A Note on I^K and I^{K^*} -convergence in topological spaces

Amar Kumar Banerjee $^{\dagger 1}$ and Mahendranath $Paul^{\dagger 2}$

[†]Department of Mathematics, The University of Burdwan, Purba Burdwan–713104, India.

Abstract

In this paper we have studied some important topological properties and characterization of I^{K} -convergence of functions which is a common generalization of I^{*} -convergence of functions. We also introduce the idea of $I^{K^{*}}$ -convergence and I^{K} -limit points of functions.

Keywords : I^{K} -convergence, I^{K^*} -convergence, AP(I, K)-condition, P-ideals, I^{K} -limit points.

AMS subject classification(2010): Primary: 54A20; Secondary: 40A05; 40A35

1 Introduction and Background

The aim of this paper is to study the notion of I^K and I^{K^*} -convergence of functions which are the common generalization of various type of I and I^* -convergence of functions in some restriction. Let us start with brief discussion on two types of ideal convergence.

The concept of usual convergence of a real sequence has been extended to statistical convergence by H. Fast[11] and then H. Steinhaus[24] in the year 1951. Now we recall natural density of a set $K \subset \mathbb{N}$ where \mathbb{N} denotes the set of natural numbers. Let K_n denote the set $\{k \in K : k \leq n\}$ and $|K_n|$ stands for the cardinality of K_n . The natural density of K is defined by

$$d(K) = \lim_{n} \frac{|K_n|}{n}$$

if the limit exits. A real sequence $\{x_n\}$ is said to be statistically convergent to l if for every $\epsilon > 0$ the set $K(\epsilon) = \{k \in \mathbb{N} : |x_k - l| \ge \epsilon\}$ has natural density zero[11, 13, 24]. Ordinary convergence always implies statistical convergence [19, 22, 23]. Later it was developed by many authors and after long 50 years, the concept of statistical convergence has been extended to I and I^* -convergence which depends on the structure of ideals of subsets of the natural numbers by P.Kostyrko et al. [16, 17, 18]. The concept of I^* -convergence which is closely related to that of I-convergence and which arises from a particular result on statistical convergence of real sequence was introduced by P.Kostyrko et al. The result is as follows:

A real sequence $\{x_n\}$ is statistically convergent to ξ if and only if there exist a set $M = \{m_1 < m_2 < m_3 < \dots < m_k < \dots\}$ such that d(M) = 1 and $\lim_{n \to \infty} x_{m_k} = \xi$. [16, 17]

If I is an admissible ideal, I^* -convergence implies I-convergence. But converse may not be true. Moreover a statistical convergent sequence and I and I^* - convergent sequence need not even be bounded[15, 23]. I and I^* -convergence coincide for every admissible ideal I if the space is discrete or if I satisfies AP(I,Fin)-condition.[9, 16]. B.K.Lahiri and Pratulananda Das in the year 2005, extended the concept of I and I^* -convergence in a topological space and they observed that the basic properties are preserved also in a topological space[15]. Later many works on I-convergence were done in topological spaces[2, 3, 4, 6, 7, 8].

In the year 2010, M. Macaj and M. Sleziak[20] defined $I^{\overline{K}}$ -convergence and shew that this type of convergence is a common generalization for all types of I and I^* -convergence we have mentioned so far. They also gave the condition AP(I, K) modifying condition AP from [9, 17]. Later in the year 2014, $I^{\overline{K}}$ -Cauchy and $I^{\overline{K}}$ -Cauchy net have been studied in [10, 21].

In this paper we have studied further some basic properties of I^{K} -convergence of functions in topological

¹akbanerjee@math.buruniv.ac.in, akbanerjee1971@gmail.com

²mahendrabktpp@gmail.com

spaces which were not studied before. Also we have defined the notion of I^{K^*} -convergence and have found out the relation between I, I^*, K^*, I^{K^*} and I^K -convergence of functions. While studying the convergence of functions, several closely related notions occur quite naturally such as limit points, cluster points etc. In the last section we have introduced I^K -limit points and examined some important topological properties like characterization of compactness in terms of I^K -limit points.

2 Basic Definition and Notation

Definition 2.1. Let S be a non-void set then a family of sets $I \subset 2^S$ is said to be an ideal if (i) $A, B \in I \Rightarrow A \cup B \in I$ (ii) $A \in I, B \subset A \Rightarrow B \in I$

I is called nontrivial ideal if $S \notin I$ and $I \neq \{\phi\}$. In view of condition (ii) $\phi \in I$ i.e. an ideal is a non-void system of sets *I* hereditary with respect to additive and inclusion. If $I \subsetneq 2^S$ we say that *I* is proper ideal on *S*. Several examples of non-trivial ideals are seen in [17]. A nontrivial ideal *I* is called admissible if it contains all the singleton of \mathbb{N} . A nontrivial ideal *I* is called non-admissible if it is not admissible. An example of an admissible ideal on a set *S* is the ideal of all finite subsets of *S* which we shall denote by Fin(*S*). If $S = \mathbb{N}$ then we write Fin instead of Fin(\mathbb{N}) for short.

