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INTRODUCTION TO FRACTIONAL ORLICZ-SOBOLEV SPACES

MOHAMMED SRATI1

ELHOUSSINE AZROUL2

ABDELMOUJIB BENKIRANE3

Abstract In this paper, we define the fractional Orlicz-Sobolev spaces, and we
prove some important results of these spaces. The main result is to show the con-
tinuous and compact embedding for these spaces. As an application, we prove the
existence and uniqueness of a solution for a non local problem involving the frac-
tional M-Laplacian operator.

1. Introduction

Let Ω be an open subset of RN , and let s ∈ (0, 1). For any p ∈ [1,+∞), the
fractional Sobolev spaces are defined as,

W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|

|x− y|
N
p
+s

∈ Lp(Ω× Ω)

}
.

These spaces have been a classical topic in functional and harmonic analysis all
along, and some important books, such as [34] treat the topic in detail. On the
other hand, fractional spaces, and the corresponding nonlocal equations, are now
experiencing impressive applications in different subjects, such as, among others, the
thin obstacle problem [28], finance [17], phase transitions [2, 10], stratified materials
[14, 15], crystal dislocation [7], soft thin films [27], semipermeable membranes and
flame propagation [11], conservation laws [8], ultra-relativistic limits of quantum
mechanics [25], quasi-geostrophic flows [13], multiple scattering [22], minimal sur-
faces [12] , materials science [5], water waves [18, 19, 35], gradient potential theory
[30] and singular set of minima of variational functionals [29]. Don’t panic, instead,
see also [33] for further motivation.

In mathematics and precisely in PDEs, when trying to relax some conditions on
the operators (as growth conditions), the problem can not be formulated with clas-
sical Lebesgue and Sobolev spaces. Hence, the adequate functional spaces is the
so-called Orlicz spaces (see [3],[4]).

J.F.Bonder and A.M.Salort in [9] proposed a version of the fractional Orlicz-
Sobolev spaces, i.e.,

W sLM(Ω) =

{
u ∈ LM (Ω) :

∫

Ω

∫

Ω

M(
u(x)− u(y)

|x− y|s
)

dxdy

|x− y|N
< ∞

}
,
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where M is N-function and LM is the Orlicz space (see section 2).
The authors prove that for any u ∈ LM (Ω) and 0 < s < 1, it holds that

lim
s→1

(1− s)

∫

RN

∫

RN

M(
u(x)− u(y)

|x− y|s
)

dxdy

|x− y|N
=

∫

RN

M̃(u(x))dx,

where M̃ is an N-function defined by,

M̃(a) := lim
s→1

(1− s)

∫ 1

0

∫

SN−s

M(a|zN |r
1−s)dSz

dr

r
.

The previous definition creates problems in the mathematical analysis, more pre-
cisely in the calculus and in the embedding results, for example, the Borel measure
defined as dµ = dxdy

|x−y|N
is not finish in the neighbourhood of the origin. To overcome

those difficulties, we introduce another definition of the fractional Orlicz-Sobolev
space, i.e.,

W sLM(Ω) =

{
u ∈ LM(Ω) : ∃λ > 0

∫

Ω

∫

Ω

M

(
λ(u(x)− u(y))

|x− y|sM−1(|x− y|N)

)
dxdy < ∞

}
.

Observe that in the case M(t) = tp, these spaces coincide with the fractional Sobolev
space W s,p(Ω).

We begin this paper by showing some natural properties of the space W sLM (Ω),
and then we come to the important point of the article, i.e, to study the embedding
results of these spaces. We follow the approach of Donaldson and Trudinger in [21]
and show the embedding results of the fractional Orlicz-Sobolev spaces W sLM (Ω)
into the Orlicz spaces.

This paper is organized as follows: We introduce in the second section, some
properties on the Orlicz-Sobolev and fractional Sobolev spaces.
The third section is devoted to proving we prove some important results on the
fractional Orlicz-Sobolev spaces, and we prove a result of continuous and compact
embedding of these spaces into the Orlicz spaces. Finally, we conclude this article by
an application of our main results, to show the existence and uniqueness of solution
for a non local problem involving the fractional M-Laplacian operator.

2. Some preliminary results

First, we briefly recall the definitions and some elementary properties of the
Orlicz spaces and Orlicz-Sobolev spaces. We refer the reader to [1, 26, 32] for
further reference and for some of the proofs of the results in this subsection.

2.1. Orlicz-Sobolev Spaces. We start by recalling the definition of the well-known
N-functions.

Let Ω be an open subset of RN . Let M : R+ → R+ be an N-function, i.e., M

is continuous, convex, with M(t) > 0 for t > 0, M(t)
t

→ 0 as t → 0 and M(t)
t

→ ∞

as t → ∞. Equivalently, M admits the representation : M(t) =
∫ t

0
m(s)ds where

m : R
+ → R

+ is non-decreasing, right continuous, with m(0) = 0, m(t) > 0
∀t > 0 and m(t) → ∞ as t → ∞. The conjugate N-function of M is defined by

M(t) =
∫ t

0
m(s)ds, where m : R+ → R+ is given by m(t) = sup {s : m(s) 6 t}.

Evidently we have

st 6 M(t) +M(s), (1)



INTRODUCTION TO FRACTIONAL ORLICZ-SOBOLEV SPACES 3

which is known Young’s inequality. Equality holds in (1) if and only if either t =
m(s) or s = m(t).
We will extend these N-functions into even functions on all R. The N-function M

is said to satisfy the global ∆2-condition if, for some k > 0,

M(2t) 6 kM(t) , ∀t > 0.

When this inequality holds only for t > t0 > 0, M is said to satisfy the ∆2-condition
near infinity.
We call the pair (M,Ω) is ∆-regular if either :
(a) M satisfies a global ∆2-condition, or
(b) M satisfies a ∆2-condition near infinity and Ω has finite volume.

Lemma 2.1. (cf. [9]). Let M be an N-function which satisfies the ∆2-condition.
Then we have,

M(m(t)) 6 (p− 1)M(t), (2)

for some p > 1.

