Propositions B3] and 39] there are morphisms
pt:FF — (.0On)T and ¢: (.ON)T — 1/)*(9];
in Sh(M; x Ms,LCTAlg). As above, we can view their composite as a morphism
Y =10p" : Onyxnr, = UON (31)

of sheaves of algebras, so that ¥ = (¢,¢*) : N' = Mj X My is a morphism in ZjMan.

To prove that II; o U = ®,, it suffices to show that

¢X/11 x Ms © W;,Mi = B[l 0 W) = B(P;) = ¢Z,Mi )
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see Theorem [l The latter is a straightforward consequence of Equations (28), (29), (30), (31)),
(38), and (E0).

Let now X = (x, x*) : N = Mj x M3 be another ZiMan-morphism that satisfies IT; 0 X =
®;. As the category of smooth manifolds has finite products, we get x = 1. We will check
that (X) = B(), i.e., that, for all ¢ € FT(M; x M), we have

X?Wlngo' = wz/llngU € ON(N) °
It suffices to show that these sections coincide in a neighborhood of an arbitrary point ng € V.

We use the compact notation m € M instead of (my, mg) € M; X M. Recall that

o = ([slm)men
where s € F(U) (U=U; x Uz > m) reads s =372 fj @ g; (fj € On,(U1), gj € Ons, (U2)).
I view of (@), (), ), and (@)

oo
* Vi ok Vo %
UMy x MO = ([Z v oL I Py P2, giln)nen (32)
j=0

where we take the germ at n of the section induced by the representative s of the germ at
(n) € M. Let mg = 1(ng) € M. Since s is constant in a neighborhood Uy = U g x Uz of
my, the representative in the RHS of the preceding equation is constant in the neighborhood

Vo =VioNVag =7 (Urp) Ny (Uao) =¥~ (Up)
of ng. Hence,

[e.e]
N Vio V2,0
PV VM x M0 = Z Pvy ¢T,Ul,0 fi - Pv; ¢§,U2,0 g9; € On(Vo) -
§=0

On the other hand, since IT;0X = ®;, we have, for any open U; C M and any f € Oy, (Ur),
X;}l XMQ([f ® 1]m)mEU1 XMy — ¢>{,U1f )
due to ([28), 29), (38), and {Q). For any open Uy C Mo, we get

* LU xM2) _ *
Xu([f @ Um)mev = Pi—lEUﬁx Q)XleMg([f@) Um)mev, xm, = p¥1¢1,U1f' (33)

An analogous result holds for ¢ = 2. Observe now that

N

o= (D_ £ ®gilm)menm = (Wz’}bli]{[Hij ® gj)meM =
j=0 Jj=0

[e.9]

(lim S i @ gilm)ment = > _([fi © gilm)menr (34)
=0

=0
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see Proof of Proposition As the pullbacks x* and the restriction p% are continuous algebra
morphisms, we get

* (M)
pJ‘X) XM1><M2 pr IEU0 f_] ®g]] )meM =

o0
1% 1% *
> Xt (15 @ Um)metn - Xir ([ ® gjlm)mery, = Z P Do di P B0 0li

due to ([B3). O

4.4 Products of Z}-morphisms

We use again abbreviations of the type n = (nj,n2) € N = Ny x Ny (which we introduced
in the proof of Theorem [19).

Proposition 20. Let ¥; : M; — N;, i € {1,2}, be a ZY-morphism with base map v; and
pullback sheaf morphism 1. Due to the universality of the product of Z5-manifolds, there is
a canonical Z5-morphism

\II:\II1X\I]2:M1XM2—>N1XN2.

