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Abstract
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1 Introduction and Background

The aim of this paper is to study the notion of 7% and I’"-convergence of functions which are the common
generalization of various type of I and I*-convergence of functions in some restriction. Let us start with brief
discussion on two types of ideal convergence.

The concept of usual convergence of a real sequence has been extended to statistical convergence by H. Fast[11]
and then H. Steinhaus[24] in the year 1951. Now we recall natural density of a set X' C N where N denotes the
set of natural numbers. Let K, denote the set {k € K : k < n} and |K,| stands for the cardinality of K,.The
natural density of K is defined by

d(K) = limM

if the limit exits. A real sequence {x,} is said to be statistically convergent to [ if for every e > 0 the set
K(e) = {k € N : |z — | > €} has natural density zero[[L1} [13} [24]]. Ordinary convergence always implies
statistical convergence[|19, 22| [23]]. Later it was developed by many authors and after long 50 years, the concept
of statistical convergence has been extended to I and [*-convergence which depends on the structure of ideals
of subsets of the natural numbers by P.Kostyrko et al[16} [17, [18]. The concept of I*-convergence which is
closely related to that of I-convergence and which arises from a particular result on statistical convergence of
real sequence was introduced by P.Kostyrko et al. The result is as follows:

A real sequence {x,,} is statistically convergent to £ if and only if there exist a set M = {m1 < ma < m3 <
... <my < ...} such that d(M) = 1 and 1i]1€nxmk = ¢. [16,[17]

If I is an admissible ideal, I*-convergence implies I-convergence. But converse may not be true. Moreover a
statistical convergent sequence and I and I*- convergent sequence need not even be bounded[15,123]. I and [*-
convergence coincide for every admissible ideal [ if the space is discrete or if I satisfies AP(I,Fin)-condition.[9,
16]. B.K.Lahiri and Pratulananda Das in the year 2005, extended the concept of I and I*-convergence in a
topological space and they observed that the basic properties are preserved also in a topological space[15]].
Later many works on /-convergence were done in topological spaces|2, 3|4} 6} 7, 18]

In the year 2010, M. Macaj and M. Sleziak[20] defined I -convergence and shew that this type of convergence
is a common generalization for all types of I and /*-convergence we have mentioned so far. They also gave the
condition AP(I, K') modifying condition AP from [9,[17]. Later in the year 2014, I -Cauchy and I -Cauchy
net have been studied in [10} 21]].

In this paper we have studied further some basic properties of I%-convergence of functions in topological
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spaces which were not studied before. Also we have defined the notion of I -convergence and have found
out the relation between I, I*, K* I" and I -convergence of functions. While studying the convergence
of functions, several closely related notions occur quite naturally such as limit points, cluster points etc. In
the last section we have introduced I -limit points and examined some important topological properties like
characterization of compactness in terms of € -limit points.

2 Basic Definition and Notation

Definition 2.1. Let S be a non-void set then a family of sets I C 2° is said to be an ideal if
(A, Bel=AUBel
(i)Acl, BCA=Bel

I is called nontrivial ideal if S ¢ I and I # {¢}. In view of condition (ii) ¢ € I i.e. an ideal is a non-void
system of sets I hereditary with respect to additive and inclusion. If I C 2% we say that I is proper ideal on S.
Several examples of non-trivial ideals are seen in [[17]. A nontrivial ideal [ is called admissible if it contains
all the singleton of N. A nontrivial ideal [ is called non-admissible if it is not admissible. An example of an
admissible ideal on a set S is the ideal of all finite subsets of S which we shall denote by Fin(S). If S = N
then we write Fin instead of Fin(N) for short.

Example 2.1. Let I be the class of all A C N with d(A) = 0. Then I is an admissible ideal of N, since
singleton sets has density zero. For any proper subset M C N, I = 2M is an non-admissible ideal of N.

Note 2.1. The dual notion to the ideal is the notion of the filter i.e. a filter on S is non-void system of subsets
of S, which is closed under finite intersection and super sets. If I is a non-trivial ideal on X then F = F(I) =
{AC X : X\ A e I}isclearly afilter on X and conversely. F(I) is called associated filter with respect to
ideal 1.

Now we will give the definition of I-convergence using function instead of sequence.

Definition 2.2. [20] Let I be an ideal on a non-void set S and X be a topological space. A function f : S — X
is said to be I-convergent to x € X, written as I-lim f = x if

fFHU)={se S: f(s) U} e F(I)

for every neighborhood U of the point x. i.e. if f =1 (X\U) = {s € S : f(s) ¢ U} € I for every neighborhood
U of x.