Let Φ1, Φ2 be two N-function. Φ1 is stronger (resp essentially stronger) than Φ2,
Φ1 ≻ Φ2 (resp Φ1 ≻≻ Φ2) in symbols, if

Φ2(x) 6 Φ1(ax), , x > x0 > 0,

for some (resp for each) a > 0 and x0 (depending on a).

Remark 2.1. Φ1 ≻≻ Φ2 is equivalent to the condition

lim
x→∞

Φ2(λx)

Φ1(x)
= 0,

for all λ > 0.

Let Ω be an open subset of RN . The Orlicz class KM(Ω) (resp. the Orlicz
space LM(Ω)) is defined as the set of (equivalence classes of) real-valued measurable
functions u on Ω such that∫

Ω

M(u(x))dx < ∞ (resp.

∫

Ω

M(λu(x))dx < ∞ for some λ > 0). (3)

LM(Ω) is a Banach space under the Lexumburg norm

||u||M = inf

{
λ > 0 :

∫

Ω

M(
u(x)

λ
)dx 6 1

}
, (4)

and KM(Ω) is a convex subset of LM(Ω). The closure in LM (Ω) of the set of bounded
measurable functions on Ω with compact support in Ω is denoted by EM(Ω).
The equality EM(Ω) = LM(Ω) holds if and only if (M,Ω) is ∆-regular.

Theorem 2.1. [cf. [1]] Let Ω be an open subset of RN which has a finite volume,
and suppose M,B two N-function such that B ≺≺ M .Then any bounded subset S
of LM (Ω) which is precompact in L1(Ω), is also precompact in LB(Ω).

Let J be a nonnegative, real-valued function belonging to C∞
0 (RN) and having

the properties :

• J(x) = 0 if |x| > 1 and
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•
∫
RN J(x)dx = 1.

If ε > 0, the function Jε(x) =
1

εN
J(

x

ε
) is nonegative, belongs to C∞

0 (RN), and

satisfies

• Jε(x) = 0 if |x| > 1,

•

∫

RN

Jε(x)dx = 1.

Jε is called a mollifier. We pose

uε(x) = Jε ∗ u(x) =

∫

RN

Jε(x− y)u(y)dy.

Lemma 2.2. (cf. [1])
• If u ∈ L1

loc(Ω) then uε ∈ C∞(RN ).
• If also supp(u) is compact, then uε ∈ C∞

0 (Ω), for all ε < dist(supp(u), ∂Ω).

Theorem 2.2. (cf. [1])

(1) C0(Ω) is dense in EM(Ω).
(2) EM(Ω) is separable.
(3) C∞

0 (Ω) is dense in EM(Ω).
(4) For each u ∈ EM (Ω), we have lim

ε→0+
uε = u in EM (Ω).

2.2. Fractional Sobolev spaces. This subsection is devoted to the definition of
the fractional Sobolev spaces, and we recall some result of continuous and compact
embedding in fractional Sobolev spaces. We refer the reader to [20, 23] for further
reference and for some of the proofs of these results.

We start by fixing the fractional exponent s ∈ (0, 1). For any p ∈ [1,∞), we
define the fractional Sobolev space W s,p(Ω) as follows,

W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|

|x− y|
N
p
+s

∈ Lp(Ω× Ω)

}
;

i.e, an intermediary Banach space between, endowed with the natural norm

||u||s,p =

(∫

Ω

|u|pdx+

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|sp+N
dxdy

) 1
p

.

Theorem 2.3. (cf. [23]). Let s ∈ (0, 1) and let p ∈ [1,+∞) such that sp < N .
Let Ω be an open subset of RN with C0,1-regularity and bounded boundary. So there
exists a constant C = C(N, s, p,Ω) such that, for all f ∈ W s,p(Ω) we have

||f ||Lq(Ω) 6 C||f ||W s,p(Ω) ∀q ∈ [p, p∗],

i.e,

W s,p(Ω) →֒ Lq(Ω) ∀q ∈ [p, p∗],

where p∗ = Np

N−sp
.

If, in addition, Ω is bounded, then the space W s,p(Ω) is continuously embedded in
Lq(Ω) for any q ∈ [1, p∗].
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Theorem 2.4. (cf. [20]). Let s ∈ (0, 1) and let p ∈ [1,+∞) such that sp < N . Let
Ω be a bounded open subset of RN with C0,1-regularity and bounded boundary. Then
the embedding

W s,p(Ω) →֒ Lq(Ω) ∀q ∈ [1, p∗),

is compact.

3. Main results

3.1. Fractional Orlicz-Sobolev spaces. Now, we define the fractional Orlicz-
Sobolev spaces, and we will present some important results on these spaces.

Definition 3.1. Let M be an N-function. For a given domain Ω in R
N and 0 <

s < 1, we define the fractional Orlicz-Sobolev space W sLM(Ω) as follows,

W sLM (Ω) =

{
u ∈ LM (Ω) : ∃λ > 0/

∫

Ω

∫

Ω
M

(
λ(u(x)− u(y))

|x− y|sM−1(|x− y|N )

)
dxdy < ∞

}
.

(5)
This space is equipped with the norm,

||u||s,M = ||u||M + [u]s,M , (6)

where [.]s,M is the Gagliardo seminorm, defined by

[u]s,M = inf

{
λ > 0 :

∫

Ω

∫

Ω
M

(
u(x)− u(y)

λ|x− y|sM−1(|x− y|N )

)
dxdy 6 1

}
. (7)

Definition 3.2. Let M be an N-function. For a given domain Ω in RN and 0 <

s < 1, We define, the space W sEM(Ω) as follows,

W sEM(Ω) =

{
u ∈ EM(Ω) :

|u(x)− u(y)|

|x− y|sM−1(|x− y|N)
∈ EM(Ω× Ω)

}
. (8)

Remark 3.1.