Its base map is ¥ = Y1 X 9 and its pullback sheaf morphism ¥* = (11 X 19)* is given, for
each open subset 2 C N1 x Na, by

Vo = IT @@y uem | © @smm))mes-1(@) -

mey~1(Q)
The first map in the RHS is the product of the morphisms between stalks induced by the mor-
phism
YI® Vs Fy = Fu
(of presheaves of locally convex topological algebras), where Fy is the presheaf defined by
(’)Nl<§> On,, and similarly for Fur. The second map in the RHS is the tuple of morphisms

Dyp(m) H -7:-N7n - ]:-va(m) :
neq)
To understand this claim, recall that
U ON(Q) = FHQ) € [] Py = O (@) = FR @) [T Fatm -
neQ mey—1(Q)
Note now that

Pym)mes—1@) : ONQ =TT Fvawom)
mey—1(Q)
and that
II @@ : II Fyveew— TI  Frm,
mey—1(Q) mey—1(Q) mey—1(Q)
so that the composite of these maps may coincide with g,
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Proof. For i € {1,2}, we denote by II{ (resp., II7) the Z5-morphism II¥ : M; x My — M;
(vesp., III' : N7 x No — N;). The composite ®; = ¥; oII7 is a ZZ-morphism ®; : M; x My —
N;. In view of the universality of the product N x ./\/2, there is a unique ZJ-morphism
U My x Mg — N7 x Ny, such that II7 o U = ®,;. We denote this morphism ¥ by ¥ x Wy
and refer to it as the product of the Z3-morphisms ¥;. We showed in the proof of Theorem
I3 that the base map of ¥ is

W= (P 07y, ha o) =1 X 1y .

We investigate now the pullback morphisms ¢*. Let @ C N be open, so that ¥, : On(Q) —
On(~1R)), and let 0 € On(Q) ~ F(2). Recall once again that o = ([s],)neq, Where
s€ Fn(U) (U=U; x Uz > n) reads

s=> [i®g (f;€O0n(U1),g; € On,(Us)) .
It follows from Equation (32]) that

o0
Voo =D i ton £i - v (T3 )i s, Gilm)mew-1(@) - (35)
7=0

where

V=VinVy, V,=@2)'W;), and W;=¢; (U;)  (obviously V =W x Ws) .

(2

We interpret ¢y 1, f; € O, (Wh) as

([wiUl fj]m1)m1EW1 € O]T/Il(Wl) )

so that

PV (T )i o, i = (o, £ @ ey
due to Equations (28) and (29), as well as to the observation that m; € Wy is equivalent to
my = ¢ (m) (m € V;). A similar result holds for the second factor in the RHS of (33)), so that,
in view of (34]), we obtain

oo

Voo = Z (M‘,m fj ® 1/};7(]2 gj]u)uev =

7=0 m/ meyp—1(Q)

o0
([} 0, ® Y5 1, Z [i @ gilu)uev
7=0 m/ mey=1(Q)
This image is a family (indexed by m) of elements of .7:";5[ m Fn,m- The isomorphism between
a stalk of a presheaf and the corresponding stalk of its sheafification is described in the proof

of Lemma 6.17.2 of the Stacks Project. The description shows that

o0
¢§3 0= TJZ)T,U1®TJZ);,U2 Z f] ® g.] =

=0 m/ mey=1(Q)
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[T @i®v)eem | (Pum)mep-1) o) -
mey~H(Q)

5 Appendix

We prove and recall results on topological vector spaces and on topological algebras.

5.1 Topological vector subspaces

Definition 21. A topological vector subspace S of a TVS V (TVSS for short) is a subset
S C V which is a TVS for the linear operations and the topology of V.

Proposition 22. A subset S C V of a TVSV is a TVSS of V if and only if S is a linear
subspace of V' and is endowed with the topology induced by the topology of V.

Proof. The restrictions to S of the continuous addition and scalar multiplication in V' are
continuous in the topology induced on S by V. U

Note also that, if V' is a TVS, and if S C V is a TVSS, then S is a TVS and the inclusion
1:5 2 s+ s €V is an injective continuous linear map. Conversely, if S C V is a TVS and
the inclusion ¢ is an injective continuous linear map, then the linear structure on S C V is the
same as in V', but S can have a topology that is finer than the induced one, so that .S is not
necessarily a TVSS.

Proposition 23. Let 1 : V. — W be an injective linear map between TVS-s. When equipped
with the induced topology, the linear subspace (V') is a TVSS of W. The bijective linear map
1:V = (V) is a TVS-isomorphism, i.e., a linear homeomorphism, if and only if the topology
of V is the initial topology of1:V — W. In this case, the space V' can be viewed as a TVSS
V~o(V) of W.

