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Abstract

In this paper we have studied some important topological properties and characterization of

IK-convergence of functions which is a common generalization of I∗-convergence of functions.

We also introduce the idea of IK
∗

-convergence and IK-limit points of functions.

Keywords : IK-convergence, IK
∗

-convergence, AP(I,K)-condition, P -ideals, IK-limit points.

AMS subject classification(2010): Primary: 54A20; Secondary: 40A05; 40A35

1 Introduction and Background

The aim of this paper is to study the notion of IK and IK
∗

-convergence of functions which are the common

generalization of various type of I and I∗-convergence of functions in some restriction. Let us start with brief

discussion on two types of ideal convergence.

The concept of usual convergence of a real sequence has been extended to statistical convergence by H. Fast[11]

and then H. Steinhaus[24] in the year 1951. Now we recall natural density of a set K ⊂ N where N denotes the

set of natural numbers. Let Kn denote the set {k ∈ K : k ≤ n} and |Kn| stands for the cardinality of Kn.The

natural density of K is defined by

d(K) = lim
n

|Kn|

n

if the limit exits. A real sequence {xn} is said to be statistically convergent to l if for every ǫ > 0 the set

K(ǫ) = {k ∈ N : |xk − l| ≥ ǫ} has natural density zero[11, 13, 24]. Ordinary convergence always implies

statistical convergence[19, 22, 23]. Later it was developed by many authors and after long 50 years, the concept

of statistical convergence has been extended to I and I∗-convergence which depends on the structure of ideals

of subsets of the natural numbers by P.Kostyrko et al[16, 17, 18]. The concept of I∗-convergence which is

closely related to that of I-convergence and which arises from a particular result on statistical convergence of

real sequence was introduced by P.Kostyrko et al. The result is as follows:

A real sequence {xn} is statistically convergent to ξ if and only if there exist a set M = {m1 < m2 < m3 <
... < mk < ...} such that d(M) = 1 and lim

k
xmk

= ξ. [16, 17]

If I is an admissible ideal, I∗-convergence implies I-convergence. But converse may not be true. Moreover a

statistical convergent sequence and I and I∗- convergent sequence need not even be bounded[15, 23]. I and I∗-

convergence coincide for every admissible ideal I if the space is discrete or if I satisfies AP(I ,Fin)-condition.[9,

16]. B.K.Lahiri and Pratulananda Das in the year 2005, extended the concept of I and I∗-convergence in a

topological space and they observed that the basic properties are preserved also in a topological space[15].

Later many works on I-convergence were done in topological spaces[2, 3, 4, 6, 7, 8].

In the year 2010, M. Macaj and M. Sleziak[20] defined IK-convergence and shew that this type of convergence

is a common generalization for all types of I and I∗-convergence we have mentioned so far. They also gave the

condition AP(I,K) modifying condition AP from [9, 17]. Later in the year 2014, IK-Cauchy and IK-Cauchy

net have been studied in [10, 21].

In this paper we have studied further some basic properties of IK-convergence of functions in topological

1akbanerjee@math.buruniv.ac.in, akbanerjee1971@gmail.com
2mahendrabktpp@gmail.com
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spaces which were not studied before. Also we have defined the notion of IK
∗

-convergence and have found

out the relation between I, I∗,K∗, IK
∗

and IK-convergence of functions. While studying the convergence

of functions, several closely related notions occur quite naturally such as limit points, cluster points etc. In

the last section we have introduced IK-limit points and examined some important topological properties like

characterization of compactness in terms of IK-limit points.

2 Basic Definition and Notation

Definition 2.1. Let S be a non-void set then a family of sets I ⊂ 2S is said to be an ideal if

(i) A,B ∈ I ⇒ A ∪B ∈ I

(ii) A ∈ I, B ⊂ A ⇒ B ∈ I

I is called nontrivial ideal if S /∈ I and I 6= {φ}. In view of condition (ii) φ ∈ I i.e. an ideal is a non-void

system of sets I hereditary with respect to additive and inclusion. If I ( 2S we say that I is proper ideal on S.

Several examples of non-trivial ideals are seen in [17]. A nontrivial ideal I is called admissible if it contains

all the singleton of N. A nontrivial ideal I is called non-admissible if it is not admissible. An example of an

admissible ideal on a set S is the ideal of all finite subsets of S which we shall denote by Fin(S). If S = N

then we write Fin instead of Fin(N) for short.