Example 2.1. Let I be the class of all $A \subset \mathbb{N}$ with d(A) = 0. Then I is an admissible ideal of \mathbb{N} , since singleton sets has density zero. For any proper subset $M \subset \mathbb{N}$, $I = 2^M$ is an non-admissible ideal of \mathbb{N} .

Note 2.1. The dual notion to the ideal is the notion of the filter i.e. a filter on S is non-void system of subsets of S, which is closed under finite intersection and super sets. If I is a non-trivial ideal on X then $F = F(I) = \{A \subset X : X \setminus A \in I\}$ is clearly a filter on X and conversely. F(I) is called associated filter with respect to ideal I.

Now we will give the definition of *I*-convergence using function instead of sequence.

Definition 2.2. [20] Let I be an ideal on a non-void set S and X be a topological space. A function $f : S \to X$ is said to be I-convergent to $x \in X$, written as I-lim f = x if

$$f^{-1}(U) = \{s \in S : f(s) \in U\} \in F(I)$$

for every neighborhood U of the point x. i.e. if $f^{-1}(X \setminus U) = \{s \in S : f(s) \notin U\} \in I$ for every neighborhood U of x.

If $S = \mathbb{N}$ we obtain the usual definition of *I*-convergence of sequence.

Definition 2.3. [20] Let I be an ideal on a set S and let $f : S \to X$ be a function to a topological space X. The function f is called I^* -convergent to the point x of X if there exists a set $M \in F(I)$ such that the function $g : S \to X$ defined by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ x & \text{if } s \notin M \end{cases}$$

is Fin(S)-convergent to x.

If f is I^* -convergent to x, then we write I^* -lim f = x. The usual notion of I^* -convergence of sequence is a special case when $S = \mathbb{N}$. I^K -convergence as a common generalization of all types of I^* -convergence of sequences or functions from S into X. Here we will work with functions from a non-void arbitrary set S to a topological space X. One of the reasons is that using functions sometimes helps to simplify notation. **Definition 2.4.** [20] Let K and I be an ideal on a non-void set S, X be a topological space and let x be an element of X. A function $f : S \to X$ is called I^K -convergent to the point x if there exists a set $M \in F(I)$ such that the function $g : S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ x & \text{if } s \notin M \end{cases}$$

is K-convergent to x.

If f is I^K -convergent to x, then we write I^K -lim f = x. As usual, notion of I^K -convergence of sequence is a special case for $S = \mathbb{N}$. Similarly as for I-convergence of sequences. We write I^K -lim $x_n = x$.

Lemma 2.1. [20] If I and K are ideals on a set S and $f : S \to X$ is a function such that K-lim f = x, then I^{K} -lim f = x.

Theorem 2.1. [20] Let I, K be ideals on a set S, X be a topological space and let f be a function from S to X then I^K -lim $f = x \Rightarrow I$ -lim f = x if and only if $K \subset I$.

Proposition 2.1. [20] Let I, I_1, I_2, K, K_1 and K_2 be ideals on a set S such that $I_1 \,\subset I_2$ and $K_1 \,\subset K_2$ and let X be a topological space. Then for any function $f: S \to X$, we have I_1^K -lim $f = x \Rightarrow I_2^K$ -lim f = x and I^{K_1} -lim $f = x \Rightarrow I_2^K$ -lim f = x.

3 Basic Properties of *I^K*-Convergence in Topological Spaces

Throughout the paper X stands for a topological space (X, τ) and I, K are non-trivial ideals of a non empty set S unless otherwise stated. First we introduce a construction regarding double ideal. For any two ideals I, K on a non-void set S we have the ideal

$$I \lor K = \{A \cup B : A \in I, B \in K\}$$

which is the smallest ideal containing both I and K on S i.e. $I, K \subseteq I \lor K$. It is clear that if $I \lor K$ is non-trivial and I and K are both proper subset of $I \lor K$ then I and K both are non-trivial. But converse part may not be true. To support this following examples are given.

Example 3.1. Consider the two sets $N_1 = \{4n : n \in \mathbb{N}\}$ and $N_2 = \{4n - 1 : n \in \mathbb{N}\}$ now it is clear that 2^{N_1} , 2^{N_2} and $2^{N_1} \vee 2^{N_2}$ all are non-trivial ideal on \mathbb{N} .

Example 3.2. Now let N_1 be set of all odd integers and N_2 be set of all even integers. Then it is clear that $I = 2^{N_1}$, $K = 2^{N_2}$ both are non-trivial ideals on \mathbb{N} but $I \vee K$ is a trivial ideal on \mathbb{N} .