Proof. It suffices to prove the second claim. If 7 is an isomorphism, then the topology T (V)
of V is given by

TV) = {7 a(V)NUw) = L e(V)NUw) = (V)N Y (Uw) =21 (Uw) : Uy € T(W)}

hence, it is the initial topology of + : V. — W. Conversely, if 7 (V') is the initial topology of
7, the maps 7 and 7~! are continuous. Indeed, as just explained, we have i~1(2(V) N Uy) =
1Y (Uw) € T(V), so that 7 is continuous (but it would still be continuous for a finer topology
on V). For i~! we have i(x "1 (Uw)) = +«(V) N Uw € T((V)). O

Proposition 24. Letr: V — W be an injective linear map from a vector space V to a TVS
W. When equipped with the initial topology of v, the linear space V is a TVS and can be viewed
as a TVSS of W.
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Proof. The linear operations on V are continuous when V has the initial topology. Indeed,
denote by +y (resp., +) the addition in V' (resp., W), and let « =1 (U ), Uy € T(W), be an
arbitrary open subset in 7 (V). Then,

(+v) 7 OW)) = {(v,v) €V x V a(v) +w (V) € U} =

{(0,0) €V X V2 (1(v),2(v)) € (+w) " (Uw)} = (1 x )" ((+w) ~H(Uw))

is open in V x V, since 2 and +y are continuous. The case of the scalar multiplication is
similar. The second claim follows now from Proposition 23l U

Remark 25. When passing above from topological vector subspace structures on included sub-
sets to topological vector subspace structures on injected subsets, we replaced the induced topol-
ogy by the initial topology. Of course, if the injection is the inclusion, the initial topology with
respect to it coincides with the induced topology.

5.2 Completions of topological vector spaces
We recall now well-known properties of the completion of a TVS [Nag07].

For any TVS V, there is a complete TVS ‘7, and an injective linear map ¢ : V — 17, such
that the linear subspace (V') C V is dense in V. Moreover, when endowed with the induced
topology, the image (V') C V becomes a TVSS of ‘7, and the map 7: V' — +(V) is promoted to
a linear homeomorphism, or, equivalently, to a TVS-isomorphism. It follows from Proposition
23 that the topology of V' is the initial topology of 2: V — ‘7, and that V' ~ (V) is a TVSS of
V. In short, the complete TVS ‘7, which we refer to as the completion of the TVS V, contains
V as a dense TVSS:

Proposition 26. The completion 1% of V contains V' as a dense subset, and it induces on V
the original topology and original linear structure.

Remark 27. If V is already a complete TVS, then1:V — Visa TVS-isomorphism.

Further, let S C V be a TVSS of V' and let 2 : S — V be the injective continuous linear
inclusion. The continuous extension of 2, which we denote by 7 : S — 17, is an injective
continuous linear map. If i(§) carries the induced topology, the map i : S - i(§) is a TVS-
isomorphism. In view of Proposition 23] this means that the topology of S is the initial topology
of i: 5 =V, and that S ~ i(§) is a TVSS of V. In short:

Proposition 28. The completion of a TVSS S C V is a TVSS Scv of the completion.

5.3 Locally convex spaces

Proposition 29. The initial topology of a linear map € :V — W from a vector space V to a
LCTVS W endows V with a LCTVS structure. In particular, the induced topology on a vector
subspace S C W of a LCTVS endows S with a LCTVS structure.
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Proof. The topology of W has a convex basis 2. As the preimage of a convex set by a linear
map is convex, the family /~1(8) is a convex basis of the initial topology. In view of the proof
of Proposition 24] the initial topology endows V with a LCTVS structure. The second claim
is a special case of the first one. O

We close this subsection recalling two results.

Theorem 30. Let V and W be two LCTVS-s and let (p;)icr and (g;)jes be two families of
seminorms that induce the topologies of V- and W, respectively. The projective tensor topology
monV @W is induced by (p; ® qj)ij. Moreover, for anyt € V& W, we have

N N

(pi ® q;)(t) = nf{> _ pi(ow)gj(wg) 1t =D vp @ wy, v € V,wp € W, N €N},
k=1 k=1

and, for any v € V and w € W, we have

(pi ® q;)(v @ w) = pi(v)gj(w) .

