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EXAMPLES OF SINGULAR TORIC VARIETIES WITH CERTAIN

NUMERICAL CONDITIONS

HIROSHI SATO AND YUSUKE SUYAMA

Abstract. We give various examples of Q-factorial projective toric varieties such that
the sum of the squared torus invariant prime divisors is positive. We also determine the
generators for the cone of effective 2-cycles on a toric variety of Picard number two. This
result is convenient to explain our examples.
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1. Introduction

In [SS], the following concepts were introduced:

Definition 1.1 ([SS, Definition 3.1]). Let X be a Q-factorial projective toric d-fold. Put

γ2 = γ2(X) := D2

1
+ · · ·+D2

n ∈ N2(X),

where D1, . . . , Dn be the torus invariant prime divisors.
If γ2 · S > 0 (resp. ≥ 0) for any subsurface S ⊂ X , then we say that X is γ2-positive

(resp. γ2-nef).

When X is smooth, it is expected that γ2-positive or γ2-nef toric varieties have good
geometric properties (see [N], [S1] and [S2]. Also see Questions 1.2 and 1.3 below). We
should remark that 1

2
γ2(X) is the second Chern character ch2(X) of X in this case. It was

confirmed that these properties hold for the case where X is a Q-factorial terminal toric
Fano 3-fold in [SS]. Therefore, [SS] posed the following questions:

Question 1.2 ([SS, Question 5.4]). Does there exist a Q-factorial terminal projective
γ2-positive toric variety X of ρ(X) ≥ 2?

Question 1.3 ([SS, Question 5.6]). For any Q-factorial terminal projective γ2-nef toric
d-fold of ρ(X) ≥ 2, does one of the following hold?

(1) There exists a Fano contraction ϕ : X → X such thatX is a γ2-nef toric (d−1)-fold.
(2) There exists a toric finite morphism π : X ′ → X such that X ′ is a direct product

of lower-dimensional γ2-nef toric varieties.

In this paper, we give answers for these questions by giving certain explicit examples (see
Examples 3.2, 3.3 and 3.5, and Theorem 3.4). According to these examples, we see that
higher-dimensional γ2-positive or γ2-nef singular toric varieties do not have good geometric
properties like smooth cases.
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2. Preliminaries

In this section, we introduce some basic results and notation of toric varieties. For the
details, please see [CLS], [F] and [O]. For the toric Mori theory, see also [FS], [M, Chapter
14] and [R].
Let X = XΣ be the toric d-fold associated to a fan Σ in N = Zd over an algebraically

closed field k of arbitrary characteristic. We will use the notation Σ = ΣX to denote the
fan associated to a toric variety X . We denote the Picard number of X by ρ(X). Put
NR := N ⊗ R. There exists a one-to-one correspondence between the r-dimensional cones
in Σ and the torus invariant subvarieties of dimension d− r in X . Let G(Σ) be the set of
primitive generators for 1-dimensional cones in Σ. Thus, for v ∈ G(Σ), we have the torus
invariant prime divisor corresponding to R≥0v ∈ Σ.

Let X be a projective toric d-fold. For 1 ≤ r ≤ d, we put

Zr(X) := {the r-cycles on X}, while Zr(X) := {the r-cocycles on X}.

We introduce the numerical equivalence ≡ on Zr(X) and Zr(X) as follows: For C ∈ Zr(X),
we define C ≡ 0 if D · C = 0 for any D ∈ Zr(X), while for D ∈ Zr(X), we define D ≡ 0 if
D · C = 0 for any C ∈ Zr(X). We put

Nr(X) := (Zr(X)⊗ R) / ≡, while Nr(X) := (Zr(X)⊗ R) / ≡ .

We denote the cone of effective r-cycles of X by NEr(X) ⊂ Nr(X). NEr(X) is a strongly
convex rational polyhedral cone in Nr(X).
For NE1(X) = NE(X), that is, the ordinary Kleiman-Mori cone, there is a good descrip-

tion of 1-cycles. So, let X be a Q-factorial projective toric d-fold. Let C = Cτ be the torus
invariant curve corresponding to a (d − 1)-dimensional cone τ generated by x1, . . . , xd−1,
where x1, . . . , xd−1 ∈ G(Σ). Then, there exist exactly two maximal cone y1 + τ and y2 + τ
which contain τ as a face, where y1, y2 ∈ G(Σ). So, we have the linear relation

a1y1 + a2y2 + b1x1 + · · ·+ bd−1xd−1 = 0,

where a1, a2, b1, . . . , bd−1 ∈ Q and a1, a2 > 0. We call this equality the wall relation for τ .
The wall relation is determined up to multiple of positive rational numbers. If C spans an
extremal ray of NE(X), we say that the wall relation for τ is extremal.