• W sEM(Ω) ⊂ W sLM(Ω).
• W sEM(Ω) coincides with W sLM(Ω) if and only if (M,Ω) is ∆-regular.
• If 1 < p < ∞ and Mp(t) = tp, then W sLMp

(Ω) = W sEMp
(Ω) = W s,p(Ω).

Many properties of fractional Orlicz-Sobolev spaces are obtained by very straight-
forward generalization of the proofs of the same properties for ordinary fractional
Sobolev spaces and Orlicz-Sobolev spaces.

Theorem 3.1. Let Ω be an open subset of RN , and let s ∈ (0, 1). The space
W sLM(Ω) is a Banach space with respect to the norm (6), and a reflexive (resp.
separable) space if and only if (M,Ω) is ∆-regular (resp. (M,Ω) and (M,Ω) are
∆-regular).

Proof. Let {un} be a Cauchy sequence for the norm ||.||s,M . In particular, {un} is
a Cauchy sequence in LM(Ω). It converges to a function u ∈ LM(Ω). Moreover, the
sequence {vn} defined as,

vn(x, y) =
|un(x)− un(y)|

|x− y|sM−1(|x− y|N)
,
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is a Cauchy sequence in LM(Ω × Ω). It therefore also converges to an element of
LM(Ω × Ω). Let us extract a subsequence

{
uσ(n)

}
of {un} that converges almost

everywhere to u. We note that vσ(n)(x, y) converges, for almost every pair (x, y), to

v(x, y) =
|u(x)− u(y)|

|x− y|sM−1(|x− y|N)
.

Applying Fatou’s lemma, we obtain, for some λ (note that λ exists since
{
uσ(n)

}
⊂

W sLM(Ω) ),
∫

Ω

∫

Ω
M

(
λ(u(x) − u(y))

|x− y|sM−1(|x− y|N )

)
dxdy 6 lim inf

n→∞

∫

Ω

∫

Ω
M

(
λ(uϕ(n)(x)− uϕ(n)(y))

|x− y|sM−1(|x− y|N )

)
dxdy < ∞.

Hence u ∈ W sLM(Ω).
On the other hand, since {vn} converges in LM(Ω×Ω), then by dominated conver-
gence theorem, there exists a subsequence

{
vσ(n)

}
and a function h in LM(Ω × Ω)

such that
|vσ(n)(x, y)| 6 |h(x, y)| for almost every pair (x,y),

and we have
vσ(n)(x, y) −→ v(x, y) for almost every pair (x,y),

this implies by dominated convergence theorem that,

[un − u]s,M −→ 0.

Finally un → u in W sLM (Ω).
To establish the reflexivity and separation of the fractional Orlicz-Sobolev spaces,

we define the operator T : W sLM(Ω) → LM (Ω)× LM(Ω× Ω) by

T (u) =

(
u(x),

|u(x)− u(y)|

|x− y|sM−1(|x− y|N)

)
.

Clearly, T is an isometry. Since LM (Ω) is a reflexive and separable space, then
W sLM(Ω) is also a reflexive and separable space.

�

We are now a position to construct the Orlicz norm corresponding to the frac-
tional Orlicz-Sobolev spaces, and show that it is equivalent to the Lexumburg norm.
The Orlicz norm in Orlicz space is defined by,

||u||(M) = sup
ρ(v,M )61

∣∣∣∣
∫

Ω

u(x)v(x)dx

∣∣∣∣ ,

where

ρ(v,M) =

∫

Ω

M(v(x))dx.

By [26], the expression ||u||(M) is a norm in LM(Ω) which is equivalent to ||u||M .

Proposition 3.1. We pose

||u||(s,M) = ||u||(M) + [u](s,M), (9)

where

[u](s,M) = sup
ρ̃(v,M )61

∣∣∣∣
∫

Ω

∫

Ω

u(x)− u(y)

|x− y|sM−1(|x− y|N)
v(x, y)dxdy

∣∣∣∣ , (10)
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with

ρ̃(v,M) =

∫

Ω

∫

Ω

M(v(x, y))dxdy.

Then ||.||(s,M) is a norm in W sLM(Ω) which is equivalent to ||.||s,M .

Proof. Clearly [.](s,M) is a seminorm, then ||.||(s,M) is a norm.
Let u ∈ W sLM(Ω). By Young’s inequality we have,

[u](s,M) = sup
ρ̃(v,M)61

∣∣∣∣
∫

Ω

∫

Ω

u(x)− u(y)

|x− y|sM−1(|x− y|N )
v(x, y)dxdy

∣∣∣∣

6 sup
ρ̃(v,M)61

∣∣∣∣
∫

Ω

∫

Ω

[
M

(
u(x)− u(y)

|x− y|sM−1(|x− y|N )

)
+M (v(x, y))

]
dxdy

∣∣∣∣

6 sup
ρ̃(v,M)61

∫

Ω

∫

Ω
M

(
u(x)− u(y)

|x− y|sM−1(|x− y|N )

)
dxdy + sup

ρ̃(v,M )61

∫

Ω

∫

Ω
M(v(x, y))dxdy

6

∫

Ω

∫

Ω
M

(
u(x)− u(y)

|x− y|sM−1(|x− y|N )

)
dxdy + 1

:= φs,M(u) + 1.

Then, we get, [
u

[u]s,M

]

(s,M)

6 φs,M

(
u

[u]s,M

)
+ 1 6 2, (11)

this implies that,

[u](s,M) 6 2[u]s,M .

On the other hand, we pose

ϕ(x, y) =
|u(x)− u(y)|

|x− y|sM−1(|x− y|N)
∈ LM (Ω× Ω).

Then, we have, ∫

Ω

∫

Ω

M

(
ϕ(x, y)

||ϕ(x, y)||(M)

)
dxdy 6 1,

but

||ϕ(x, y)||(M) = sup
ρ(v,M )61

∣∣∣∣
∫

Ω

∫

Ω

ϕ(x, y)v(x, y)dxdy

∣∣∣∣

= sup
ρ̃(v,M )61

∣∣∣∣
∫

Ω

∫

Ω

u(x)− u(y)

|x− y|sM−1(|x− y|N)
v(x, y)dxdy

∣∣∣∣

= [u](s,M).

