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Subgroups of minimal index in polynomial time
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Abstract

Let G be a finite group and let H be a proper subgroup of G of minimal
index. By applying an old result of Y. Berkovich, we provide a polynomial
algorithm for computing |G : H| for a permutation group G. Moreover,
we find H explicitly if G is given by a Cayley table. As a corollary, we
get an algorithm for testing whether a finite permutation group acts on a
tree or not.
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1 Introduction

In [I] S. Dutta and P.P. Kurur introduced the following:

Group representability problem. Given a group G and a graph T decide
whether there exists a nontrivial homomorphism from G to the automorphism
group of T.

By [1, Theorem 3], the graph isomorphism problem reduces to the abelian
group representability problem, so the latter inherits the notorious difficulty of
the former.

As an attack from a different angle, one can consider the problem of group
representability on trees. In [I] authors speculate that there might be no poly-
nomial algorithm even for such a restriction. Nevertheless, in [I, Theorems 6
and 8] they provide a polynomial reduction of that problem to the

Permutation representability problem. Given a group G and a positive
integer n, decide whether there exists a nontrivial homomorphism from G into
the symmetric group Sym.,.

Denote by k(G) the degree of a minimal (not necessarily faithful) nontrivial
permutation representation of G. Since such permutation representations are
always transitive, we see that x(G) = min{|G : H| | H < G}. Notice that
permutation representability problem reduces to the task of computing x(G),
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since for n > k(G) there always exists a nontrivial homomorphism from G
into Sym,,.

Now, let u(G) be the degree of a minimal faithful permutation representation
of G. Obviously k(G) < p(G) and the equality should not hold in general. The
following not widely known theorem of Berkovich tells us exactly when it holds.

Theorem 1 ([2, Theorem 1)). Let G be a finite group. G is simple if and only
if K(G) = u(G).

As a consequence, if H is a proper subgroup of minimal index in G, then
G/coreg(H) is a simple group, where coreq(H) = (), H?. This observation
allows one to search for subgroups of minimal index only in simple quotients
of G. We have the following result.

Theorem 2. Let G be a finite permutation group given by generators. Then
k(G) can be computed in polynomial time in the degree of G.

Corollary. The group representability on trees where the group is presented as
a permutation group via a gemerating set can be solved in polynomial time.

We note that in [I] authors are mainly focused on groups given by Cayley
tables, so we in fact answered a more general question.

Notice that we do not claim to find the subgroup of minimal index itself
(which is required to reconstruct the corresponding action of a group on a tree).
Nevertheless, in the case when the group is given by its Cayley table, it is
possible to enumerate all such subgroups.

Theorem 3. Let G be a finite group given by its Cayley table. Then the set
{H <G| |G: H| =k(G)} can be computed in time polynomial in |G|.

It might be very plausible that (at least one) subgroup of minimal index can
be computed in polynomial time in the case of permutation groups, but it most
certainly would need a more advanced machinery.

The author would like to express his gratitude to prof. Avinoam Mann,
who pointed out that Theorem [Il was proved earlier and gave the reference to
Berkovich’s paper.

2 Proof of Theorem [

The article [2] besides the original proof by Berkovich (originating in [3]) con-
tains another very short and elegant proof attributed by the author to M.I. Isaacs.
We reproduce it with almost no changes for the sake of completeness.

If G is simple, then clearly x(G) = u(G). Therefore it suffices to prove the
converse statement.

Let H be a subgroup of index (@) in G such that coreq(H) = 1. Suppose
that N is a nontrivial proper normal subgroup of G. Since H is maximal, we
have G = NH. Let U be a subgroup of H minimal with G = NU. Obviously



U > 1, and U does not lie in HY for some g € G. Set V=UNHI < U. We
have
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<|U:V|<|G: H|,
since U : V| =|UHY : H9| = |UHY|/|H|and UHY C HHY C G. By minimality
of |G : H| it follows that G = NV, contrary to the choice of U.

3 Proof of Theorem

In what follows, we assume the standard polynomial-time toolbox from [4].

Let S be a simple group. Denote by O°(G) the minimal normal subgroup
of G such that each composition factor of G/O%(G) is isomorphic to S. It
is noted in [4] that an algorithm for computing O°(G) in polynomial time is
implicit in [5].

Now let G’ be a permutation group given by its generators. Compute the
composition series of G, and let ¥ be the collection of isomorphism types of
composition factors. By Theorem [ if H is a subgroup of minimal index, then
it contains the maximal normal subgroup N = coreg(H). The quotient G/N
is simple, therefore its isomorphism type S lies in ¥ and O%(G) < N < G.
Moreover, k(G) = k(G/N) = u(S), so

#(G) =min{u(S) | S € %, 0°(G) < G},

where p(S) can be found by checking the description of minimal faithful permu-
tation representations of finite simple groups, which is well-known (for example,
see [6l Table 4] for groups of Lie type and [7, Table 4] for sporadic simple
groups). Since all steps can be performed in polynomial time, we obtain the
required algorithm.

4 Proof of Theorem [3

The key observation is the following.

Lemma 1. Let G be a finite simple group given by its Cayley table. Then the
set of mazimal subgroups of G can be computed in time polynomial in |G|.

Proof. Try all possible 4-tuples of elements of G (there are |G|* of those) and
generate corresponding subgroups. One can test in polynomial time if a given
subgroup is maximal, so we obtain the list of all maximal subgroups of G gen-
erated by 4 elements. By [8, Theorem 1] every maximal subgroup of a finite
simple group is 4-generated, so we in fact found all maximal subgroups of G. O

Set M(G) = {N < G| N is a normal subgroup of G, and G/N is simple},
and recall that we can compute M(G) in polynomial time even for permutation



groups (see the proof of [5, Lemma 7.4]). Notice that we can find the following
set in polynomial time:

Ay ={H <G|N<H,|G: H| = r(G)}.

Indeed, x(G) can be computed in polynomial time by Theorem 2, and obviously
the Cayley table for G/N can be found in polynomial time, thus by Lemma [I]
we can find all maximal subgroups of G/N. By taking preimages and keeping
only subgroups of index equal to k(G), we find the required set.

Now, by Theorem [ every subgroup H with |G : H| = k(G) contains a max-
imal normal subgroup. Therefore {H < G [ |G : H| = £(G)} = Uyem(c) An:
and this set can be computed in polynomial time.
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