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Subgroups of minimal index in polynomial time

S.V. Skresanov∗

Abstract

Let G be a finite group and let H be a proper subgroup of G of minimal

index. By applying an old result of Y. Berkovich, we provide a polynomial

algorithm for computing |G : H | for a permutation group G. Moreover,

we find H explicitly if G is given by a Cayley table. As a corollary, we

get an algorithm for testing whether a finite permutation group acts on a

tree or not.
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1 Introduction

In [1] S. Dutta and P.P. Kurur introduced the following:

Group representability problem. Given a group G and a graph Γ decide

whether there exists a nontrivial homomorphism from G to the automorphism

group of Γ.

By [1, Theorem 3], the graph isomorphism problem reduces to the abelian
group representability problem, so the latter inherits the notorious difficulty of
the former.

As an attack from a different angle, one can consider the problem of group
representability on trees. In [1] authors speculate that there might be no poly-
nomial algorithm even for such a restriction. Nevertheless, in [1, Theorems 6
and 8] they provide a polynomial reduction of that problem to the

Permutation representability problem. Given a group G and a positive

integer n, decide whether there exists a nontrivial homomorphism from G into

the symmetric group Symn.

Denote by κ(G) the degree of a minimal (not necessarily faithful) nontrivial
permutation representation of G. Since such permutation representations are
always transitive, we see that κ(G) = min{|G : H | | H < G}. Notice that
permutation representability problem reduces to the task of computing κ(G),
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since for n ≥ κ(G) there always exists a nontrivial homomorphism from G
into Symn.

Now, let µ(G) be the degree of a minimal faithful permutation representation
of G. Obviously κ(G) ≤ µ(G) and the equality should not hold in general. The
following not widely known theorem of Berkovich tells us exactly when it holds.

Theorem 1 ([2, Theorem 1]). Let G be a finite group. G is simple if and only

if κ(G) = µ(G).

As a consequence, if H is a proper subgroup of minimal index in G, then
G/coreG(H) is a simple group, where coreG(H) =

⋂
g∈G Hg. This observation

allows one to search for subgroups of minimal index only in simple quotients
of G. We have the following result.

Theorem 2. Let G be a finite permutation group given by generators. Then

κ(G) can be computed in polynomial time in the degree of G.

Corollary . The group representability on trees where the group is presented as

a permutation group via a generating set can be solved in polynomial time.

We note that in [1] authors are mainly focused on groups given by Cayley
tables, so we in fact answered a more general question.

Notice that we do not claim to find the subgroup of minimal index itself
(which is required to reconstruct the corresponding action of a group on a tree).
Nevertheless, in the case when the group is given by its Cayley table, it is
possible to enumerate all such subgroups.

Theorem 3. Let G be a finite group given by its Cayley table. Then the set

{H < G | |G : H | = κ(G)} can be computed in time polynomial in |G|.

It might be very plausible that (at least one) subgroup of minimal index can
be computed in polynomial time in the case of permutation groups, but it most
certainly would need a more advanced machinery.

The author would like to express his gratitude to prof. Avinoam Mann,
who pointed out that Theorem 1 was proved earlier and gave the reference to
Berkovich’s paper.

2 Proof of Theorem 1

The article [2] besides the original proof by Berkovich (originating in [3]) con-
tains another very short and elegant proof attributed by the author to M.I. Isaacs.
We reproduce it with almost no changes for the sake of completeness.

If G is simple, then clearly κ(G) = µ(G). Therefore it suffices to prove the
converse statement.

Let H be a subgroup of index κ(G) in G such that coreG(H) = 1. Suppose
that N is a nontrivial proper normal subgroup of G. Since H is maximal, we
have G = NH . Let U be a subgroup of H minimal with G = NU . Obviously
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U > 1, and U does not lie in Hg for some g ∈ G. Set V = U ∩ Hg < U . We
have

|G : NV | = |NU : NV | =
|N ||U ||N ∩ V |

|N ||V ||N ∩ U |
≤ |U : V | < |G : H |,

since |U : V | = |UHg : Hg| = |UHg|/|H | and UHg ⊆ HHg ⊂ G. By minimality
of |G : H | it follows that G = NV , contrary to the choice of U .

3 Proof of Theorem 2

In what follows, we assume the standard polynomial-time toolbox from [4].
Let S be a simple group. Denote by OS(G) the minimal normal subgroup

of G such that each composition factor of G/OS(G) is isomorphic to S. It
is noted in [4] that an algorithm for computing OS(G) in polynomial time is
implicit in [5].

Now let G be a permutation group given by its generators. Compute the
composition series of G, and let Σ be the collection of isomorphism types of
composition factors. By Theorem 1, if H is a subgroup of minimal index, then
it contains the maximal normal subgroup N = coreG(H). The quotient G/N
is simple, therefore its isomorphism type S lies in Σ and OS(G) ≤ N < G.
Moreover, κ(G) = κ(G/N) = µ(S), so

κ(G) = min{µ(S) | S ∈ Σ, OS(G) < G},

where µ(S) can be found by checking the description of minimal faithful permu-
tation representations of finite simple groups, which is well-known (for example,
see [6, Table 4] for groups of Lie type and [7, Table 4] for sporadic simple
groups). Since all steps can be performed in polynomial time, we obtain the
required algorithm.

4 Proof of Theorem 3

The key observation is the following.

Lemma 1. Let G be a finite simple group given by its Cayley table. Then the

set of maximal subgroups of G can be computed in time polynomial in |G|.

Proof. Try all possible 4-tuples of elements of G (there are |G|4 of those) and
generate corresponding subgroups. One can test in polynomial time if a given
subgroup is maximal, so we obtain the list of all maximal subgroups of G gen-
erated by 4 elements. By [8, Theorem 1] every maximal subgroup of a finite
simple group is 4-generated, so we in fact found all maximal subgroups of G.

Set M(G) = {N < G | N is a normal subgroup of G, and G/N is simple},
and recall that we can compute M(G) in polynomial time even for permutation
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groups (see the proof of [5, Lemma 7.4]). Notice that we can find the following
set in polynomial time:

AN = {H < G | N ≤ H, |G : H | = κ(G)}.

Indeed, κ(G) can be computed in polynomial time by Theorem 2, and obviously
the Cayley table for G/N can be found in polynomial time, thus by Lemma 1
we can find all maximal subgroups of G/N . By taking preimages and keeping
only subgroups of index equal to κ(G), we find the required set.

Now, by Theorem 1 every subgroup H with |G : H | = κ(G) contains a max-
imal normal subgroup. Therefore {H < G | |G : H | = κ(G)} =

⋃
N∈M(G)AN ,

and this set can be computed in polynomial time.
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