Finally

φs,M

(
u

[u](s,M)

)
=

∫

Ω

∫

Ω

M

(
ϕ(x, y)

||ϕ(x, y)||(M)

)
dxdy 6 1, (12)

this implies that [u]s,M 6 [u](s,M).
�
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3.2. Approximation theorem and generalized Poincaré inequality. As in the
classic case with s being an integer, any function in the fractional Orlicz-Sobolev
spaces can be approximated by a sequence of smooth functions with compact sup-
port.

Theorem 3.2. C∞
0 (RN) is dense in W sEM (RN).

Proof. Let u ∈ W sEM(RN ), and ε > 0. Then by theorem 2.2, uε ∈ C∞
0 (RN) and,

lim
ε→0+

||uε − u||(M) = 0. (13)

So just show that,
lim
ε→0+

[uε − u](s,M) = 0.

Indeed, by Hölder inequality we have

[uε − u](s,M) = sup
ρ(v,M)61

∣∣∣∣
∫

RN

∫

RN

(uε(x)− u(x))− (uε(y)− u(y))

|x− y|sM−1(|x− y|N )
v(x, y)dxdy

∣∣∣∣

6 sup
ρ(v,M)61

∫

RN

J(z)dz

∫

RN

∫

RN

∣∣∣∣
(u(x− εz) − u(y − εz))− (u(x) − u(y))

|x− y|sM−1(|x− y|N )

∣∣∣∣ |v(x, y)| dxdy

6 sup
ρ(v,M)61

2||v||M

∫

|z|<1
J(z)

∣∣∣∣
∣∣∣∣
(u(x− εz) − u(y − εz))− (u(x) − u(y))

|x− y|sM−1(|x− y|N )

∣∣∣∣
∣∣∣∣
M

dz,

this implies that

[uε − u](s,M) 6 2

∫

|z|<1

J(z)

∣∣∣∣
∣∣∣∣
(u(x− εz)− u(y − εz))− (u(x)− u(y))

|x− y|sM−1(|x− y|N)

∣∣∣∣
∣∣∣∣
M

dz.

On the other hand, since w(x, y) :=
|u(x)− u(y)|

|x− y|sM−1(|x− y|N)
∈ EM(RN × RN ), then

given ε > 0, there exists g(x, y) ∈ C∞
0 (RN ×R

N ) such that ||w− g||M 6
ε

6
. That is,

||w(x− ǫz, y − εz)− g(x− εz, y − εz)||M 6
ε

6
,

and for sufficiently small ε,

||g(x− εz, y − εz)− g(x, y)||M 6
ε

6
,

for every z with |z| 6 1. Thus [uε − u](s,M) 6 ε.
�

Let W s
0LM (Ω) denote the closure of C∞

0 (Ω) in the norm ||.||s,M defined in (6).
The space W s

0EM(Ω) is defined in analogous fashion.
Note that, in view of Theorem 3.2, we have

W s
0EM(RN) = W sEM(RN).

Theorem 3.3. (Generalized Poincaré inequality). Let Ω be a bounded open subset
of RN , and let s ∈ (0, 1). Let M be an N-function. Then there exists a positive
constant µ such that,

||u||M 6 µ[u]s,M , ∀u ∈ W s
0LM(Ω).
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Therefore, if Ω is bounded and M be an N-function, then [.]s,M is a norm of
W s

0LM(Ω) equivalent to ||.||s,M .

Proof. Since W s
0LM(Ω) is the closure of C∞

0 (Ω) in W sLM(Ω), then it is enough to
prove that there exists a positive constant µ such that,

||u||M 6 µ[u]s,M , ∀u ∈ C∞
0 (Ω).

Indeed, let u ∈ C∞
0 (Ω) and BR ⊂ RN r Ω, i.e, the ball of radius R in the comple-

ment of Ω. Then for all x ∈ Ω, y ∈ BR and all λ > 0 we have,

M(
u(x)

λ
) = M

(
u(x)− u(y)

λ|x− y|sM−1(|x− y|N)
|x− y|sM−1(|x− y|N)

)
,

this implies that,

M(
u(x)

λ
) 6 M

(
u(x)− u(y)

λ|x− y|sM−1(|x− y|N)
diam(Ω ∪ BR)

sdiam(M−1(|Ω ∪ BR|
N))

)
,

we suppose α = diam(Ω ∪ BR)
sdiam(M−1(|Ω ∪BR|

N)), we get

M(
u(x)

αλ
) 6 M

(
u(x)− u(y)

λ|x− y|sM−1(|x− y|N)

)
,

therefore

|BR|M(
u(x)

αλ
) 6

∫

BR

M

(
u(x)− u(y)

λ|x− y|sM−1(|x− y|N )

)
dy,

then ∫

Ω
M(

u(x)

αλ
)dx 6

1

|BR|

∫

Ω

∫

BR

M

(
u(x)− u(y)

λ|x− y|sM−1(|x− y|N )

)
dxdy,

so,

||u||M 6 µ[u]s,M ∀u ∈ C∞
0 (Ω),

where µ =
α

|BR|
. By passing to the limit, the desired result is obtained.

�

3.3. Some embeddings results. The embeddings results obtained in the fractional
Sobolev space W s,p(Ω) can also be formulated for the fractional Orlicz-Sobolev spaces.

Let M be a given N-function, satisfying the following conditions :
∫ 1

0

M−1(τ)

τ
N+s
N

dτ < ∞, (14)

∫ ∞

1

M−1(τ)

τ
N+s
N

dτ = ∞. (15)

For instance if M(t) = 1
p
tp, then (14) holds precisely when sp < N .