If S = N we obtain the usual definition of /-convergence of sequence.

Definition 2.3. [20] Let I be an ideal on a set S and let f : S — X be a function to a topological space X.

The function f is called I*-convergent to the point x of X if there exists a set M € F(I) such that the function
g: S — X defined by

_ [ fls) ifseM

g(S) - { T lfS ¢ M

is Fin(S)-convergent to x.

If f is I*-convergent to x, then we write *-lim f = z. The usual notion of [*-convergence of sequence
is a special case when S = N. I -convergence as a common generalization of all types of I*-convergence of
sequences or functions from S into X. Here we will work with functions from a non-void arbitrary set .S to a
topological space X . One of the reasons is that using functions sometimes helps to simplify notation.



Definition 2.4. [20] Let K and I be an ideal on a non-void set S, X be a topological space and let x be an
element of X. A function f : S — X is called I -convergent to the point x if there exists a set M € F(I)
such that the function g : S — X given by

| f(s) ifseM
g(s)_{x lfS¢M

is K-convergent to .

If fis I -convergent to x, then we write I -lim f = x. As usual, notion of I -convergence of sequence
is a special case for S = N. Similarly as for I-convergence of sequences. We write I%-lim z,, = x.

Lemma 2.1. [20] If I and K are ideals on a set S and f : S — X is a function such that K-lim f = x, then
IXJim f = .

Theorem 2.1. [20)] Let I, K be ideals on a set S, X be a topological space and let f be a function from S to
X then IX-lim f = x = I-lim f = xifand only if K C I.

Proposition 2.1. [20] Let I, 1, I>, K, K1 and K5 be ideals on a set S such that I, C I and K1 C Ko and
let X be a topological space. Then for any function f : S — X, we have I[£-lim f =2 = IKldimf==x
and I1-lim f =2 = I%dimf =2

3 Basic Properties of /% -Convergence in Topological Spaces

Throughout the paper X stands for a topological space (X, 7) and I, K are non-trivial ideals of a non empty
set S unless otherwise stated. First we introduce a construction regarding double ideal. For any two ideals I, K
on a non-void set S we have the ideal

IVK={AUB:A€cl,BeK}

which is the smallest ideal containing both I and K on S'i.e. I, K C IV K. Itis clear thatif I V K is non-trivial
and I and K are both proper subset of I V K then I and K both are non-trivial. But converse part may not be
true. To support this following examples are given.

Example 3.1. Consider the two sets Ny = {4n : n € N} and No = {4n—1: n € N} now it is clear that 2™,
2Nz and 2N v 282 gl are non-trivial ideal on N.

Example 3.2. Now let N1 be set of all odd integers and No be set of all even integers. Then it is clear that
I =21 K = 272 poth are non-trivial ideals on N but I V K is a trivial ideal on N.

If I vV K is a non-trivial on X then the dual filteris F(I V K) ={GNH :Ge F(I),H € F(K)}.

Theorem 3.1. Let IV K is non-trivial on set S. If X is Hausdorff and a function f : S — X is I -convergent
then f has a unique IS -limit.

Proof. If possible let us consider that the function f has two distinct IX-limits say = and y. Since X is
Hausdorff then there exists U,V € 7suchthatz € U andy € V and U N'V = ¢. Since f has I*-limit z, so
from the definition of 7% -limit, there exists a set A; € F(I) such that the function g : S — X given by

o ={ 17 e

is K-convergentto z. So, g1 (U) = {s € S : g(s) e U} = {s € A1 : g(s) e UtU{s € S\ 4; :
9(5) € U} = (S\ AN U f-LU) = S\ (A; \ f-1(1)) € F(K) ie. A1\ f-LU) € K or A \ By € K



where By = f~1(U). Similarly, f has I*-limit y so there exists a set Ay € F(I)s.t. As\ f71(V) € K or
Ay \ By € K where By = f~1(V). So,

(A1\ B1)U(A2\ B2) € K (3.1

Now letx € (A1 NA2)N(B1NB2)¢ = (A1 NA2)N(BfUBS) = ((A1NA)NBf)U ((A1 N Az) N BS) ie.
eitherz € (A1NA2)NBf C AyNBforz € ((A1NA2)NBS) C AyNBSie. x € (A1NBS)U(A2NBS). So,
(Al ﬂAg)ﬂ(Bl ﬁBg)c C (Al me)U(AgmBg) € K (from the equation ) Thus (Al ﬁAg)ﬂ(BlﬂBg)c S
Kie. (AiNA)\ (f~HU)YNfHV)) € Kie. (A1UA)\ (f"H (U UV)) € K. Since U NV = ¢, then
A UNV)=¢soA1NAy € Kie.