We end this section by determining the structure of NE2(X), which is useful to describe
the examples in Section 3.

Theorem 2.1. If X = XΣ is a Q-factorial projective toric d-fold of ρ(X) = 2, then

NE2(X) is generated by at most 3 torus invariant surfaces.

Proof. First, we remark that [N, Proposition 3.2] says that NE2(X) is generated by torus
invariant surfaces.
Reid’s wall description of extremal rays of toric varieties tells us that there exist exactly

two extremal wall relations

a1x1 + · · ·+ amxm = c1y1 + · · ·+ cn−1yn−1,

b1y1 + · · ·+ bnyn = d1x1 + · · ·+ dm−1xm−1,

where G(Σ) = {x1, . . . , xm, y1, . . . , yn}, m,n ≥ 2, m + n = d + 2, a1, . . . , am, b1, . . . , bn ∈
Q>0, c1, . . . , cn−1, d1, . . . , dm−1 ∈ Q≥0. Without loss of generality, we may assume that

0 ≤
d1
a1

≤
d2
a2

≤ · · · ≤
dm−1

am−1

and 0 ≤
c1
b1

≤
c2
b2

≤ · · · ≤
cn−1

bn−1

.
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By a R-basis {x1, . . . , xm−1, y1, . . . , yn−1} for NR, we obtain linear relations

Di −
ai
am

Dm +
di
bn
En = 0 (1 ≤ i ≤ m− 1), Ej −

bj
bn
En +

cj
am

Dm = 0 (1 ≤ j ≤ n− 1)

in N1(X), where Di and Ej are the torus invariant prime divisors corresponding to xi and
yj, respectively. First, we show the following:

Claim. For any 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1, Dm and En are contained in the cone

R≥0Di + R≥0Ej ⊂ N1(X).

Proof of Claim. If di = 0, then we have ai
am
Dm = Di. So, we may assume di 6= 0. By the

above equalities, we have

bj
di

(

Di −
ai
am

Dm +
di
bn
En

)

+ Ej −
bj
bn
En +

cj
am

Dm = 0

⇐⇒
bj
di
Di + Ej =

(

aibj
amdi

−
cj
am

)

Dm,

where
aibj
amdi

−
cj
am

has to be positive since X is complete. The proof for En is completely
similar. �

For 1 ≤ i1 < i2 ≤ m− 1 and 1 ≤ j1 < j2 ≤ n− 1, we have

am
ai1
Di1 =

am
ai2
Di2 +

am
bn

(

di2
ai2

−
di1
ai1

)

En and
bn
bj1
Ej1 =

bn
bj2
Ej2 +

bn
am

(

cj2
bj2

−
cj1
bj1

)

Dm.

These equalities mean that Di1 ∈ R≥0Di2 + R≥0En ⊂ N1(X), while Ej1 ∈ R≥0Ej2 +
R≥0Dm ⊂ N1(X). Therefore, any 2-cycleDi1 · · ·Dik ·Ej1 · · ·Ejl (k < m, l < n, k+l = d−2)
is contained in the cone generated by

Dp · · ·Dm−1 · Eq · · ·En−1 (p ≥ 1, q ≥ 1, p+ q = 4)

in NE2(X). One can easily see that the possibilities for (p, q) are (1, 3), (2, 2) and (3, 1).
Thus, NE2(X) is generated by the three 2-cycles

S1 := D1 · · ·Dm−1 · E3 · · ·En−1, S2 := D2 · · ·Dm−1 · E2 · · ·En−1,

and S3 := D3 · · ·Dm−1 · E1 · · ·En−1,

where S1 = 0 (resp. S3 = 0) if n = 2 (resp. m = 2). These 2-cycles are obtained by
multiplying some torus invariant surfaces by positive rational numbers. �

By Theorem 2.1, in order to prove the positivity (resp. non-negativity) of γ2(X), it
is sufficient to check the positivity (resp. non-negativity) for the above three 2-cycles.
Furthermore, [SS, Proposition 3.4] says that γ2(X) · S1 > 0 and γ2(X) · S3 > 0. So, only
we have to do is to check the positivity (resp. non-negativity) for S2. We remark that
ρ(S2) = 2. So, we can apply [SS, Proposition 3.5]. We describe them here for the reader’s
convenience: Let X = XΣ be a Q-factorial projective toric d-fold, and S ⊂ X a torus
invariant subsurface of ρ(S) = 2. Let τ ∈ Σ be a (d− 2)-dimensional cone associated to S
and τ ∩G(Σ) = {x1, . . . , xd−2}. There exist exactly 4 maximal cones

R≥0y1 + R≥0y3 + τ, R≥0y2 + R≥0y3 + τ, R≥0y1 + R≥0y4 + τ, R≥0y2 + R≥0y4 + τ

in Σ, where {y1, y2, y3, y4} ⊂ G(Σ). Let

b1y1 + b2y2 + c3y3 + a1x1 + · · ·+ ad−2xd−2 = 0 and

b3y3 + b4y4 + c1y1 + e1x1 + · · ·+ ed−2xd−2 = 0

be the wall relations corresponding to (d− 1)-dimensional cones R≥0y3+ τ and R≥0y1+ τ ,
respectively, where a1, . . . , ad−2, b1, b2, b3, b4, c1, c3, e1, . . . , ed−2 ∈ Q and b1, b2, b3, b4 > 0.
Then, the following holds:
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Proposition 2.2 ([SS, Proposition 3.4]). There exists a positive rational number α such

that

αγ2(X) · S = −b3c1
(

b2
1
+ b2

2
+ c2

3
+ a2

1
+ · · ·+ a2d−2

)

+2b1b3 (b1c1 + b3c3 + a1e1 + · · ·+ ad−2ed−2)− b1c3
(

b2
3
+ b2

4
+ c2

1
+ e2

1
+ · · ·+ e2d−2

)

.

3. Examples of γ2-positive toric varieties

We need the following lemma to explain the singularities in the examples below.

Lemma 3.1. Let d ≥ 3 and e1, . . . , ed the standard basis for N . Put

x1 := e1, . . . , xd−1 := ed−1, xd := ced −

d−1
∑

i=p

ei,

where 1 ≤ p ≤ d−1, c ∈ Z and 0 < c < d−p+1. Then, the cone R≥0x1+· · ·+R≥0xd ⊂ NR

is terminal.

Proof. The hyperplane passing through x1, . . . , xd is
{

(t1, . . . , td) ∈ Nd
R

∣

∣

∣

∣

t1 + · · ·+ td−1 +
d− p+ 1

c
td = 1

}

.

For (a1, . . . , ad) ∈ Qd
≥0
, suppose that

x := a1x1+· · ·+adxd = a1e1+· · ·+ap−1ep−1+(ap−ad)ep+· · ·+(ad−1−ad)ed−1+caded ∈ Zd

and that

a1 + · · ·+ ap−1 + (ap − ad) + · · ·+ (ad−1 − ad) +
d− p+ 1

c
× cad = a1 + · · ·+ ad ≤ 1.

If ai = 1 for 1 ≤ i ≤ d, then x = xi. So we may assume a1, . . . , ad < 1. Then, since
a1, . . . , ap−1 ∈ Z, a1 = · · · = ap−1 = 0. So, we have 0 ≤ ap + · · · + ad ≤ 1. For any
p ≤ i ≤ d− 1, we have −1 < ai − ad < 1. However, ai − ad ∈ Z means that ai − ad = 0. If
ad 6= 0, then cad ≥ 1 holds because cad ∈ Z. This is impossible, since

ap + · · ·+ ad = (d− p+ 1)× ad ≥
d− p+ 1

c
> 1.

Therefore, ap = · · · = ad = 0. Thus, x ∈ {x1, . . . , xd, 0}. �

The following is an answer to Question 1.2. Moreover, this is a counterexample to
Question 1.3, too.

Example 3.2. Let X = XΣ be a Q-factorial terminal toric Fano 4-fold such that the
primitive generators of 1-dimensional cones in Σ are

x1 = (1, 0, 0, 0), x2 = (0, 1, 0, 0), x3 = (0, 0, 1, 0),

x4 = (0, 0, 0, 1), x5 = (−1,−2,−1, 0), x6 = (0,−1,−2,−1).