If $I \lor K$ is a non-trivial on X then the dual filter is $F(I \lor K) = \{G \cap H : G \in F(I), H \in F(K)\}$.

Theorem 3.1. Let $I \lor K$ is non-trivial on set S. If X is Hausdorff and a function $f : S \to X$ is I^K -convergent then f has a unique I^K -limit.

Proof. If possible let us consider that the function f has two distinct I^K -limits say x and y. Since X is Hausdorff then there exists $U, V \in \tau$ such that $x \in U$ and $y \in V$ and $U \cap V = \phi$. Since f has I^K -limit x, so from the definition of I^K -limit, there exists a set $A_1 \in F(I)$ such that the function $g: S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in A_1 \\ x & \text{if } s \notin A_1 \end{cases}$$

is K-convergent to x. So, $g^{-1}(U) = \{s \in S : g(s) \in U\} = \{s \in A_1 : g(s) \in U\} \cup \{s \in S \setminus A_1 : g(s) \in U\} = (S \setminus A_1) \cup f^{-1}(U) = S \setminus (A_1 \setminus f^{-1}(U)) \in F(K) \text{ i.e. } A_1 \setminus f^{-1}(U) \in K \text{ or } A_1 \setminus B_1 \in K$

where $B_1 = f^{-1}(U)$. Similarly, f has I^K -limit y so there exists a set $A_2 \in F(I)$ s.t. $A_2 \setminus f^{-1}(V) \in K$ or $A_2 \setminus B_2 \in K$ where $B_2 = f^{-1}(V)$. So,

$$(A_1 \setminus B_1) \cup (A_2 \setminus B_2) \in K \tag{3.1}$$

Now let $x \in (A_1 \cap A_2) \cap (B_1 \cap B_2)^c = (A_1 \cap A_2) \cap (B_1^c \cup B_2^c) = ((A_1 \cap A_2) \cap B_1^c) \cup ((A_1 \cap A_2) \cap B_2^c)$ i.e. either $x \in (A_1 \cap A_2) \cap B_1^c \subset A_1 \cap B_1^c$ or $x \in ((A_1 \cap A_2) \cap B_2^c) \subset A_2 \cap B_2^c$ i.e. $x \in (A_1 \cap B_1^c) \cup (A_2 \cap B_2^c)$. So, $(A_1 \cap A_2) \cap (B_1 \cap B_2)^c \subset (A_1 \cap B_1^c) \cup (A_2 \cap B_2^c) \in K$ (from the equation (3.1)). Thus $(A_1 \cap A_2) \cap (B_1 \cap B_2)^c \in K$ i.e. $(A_1 \cap A_2) \setminus (f^{-1}(U) \cap f^{-1}(V)) \in K$ i.e. $(A_1 \cup A_2) \setminus (f^{-1}(U \cup V)) \in K$. Since $U \cap V = \phi$, then $f^{-1}(U \cap V) = \phi$ so $A_1 \cap A_2 \in K$ i.e.

$$S \setminus (A_1 \cap A_2) \in F(K) \tag{3.2}$$

Since $A_1, A_2 \in F(I)$,

$$A_1 \cap A_2 \in F(I) \tag{3.3}$$

Since $I \vee K$ is non-trivial so the dual filter is $F(I \vee K) = \{G \cap H : G \in F(I), H \in F(K)\}$. Now using this from 3.2 and 3.3 we get $\phi \in F(I \vee K)$, which is a contradiction. Hence the I^K -limit is unique.

Theorem 3.2. If I and K be two admissible ideal and if there exists an injective function $f : S \to E \subset X$ which is I^K -convergent to $x_0 \in X$ then x_0 is a limit point of E

Proof. The function f has I^K -limit x_0 , so I^K -limit there exists a set $M \in F(I)$ such that the function $g: S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ x_0 & \text{if } s \notin M \end{cases}$$

is K-convergent to x_0 . Let U be an arbitrary open set containing x_0 . Then $g^{-1}(U) = \{s : g(s) \in U\} \in F(K)$. So $\{s : g(s) \in U\} \notin K$ i.e. $\{s : g(s) \in U\}$ is an infinite set, as K is an admissible ideal. Choose $k_0 \in \{s : g(s) \in U\}$ such that $g(k_0) \neq x_0$ then $g(k_0) \in U \cap (E \setminus \{x_0\})$. Thus x_0 is a limit point of E. \Box

Theorem 3.3. A Continuous function $h : X \to X$ preserves I^K -convergence.