If (15) is satisfied, we define the inverse Sobolev conjugate N-function of M as follows,

M−1
∗ (t) =

∫ t

0

M−1(τ)

τ
N+s
N

dτ. (16)

Theorem 3.4. Let M be an N -function, and s ∈ (0, 1). Let Ω be a bounded open subset
of RN with C0,1-regularity and bounded boundary. If (14) and (15) hold, then

W sLM (Ω) →֒ LM∗(Ω). (17)
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The proof will be carried out in a several lemmas. The first of these establishes an
estimate for the Sobolev conjugate N-function M∗, defined by (16).

Lemma 3.1. Let M be an N-function satisfying (14) and (15), and suppose that, for

some p such that 1 6 p < N , the function B defined by B(t) = M(t
1
p ) is an N-function.

Let M∗ be defined by (16). Then the following conclusions may be drawn.

(1) [M∗(t)]
N−s
N is an N-function, in particular, M∗ is an N-function.

(2) For every ǫ > 0, there exists a constant Kǫ > 0 such that for every t,

[M∗(t)]
N−s
N 6

1

2ǫ
M∗(t) +

Kǫ

ǫ
t. (18)

Proof of lemma 3.1. (1) Let Q(t) = [M∗(t)]
N−s
N , Noting that B−1(t) = [M−1(t)]p, we

get

(Q−1)′(t) =
d

dt
M−1

∗ (t
N

N−s )

=
N

N − s
t

N
N−s

−1M
−1(t

N
N−s )

[t
N

N−s ]
N+s
N

=
N

N − s

M−1(t
N

N−s )

t1+
s

N−s

=
N

N − s

[
B−1(t

N
N−s )

t
N

N−s

] 1
p

t−µ,

where µ = 1+
s

N − s
−

N

N − s

1

p
=

N(p− 1)

(N − s)p
> 0. Being the inverse of an N-function, B−1

satisfies

lim
t→0+

B−1(t)

t
= ∞ and lim

t→∞

B−1(t)

t
= 0,

and for 0 < r < σ we have,
B−1(r)

B−1(σ)
>

r

σ
. Hence, if 0 < t < s, then we get,

(Q−1)′(t)

(Q−1)′(s)
> (

s

t
)−µ > 1.

It follows that (Q−1)′ is positive and decreases monotonically from ∞ to 0 as t increases
from 0 to ∞, so that Q is an N-function.

(2) Let g(t) =
M∗(t)

t
and h(t) =

[M∗(t)]
N−s
N

t
. It readily checked that h is bounded on

finite intervals and lim
t→∞

g(t)

h(t)
= ∞, then for all ε > 0 there exists t0 > 0 such that for every

t > t0, h(t) 6
g(t)

2ε
. We pose Kε = ε sup

06t6t0

h(t), then

[M∗(t)]
N−s
N 6

1

2ε
M∗(t) +

Kε

ε
t.

�

Lemma 3.2. Let Ω be an open subset of RN , and 0 < s < 1. Let f satisfies a Lipschitz-
condition on R and f(0) = 0, then,

(1) For every u ∈ W s,1
loc (Ω), g ∈ W s,1

loc (Ω) where g(x) = f(|u(x)|).
(2) For every u ∈ W sLM(Ω), g ∈ W sLM (Ω) where g(x) = f(|u(x)|).



INTRODUCTION TO FRACTIONAL ORLICZ-SOBOLEV SPACES 11

Proof of lemma 3.2. (1) Let K be a compact subset of Ω, follows that 1Kg ∈ W s,1(Ω).
Since f(0) = 0, then we have,

∫

Ω
|1K(x)g(x)|dx =

∫

Ω
|1K(x)(f(u(x)) − f(0))|dx 6 C

∫

Ω
|1K(x)u(x)|dx < ∞,

where C is the Lipschitz constant of f . On the other hand,
∫

Ω

∫

Ω

∣∣∣∣
1K(x)g(x) − 1K(y)g(y)

|x− y|N+s

∣∣∣∣ dxdy =

∫

K

∫

K

|g(x) − g(y)|

|x− y|N+s
dxdy + 2

∫

ΩrK

∫

K

|1K(x)g(x)|

|x− y|N+s
dxdy

+

∫

ΩrK

∫

ΩrK

|1K(x)g(x) − 1K(y)g(y)|

|x− y|N+s
dxdy,

(19)

where the third term in the right hand-side of (19) is null, and since f satisfies the
Lipschitz-condition, then,

∫

Ω

∫

Ω

∣∣∣∣
1K(x)g(x) − 1K(y)g(y)

|x− y|N+s

∣∣∣∣ dxdy 6C

∫

K

∫

K

|u(x)− u(y)|

|x− y|N+s
dxdy + 2

∫

ΩrK

∫

K

|g(x)|

|x− y|N+s
dxdy,

(20)

where the first term in the right hand-side of (20) is finite since u ∈ W s,1
loc (Ω) and

2

∫

K

∫

ΩrK

|g(x)|

|x− y|N+s
dxdy 6 2

∫

K

|g(x)|dx

∫

ΩrK

1

d(y, ∂K)N+s
dy < ∞.

Note that due to the fact that K is a compact subset, then dis(y, ∂K)N+s > 0 for all
y ∈ R

N
rK and we have N + s > N .

Therefore, ∫

Ω

∫

Ω

∣∣∣∣
1K(x)g(x) − 1K(y)g(y)

|x− y|N+s

∣∣∣∣ dxdy < ∞.

(2) Let u ∈ W sLM (Ω) then there exists λ > 0 such that,

∫

Ω

∫

Ω
M(

λu(x)− λu(y)

|x− y|sM−1(|x− y|N )
)dxdy < ∞.

Let C > 0 denotes the Lipschitz constant of f then,
if |C| 6 1 we have,
∫

Ω

∫

Ω
M(

λg(x) − λg(y)

|x− y|sM−1(|x− y|N )
)dxdy =

∫

Ω

∫

Ω
M(

λf ◦ u(x)− λf ◦ u(y)

|x− y|sM−1(|x− y|N )
)dxdy

6

∫

Ω

∫

Ω
M(

|C|(λu(x)− λu(y))

|x− y|sM−1(|x− y|N )
)dxdy

6

∫

Ω

∫

Ω
M(

λu(x)− λu(y)

|x− y|sM−1(|x− y|N )
)dxdy < ∞.