Since Ay, Ay € F(I),

A1 NAy € F(I) 3.3)
Since I V K is non-trivial so the dual filteris F(I V K) ={GNH : G € F(I), H € F(K)}. Now using this
from[3.2and B3 we get ¢ € F(I V K), which is a contradiction. Hence the 7% -limit is unique. O

Theorem 3.2. If I and K be two admissible ideal and if there exists an injective function f : S - E C X
which is I -convergent to o € X then xg is a limit point of E

Proof. The function f has I*-limit o, so % -limit there exists a set M € F(I) such that the function
g:S — X given by
_f f(s) ifseM
9(s) _{ zo ifs¢ M

is K -convergentto xo. Let U be an arbitrary open set containing zo. Then g~ (U) = {s: g(s) € U} € F(K).
So{s : g(s) € U} ¢ Kie {s: g(s) € U} is an infinite set, as K is an admissible ideal. Choose
ko € {s: g(s) € U} such that g(ko) # o then g(ko) € U N (E \ {zo}). Thus z( is a limit point of E. O

Theorem 3.3. A Continuous function h : X — X preserves IS -convergence.

Proof. Let the function f has I* -limit z, so there exists aset M C S € F(I) such that the functiong : S — X

given by .
o= { 10 25

is K-convergentto z. Let U be an arbitrary open set containing . Then g~ }(U) = S\ (M \ f~1(U)) € F(K)
ie. M\ f~1(U) € K. So to prove the theorem we have to show that I -lim h(f(z)) = h(z) i.e. it suffices to
show that the function g; : S — X given by

gl<s>:{ (ho f)(s) ifseM

h(x) ifs¢ M

is K-convergent to h(x). Let V be an open set containing h(z). Since h is continuous so there exists an open
set U containing x such that h(U) C V. Clearly {z : h(f(z)) ¢ V} C {z : f(z) ¢ U} which implies that
{z:f(x)eU}C{x:hof(x) e V}ie f7HU)C (hof) (V). So M\ (ho f)~"(V)C M\ f~1(U).
Then M \ (ho f)~*(V) € Kas M\ f~'(U) € K. So its complement g; * (V) € F(K), as required. Hence
I%dim(h o f)(x) = h(z). O

Theorem 3.4. If X is a discrete space then I-convergence implies IS -convergence, where I and K are two
admissible ideals.

Proof. Let f : S — X be afunction such that I-lim f = (. Since X is a discrete space so it has no limit point
then U = {xo} is open. Thus we have f~1/ (X \U) ={s € S: f(s) ¢ U} € I. Lettheset M = f~1(U) =



{s€S:f(s)eU} e F(I). Thusthereexistsaset M = {s: f(s) e U} = {s: f(s) =z} € F(I) such
that the function g : S — X defined by

f f(s) ifseM
9(5)_{x0 ifs ¢ M

is K -convergent to g, since for any open set U containing x( the set g~'(U) = S € F(K). Hence I*-
lim f = xg O

Note 3.1. Converse of above theorem may not be true. Let I and K be two ideals on a set S. Consider a set
Ae K\ 1 Letyg € X \ {x0} be a fixed element and define a function f : S — X by

f(s)—{ xo ifseS\A

Yo otherwise

Now if V is any open set containing xo then f~1(V) = S\ Aifyo ¢ V and f~2(V) = Sifyo € V. So in both
case f~1(V) € F(K). Hence K-lim f = xq then by lemma (2.1) we get I -lim f = zo. But U = {0} is an
open set containing xo since X is a discrete space and f~1(X \ U) = A ¢ I. Hence f is not I-convergent to
xo.