Proof. Let the function f has I^K -limit x, so there exists a set $M \subset S \in F(I)$ such that the function $g: S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ x & \text{if } s \notin M \end{cases}$$

is K-convergent to x. Let U be an arbitrary open set containing x. Then $g^{-1}(U) = S \setminus (M \setminus f^{-1}(U)) \in F(K)$ i.e. $M \setminus f^{-1}(U) \in K$. So to prove the theorem we have to show that I^K -lim h(f(x)) = h(x) i.e. it suffices to show that the function $g_1 : S \to X$ given by

$$g_1(s) = \begin{cases} (h \circ f)(s) & \text{if } s \in M \\ h(x) & \text{if } s \notin M \end{cases}$$

is *K*-convergent to h(x). Let *V* be an open set containing h(x). Since *h* is continuous so there exists an open set *U* containing *x* such that $h(U) \subset V$. Clearly $\{x : h(f(x)) \notin V\} \subset \{x : f(x) \notin U\}$ which implies that $\{x : f(x) \in U\} \subset \{x : h \circ f(x) \in V\}$ i.e. $f^{-1}(U) \subset (h \circ f)^{-1}(V)$. So $M \setminus (h \circ f)^{-1}(V) \subset M \setminus f^{-1}(U)$. Then $M \setminus (h \circ f)^{-1}(V) \in K$ as $M \setminus f^{-1}(U) \in K$. So its complement $g_1^{-1}(V) \in F(K)$, as required. Hence I^K -lim $(h \circ f)(x) = h(x)$.

Theorem 3.4. If X is a discrete space then I-convergence implies I^K -convergence, where I and K are two admissible ideals.

Proof. Let $f: S \to X$ be a function such that $I - \lim f = x_0$. Since X is a discrete space so it has no limit point then $U = \{x_0\}$ is open. Thus we have $f^{-1}(X \setminus U) = \{s \in S : f(s) \notin U\} \in I$. Let the set $M = f^{-1}(U) = \{s \in S : f(s) \notin U\}$.

 $\{s \in S : f(s) \in U\} \in F(I)$. Thus there exists a set $M = \{s : f(s) \in U\} = \{s : f(s) = x_0\} \in F(I)$ such that the function $g : S \to X$ defined by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ x_0 & \text{if } s \notin M \end{cases}$$

is K-convergent to x_0 , since for any open set U containing x_0 the set $g^{-1}(U) = S \in F(K)$. Hence I^{K} lim $f = x_0$

Note 3.1. Converse of above theorem may not be true. Let I and K be two ideals on a set S. Consider a set $A \in K \setminus I$. Let $y_0 \in X \setminus \{x_0\}$ be a fixed element and define a function $f : S \to X$ by

$$f(s) = \begin{cases} x_0 & \text{if } s \in S \setminus A \\ y_0 & \text{otherwise} \end{cases}$$

Now if V is any open set containing x_0 then $f^{-1}(V) = S \setminus A$ if $y_0 \notin V$ and $f^{-1}(V) = S$ if $y_0 \in V$. So in both case $f^{-1}(V) \in F(K)$. Hence K-lim $f = x_0$ then by lemma (2.1) we get I^K -lim $f = x_0$. But $U = \{x_0\}$ is an open set containing x_0 since X is a discrete space and $f^{-1}(X \setminus U) = A \notin I$. Hence f is not I-convergent to x_0 .

Theorem 3.5. Let (X, τ) be a topological space and let $f : S \to X$ be a function, where S is a non-empty set, such that $x \in X$ is an I^K -limit of the function f, for some non-trivial ideals I and K of S. Then there exists a filter F on X such that x is also a limit of the filter F.

Proof. Let I & K be two non-trivial ideals on non-empty set S. Also let x is I^K -limit of the function $f : S \to X$. Then from the definition of I^K -convergence then there exists a set $M_1 \in F(I)$ such that the function $g : S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M_1 \\ x & \text{if } s \notin M_1 \end{cases}$$

is K-convergent to x. So for every open set U containing x, the set

$$M = g^{-1}(U) = \{s \in S : g(s) \in U\} \in F(K)$$
(3.4)

Let us construct for each $M \in F(K)$ the set $A_M = \{g(n) : n \in M\}$ and $\mathcal{B} = \{A_M : M \in F(K)\}$. Then the family \mathcal{B} forms a filter base on X. In fact, (i)We observe that each A_M is non-empty. Since M is non-empty so \mathcal{B} is non-empty. (ii)Since F(K) is filter, $\phi \notin F(K)$ and so $A_M \neq \phi$ for all $M \in F(K)$ and $\phi \notin \mathcal{B}$. (iii) Let us take any two members $A_M, A_R \in$ where $M, R \in F(K)$. $M \cap R \in F(K)$ since F(K) is filter on S. So $A_{M \cap R} \in \mathcal{B}$. Also $A_{M \cap R} \subset A_M \cap A_R$. So \mathcal{B} is a filter base. Let F be the filter generated by this filter base. Now we will show that x be the limit of filter F. Let V be any open set of x. Then from (3.4) the set $M = \{s \in S : g(s) \in V\} \in F(K)$. So by our construction of A_M , we get $A_M = \{g(n) : n \in M\} \subset V$. Since $A_M \in \mathcal{B}$ we get $V \in F$. So we conclude that $V \in F$ for all open set V of x. Hence x becomes limit of the filter F.