Example 2.1. Let I be the class of all A ⊂ N with d(A) = 0. Then I is an admissible ideal of N, since

singleton sets has density zero. For any proper subset M ⊂ N, I = 2M is an non-admissible ideal of N.

Note 2.1. The dual notion to the ideal is the notion of the filter i.e. a filter on S is non-void system of subsets

of S, which is closed under finite intersection and super sets. If I is a non-trivial ideal on X then F = F (I) =
{A ⊂ X : X \ A ∈ I} is clearly a filter on X and conversely. F (I) is called associated filter with respect to

ideal I .

Now we will give the definition of I-convergence using function instead of sequence.

Definition 2.2. [20] Let I be an ideal on a non-void set S and X be a topological space. A function f : S → X
is said to be I-convergent to x ∈ X , written as I-lim f = x if

f−1(U) = {s ∈ S : f(s) ∈ U} ∈ F (I)

for every neighborhoodU of the point x. i.e. if f−1(X\U) = {s ∈ S : f(s) /∈ U} ∈ I for every neighborhood

U of x.

If S = N we obtain the usual definition of I-convergence of sequence.

Definition 2.3. [20] Let I be an ideal on a set S and let f : S → X be a function to a topological space X .

The function f is called I∗-convergent to the point x of X if there exists a set M ∈ F (I) such that the function

g : S → X defined by

g(s) =

{

f(s) if s ∈ M
x if s /∈ M

is Fin(S)-convergent to x.

If f is I∗-convergent to x, then we write I∗-lim f = x. The usual notion of I∗-convergence of sequence

is a special case when S = N. IK-convergence as a common generalization of all types of I∗-convergence of

sequences or functions from S into X . Here we will work with functions from a non-void arbitrary set S to a

topological space X . One of the reasons is that using functions sometimes helps to simplify notation.
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Definition 2.4. [20] Let K and I be an ideal on a non-void set S, X be a topological space and let x be an

element of X . A function f : S → X is called IK-convergent to the point x if there exists a set M ∈ F (I)
such that the function g : S → X given by

g(s) =

{

f(s) if s ∈ M
x if s /∈ M

is K-convergent to x.

If f is IK-convergent to x, then we write IK-lim f = x. As usual, notion of IK-convergence of sequence

is a special case for S = N. Similarly as for I-convergence of sequences. We write IK-limxn = x.

Lemma 2.1. [20] If I and K are ideals on a set S and f : S → X is a function such that K-lim f = x, then

IK-lim f = x.

Theorem 2.1. [20] Let I ,K be ideals on a set S, X be a topological space and let f be a function from S to

X then IK-lim f = x ⇒ I-lim f = x if and only if K ⊂ I .

Proposition 2.1. [20] Let I, I1, I2,K,K1 and K2 be ideals on a set S such that I1 ⊂ I2 and K1 ⊂ K2 and

let X be a topological space. Then for any function f : S → X , we have IK
1

-lim f = x ⇒ IK
2

-lim f = x
and IK1-lim f = x ⇒ IK2 -lim f = x.

3 Basic Properties of IK-Convergence in Topological Spaces

Throughout the paper X stands for a topological space (X, τ) and I , K are non-trivial ideals of a non empty

set S unless otherwise stated. First we introduce a construction regarding double ideal. For any two ideals I,K
on a non-void set S we have the ideal

I ∨K = {A ∪B : A ∈ I, B ∈ K}

which is the smallest ideal containing both I and K on S i.e. I,K ⊆ I∨K . It is clear that if I∨K is non-trivial

and I and K are both proper subset of I ∨K then I and K both are non-trivial. But converse part may not be

true. To support this following examples are given.

Example 3.1. Consider the two sets N1 = {4n : n ∈ N} and N2 = {4n− 1 : n ∈ N} now it is clear that 2N1 ,

2N2 and 2N1 ∨ 2N2 all are non-trivial ideal on N.

Example 3.2. Now let N1 be set of all odd integers and N2 be set of all even integers. Then it is clear that

I = 2N1 , K = 2N2 both are non-trivial ideals on N but I ∨K is a trivial ideal on N.

If I ∨K is a non-trivial on X then the dual filter is F (I ∨K) = {G ∩H : G ∈ F (I), H ∈ F (K)}.

Theorem 3.1. Let I ∨K is non-trivial on set S. If X is Hausdorff and a function f : S → X is IK-convergent

then f has a unique IK-limit.