If |C| > 1 for λ1 =
λ

|C|
we get,

∫

Ω

∫

Ω
M(

λ1g(x) − λ1g(y)

|x− y|sM−1(|x− y|N )
)dxdy =

∫

Ω

∫

Ω
M(

λ1f ◦ u(x)− λ1f ◦ u(y)

|x− y|sM−1(|x− y|N )
)dxdy

6

∫

Ω

∫

Ω
M(

|C|(λu(x)− λu(y))

|C||x− y|sM−1(|x− y|N )
)dxdy

6

∫

Ω

∫

Ω
M(

λu(x)− λu(y)

|x− y|sM−1(|x− y|N )
)dxdy < ∞,
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this implies that g ∈ W sLM (Ω).
�

Let M be an N-function, since lim
t→0

M(t)
t

= 0 so there exists α > 0 such that M(t) 6 t

for all t 6 α. For this α, we define the function M1 as,

M1(t) =





M(α)
α

t if t 6 α,

M(t) if t > α.

(21)

M1 is a convex, continuous, nondecreasing, finite valued function which is M1(0) = 0 and
lim

t→+∞
M1(t) = +∞. M1 is called a Young function (cf. [31] ).

For a given domain Ω in R
N , we define the space LM1(Ω) as,

LM1(Ω) =

{
u : Ω → R : ∃λ > 0/

∫

Ω
M1(λu(x))dx < ∞

}
,

this space is equipped with the norm,

||u||M1 = inf

{
λ > 0 :

∫

Ω
M1(

u(x)

λ
)dx 6 1

}
. (22)

The Young complement of M1 is defined for 0 6 x < ∞ by

M1(t) = max
s>0

{st−M1(s)} ,

then we have st 6 M1(t) + M1(s) for all s, t > 0 and for all u, v ∈ LM1(Ω) we get the
Hölder inequality, i.e, ∫

Ω
|u(x)v(x)|dx 6 2||u||M1 ||v||M1

Lemma 3.3. Let Ω be a bounded open subset of RN and let s ∈ (0, 1). Let M be an
N-function and M1 as defined by (21) then,

(1) LM1(Ω) = LM (Ω).
(2) The norm ||.||M and ||.||M1 are equivalent.

Proof of lemma 3.3. (1) By definition of the function M1 we have, M(t) 6 βM1(t) for

all t > 0, where β = max
{
1, α

M(α)

}
, then

LM1(Ω) ⊂ LM (Ω).

Let u ∈ LM (Ω), we get
∫

Ω
M1(λu(x))dx =

∫

Ω∩{λu(x)6α}
M1(λu(x))dx +

∫

Ω∩{λu(x)>α}
M1(λu(x))dx

6 M(α)|Ω| +

∫

Ω
M(λu(x))dx < ∞.

Then, LM1(Ω) = LM (Ω).
(2) Let u ∈ LM1(Ω), since M(t) 6 βM1(t) for all t > 0, then evidently ||u||M 6 β||u||M1 .
On the other hand, we get

∫

Ω
M1(

u(x)

||u||M
)dx =

∫

Ω∩
{

u(x)
||u||M

6α
}M1(

u(x)

||u||M
)dx+

∫

Ω∩
{

u(x)
||u||M

>α
}M1(

u(x)

||u||M
)dx

6 M(α)|Ω| +

∫

Ω
M(

u(x)

||u||M
)dx < |Ω|+ 1,
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so, ||u||M1 6 (M(α)|Ω| + 1)||u||M .
�

Remark 3.2. Let Ω be an open subset of RN and let s ∈ (0, 1). Let M1 as defined by (21),
then we define the space W sLM1(Ω) by,

W sLM1(Ω) =

{
u ∈ LM1(Ω) : ∃λ > 0/

∫

Ω

∫

Ω
M1

(
λ(u(x)− u(y))

|x− y|sM−1
1 (|x− y|N )

)
dxdy < ∞

}
.

(23)
which equipped with the norm

||u||s,M1 = ||u||M1 + [u]s,M1

where,

[u]s,M1 = inf

{
λ > 0 :

∫

Ω

∫

Ω
M1

(
u(x)− u(y)

λ|x− y|sM−1
1 (|x− y|N )

)
dxdy 6 1

}
.

If Ω is a bounded open subset of RN , then by lemma 3.3, we have W sLM1(Ω) = W sLM (Ω)
and the norm ||.||s,M and ||.||s,M1 are equivalent.

Lemma 3.4. Let Ω be a bounded open subset of RN and let s ∈ (0, 1). Let M1 as defined by
(21), then the space W sLM1(Ω) continuously embedded in W s,1(Ω). Therefore W sLM (Ω)
continuously embedded in W s,1(Ω).

Proof of lemma 3.4. Let u ∈ W sLM1(Ω), we have by Hölder inequality
∫

Ω
|u(x)|dx 6 2||u||M1 ||1||M1

. (24)

On the other hand, we get
∫

Ω

∫

Ω

|u(x)− u(y)|

|x− y|s+N
dxdy =

∫

Ω

∫

Ω∩{|x−y|6α}

|u(x)− u(y)|

|x− y|s+N
dxdy +

∫

Ω

∫

Ω∩{|x−y|>α}

|u(x)− u(y)|

|x− y|s+N
dxdy

= I1 + I2.