Theorem 3.5. Let (X, ) be a topological space and let f : S — X be a function, where S is a non-empty set,
such that x € X is an I -limit of the function f, for some non-trivial ideals I and K of S. Then there exists a
filter I on X such that x is also a limit of the filter I

Proof. Let I & K be two non-trivial ideals on non-empty set S. Also let 2 is 1% -limit of the function f :
S — X. Then from the definition of I’ -convergence then there exists a set M, € F(I) such that the function
g:S — X given by
| f(s) ifse M
9(5)_{ x  ifs¢ M,

is K-convergentto x. So for every open set U containing z, the set
M=g ! U)={se€S:g(s) €U} € F(K) (3.4)

Let us construct for each M € F(K) theset Aps = {g(n) :n € M} and B = {Ap : M € F(K)}. Then the
family 55 forms a filter base on X. In fact, (i)We observe that each Aj; is non-empty. Since M is non-empty
so B is non-empty. (ii)Since F'(K) is filter, ¢ ¢ F(K) and so Ay # ¢ forall M € F(K) and ¢ ¢ B. (iii)
Let us take any two members Ay, A € where M, R € F(K). M N R € F(K) since F(K) is filter on S.
So Apinr € B. Also Apjnp C Ay N Ag. So Bis a filter base. Let F' be the filter generated by this filter
base. Now we will show that x be the limit of filter /. Let VV be any open set of x. Then from the set
M ={se S:g(s) € V} € F(K). So by our construction of Ay, we get Ap; = {g(n) :n € M} C V.
Since Apr € B we get V' € F. So we conclude that V' € F for all open set V' of z. Hence x becomes limit of
the filter F'. O

Theorem 3.6. Let (X, 7) be a topological space and x € X. Then for every function f : S — X there exists
a filter F on X such that if  is limit of filter F then x is also I -limit of the function f.

Proof. Let f : S — X be a function and I, K be two non-trivial ideals of S. For each M € F(K) let
Ay ={fn):ne M}and B={Ay : M € F(K)}. Then the family B forms a filter base on X. Let F' be
the filter generated by this filter base. Let x be the limit of filter F'. Then 7, C F' where 7, is the neighborhood
filter of the point . Let U € 7, be arbitrary. Then U € F and so Ay; C U for some M € F(K). This
implies that M C {n € S : f(n) € U} which further implies that {n € S : f(n) € U} € F(K) since
M € F(K). Now U is arbitrary so the function f is K-convergent to 2. Hence from the lemma we get f
is I%-convergent to . O



4 % -Convergence in Topological Spaces

I®" _convergence is also a common generalization of all types of I* and K *-convergence. It is interesting to
find the relation between I, I*, K*, I and I -convergence.

Definition 4.1. Let X be a topological space and x € X and let I, K be two ideals on a non-void set S. A
function f : S — X is called I -convergent to the point x if there exists a set M € F(I)and M, € F(K)
such that the function g : S — X given by

| f(s) ifseMnM
9(‘9)_{:1: ifsgéMﬁMi

is Fin(S)-convergent to .
If f is I™ -convergent to « then we write I% -lim f = z.

Note 4.1. It follows from the definition that f is I -convergent to x if and only if there exist a set M € F (1)
such that the function g : S — X given by

_J f(s) ifseM
g(s)_{x lfS¢M

is K*-convergent to .

Lemma 4.1. If I and K are two ideals on a set S and if f : S — X is a function such that K*-lim f = x then
I Jim f = x.

Proof. Follows from the lemmal2.1] O

Lemma 4.2. If I and K be two admissible ideals on a set S and f : S — X is a function such that T -
lim f = x then I*-lim f = x.

Proof. The proof follows from the note (4.1) and since K *-convergence implies K -convergence of the function
g- O

Theorem 4.1. If X is a discrete space then I and I’ -convergence coincide for every admissible ideal T
and K.

Proof. Let X be a discrete topological space then it has no limit point and z € X. Let I and K be two
admissible ideals on a set S and f : S — X is a function such that I*-lim f = . Because of previous lemma
we have only to show that 7% -lim f = x. Now from the definition of ¥ -convergence there exists a set
M € F(I) such that the function g : S — X defined by

wo={ 10 425k

is K-convergent to x i.e. K-limg(z) = z. Since X has no limit point so U = {z} is open. So we have
{s:9(s) ¢ U} € K. Hence the set M; = {s : g(s) € U} = {s : g(s) = } € F(K). So there exist
M € F(I) such that the function g; : S — X defined by

f(s) ifse M
gl(S)_{x() ifsle

is Fin(S)-convergent to z, since for any open set U containing x, g~ (X \ U) = ¢ is a finite set. Thus
K*-limg(z) = . So I -lim f = . 0



Theorem 4.2. Let I and K be two admissible ideals on a non-empty set S and let f : S — X be a function
where X is a topological space. Then I -convergence implies I-convergence if K C I.