Theorem 3.6. Let (X, τ) be a topological space and $x \in X$. Then for every function $f : S \to X$ there exists a filter F on X such that if x is limit of filter F then x is also I^K -limit of the function f.

Proof. Let $f : S \to X$ be a function and I, K be two non-trivial ideals of S. For each $M \in F(K)$ let $A_M = \{f(n) : n \in M\}$ and $\mathcal{B} = \{A_M : M \in F(K)\}$. Then the family \mathcal{B} forms a filter base on X. Let F be the filter generated by this filter base. Let x be the limit of filter F. Then $\eta_x \subset F$ where η_x is the neighborhood filter of the point x. Let $U \in \eta_x$ be arbitrary. Then $U \in F$ and so $A_M \subset U$ for some $M \in F(K)$. This implies that $M \subset \{n \in S : f(n) \in U\}$ which further implies that $\{n \in S : f(n) \in U\} \in F(K)$ since $M \in F(K)$. Now U is arbitrary so the function f is K-convergent to x. Hence from the lemma (2.1) we get f is I^K -convergent to x.

4 *I^{K*}*-Convergence in Topological Spaces

 I^{K^*} -convergence is also a common generalization of all types of I^* and K^* -convergence. It is interesting to find the relation between I, I^*, K^*, I^{K^*} and I^K -convergence.

Definition 4.1. Let X be a topological space and $x \in X$ and let I, K be two ideals on a non-void set S. A function $f: S \to X$ is called I^{K^*} -convergent to the point x if there exists a set $M \in F(I)$ and $M_1 \in F(K)$ such that the function $g: S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \cap M_1 \\ x & \text{if } s \notin M \cap M_1 \end{cases}$$

is Fin(S)-convergent to x.

If f is I^{K^*} -convergent to x then we write I^{K^*} -lim f = x.

Note 4.1. It follows from the definition that f is I^{K^*} -convergent to x if and only if there exist a set $M \in F(I)$ such that the function $g: S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ x & \text{if } s \notin M \end{cases}$$

is K^* -convergent to x.

Lemma 4.1. If I and K are two ideals on a set S and if $f : S \to X$ is a function such that K^* -lim f = x then I^{K^*} -lim f = x.

Proof. Follows from the lemma 2.1.

Lemma 4.2. If I and K be two admissible ideals on a set S and $f : S \to X$ is a function such that I^{K^*} lim f = x then I^K -lim f = x.

Proof. The proof follows from the note (4.1) and since K^* -convergence implies K-convergence of the function g.

Theorem 4.1. If X is a discrete space then I^K and I^{K^*} -convergence coincide for every admissible ideal I and K.

Proof. Let X be a discrete topological space then it has no limit point and $x \in X$. Let I and K be two admissible ideals on a set S and $f: S \to X$ is a function such that I^{K} -lim f = x. Because of previous lemma (4.2) we have only to show that I^{K^*} -lim f = x. Now from the definition of I^{K} -convergence there exists a set $M \in F(I)$ such that the function $g: S \to X$ defined by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ x & \text{if } s \notin M \end{cases}$$

is K-convergent to x i.e. K-lim g(x) = x. Since X has no limit point so $U = \{x\}$ is open. So we have $\{s : g(s) \notin U\} \in K$. Hence the set $M_1 = \{s : g(s) \in U\} = \{s : g(s) = x\} \in F(K)$. So there exist $M_1 \in F(I)$ such that the function $g_1 : S \to X$ defined by

$$g_1(s) = \begin{cases} f(s) & \text{if } s \in M_1 \\ x & \text{if } s \notin M_1 \end{cases}$$

is Fin(S)-convergent to x, since for any open set U containing x, $g^{-1}(X \setminus U) = \phi$ is a finite set. Thus K^* -lim g(x) = x. So I^{K^*} -lim f = x.

Theorem 4.2. Let I and K be two admissible ideals on a non-empty set S and let $f : S \to X$ be a function where X is a topological space. Then I^{K^*} -convergence implies I-convergence if $K \subseteq I$.

Proof. Suppose that the function $f: S \to X$ is I^{K^*} -convergent to $x \in X$. So there exists sets $M \in F(I)$ and $M_1 \in F(K)$ such that the function $g: S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \cap M_1 \\ x & \text{if } s \notin M \cap M_1 \end{cases}$$

is Fin(S)-convergent to x i.e. $g^{-1}(X \setminus U) = \{s \in S : g(s) \notin U\}$ is a finite set for each open set U containing the point x. Now the set C (say) = $f^{-1}(X \setminus U) \cap (M \cap M_1) \subset g^{-1}(X \setminus U)$ i.e. C is finite. So $C \in I$. Now,

 $f^{-1}(X \setminus U) \subseteq (S \setminus (M \cap M_1)) \cup C \tag{4.1}$

and $F(K) \subset F(I)$, since $K \subseteq I$. Therefore $M \cap M_1 \in F(I)$. So $S \setminus (M \cap M_1) \in I$. So from (4.1) we get $f^{-1}(X \setminus U) \in I$. Therefore f is I-convergent to x. i.e.I-lim f = x

Lemma 4.3. If I and K be two admissible ideals on a set S and f be a function from S to X, where X be a topological space. Then I^{K^*} -convergence implies K-convergence if $I \subseteq K$.