Proof. If possible let us consider that the function f has two distinct IK-limits say x and y. Since X is

Hausdorff then there exists U, V ∈ τ such that x ∈ U and y ∈ V and U ∩ V = φ. Since f has IK-limit x, so

from the definition of IK-limit, there exists a set A1 ∈ F (I) such that the function g : S → X given by

g(s) =

{

f(s) if s ∈ A1

x if s /∈ A1

is K-convergent to x. So, g−1(U) = {s ∈ S : g(s) ∈ U} = {s ∈ A1 : g(s) ∈ U} ∪ {s ∈ S \ A1 :
g(s) ∈ U} = (S \ A1) ∪ f−1(U) = S \ (A1 \ f−1(U)) ∈ F (K) i.e. A1 \ f

−1(U) ∈ K or A1 \ B1 ∈ K

3



where B1 = f−1(U). Similarly, f has IK-limit y so there exists a set A2 ∈ F (I) s.t. A2 \ f
−1(V ) ∈ K or

A2 \B2 ∈ K where B2 = f−1(V ). So,

(A1 \B1) ∪ (A2 \B2) ∈ K (3.1)

Now let x ∈ (A1 ∩A2)∩ (B1 ∩B2)
c = (A1 ∩A2)∩ (Bc

1
∪Bc

2
) = ((A1 ∩A2)∩Bc

1
)∪ ((A1 ∩A2)∩Bc

2
) i.e.

either x ∈ (A1∩A2)∩Bc
1
⊂ A1∩Bc

1
or x ∈ ((A1∩A2)∩Bc

2
) ⊂ A2∩Bc

2
i.e. x ∈ (A1∩Bc

1
)∪(A2∩Bc

2
). So,

(A1∩A2)∩(B1∩B2)
c ⊂ (A1∩B

c
1
)∪(A2∩B

c
2
) ∈ K (from the equation (3.1)). Thus (A1∩A2)∩(B1∩B2)

c ∈
K i.e. (A1 ∩ A2) \ (f

−1(U) ∩ f−1(V )) ∈ K i.e. (A1 ∪ A2) \ (f
−1(U ∪ V )) ∈ K . Since U ∩ V = φ, then

f−1(U ∩ V ) = φ so A1 ∩ A2 ∈ K i.e.

S \ (A1 ∩ A2) ∈ F (K) (3.2)

Since A1, A2 ∈ F (I),
A1 ∩A2 ∈ F (I) (3.3)

Since I ∨K is non-trivial so the dual filter is F (I ∨K) = {G ∩H : G ∈ F (I), H ∈ F (K)}. Now using this

from 3.2 and 3.3 we get φ ∈ F (I ∨K), which is a contradiction. Hence the IK-limit is unique.

Theorem 3.2. If I and K be two admissible ideal and if there exists an injective function f : S → E ⊂ X
which is IK-convergent to x0 ∈ X then x0 is a limit point of E

Proof. The function f has IK-limit x0, so IK-limit there exists a set M ∈ F (I) such that the function

g : S → X given by

g(s) =

{

f(s) if s ∈ M
x0 if s /∈ M

is K-convergent to x0. Let U be an arbitrary open set containing x0. Then g−1(U) = {s : g(s) ∈ U} ∈ F (K).
So {s : g(s) ∈ U} /∈ K i.e. {s : g(s) ∈ U} is an infinite set, as K is an admissible ideal. Choose

k0 ∈ {s : g(s) ∈ U} such that g(k0) 6= x0 then g(k0) ∈ U ∩ (E \ {x0}). Thus x0 is a limit point of E.

Theorem 3.3. A Continuous function h : X → X preserves IK-convergence.

Proof. Let the function f has IK-limit x, so there exists a set M ⊂ S ∈ F (I) such that the function g : S → X
given by

g(s) =

{

f(s) if s ∈ M
x if s /∈ M

is K-convergent to x. Let U be an arbitrary open set containing x. Then g−1(U) = S \(M \f−1(U)) ∈ F (K)
i.e. M \ f−1(U) ∈ K . So to prove the theorem we have to show that IK-limh(f(x)) = h(x) i.e. it suffices to

show that the function g1 : S → X given by

g1(s) =

{

(h ◦ f)(s) if s ∈ M
h(x) if s /∈ M

is K-convergent to h(x). Let V be an open set containing h(x). Since h is continuous so there exists an open

set U containing x such that h(U) ⊂ V . Clearly {x : h(f(x)) /∈ V } ⊂ {x : f(x) /∈ U} which implies that

{x : f(x) ∈ U} ⊂ {x : h ◦ f(x) ∈ V } i.e. f−1(U) ⊂ (h ◦ f)−1(V ). So M \ (h ◦ f)−1(V ) ⊂ M \ f−1(U).
Then M \ (h ◦ f)−1(V ) ∈ K as M \ f−1(U) ∈ K . So its complement g−1

1
(V ) ∈ F (K), as required. Hence

IK-lim(h ◦ f)(x) = h(x).