By definition of M1 and Hölder inequality, we have

I1 =

∫

Ω

∫

Ω∩{|x−y|6α}

|u(x)− u(y)|

|x− y|s+N
dxdy =

∫

Ω

∫

Ω∩{|x−y|6α}

|u(x)− u(y)|

|x− y|sM−1
1 (|x− y|N )

dxdy

6 2[u]s,M1 ||1||M1
,

(25)
and

I2 =

∫

Ω

∫

Ω∩{|x−y|>α}

|u(x)− u(y)|

|x− y|s+N
dxdy

=

∫

Ω

∫

Ω∩{|x−y|>α}

|u(x)− u(y)|

|x− y|sM−1
1 (|x− y|N )

M−1
1 (|x− y|N )

|x− y|N
dxdy

6 sup
Ω×Ω∩{|x−y|>α}

M−1
1 (|x− y|N )

|x− y|N

∫

Ω

∫

Ω∩{|x−y|>α}

|u(x)− u(y)|

|x− y|sM−1
1 (|x− y|N )

dxdy,

since M−1
1 (t) is continuous for all t > α and Ω is bounded so,

sup
Ω×Ω∩{|x−y|>α}

M−1(|x− y|N )

|x− y|N
= C ′ < ∞.
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Therefore by Hölder inequality,

I2 6 C ′

∫

Ω

∫

Ω∩{|x−y|>α}

|u(x)− u(y)|

|x− y|sM−1
1 (|x− y|N )

dxdy 6 2C ′[u]s,M1 ||1||M1
. (26)

Combining (24), (25) and (26) we obtain

||u||W s,1 6 C||u||s,M1 ,

where C = (2 + 2C ′)||1||M1
.

�

Proof of theorem 3.4. Let σ(t) = [M∗(t)]
N−s
N and u ∈ W sLM (Ω), we suppose for the

moment that u is bounded on Ω and not equal to zero in LM(Ω), then

∫

Ω
M∗(

u(x)

λ
)dx

decreases continuously from infinity to zero as λ increases from zero to infinity, so that
∫

Ω
M∗(

u(x)

k
)dx = 1 , k = ||u||M∗ . (27)

Let f(x) = σ(
u(x)

k
). Evidently by lemma 3.4 u ∈ W s,1(Ω), and σ is Lipschitz, so that by

lemma 3.2 we have f ∈ W s,1(Ω), and since N > s, then by theorem 2.3, one has,

W s,1(Ω) →֒ L
N

N−s (Ω).

So

||f ||
L

N
N−s

6 k1 (||f ||L1 + [f ]s,1) ,

and by (27),

1 =

(∫

Ω
M∗(

u(x)

k
)dx

)N−s
N

= ||f ||
L

N
N−s

,

this implies that,

1 6 k1 (||f ||L1 + [f ]s,1)

= k1

(∫

Ω
σ(

u(x)

k
)dx+

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|N+s
dxdy

)

= k1



∫

Ω
σ(

u(x)

k
)dx+

∫

Ω

∫

Ω

|σ(
u(x)

k
)− σ(

u(y)

k
)|

|x− y|N+s
dxdy




= k1I1 + k1I2.

(28)

By (18) we have for ε = k1,

k1I1 6
1

2

∫

Ω
M∗(

u(x)

k
)dx+

kε
k

∫

Ω
|u(x)|dx 6

1

2
+

k′ε
k
||u||M , (29)

where k′ε = 2kε||1||M since Ω has a finite volume.
On the other hand, since σ is Lipschitz, then there exists C > 0 such that,

k1I2 6
C

k

∫

Ω

∫

Ω

|u(x)− u(y)|

|x− y|N+s
dxdy.

But by the lemma 3.4, we have
∫

Ω

∫

Ω

|u(x) − u(y)|

|x− y|N+s
dxdy 6 C ′[u]s,M , (30)
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and

k1I2 6
C

k
C ′[u]s,M . (31)

We pose k3 = Ck1C
′. Combining (29)-(31) we obtain

1 6
1

2
+

k′ε
k
||u||M +

k3
k
[u]s,M ,

this implies that,
k

2
6 k′ε||u||M + k3[u]s,M .

So we obtain,

||u||M∗ 6 k4||u||s,M ,

where k4 = max {2k′ε, 2k3}.
If u ∈ W sLM (Ω) arbitrary, we define

un(x) =

{
u(x) if |u(x)| 6 n,
n sgn u(x) if |u(x)| > n.

un is bounded and by lemma 3.4 it is belongs to W sLM (Ω). Moreover

||un||M∗ 6 k4||un||s,M 6 k4||u||s,M .

Let lim
n→∞

||un||M∗ = k, then k 6 k4||u||s,M . By Fatou’s Lemma we get

∫

Ω
M∗(

u(x)

k
)dx 6 lim

n→∞

∫

Ω
M∗(

un(x)

||un||M∗

)dx < 1,

so u ∈ LM∗(Ω) and ||u||M∗ 6 k.
�

Theorem 3.5. Let s ∈ (0, 1) and M be an N -function. Let Ω be a bounded open subset
of RN and C0,1-regularity with bounded boundary. If (14) and (15) hold, then

W sLM(Ω) →֒ LB(Ω), (32)

is compact for all B ≺≺ M∗.

Proof. By the lemma 3.4, we have,

W sLM (Ω) →֒ W s,1(Ω) →֒ L1(Ω).

The latter embedding being compact by theorem 2.4. A bounded subset S of W sLM (Ω)
is also a bounded subset of LM∗(Ω) and precompact in L1(Ω), hence by theorem 2.1 it is
precompact in LB(Ω).

�

3.4. Application. In this final subsection, we define the fractional M-Laplacian operator,
and we establish the existence of a unique solution for the variational problem related to
this operator by the Minty Browder theorem.

In the rest of this subsection we assume that (M,Ω) is ∆-regular.
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Definition 3.3. Let M be an N-function and 0 < s < 1, we define the fractional M-
Laplacian operator as,

(−∆)smu(x) = 2P.V

∫

RN

M ′

(
(u(x)− u(y))

|x− y|sM−1(|x− y|N )

)
u(x)− u(y)

|u(x)− u(y)|

dy

|x− y|sM−1(|x− y|N )

= 2P.V

∫

RN

m

(
(u(x)− u(y))

|x− y|sM−1(|x− y|N )

)
u(x)− u(y)

|u(x)− u(y)|

dy

|x− y|sM−1(|x− y|N )

where P.V is the principal value and M ′ = m.