Proof. The proof is similar to the proof of Theorem (4.2) and so omitted.

Theorem 4.3. I^* -convergence implies I^{K^*} -convergence.

Proof. Let I and K be two ideals on a non-void set S and $f : S \to X$ be a function such that f is I^* -convergence to x of X. So \exists a set $M \in F(I)$ such that the function $g : S \to X$ defined by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ x & \text{if } s \notin M \end{cases}$$

is Fin(S)-convergent to x. Since Fin-convergent always implies K^* -convergent then the function g is K^* -convergent to x. and so f is I^{K^*} -convergent to x by the Note(4.1).

Lemma 4.4. K^* -convergence implies I^{K^*} -convergence.

4.1 Additive Property with $I^K \& I^{K^*}$ -Convergence

We now study the relationship between $I, I^{K^*} \& I^K$ -convergence. The following definition is important in this regard.

Definition 4.2. [10] Let I, K be ideals on the non-empty set S. We say that I has additive property with respect to K or that the condition AP(I, K) holds if for every sequence of pairwise disjoint sets $A_n \in I$, there exists a sequence $B_n \in I$ such that $A_n \triangle B_n \in K$ for each n and $\bigcup_{n \in \mathbb{N}} B_n \in I$

Another formulation of condition AP(I, K) are given in [20]. Before giving this definition we need to state definition of K-pseudo-intersection of a system.

Definition 4.3. [20] Let K be an ideal on a set S. We write $A \subset_K B$ whenever $A \setminus B \in K$. If $A \subset_K B$ and $B \subset_K A$ then we write $A \sim_K B$. Clearly $A \sim_K B \Leftrightarrow A \triangle B \in K$ We say that a set A is K-pseudo-intersection of a system $\{A_n : n \in \mathbb{N}\}$ if $A \subset_K A_n$ holds for each $n \in \mathbb{N}$

Definition 4.4. [20] Let I, K be ideals on the set S. We say that I has additive property with respect to K or that the condition AP(I, K) holds if any of the equivalent condition of following holds:

(i) For every sequence $(A_n)_{n\in\mathbb{N}}$ of sets from I there is $A \in I$ such that $A_n \subset_K A$ for all n's.

(ii) Any sequence $(F_n)_{n \in \mathbb{N}}$ of sets from F(I) has K-pseudo-intersection in F(I).

- (iii) For every sequence $(A_n)_{n \in \mathbb{N}}$ of sets from I there exists a sequence $(B_n)_{n \in \mathbb{N}} \in I$ such that $A_j \sim_K B_j$ for $j \in \mathbb{N}$ and $B = \bigcup_{j \in \mathbb{N}} B_j \in I$.
- (iv) For every sequence of mutually disjoint sets $(A_n)_{n \in \mathbb{N}} \in I$ there exists a sequence $(B_n)_{n \in \mathbb{N}} \in I$ such that $A_j \sim_K B_j$ for $j \in \mathbb{N}$ and $B = \bigcup_{j \in \mathbb{N}} B_j \in I$.
- (v) For every non-decreasing sequence $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \cdots$ of sets from $I \exists a \text{ sequence } (B_n)_{n \in \mathbb{N}} \in I$ such that $A_j \sim_K B_j$ for $j \in \mathbb{N}$ and $B = \bigcup_{j \in \mathbb{N}} B_j \in I$.
- (vi) In the Boolean algebra $2^S/K$ the ideal I corresponds to a σ -directed subset, i.e. every countable subset has an upper bound.

In the case $S = \mathbb{N}$ and K = Fin we get the condition AP from [17] which characterize ideal such that I^* -convergence implies I-convergence. The condition AP(I, K) is more generalization of condition AP from[9][17]. Ideals which fulfill the condition AP(I, Fin) are sometimes called P-ideals.(see for examples [1][12])

In the paper [20] the author showed that *I*-convergence implies I^{K} -convergence if AP(*I*, *K*) holds. Here we will introduce a new theorem regarding *I* and I^{K^*} -convergence.

Theorem 4.4. Let I and K be two ideals on a set S and X be a first countable topological space. If the ideal I has the additive property with respect to P-ideal K then I-convergence implies I^{K^*} -convergence.