Proof. Suppose that the function f : S — X is I% -convergentto 2 € X. So there exists sets M € F (I) and
M, € F(K) such that the function g : S — X given by

| f(s) ifseMnM
9(3)_{ @ ifs¢MﬁM1

is Fin(S)-convergentto z i.e. g~ (X \U) = {s € S : g(s) ¢ U} is a finite set for each open set U containing
the point z. Now the set C (say)= f~H(X \U)N (M N M;) C g (X \U)i.e. Cis finite. So C € I. Now,

fFUXN\U)C(S\(MnM))uC 4.1)

and F(K) C F(I), since K C I. Therefore M N M7 € F(I). So S\ (M N M) € I. So from (.I) we get
f~Y(X \U) € I. Therefore f is I-convergent to z. i.e.l-lim f = x O

Lemma 4.3. If I and K be two admissible ideals on a set S and f be a function from S to X, where X be a
topological space. Then I -convergence implies K -convergence if I C K.

Proof. The proof is similar to the proof of Theorem (4.2) and so omitted. (]
Theorem 4.3. I*-convergence implies I -convergence.

Proof. Let I and K be two ideals on a non-void set S and f : S — X be a function such that f is I*-
convergence to x of X. So Jaset M € F(I) such that the function g : S — X defined by

fls) iftseM
9(5)_{ x() ifs ¢ M

is Fin(S)-convergent to z. Since Fin-convergent always implies K *-convergent then the function g is K*-
convergent to x. and so f is I -convergent to by the Note(4.1). o

Lemma 4.4. K*-convergence implies I*" -convergence.

4.1 Additive Property with I*&I%"-Convergence

We now study the relationship between I, I &I -convergence. The following definition is important in this
regard.

Definition 4.2. [[[0] Let I, K be ideals on the non-empty set S. We say that I has additive property with respect
to K or that the condition AP(I, K) holds if for every sequence of pairwise disjoint sets A,, € I, there exists a
sequence B, € I such that A, \ B,, € K for eachn and U,cnB, € 1

Another formulation of condition AP(I, K) are given in [20]. Before giving this definition we need to state
definition of K -pseudo-intersection of a system.

Definition 4.3. [20]] Let K be an ideal on a set S. We write A C B whenever A\ B € K. If A Cx B and
B Ck Athenwe write A~k B. Clearly A~y B AANBeK
We say that a set A is K-pseudo-intersection of a system {A,, : n € N} if A Cx A, holds for eachn € N

Definition 4.4. [20] Let I, K be ideals on the set S. We say that I has additive property with respect to K or
that the condition AP(I, K) holds if any of the equivalent condition of following holds:
(i) For every sequence (Ap,)nen of sets from I there is A € I such that A, Cx A foralln's.

(ii) Any sequence (Fy,)nen of sets from F'(I) has K -pseudo-intersection in F(I).



(iii) For every sequence (Ay,)nen of sets from I there exists a sequence (Byp)nen € I such that A; ~k Bj for
j€Nand B = UjenBj € 1.

(iv) For every sequence of mutually disjoint sets (Ap)nen € I there exists a sequence (By)nen € I such that
Aj ~g Bjforj e Nand B = UjenB; € 1.

(v) For every non-decreasing sequence A1 C Ay C -+ C A, --- of sets from I 3 a sequence (Bp)nen € 1
such that Aj ~x Bj for j € Nand B = UjenB; € 1.

(vi) In the Boolean algebra 2° | K the ideal I corresponds to a o-directed subset,i.e. every countable subset has
an upper bound.

In the case S = N and K = Fin we get the condition AP from [17] which characterize ideal such
that I*-convergence implies /-convergence. The condition AP(1, K) is more generalization of condition AP
from[9][[17] . Ideals which fulfill the condition AP(I,Fin) are sometimes called P-ideals.(see for examples

(LI[12])
In the paper [20] the author showed that I-convergence implies I -convergence if AP(I, K) holds. Here we
will introduce a new theorem regarding I and I -convergence.

Theorem 4.4. Let I and K be two ideals on a set S and X be a first countable topologlcal space. If the ideal
I has the additive property with respect to P-ideal K then I-convergence implies I -convergence.