Theorem 3.4. If X is a discrete space then I-convergence implies IK-convergence, where I and K are two

admissible ideals.

Proof. Let f : S → X be a function such that I-lim f = x0. Since X is a discrete space so it has no limit point

then U = {x0} is open. Thus we have f−1(X \ U) = {s ∈ S : f(s) /∈ U} ∈ I . Let the set M = f−1(U) =

4



{s ∈ S : f(s) ∈ U} ∈ F (I). Thus there exists a set M = {s : f(s) ∈ U} = {s : f(s) = x0} ∈ F (I) such

that the function g : S → X defined by

g(s) =

{

f(s) if s ∈ M
x0 if s /∈ M

is K-convergent to x0, since for any open set U containing x0 the set g−1(U) = S ∈ F (K). Hence IK-

lim f = x0

Note 3.1. Converse of above theorem may not be true. Let I and K be two ideals on a set S. Consider a set

A ∈ K \ I . Let y0 ∈ X \ {x0} be a fixed element and define a function f : S → X by

f(s) =

{

x0 if s ∈ S \A
y0 otherwise

Now if V is any open set containing x0 then f−1(V ) = S \A if y0 /∈ V and f−1(V ) = S if y0 ∈ V . So in both

case f−1(V ) ∈ F (K). Hence K-lim f = x0 then by lemma (2.1) we get IK-lim f = x0. But U = {x0} is an

open set containing x0 since X is a discrete space and f−1(X \ U) = A /∈ I . Hence f is not I-convergent to

x0.

Theorem 3.5. Let (X, τ) be a topological space and let f : S → X be a function, where S is a non-empty set,

such that x ∈ X is an IK -limit of the function f , for some non-trivial ideals I and K of S. Then there exists a

filter F on X such that x is also a limit of the filter F .

Proof. Let I & K be two non-trivial ideals on non-empty set S. Also let x is IK-limit of the function f :
S → X . Then from the definition of IK-convergence then there exists a set M1 ∈ F (I) such that the function

g : S → X given by

g(s) =

{

f(s) if s ∈ M1

x if s /∈ M1

is K-convergent to x. So for every open set U containing x, the set

M = g−1(U) = {s ∈ S : g(s) ∈ U} ∈ F (K) (3.4)

Let us construct for each M ∈ F (K) the set AM = {g(n) : n ∈ M} and B = {AM : M ∈ F (K)}. Then the

family B forms a filter base on X . In fact, (i)We observe that each AM is non-empty. Since M is non-empty

so B is non-empty. (ii)Since F (K) is filter, φ /∈ F (K) and so AM 6= φ for all M ∈ F (K) and φ /∈ B. (iii)

Let us take any two members AM , AR ∈ where M,R ∈ F (K). M ∩ R ∈ F (K) since F (K) is filter on S.

So AM∩R ∈ B. Also AM∩R ⊂ AM ∩ AR. So B is a filter base. Let F be the filter generated by this filter

base. Now we will show that x be the limit of filter F . Let V be any open set of x. Then from (3.4) the set

M = {s ∈ S : g(s) ∈ V } ∈ F (K). So by our construction of AM , we get AM = {g(n) : n ∈ M} ⊂ V .

Since AM ∈ B we get V ∈ F . So we conclude that V ∈ F for all open set V of x. Hence x becomes limit of

the filter F .

Theorem 3.6. Let (X, τ) be a topological space and x ∈ X . Then for every function f : S → X there exists

a filter F on X such that if x is limit of filter F then x is also IK-limit of the function f .