Proof. Let $f: S \to X$ be a function such that I-lim $f = x_0$. Let $\mathcal{B} = \{U_n : n \in \mathbb{N}\}$ be a countable base for X at the point x_0 . Now from the definition of I-convergence we have $f^{-1}(U_n) \in F(I)$ for each n. Thus there exists $A \in F(I)$ with $A \subset_K f^{-1}(U_n)$ for each n i.e. $A \setminus f^{-1}(U_n) \in K$. Now it suffices to show that the function the $g: S \to X$ defined by

$$g(n) = \begin{cases} f(n) & \text{if } n \in A \\ x_0 & \text{if } n \notin A \end{cases}$$

is K^* -convergent to x_0 . For $U_n \in B$, we have $g^{-1}(U_n) = (S \setminus A) \cup f^{-1}(U_n) = S \setminus (A \setminus f^{-1}(U_n))$ and since the set $A \setminus f^{-1}(U_n) \in K$ so $S \setminus (A \setminus f^{-1}(U_n)) \in F(K)$ i.e. $g^{-1}(U_n) \in F(K)$. Therefore g is K-convergent to x_0 . Since K is P-ideal so g is also K^* -convergent to x_0 .

5 I^K -Limit Points

We modify the definition of *I*-limit points in the following way:

Definition 5.1. Let $f : S \to X$ be a function and I be non-trivial ideal of S. Then $y \in X$ is called an I-limit point of f if there exists a set $M \subset S$ such that $M \notin I$ and the function $g : S \to X$ defined by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ y & \text{if } s \notin M \end{cases}$$

is Fin(S)-convergent to y.

Definition 5.2. Let $f : S \to X$ be a function and I, K be two non-trivial ideals of S. Then $y \in X$ is called an I^K -limit point of f if there exists a set $M \subset S$ such that $M \notin I, K$ and the function $g : S \to X$ defined by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ y & \text{if } s \notin M \end{cases}$$

is K-convergent to y.

We denote respectively by $I(L_f)$ and $I^K(L_f)$ the collection of all I and I^K -limit points of f.

Theorem 5.1. If K is an admissible ideal and $K \subset I$ then $I(L_f) \subset I^K(L_f)$

Proof. Let $y \in I(L_f)$. Since y is an I-limit point of the function $f : S \to X$, then there exists a set $M \notin I$ such that and the function $g : S \to X$ defined by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ y & \text{if } s \notin M \end{cases}$$

is Fin(S)-convergent to y. So for any open set U containing x the set $\{s : g(s) \notin U\} \in$ Fin. i.e. $\{s : g(s) \notin U\}$ is a finite set. So $\{s : g(s) \notin U\} \in K$, as K is an admissible ideal. Therefore g is K-convergent function. Again $M \notin I$ and $K \subset I$ so $M \notin I$, K. Thus y is I^K -limit point of f i.e. $y \in I^K(L_f)$. Hence the theorem is proved.

Note 5.1. If I is an admissible ideal and $I \subset K$ then $K(L_f) \subset I^K(L_f)$

Theorem 5.2. If every function $f : S \to X$ has an I^K -limit point then every infinite set A in X has an ω -accumulation point where cardinality of S is less or equal to cardinality of A.

Proof. Let A be an infinite set. Define an injective function $f : S \to A \subset X$. Then f has an I^K -limit point say y. Then \exists a set $M \subset S$ such that $M \notin I, K$ and the function $g : S \to X$ given by

$$g(s) = \begin{cases} f(s) & \text{if } s \in M \\ y & \text{if } s \notin M \end{cases}$$

is K-convergent to y. Let U be open set containing y then $g^{-1}(U) = (S \setminus M) \cup f^{-1}(U) = S \setminus (M \setminus f^{-1}(U)) \in F(K)$ i.e. $M \setminus f^{-1}(U) \in K$. So $f^{-1}(U) \notin K$.(For if $f^{-1}(U) \in K$ then we get $M \in K$, which is a contradiction.) So $\{s : f(s) \in U\}$ is an infinite set. Consequently U contains infinitely many points of the function f(s) in X. So U contains infinitely many elements of A. Thus y becomes ω -accumulation point of A.

Theorem 5.3. If X, τ is a Lindelof space such that every function $f : \mathbb{N} \to X$ has an I^K -limit point then (X, τ) is compact.

Proof. Let (X, τ) be a Lindelof space such that every $f : N \to X$ has an I^K -limit point. We have to show that any open cover of space X has a finite subcover. Let $\{A_\alpha : \alpha \in \wedge\}$ be an open cover of the space X, where \wedge is an index set. Since (X, τ) is a Lindelof space so this open cover admits a countable sub-cover say $\{A_1, A_2, \dots, A_n, \dots\}$. Proceeding inductively let $B_1 = A_1$ and for each m > 1, let B_m be the first member of the sequence of A's which is not covered by $B_1 \cup B_2 \cup B_3 \cup \dots \cup B_{m-1}$. If this choice becomes impossible at any stage then the sets already selected becomes a required finite sub-cover. Otherwise it is possible to select a point b_n in B_n for each positive integer n such that $b_n \notin B_r, r < n$.