Proposition 31. Let V and W be two LCTVS-s and let (p;)icr and (q;)jes be two families of
seminorms that induce the topologies of V. and W, respectively. A linear map £ : V — W is
continuous if and only if, for any j € J, there exist i1,...,iny € I and C > 0, such that, for
allv €'V, one has

¢j(¢(v)) < Cmaxp;,(v) .

5.4 Presheaves of topological algebras and sheafification

In the following, we need two lemmas.

Unless otherwise stated, all cartesian products [ [, T\ of topological spaces T, are endowed
with the product topology, i.e., the weakest topology for which all projections pg : [[, To — T3
are continuous.

Lemma 32. Let (T%), (i € {1,2,3}) be families of topological spaces, and let (mq)a be a
family mq : T x T2 — T2 of continuous maps. Then the map

m: HTOIZ X HTQQ > ((Ta)as (ta)a) = (Ma(Tas ta))a € HTS

18 continuous.

Proof. Since the cartesian product [[,, Ti, of topological spaces T, equipped with the product
topology, is the product in the category of topological spaces, it follows from the universal
property that a map f: T — [], T from a topological space to a product space is continuous
if and only if all the pgo f : T — T} are continuous. However, the map p%om ((Ta)a, (ta)a) —
mg(7s, t3) is the composite mg o (p[lg X p%), which is of course continuous. O
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Lemma 33. Let V' be a vector space, let (Vo) be a family of LCTVS, let £y : Vo, = V be a
family of linear maps, and let V' be equipped with the finest locally convex vector space topology,
for which all the £, are continuous (V is then a LCTVS). If W is a LCTVS, a linear map
:V — W is continuous if and only if all the maps o l, : Vo — W are continuous.

Proof. See |BS17, Proposition 2.3.5] O
In the present text:

Definition 34. A topological algebra ( TA for short) (resp., a locally convex topological
algebra ( LCTA for short)) is a (real) topological vector space (resp., a locally convex ( real)
topological vector space), with an associative, bilinear, and ( jointly ) continuous multiplication.
A morphism of topological algebras ( resp., a morphism of locally convex topological algebras)
is a continuous algebra morphism. We denote the category of topological algebras (resp., of
locally convex topological algebras) and morphisms between them by TAlg (resp., by LCTAlg).

The category of Fréchet algebras is a full subcategory of the category of locally convex
topological algebras, itself a full subcategory of the category of topological algebras.

We denote by PSh(T, TAlg) (resp., Sh(T, TAlg)) the category of presheaves (resp., sheaves)
of TA-s over a topological space T. Similarly, the category PSh(7,LCTAlg) (resp., Sh(T,
LCTAlg)) is the category of presheaves (resp., sheaves) of LCTA-s over T', and the category
PSh(T,Alg) (resp., Sh(T,Alg)) is the category of presheaves (resp., sheaves) of algebras over
T.

Proposition 35. Denote by + the sheafification functor
+ : PSh(T,Alg) — Sh(7T,Alg) : For ,

i.e., the left adjoint of the forgetful functor For. If F € PSh(T,TAlg), we have F' €
Sh(T,TAlg), and the morphism i : F — F7T of presheaves of algebras is a morphism of
presheaves of TA-s. Moreover, if ¢ : F — F' is a morphism in PSh(T,TAlg), then ot : F+
— F' is a morphism in Sh(T, TAlg). The same results hold, if we replace TA-s by LCTA-s.

Proof. We study the case F € PSh(T,LCTAlg) (in particular F € PSh(T,Alg)).

Since sheafification is based on stalks F, (z € T), i.e., on inductive limits, and since the
inductive limit of a directed system of sets endowed with a same algebraic structure has as
underlying set the inductive limit of the directed system of underlying sets, it is natural that
the same result holds for sheafification functors. Let 4+ be the sheafification functor

+ : PSh(T,Alg) > F — F € Sh(T,Alg) : For .