Proof. Let f : S → X be a function and I , K be two non-trivial ideals of S. For each M ∈ F (K) let

AM = {f(n) : n ∈ M} and B = {AM : M ∈ F (K)}. Then the family B forms a filter base on X . Let F be

the filter generated by this filter base. Let x be the limit of filter F . Then ηx ⊂ F where ηx is the neighborhood

filter of the point x. Let U ∈ ηx be arbitrary. Then U ∈ F and so AM ⊂ U for some M ∈ F (K). This

implies that M ⊂ {n ∈ S : f(n) ∈ U} which further implies that {n ∈ S : f(n) ∈ U} ∈ F (K) since

M ∈ F (K). Now U is arbitrary so the function f is K-convergent to x. Hence from the lemma (2.1) we get f
is IK-convergent to x.
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4 I
K∗

-Convergence in Topological Spaces

IK
∗

-convergence is also a common generalization of all types of I∗ and K∗-convergence. It is interesting to

find the relation between I, I∗,K∗, IK
∗

and IK-convergence.

Definition 4.1. Let X be a topological space and x ∈ X and let I , K be two ideals on a non-void set S. A

function f : S → X is called IK
∗

-convergent to the point x if there exists a set M ∈ F (I) and M1 ∈ F (K)
such that the function g : S → X given by

g(s) =

{

f(s) if s ∈ M ∩M1

x if s /∈ M ∩M1

is Fin(S)-convergent to x.

If f is IK
∗

-convergent to x then we write IK
∗

-lim f = x.

Note 4.1. It follows from the definition that f is IK
∗

-convergent to x if and only if there exist a set M ∈ F (I)
such that the function g : S → X given by

g(s) =

{

f(s) if s ∈ M
x if s /∈ M

is K∗-convergent to x.

Lemma 4.1. If I and K are two ideals on a set S and if f : S → X is a function such that K∗-lim f = x then

IK
∗

-lim f = x.

Proof. Follows from the lemma 2.1.

Lemma 4.2. If I and K be two admissible ideals on a set S and f : S → X is a function such that IK
∗

-

lim f = x then IK-lim f = x.

Proof. The proof follows from the note (4.1) and since K∗-convergence implies K-convergenceof the function

g.

Theorem 4.1. If X is a discrete space then IK and IK
∗

-convergence coincide for every admissible ideal I
and K .

Proof. Let X be a discrete topological space then it has no limit point and x ∈ X . Let I and K be two

admissible ideals on a set S and f : S → X is a function such that IK-lim f = x. Because of previous lemma

(4.2) we have only to show that IK
∗

-lim f = x. Now from the definition of IK-convergence there exists a set

M ∈ F (I) such that the function g : S → X defined by

g(s) =

{

f(s) if s ∈ M
x if s /∈ M

is K-convergent to x i.e. K-lim g(x) = x. Since X has no limit point so U = {x} is open. So we have

{s : g(s) /∈ U} ∈ K . Hence the set M1 = {s : g(s) ∈ U} = {s : g(s) = x} ∈ F (K). So there exist

M1 ∈ F (I) such that the function g1 : S → X defined by

g1(s) =

{

f(s) if s ∈ M1

x if s /∈ M1

is Fin(S)-convergent to x, since for any open set U containing x, g−1(X \ U) = φ is a finite set. Thus

K∗-lim g(x) = x. So IK
∗

-lim f = x.

6



Theorem 4.2. Let I and K be two admissible ideals on a non-empty set S and let f : S → X be a function

where X is a topological space. Then IK
∗

-convergence implies I-convergence if K ⊆ I .

Proof. Suppose that the function f : S → X is IK
∗

-convergent to x ∈ X . So there exists sets M ∈ F (I) and

M1 ∈ F (K) such that the function g : S → X given by

g(s) =

{

f(s) if s ∈ M ∩M1

x if s /∈ M ∩M1

is Fin(S)-convergent to x i.e. g−1(X \U) = {s ∈ S : g(s) /∈ U} is a finite set for each open set U containing

the point x. Now the set C (say)= f−1(X \ U) ∩ (M ∩M1) ⊂ g−1(X \ U) i.e. C is finite. So C ∈ I . Now,

f−1(X \ U) ⊆ (S \ (M ∩M1)) ∪ C (4.1)

and F (K) ⊂ F (I), since K ⊆ I . Therefore M ∩M1 ∈ F (I). So S \ (M ∩M1) ∈ I . So from (4.1) we get

f−1(X \ U) ∈ I . Therefore f is I-convergent to x. i.e.I-lim f = x

Lemma 4.3. If I and K be two admissible ideals on a set S and f be a function from S to X , where X be a

topological space. Then IK
∗

-convergence implies K-convergence if I ⊆ K .