Let $f : \mathbb{N} \to X$ be a function defined by $f(n) = b_n$. Now let x be an I^K -limit point of the function f. Then $x \in B_p$ for some p. Now from the definition of I^K -limit point we get $g^{-1}(B_p) = (\mathbb{N} \setminus M) \cup f^{-1}(B_p) = \mathbb{N} \setminus (M \setminus f^{-1}(B_p)) \in F(K)$ i.e. $M \setminus f^{-1}(B_p) \in K$. So the set $S = f^{-1}(B_p) = \{n \in \mathbb{N} : f(x_n) \in B_p\} \notin K$. Hence S must be an infinite subset of \mathbb{N} . So there is some q > p such that $q \in S$ i.e. there exists some q > p such that $f(x_q) \in B_p$ which leads to a contradiction. Thus the result follows.

6 Acknowledgment

The second author is grateful to the University of Burdwan for providing State Fund Fellowship during the preparation of this work.

References

 M. Balcerzak and K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, *J. Math Anal. Appl.* 328(1) (2007), 715-729.

- [2] A.K. Banerjee and A. Banerjee, A Note on *I*-Convergence and *I**-Convergence of Sequence and Nets in Topological Spaces, *Mathematicki Vesnik* 67(3) (2015), 212-221.
- [3] A.K. Banerjee and A. Banerjee, *I*-convergence classes of sequences and nets in topological spaces, *Jordan Journal of Mathematics and Statistics* **11(1)** (2018), 13-31.
- [4] A.K. Banerjee and R. Mondal, A note on convergence of double sequences in topological spaces, *Mathematicki Vesnik* 69(2) (2017), 144-152.
- [5] A.K. Banerjee and A. Dey, Metric Spaces and Complex Analysis, *New Age International Publishers*(2008).
- [6] A.K. Banerjee and A. Banerjee, A Study on *I*-Cauchy sequences and *I*-divergence in *S*-metric Spaces, *Malaya Journal of Mathematik* 6 (2018) 226-230.
- [7] A.K. Banerjee and A. Banerjee, I-Completeness in function spaces, arXive: 1704.05279v1 (2017)
- [8] A.K. Banerjee and A. Paul, *I*-Divergence and *I**-Divergence in cone metric spaces, *arXive: 1806.09188v1* (2018)
- [9] P. Das, P. Kostyrko, P. Malik, W. Wilczyński, I and I*-convergence of double sequences, *Math. Slov.*, **58**(5)(2008), 605-620.
- [10] P.Das, M. Sleziak, V. Toma, I^K-Cauchy functions, Topology and its Applications 173 (2014), 9-27.
- [11] H.Fast, Sur la convergence ststistique, Colloq. Math. 2 (1951), 241-244.
- [12] R. Filipow, N. Mrozek, I. Reclaw and P. szuca, Ideal convergence of bounded sequences, J. Symbolic Logic 72(2)(2007), 501-512.
- [13] J.A. Fridy, On statistical convergence, Analysis 11 (1991), 59-66.
- [14] J.L. Kelley, General Topology, Springer-verlag, New York, 1955.
- [15] B.K.Lahiri, Pratulananda Das, I and I*-convergence in topological spaces, Math. Bohem. 2(2005), 153-160.
- [16] P. Kostyrko, M. Mačaj, T.Šalát, Statistical convergence and *I*-convergence, *Unpublished*, http://thales.doa.fmph.uniba.sk/macaj/ICON.pdf.
- [17] Pavel Kostyrko, Tibor Šalát, Wladyslaw Wilczyński, *I*-convergence, *Real Analysis Exchange* **26(2)** (2000/2001), 669-686.
- [18] P.Kostyroko, M. Macaj, M. Sleziak, *I*-convergence and extremal *I*-limit points, *Math. Slovaca* **55** (2005), 443-464.
- [19] M. Macaj, T.Šalát, statistical convergence of subsequences of a given sequence, *Math. bohem.* 126 (2001) 191-208.
- [20] M. Macaj, M. Sleziak, I^K-convergence, Real Analysis Exchange 36(1)(2010/2011), 177-194.
- [21] S.K. Pal, On *I* and *I^K*-Cauchy nets and completeness, *Sarajevo Journal of Mathematics* **10(23)** (2014), 247-255.
- [22] D. Rath, B.C. Tripathy, On statistically convergent and statistically Cauchy sequence, *Indian J. Pure Appl. Math.* **25(4)** (1994), 381-386.
- [23] Tibor Šalát, On statistically convergent sequence of real numbers, *Mathematica Slovaca* **30(2)** (1980), 139-150.
- [24] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique , *Colloq. Math.* 2 (1951), 73-74.