Recall that F(U) (U € Open(T)) is defined as the subset of (ILF)(U) := [],cy Fa, which
is made of those elements o = (0)zcv = ([$]2)zev, for whom the section s is constant in a
neighborhood of any point of U. The algebra operations on F*(U) are naturally induced by
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those of the stalks. Restrictions are the obvious algebra morphisms. The morphism i : F — FT
of presheaves of algebras is defined by

iy FU) 3 s ([sla)ecr € FHU) | (36)

and iy is injective, if F is separated. If G € Sh(T,Alg), the morphism i : G — GT is an
isomorphism of sheaves of algebras. Further, if j : F — G is a morphism of presheaves of
algebras, the unique morphism 7: FT — G of sheaves of algebras, such that 707 = j, is given
by ju = [l cr Jz, Where j, : 7 — G, is the morphism of algebras induced by j:

g FHU) 3 ([sle)aev = (Julsla)zev € GH(U) = G(U) . (37)

Similarly, if F, 7' € PSh(T,Alg) and ¢ : F — F’ is a presheaf morphism, the components of
the sheaf morphism ¢t : F* — F't are

SD$ : ]:+(U) 3 ([sle)eecr + (Pels]e)zcu € -7:I+(U) .

The stalk F,, (z € T) is the inductive limit algebra F, = lim,,_F(U) of the directed sys-
tem of algebras (F(U), p¥), where U is an open neighborhood of z and p¥ the restriction from
U to V C U. This system is actually a directed system of LCTA-s, in the sense that the F(U)
are LCTA-s and the pg are continuous algebra morphisms. If we endow the inductive limit
algebra JF, with the final locally convex vector space topology with respect to the canonical
algebra morphisms 7{; : F(U) — F, (i.e., with the finest locally convex vector space topology,
for which the 7{; are all continuous), the limit 7, is a LCTVS, whose multiplication is (jointly)

continuous [Mal86, Lemma 2.2.], i.e., the stalk F, is a LCTA.

In the following, the algebra F(U) C (ILF)(U) carries the induced topology of the product
topology. Since any product of LCTVS-s and any subspace of a LCTVS are LCTVS-s, the
algebra F*(U) is a LCTVS. The multiplication on F*(U) is continuous in view of Lemma [32]
so that F7(U) is a LCTA.

To show that F* € Sh(7,LCTAlg), it suffices to prove that any restriction
s (IF)U) 3 (0a)ser = (0a)zev € (ILF)(V)
is continuous, i.e., that, for all y € V', the map
pz‘// org :pr C(IIF)(U) 3 (0z)ecr > 0y € Fy

is continuous — which is a consequence of the definition of the product topology.

The next step consists in proving that the morphism i : 7 — F T of presheaves of algebras
defined by (B36), is a morphism of presheaves of LCTA-s, i.e., in proving that, for any y € U,
the map

prin =7l F(U)> s [s]y € Fy

is continuous. This holds true by definition of the final topology on F.
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Let ¢ : F — F' be a morphism in PSh(7,LCTAlg). To show that ot : F© — F'* is a
morphism in Sh(7,LCTAlg), it suffices to show that

11 ¢e: MFAU) 3 (s]a)eev = (puls]e)eer € TLF)(U) (38)
zelU
is continuous. This is the case if and only if ¢, : F, — F., x € U, is continuous. In view of
Lemma B3] the algebra morphism ¢, is continuous if and only if

promyy =T oy F(V) 35— @plsle = [ovsle € Fy,
V' 3 x, is continuous. This condition is obviously fulfilled. O

Corollary 36. When equipped with the final locally convex vector space topology with respect
to the canonical algebra morphisms ©f; : F(U) — Fy, a stalk Fy, x € T, of a presheaf F € PSh
(T, TAlg) is the inductive limit in TAlg of the directed system (F(U),p%}). The same statement
holds in LCTAlg.

Proof. Clearly, the nf; : F(U) — F, are morphisms in (LC)TAlg. Let (F,py) be made of
F € (LC)TAlg and (LC)TAlg-morphisms py : F(U) — F, such that py o p¥ = py. Due to
Lemma [33], the unique Alg-morphism u : 7, — F', such that uon{; = py, is continuous, since
the u o 7y = py are all continuous. Hence, the claim. ]

Proposition 37. Leta: A — C and 8 : B — D be two continuous algebra morphisms between
nuclear Fréchet algebras. Then a®p : ARB — C®D is a continuous algebra morphism between
nuclear Fréchet algebras.