Proof. The proof is similar to the proof of Theorem (4.2) and so omitted.

Theorem 4.3. I∗-convergence implies IK
∗

-convergence.

Proof. Let I and K be two ideals on a non-void set S and f : S → X be a function such that f is I∗-

convergence to x of X . So ∃ a set M ∈ F (I) such that the function g : S → X defined by

g(s) =

{

f(s) if s ∈ M
x if s /∈ M

is Fin(S)-convergent to x. Since Fin-convergent always implies K∗-convergent then the function g is K∗-

convergent to x. and so f is IK
∗

-convergent to x by the Note(4.1).

Lemma 4.4. K∗-convergence implies IK
∗

-convergence.

4.1 Additive Property with I
K&I

K
∗

-Convergence

We now study the relationship between I, IK
∗

&IK-convergence. The following definition is important in this

regard.

Definition 4.2. [10] Let I,K be ideals on the non-empty set S. We say that I has additive property with respect

to K or that the condition AP(I,K) holds if for every sequence of pairwise disjoint sets An ∈ I , there exists a

sequence Bn ∈ I such that An △ Bn ∈ K for each n and ∪n∈NBn ∈ I

Another formulation of condition AP(I,K) are given in [20]. Before giving this definition we need to state

definition of K-pseudo-intersection of a system.

Definition 4.3. [20] Let K be an ideal on a set S. We write A ⊂K B whenever A \ B ∈ K. If A ⊂K B and

B ⊂K A then we write A ∼K B. Clearly A ∼K B ⇔ A△B ∈ K
We say that a set A is K-pseudo-intersection of a system {An : n ∈ N} if A ⊂K An holds for each n ∈ N

Definition 4.4. [20] Let I,K be ideals on the set S. We say that I has additive property with respect to K or

that the condition AP(I,K) holds if any of the equivalent condition of following holds:

(i) For every sequence (An)n∈N of sets from I there is A ∈ I such that An ⊂K A for all n′s.

(ii) Any sequence (Fn)n∈N of sets from F (I) has K-pseudo-intersection in F (I).
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(iii) For every sequence (An)n∈N of sets from I there exists a sequence (Bn)n∈N ∈ I such that Aj ∼K Bj for

j ∈ N and B = ∪j∈NBj ∈ I .

(iv) For every sequence of mutually disjoint sets (An)n∈N ∈ I there exists a sequence (Bn)n∈N ∈ I such that

Aj ∼K Bj for j ∈ N and B = ∪j∈NBj ∈ I .

(v) For every non-decreasing sequence A1 ⊆ A2 ⊆ · · · ⊆ An · · · of sets from I ∃ a sequence (Bn)n∈N ∈ I
such that Aj ∼K Bj for j ∈ N and B = ∪j∈NBj ∈ I .

(vi) In the Boolean algebra 2S/K the ideal I corresponds to a σ-directed subset,i.e. every countable subset has

an upper bound.

In the case S = N and K = Fin we get the condition AP from [17] which characterize ideal such

that I∗-convergence implies I-convergence. The condition AP(I,K) is more generalization of condition AP

from[9][17] . Ideals which fulfill the condition AP(I ,Fin) are sometimes called P -ideals.(see for examples

[1][12])

In the paper [20] the author showed that I-convergence implies IK-convergence if AP(I,K) holds. Here we

will introduce a new theorem regarding I and IK
∗

-convergence.

Theorem 4.4. Let I and K be two ideals on a set S and X be a first countable topological space. If the ideal

I has the additive property with respect to P-ideal K then I-convergence implies IK
∗

-convergence.

Proof. Let f : S → X be a function such that I-lim f = x0. Let B = {Un : n ∈ N} be a countable base for

X at the point x0. Now from the definition of I-convergence we have f−1(Un) ∈ F (I) for each n. Thus there

exists A ∈ F (I) with A ⊂K f−1(Un) for each n i.e. A \ f−1(Un) ∈ K . Now it suffices to show that the

function the g : S → X defined by

g(n) =

{

f(n) if n ∈ A
x0 if n /∈ A

is K∗-convergent to x0. For Un ∈ B, we have g−1(Un) = (S \A)∪ f−1(Un) = S \ (A \ f−1(Un)) and since

the set A \ f−1(Un) ∈ K so S \ (A \ f−1(Un)) ∈ F (K) i.e. g−1(Un) ∈ F (K). Therefore g is K-convergent

to x0. Since K is P-ideal so g is also K∗-convergent to x0.