The singular locus of X is S1,5 ∪ S4,6, where S1,5 and S4,6 are the torus invariant surfaces
corresponding to R≥0x1 +R≥0x5 and R≥0x4 +R≥0x6, respectively. One can easily see that
X is terminal by Lemma 3.1. The extremal wall relations of Σ are

2x1 + 3x2 + 2x5 = x4 + x6 and 3x3 + 2x4 + 2x6 = x1 + x5.

Let D1, . . . , D6 be the torus invariant prime divisors corresponding to x1, . . . , x6, respec-
tively. Theorem 2.1 tells us that it is sufficient to show the positivity for D5D6. The wall
relations associated to R≥0x1 + R≥0x5 + R≥0x6 and R≥0x3 + R≥0x5 + R≥0x6 are

3x3 + 2x4 − x1 − x5 + 2x6 = 0 and x1 + 2x2 + x3 + x5 = 0,
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respectively. By Proposition 2.2, there exists a positive rational number α such that

αγ2(X)·D5D6 = −1×1×(32+22+(−1)2+(−1)2+22)+2×3×1×(3×1+1×(−1)+(−1)×1)

−3 × (−1)× (12 + 22 + 12 + 12) = 8 > 0.

Therefore, X is γ2-positive, but ρ(X) = 2. We should remark that G(Σ) has no centrally
symmetric pair.

For any dimension d ≥ 4, there exists a toric d-fold satisfying the condition of Question
1.2:

Example 3.3. Let d ≥ 4 and {e1, . . . , ed} the standard basis for N = Zd. Put

x1 := e1, . . . , xd−2 := ed−2, xd−1 := − (e1 + · · ·+ ed−2 + (d− 2)ed−1) , xd := ed−1,

y1 := −(ed−1 + ed), y2 = ed.

Let X = XΣ be the Q-factorial terminal toric Fano d-fold of ρ(X) = 2 such that G(Σ) =
{x1, . . . , xd, y1, y2}. The singular locus of X is the torus invariant curve corresponding to
the cone R≥0x1 + · · ·+ R≥0xd−1. One can easily confirm that this singularity is terminal
by Lemma 3.1. The extremal wall relations of Σ are

x1 + · · ·+ xd−1 + (d− 2)xd = 0 and (d− 2)y1 + (d− 2)y2 = x1 + · · ·+ xd−1.

By Theorem 2.1, all we have to do is to show γ2(X)·D2 · · ·Dd−1 > 0, whereD1, . . . , Dd, E1, E2

are the torus invariant prime divisors corresponding to x1, . . . , xd, y1, y2, respectively. The
wall relations associated to

R≥0x1 + R≥0x2 + · · ·+ R≥0xd−1 and R≥0y1 + R≥0x2 + · · ·+ R≥0xd−1

are

(d− 2)y1 + (d− 2)y2 − x1 − x2 − · · · − xd−1 = 0 and x1 + (d− 2)xd + x2 + · · ·+ xd−1 = 0,

respectively. Proposition 2.2 says that for α ∈ Q>0, we have

αγ2(X) ·D2 · · ·Dd−1

= 2× (d− 2)× 1× (−1)× (d− 1)− (d− 2)× (−1)×
(

12 + (d− 2)2 + 12 × (d− 2)
)

= (d− 2)3 − (d− 2)(d− 1) = (d− 2)((d− 3)2 + (d− 4)) > 0.

Thus, X is γ2-positive. Moreover, G(Σ) has no centrally symmetric pair in this case, too.

Next, we consider Question 1.2 for Gorenstein Q-factorial projective toric d-folds. We re-
mark that there exists a counterexample to Question 1.3 in this situation (see [SS, Remark
5.7]).
The following is the answer to Question 1.2 for d = 2.

Theorem 3.4. Let S be a Gorenstein projective toric surface. Then, S is γ2-positive if

and only if ρ(S) = 1.