Proof. Since a and 8 are continuous linear maps between locally convex spaces, the map
a®pB: A® B — C®D is continuous linear, and its continuous extension a®p : AQB — C&D
is continuous linear as well.

The source and the target of a®f are nuclear Fréchet algebras [Emel7, Lemma 1.2.13]. It
remains to show that a®p respects their (continuous) multiplications. Let a = Yot ai ® b
and b =} 2 a} @ b be two elements of A®B. Using continuity, we get

(a®B)(a-b) =limlim Y > (a(a;)a(d))) @ (B(b:)B())) -
i=0 j=0
It is straightforwardly seen that (a®p8)a - (a®B)b is given by the same limit of sums of tensor
products. O

Proposition 38. The multiplication m : A x A — A of a nuclear Fréchet algebra A extends
to a continuous algebra morphism m : AQA — A between nuclear Fréchet algebras.

Proof. We equip A ® A with the projective tensor topology. The continuous bilinear maps
from A x A to A correspond exactly to the continuous linear maps from A ® A to A. Hence,
the multiplication m can be viewed as a continuous linear map m : A ® A — A. The latter
extends to a continuous linear map 7 : A®A — A. This extension respects the (continuous)
multiplications. The proof is similar to the one of Proposition 37 O
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5.5 Direct image and sheafification
Proposition 39. Let F € PSh(T,LCTAlg) and let f € CO(T,T"). There is a morphism
v (B F)T = o FT
in Sh(T’,LCTAlg).
Proof. The assignment
f«F : Open(T") 5V = F(fY(V)) € LCTAlg
together with the restrictions

P (BFV) = (L)W,
where p are the restrictions of F in LCTAlg, is a presheaf f,F € PSh(7T’,LCTAlg). In view of
Proposition B3, we get (f.F)" € Sh(T”,LCTAlg). Similarly, we have f, F™ € Sh(T’,LCTAlg).

Further, for z € T and U D U’ 5 «, the LCTAlg-morphisms nf; : F(U) — F, and 7}, :
F(U') — F, satisfy f, 0 pl, = 7f;. As, due to Corollary B6] the stalk (f.F) () € LCTAlg is
the inductive limit in LCTAlg of the directed system

-1 1(V) /
there exists a unique LCTAlg-morphism

(S F) @) = Fe s (39)

such that wu, o 71'{,( ?) = Ti-1(yy» Le., such that u, [s] () = [s]a, for all s € F(f~1(V)) and all
V3 f(z).
For any V € Open(7”), the map

w o (EF)V) 2 (sly)yev = (ua [8]5@)zes-1v) = (sla)eef-1(v) € AF)(FTH(V))  (40)

is a continuous algebra morphism. Indeed, the algebraic operations are defined component-
wise. For instance, the image of a product ([s], - [s'])yev is the product (uz[s]f@) - Uz
[8'] f(@))zef—1(v) of the images. Moreover, the map vy is continuous if and only if the maps

pl WV ow s (MEFNWV) 3 (sly)yev = e8]y € Fo (w€ f71(V))

71V

are. The preimage by pz oy of any open w C F, is the product over y € V, whose

factors indexed by y # f(x) are (fiF)y and whose factor indexed by f(x) is the open subset

\2

uy ' (w) of (f+F) (). The preimage by pi oty is thus open in (II(f..F))(V).

The restriction of vy to (f.F)T(V), still denoted by vy, arrives in (fi« F7)(V). Assume
that ([s]y)yev is implemented in a neighborhood Vj, of an arbitrary point yo € V by a same
section ¢ € (foF)(Vy,), let 2o € f~H(V), and set Uy = f~1(V(sy))- For any z € Uy, we have

Uz [8] (o) = Uz [t f(2) = [t 5
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with t € F(Ug,).

The restriction ¢y : (foF)T(V) = (f« FT)(V) is obviously a morphism in LCTAlg. Since
these 1y commute with restrictions, they define the sheaf morphism ¢« announced in Proposition

O
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