Proof. Let f : S — X be a function such that /-lim f = zq. Let B = {U n € N} be a countable base for
X at the point zg. Now from the definition of I-convergence we have f~1(U,,) € F(I) for each n. Thus there
exists A € F(I) with A Cx f~*(U,) foreach nie. A\ f~1(U,) € K. Now it suffices to show that the

function the g : S — X defined by
| f(n) ifneA
g(n)—{xo ifng A

is K(*- convergentto zg. For U,, € B, we have g~ }(U,,) = (S\ A)U f~}(U,) =S\ (A\ f~1(U,)) and since
theset A\ f~1(U,) € Kso S\ (A\ f~YU,)) € F(K)ie. g~ *(U,) € F(K). Therefore g is K-convergent
to zg. Since K is P-ideal so g is also K *-convergent to zg. o

5 IX.Limit Points
We modify the definition of I-limit points in the following way:

Definition 5.1. Let f : S — X be a function and I be non-trivial ideal of S. Then y € X is called an I-limit
point of f if there exists a set M C S such that M ¢ I and the function g : S — X defined by

f(s) ifseM
g@z{y AN

is Fin(S)-convergent to y.

Definition 5.2. Let f : S — X be a function and I, K be two non-trivial ideals of S. Then y € X is called an
IX -limit point of f if there exists a set M C S such that M ¢ I, K and the function g : S — X defined by

_ [ f(s) ifseM
g@—{y ADSY

is K-convergent to y.
We denote respectively by I(Ly) and I (L) the collection of all I and I -limit points of f.

Theorem 5.1. If K is an admissible ideal and K C I then I(Ly) C I (Ly)



Proof. Lety € I(Ly). Since y is an I-limit point of the function f : S — X, then there exists a set M ¢ I
such that and the function g : S — X defined by

f(s) ifseM
9(5)_{ y  ifs¢ M

is Fin(S)-convergentto y. So for any open set U containing = the set {s : g(s) ¢ U} € Fin. i.e. {s: g(s) ¢ U}
is a finite set. So {s : g(s) ¢ U} € K, as K is an admissible ideal. Therefore g is K -convergent function.
Again M ¢ ITand K C I so M ¢ I, K. Thus y is I*-limit point of f i.e. y € I*(L). Hence the theorem is
proved. O

Note 5.1. If I is an admissible ideal and I C K then K (L) C I(Ly)

Theorem 5.2. If every function f : S — X has an I -limit point then every infinite set A in X has an
w-accumulation point where cardinality of S is less or equal to cardinality of A.

Proof. Let A be an infinite set. Define an injective function f : S — A C X. Then f has an I*-limit point
say y. Then aset M C S suchthat M ¢ I, K and the function g : S — X given by

fls) ifseM
9(5)_{ y  ifs¢M

is K -convergent to y. Let U be open set containing y then ¢~ 1(U) = (S\M)Uf~H(U) = S\(M\ f~1(U)) €
F(K)ie. M\ f~Y(U) € K. So f~Y(U) ¢ K.(Forif f~1(U) € K then we get M € K, which is a
contradiction.) So {s : f(s) € U} is an infinite set. Consequently U contains infinitely many points of the

function f(s) in X. So U contains infinitely many elements of A. Thus y becomes w-accumulation point of
A. O

Theorem 5.3. If X, 7 is a Lindelof space such that every function f : N — X has an I -limit point then
(X, 7) is compact.

Proof. Let (X,7) be a Lindelof space such that every f : N — X has an I*-limit point. We have to show
that any open cover of space X has a finite subcover. Let {A, : @ € A} be an open cover of the space X,
where A is an index set. Since (X, 7) is a Lindelof space so this open cover admits a countable sub-cover say
{A1,As, -+ , Ay, - - }. Proceeding inductively let By = A; and for each m > 1, let B,, be the first member
of the sequence of A’s which is not covered by B; U Bo U B3 U - - U B,,,_1. If this choice becomes impossible
at any stage then the sets already selected becomes a required finite sub-cover. Otherwise it is possible to select
a point b,, in B,, for each positive integer n such that b,, ¢ B,.,r < n.

Let f : N — X be a function defined by f(n) = b,,. Now let 2 be an I -limit point of the function f. Then
x € B, for some p. Now from the definition of I*-limit point we get g~1(B,) = (N\ M) U f~4(B,) =
N\ (M\ f~Y(By)) € F(K)ie M\ f~(B,) € K.SothesetS = f~}(B,) ={n€N: f(z,) € By} ¢ K.
Hence S must be an infinite subset of N. So there is some ¢ > p such that ¢ € S i.e. there exists some ¢ > p
such that f(x4) € B, which leads to a contradiction. Thus the result follows. O
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