In the case M(t) =
|t|p

p
, we have

(−∆)smu(x) = (−∆)spu(x) = 2PV

∫

RN

|u(x)− u(y)|p−2(u(x) − u(y))

|x− y|N+sp
dy.

Lemma 3.5. If u ∈ W sLM (RN ), then (−∆)smu(x) ∈ (W sLM (RN ))∗,
and

< (−∆)smu, v >=

∫

RN

∫

RN

m(hx,y(u))
u(x)− u(y)

|u(x) − u(y)|
hx,y(v)dxdy,

for all v ∈ W sLM (RN ), where hx,y(u) :=
(u(x)− u(y))

|x− y|sM−1(|x− y|N )
.

Proof. Evidently

< (−∆)smu, v >= P.V

∫

RN

∫

RN

m(hx,y(u))
u(x)− u(y)

|u(x) − u(y)|
hx,y(v)dxdy.

By Young inequality and (2), we get
∣∣∣∣m(hx,y(u))

u(x)− u(y)

|u(x) − u(y)|
hx,y(v)

∣∣∣∣ 6 |m(hx,y(u))hx,y(v)|

6 M (m(hx,y(u))) +M (hx,y(v))

6 (p− 1)M (hx,y(u)) +M (hx,y(v)) ∈ L1(RN × R
N ).

Finally

< (−∆)smu, v >=

∫

RN

∫

RN

m(hx,y(u))
u(x)− u(y)

|u(x) − u(y)|
hx,y(v)dxdy.

�

Given a bounded open set Ω ⊂ R
N , we establish the existence of unique weak solution for

the following Dirichlet type equation,





(−∆)smu = f in Ω,

u = 0 in RN r Ω.
(33)

We shall work in the closed linear subspace

W̃ s
0LM (Ω) =

{
u ∈ W sLM(Ω) : u = 0 a.e in R

N
r Ω

}
,

equivalently renormed by setting [.]s,M . which is a reflexive separable Banach space.

Definition 3.4. We say that u ∈ W̃ s
0LM (Ω) is a weak solution of (33) if

< (−∆)smu, v >=

∫

Ω
fvdx (34)

for all v ∈ W̃ s
0LM(Ω).
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Theorem 3.6. Let Ω be a bounded open subset of R
N and f ∈ (W̃ s

0LM (Ω))∗, then the

problem (33) has a unique solution u ∈ W̃ s
0LM (Ω).

Proof. We need to show that (−∆)sm satisfies the conditions of Minty Browder theorem
(cf. [6]).
Step 1. (−∆)sm is bounded and continuous. Indeed, by lemma 3.5 and Hölder inequality

we have for all u ∈ W̃ s
0LM (Ω)

||(−∆)smu||
(W̃ s

0LM (Ω))∗
= sup

||v||s,M61
< (−∆)smu, v >6 2||m(hx,y(u))||M

therefore ||(−∆)smu||
(W̃ s

0LM (Ω))∗
is bounded once ||u||s,M is bounded.

Let un → u in W s
0LM (Ω) we show that (−∆)smun → (−∆)smu in (W̃ s

0LM (Ω))∗. Indeed
Hölder inequality

||(−∆)smun − (−∆)smu||
(W̃ s

0LM (Ω))∗
6 ||m(hx,y(un))

un(x)− un(y)

|un(x)− un(y)|
−m(hx,y(u))

u(x)− u(y)

|u(x) − u(y)|
||M ,

On the other hand, since un → u in LM (Ω), by dominated convergence theorem, there
exists a subsequence {unk

} and a function h in LM (Ω) such that unk
(x) → u(x) and

|unk
(x)| 6 |h(x)| for all k, a.e. on Ω. This implies that

|m(hx,y(unk
))

unk
(x)− unk

(y)

|unk
(x)− unk

(y)|
| 6 |m(hx,y(h))| ∈ LM (Ω) a.e in Ω× Ω,

and

m(hx,y(unk
))

unk
(x)− unk

(y)

|unk
(x)− unk

(y)|
−→ m(hx,y(h))

u(x)− u(y)

|u(x) − u(y)|
a.e in Ω× Ω,

then by dominated convergence theorem we obtain the desired result.

Step 2. (−∆)sm is strictly monotonous. Since m is increasing, then f(u) := m(u)
u

|u|
is

also increasing, then for all u, v ∈ W̃ s
0LM (Ω) such that u 6= v, we have

< (−∆)smu−(−∆)smv, u−v >=

∫

Ω

∫

Ω
[m(hx,y(u))kx,y(u)−m(hx,y(v))kx,y(v)] (hx,y(u)− hx,y(v)) > 0,

where kx,y(u) :=
u(x)− u(y)

|u(x)− u(y)|
.

Step 3. (−∆)sm is coercive. Indeed, let β ∈ (1, [u]s,M ), By lemma C.3(ii) in [16] we have

φ(u) =

∫

Ω

∫

Ω
M

(
λu(x)− λu(y)

|x− y|sM−1(|x− y|N )

)
dxdy

> βp0

∫

Ω

∫

Ω
M

(
λu(x)− λu(y)

β|x− y|sM−1(|x− y|N )

)
dxdy > βp0.

On the other hand, we have < φ′(u), v >=< (−∆)smu, v > and since M is convex, it follows
that φ is also convex. Thus, we have

φ(u) 6< φ′(u), u > for all ∈ W s
0LM(Ω),

it is clear that for any u ∈ W̃ s
0LM (Ω) with [u]s,M > 1 we have

< (−∆)smu, v >

||u||s,M
=

< φ′(u), u >

||u||s,M
>

φ(u)

||u||s,M
>

[u]p0s,M
||u||s,M

> C||u||p0−1
s,M ,

where C it is the constant of the Poincaré-inequality. Thus,

lim
||u||s,M→∞

< (−∆)smu, v >

||u||s,M
= ∞,
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i.e. (−∆)sm is coercive.

Hence, in light of Minty-Browder theorem then there exists a unique solution u ∈ W̃ s
0LM(Ω)

of the problem (33).
�
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