5 I
K-Limit Points

We modify the definition of I-limit points in the following way:

Definition 5.1. Let f : S → X be a function and I be non-trivial ideal of S. Then y ∈ X is called an I-limit

point of f if there exists a set M ⊂ S such that M /∈ I and the function g : S → X defined by

g(s) =

{

f(s) if s ∈ M
y if s /∈ M

is Fin(S)-convergent to y.

Definition 5.2. Let f : S → X be a function and I,K be two non-trivial ideals of S. Then y ∈ X is called an

IK-limit point of f if there exists a set M ⊂ S such that M /∈ I,K and the function g : S → X defined by

g(s) =

{

f(s) if s ∈ M
y if s /∈ M

is K-convergent to y.

We denote respectively by I(Lf ) and IK(Lf ) the collection of all I and IK-limit points of f .

Theorem 5.1. If K is an admissible ideal and K ⊂ I then I(Lf ) ⊂ IK(Lf )
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Proof. Let y ∈ I(Lf ). Since y is an I-limit point of the function f : S → X , then there exists a set M /∈ I
such that and the function g : S → X defined by

g(s) =

{

f(s) if s ∈ M
y if s /∈ M

is Fin(S)-convergent to y. So for any open set U containing x the set {s : g(s) /∈ U} ∈ Fin. i.e. {s : g(s) /∈ U}
is a finite set. So {s : g(s) /∈ U} ∈ K , as K is an admissible ideal. Therefore g is K-convergent function.

Again M /∈ I and K ⊂ I so M /∈ I,K . Thus y is IK-limit point of f i.e. y ∈ IK(Lf ). Hence the theorem is

proved.

Note 5.1. If I is an admissible ideal and I ⊂ K then K(Lf) ⊂ IK(Lf )

Theorem 5.2. If every function f : S → X has an IK-limit point then every infinite set A in X has an

ω-accumulation point where cardinality of S is less or equal to cardinality of A.

Proof. Let A be an infinite set. Define an injective function f : S → A ⊂ X . Then f has an IK-limit point

say y. Then ∃ a set M ⊂ S such that M /∈ I,K and the function g : S → X given by

g(s) =

{

f(s) if s ∈ M
y if s /∈ M

is K-convergent to y. Let U be open set containing y then g−1(U) = (S\M)∪f−1(U) = S\(M \f−1(U)) ∈
F (K) i.e. M \ f−1(U) ∈ K . So f−1(U) /∈ K .(For if f−1(U) ∈ K then we get M ∈ K , which is a

contradiction.) So {s : f(s) ∈ U} is an infinite set. Consequently U contains infinitely many points of the

function f(s) in X . So U contains infinitely many elements of A. Thus y becomes ω-accumulation point of

A.

Theorem 5.3. If X, τ is a Lindelof space such that every function f : N → X has an IK-limit point then

(X, τ) is compact.

Proof. Let (X, τ) be a Lindelof space such that every f : N → X has an IK-limit point. We have to show

that any open cover of space X has a finite subcover. Let {Aα : α ∈ ∧} be an open cover of the space X ,

where ∧ is an index set. Since (X, τ) is a Lindelof space so this open cover admits a countable sub-cover say

{A1, A2, · · · , An, · · · }. Proceeding inductively let B1 = A1 and for each m > 1, let Bm be the first member

of the sequence of A′s which is not covered by B1 ∪B2 ∪B3 ∪ · · · ∪Bm−1. If this choice becomes impossible

at any stage then the sets already selected becomes a required finite sub-cover. Otherwise it is possible to select

a point bn in Bn for each positive integer n such that bn /∈ Br, r < n.

Let f : N → X be a function defined by f(n) = bn. Now let x be an IK-limit point of the function f . Then

x ∈ Bp for some p. Now from the definition of IK-limit point we get g−1(Bp) = (N \ M) ∪ f−1(Bp) =
N\ (M \f−1(Bp)) ∈ F (K) i.e. M \f−1(Bp) ∈ K . So the set S = f−1(Bp) = {n ∈ N : f(xn) ∈ Bp} /∈ K .

Hence S must be an infinite subset of N. So there is some q > p such that q ∈ S i.e. there exists some q > p
such that f(xq) ∈ Bp which leads to a contradiction. Thus the result follows.
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