Proof. If S is nonsingular, then the statement is obviously true (for example, see [S2,
Proposition 4.3]).
Suppose ρ(S) ≥ 2. Only we have to do is to show that S is not γ2-positive.
First, we remark that for a blow-up ψ : S1 → S2 between smooth projective toric surfaces

S1 and S2, we have γ2(S2)− γ2(S1) = 3.
Next, we investigate primitive crepant contractions. So, let ψ : S1 → S2 be a toric

morphism between Gorenstein projective toric surfaces S1 and S2 such that G(ΣS1
) =

G(ΣS2
)∪{y} and ax1+ bx2 = qy for some 2-dimensional cone R≥0x1+R≥0x2 ∈ ΣS2

, where
a, b, q are coprime positive integers and x1, x2 ∈ G(ΣS2

). Then, [SS, Proposition 4.2] says
that

γ2(S1) = γ2(S2)−
a2 + b2 + q2

abq
.
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Since ψ is crepant if and only if a + b = q, this equality is equivalent to

γ2(S2)− γ2(S1) =
a2 + b2 + (a+ b)2

ab(a + b)
= 2

(

1

a
+

1

b
−

1

a+ b

)

.

Put

f(a, b) :=

(

1

a
+

1

b
−

1

a + b

)

.

Then,

f(a+ 1, b)− f(a, b) =

(

1

a + 1
−

1

a

)

−

(

1

a+ b+ 1
−

1

a + b

)

= −
1

a(a + 1)
+

1

(a+ b)(a + b+ 1)
< 0.

This means that f(a, b) takes the maximum value at (a, b) = (1, 1). Thus, we have

γ2(S2)− γ2(S1) ≤
12 + 12 + 22

1× 1× 2
= 3.

There exists the crepant resolution π : S → S which is a finite succession of primitive
crepant contractions as above. On the other hand, there exists a toric morphism ϕ : S → S ′

which is a finite succession of blow-ups such that S ′ is a smooth projective toric surface of
ρ(S ′) = ρ(S). Thus, we have

γ2(S
′)− γ2(S) = 3

(

ρ(S)− ρ(S ′)
)

,

while

γ2(S)− γ2(S) ≤ 3
(

ρ(S)− ρ(S)
)

.

Therefore, γ2(S) ≤ γ2(S
′) ≤ 0, that is, S is not γ2-positive. �

However, there exists a Gorenstein Q-factorial projective γ2-positive toric 3-fold X of
ρ(X) = 2:

Example 3.5. Let X = XΣ be a Q-factorial Gorenstein toric Fano 3-fold such that the
primitive generators of 1-dimensional cones in Σ are

x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1), x4 = (0,−2,−1), x5 = (−1,−1, 0).

The singular locus of X is the torus invariant curve corresponding to the cone R≥0x3 +
R≥0x4. The hyperplane passing through x1, x3, x4 and x3, x4, x5 are

{

(t1, t2, t3) ∈ N3

R | t1 − t2 + t3 = 1
}

and
{

(t1, t2, t3) ∈ N3

R | −t2 + t3 = 1
}

,

respectively. Thus, X is Gorenstein. There exist exactly two extremal wall relations

2x1 + 2x5 = x3 + x4 and 2x2 + x3 + x4 = 0.

Let D1, . . . , D5 be the torus invariant prime divisors corresponding to x1, . . . , x5, respec-
tively. By Theorem 2.1, it is sufficient to check the positivity for D4. The wall relations
associated to R≥0x1 + R≥0x4 and R≥0x2 + R≥0x4 are

2x2 + x3 + x4 = 0 and x1 + x5 + x2 = 0,

respectively. By Proposition 2.2, there exists a positive rational number α such that

αγ2(X) ·D4 = −1× 1× (22 +12+12)+ 2× 2× 1× (2× 1)− 2× 0× (12 +12+12) = 2 > 0.

Therefore, X is γ2-positive, but ρ(X) = 2.



EXAMPLES OF SINGULAR TORIC VARIETIES WITH CERTAIN NUMERICAL CONDITIONS 7

References

[CLS] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, 124.
American Mathematical Society, Providence, RI, 2011.

[FS] O. Fujino and H. Sato, Introduction to the toric Mori theory, Michigan Math. J. 52 (2004), no. 3,
649–665.

[F] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131. The William H.
Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993.

[M] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002.
[N] E. Nobili, Classification of Toric 2-Fano 4-folds, Bull. Braz. Math. Soc., New Series 42 (2011),

399–414.
[O] T. Oda, Convex bodies and algebraic geometry, An introduction to the theory of toric varieties,

Translated from the Japanese, Results in Mathematics and Related Areas (3) 15, Springer-Verlag,
Berlin, 1988.

[R] M. Reid, Decomposition of toric morphisms, Arithmetic and geometry, Vol. II, 395–418, Progr.
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