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GLOBALIZATION FOR PERTURBATIVE QUANTIZATION OF NONLINEAR

SPLIT AKSZ SIGMA MODELS ON MANIFOLDS WITH BOUNDARY

ALBERTO S. CATTANEO, NIMA MOSHAYEDI, AND KONSTANTIN WERNLI

Abstract. We describe a covariant framework to construct a globalized version for the perturba-
tive quantization of nonlinear split AKSZ Sigma Models on manifolds with and without boundary,
and show that it captures the change of the quantum state as one changes the constant map around
which one perturbs. This is done by using concepts of formal geometry. Moreover, we show that
the globalized quantum state can be interpreted as a closed section with respect to an operator
that squares to zero. This condition is a generalization of the modified Quantum Master Equation
as in the BV-BFV formalism, which we call the modified “differential” Quantum Master Equation.
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1. Introduction

1.1. Motivation. The goal of this paper is to construct perturbative partition functions of certain
AKSZ theories - on manifolds with and without boundary - that vary in a “covariant fashion” as
one changes the point of expansion. This is achieved combining the BV-BFV formalism (Batalin–
Vilkovisky and Batalin–Fradkin–Vilkovisky) ([20]) with methods of formal geometry ([34, 9, 17,
8]). The globalization method in the case of a field theory on manifolds with boundary has been
considered so far only in [24], of which the current paper is a far reaching generalization. In [24]
we performed this task for a particular example of an AKSZ theory, the Poisson Sigma model [39,
50, 49] with constant Poisson structure. We briefly introduce the main players.

The BV-BFV formalism - briefly recalled in Section 2 - is a method for the perturbative quantization
of gauge theories on manifolds with boundary compatible with cutting and gluing. It is named
after Batalin, Fradkin and Vilkovisky, who introduced what are now known as the BV and the BFV
formalisms in [7, 6, 5, 4, 32, 31]; see also [51, 38, 27] and references therein. The classical framework
for the BV-BFV formalism1 was introduced in [19]. A classical BV-BFV theory associates to every
manifold Σ of a fixed dimension - possibly with boundary - the data of a “BV-BFV manifold”
([19]), the space of fields FΣ (plus extra data). Classical BV-BFV theories can be quantized by
the construction in [20]. This procedure associates to Σ a bi-complex HΣ with two commuting
coboundary operators ∆VΣ

(the BV Laplacian) and Ω∂Σ (the BFV boundary operator). The
modified Quantum Master Equation (mQME) is the statement that the partition function ψΣ is
closed with respect to the coboundary operator ~2∆VΣ

+Ω∂Σ, i.e.

(1) (~2∆VΣ
+Ω∂Σ)ψΣ = 0.

However, this construction works only if the space of fields is linear, i.e. a vector space. If the space
of fields is nonlinear one has to linearize it, which amounts to working with a formal neighbourhood
of a classical solution in the space of fields. In this paper we show how this can be done consistently
for a large set of solutions at once for AKSZ theories.

AKSZ theories were introduced by Alexandrov, Kontsevich, Schwarz and Zaboronsky in [1]. They
form a large class of topological BV theories that naturally admit BV-BFV extensions, as was
shown in [19] and is recalled in the present paper in Section 3. In AKSZ theories the space of fields
FΣ is a space of graded maps with target a fixed graded manifold M. If the target is a vector space,
then also the space of fields has a vector space structure, but in many examples one is interested in
the case where the target is nonlinear (a prominent one being the Poisson Sigma Model, see [15]).

1The BV-BFV formalism is a consistent combination of the BV formalism for the bulk with the BFV formalism
on the boundary.



GLOB. FOR PERT. QUANT. OF NONL. SPLIT AKSZ SIGMA MODELS ON MANIFOLDS WITH BOUNDARY 3

In this case, the quantization is constructed by linearizing around constant maps.

In this paper, we use methods of formal geometry, reviewed in Appendix B (see also [16, 17, 8],
and [44] for the case where the moduli space of solutions is graded) to define a “covariant partition

function” ψ̃Σ. It is an inhomogenoeous differential form with values in the vector bundle ĤΣ,tot

over (the body of) the target with fiber over x the space of states of the BV-BFV quantization
around x. In Section 4 we show that it satisfies the following generalization of the mQME that we
call “mdQME” (for modified differential Quantum Master Equation):

(2)

(
dx − i~∆VΣ

+
i

~
Ω∂Σ

)
ψ̃Σ = 0.

We also show that the quantum Grothendieck BFV (GBFV) operator ∇G := dx − i~∆VΣ
+ i

~
Ω∂Σ

squares to zero. The operator ∇G can be thought of as a “connection” on the total space ĤΣ,tot

and hence we can think of it as a flat connection on ĤΣ,tot (see Subsection 4.4). If one interprets ∇G

as a quantum version of the Grothendieck connection (118), Equation (2) says that ψ̃Σ corresponds
to the Taylor expansion of a globally defined object on M .

One of the goals of this construction is to go further towards the deformation quantization of
the relational symplectic groupoid [25, 12, 13]. The next step will be an extension of the results
obtained here to the Poisson Sigma Model with alternating boundary conditions [23]. However,
we also hope to deepen the understanding of how perturbative partition functions depend on the
point of expansion. In AKSZ Sigma Models, there is a nice smooth part of the moduli space of
classical solutions given by constant maps. But e.g. in Chern–Simons theory the body of the target
is a point, and one is interested in expanding around points representing equivalence classes of flat
connections. This will be the subject of further investigation.

1.2. Main results. Let us summarize the main results of the paper. One of the main theorems
of this paper is the modified differential Quantum Master Equation for anomaly free, unimodular
AKSZ theories:

Theorem (4.6). Consider the full covariant perturbative state ψ̃Σ,x as a quantization of an anomaly
free and unimodular split AKSZ theory with target T ∗[d − 1]M , where M is a graded manifold.
Then

(3)

(
dx−i~∆VΣ,x

+
i

~
Ω∂Σ

)
ψ̃Σ,x = 0,

where we denote by dx the de Rham differential on M , the body of the graded manifold M .

Another main result is that the quantum GBFV operator is a coboundary operator:

Theorem (4.8). The operator ∇G squares to zero, i.e.

(4) (∇G)
2 ≡ 0.

We also show how the state and the BFV operator transform under change of data. This is captured
in the following theorem:

Theorem 1.1 (5.1). Let Ωt be defined as in Definition 2.42 and let ψ̃t be defined as in 3.8 for all
t ∈ [0, 1]. Then we have

d

dt

∣∣∣
t=0

Ωt = dxτ + [Ωt=0, τ ](5)

d

dt

∣∣∣
t=0
ψ̃t = ∇G(ψ̃t=0 • ̺)− τψ̃t=0(6)

for some operator τ ∈ Γ(End(Htot)) and a section ̺ ∈ Γ(Htot).
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1.3. Summary. Let us give a brief overview of the paper.

• In Section 2 we review the main concepts of the BV-BFV formalism as in [20].

• In Section 3 we recall the notion of an AKSZ Sigma Model and describe the split version.
Moreover, we linearize the AKSZ Model using methods of formal geometry and explain the
globalization construction by adding a formal globalization part to the action. We formulate
everything according to the BV-BFV formalism at the classical as well as the quantum
level, where we also introduce the full covariant state.

• In Section 4 we introduce the quantum GBFV operator and formulate the modified differen-
tial Quantum Master Equation. One of the main result there is the proof of the mdQME.
Moreover, we prove that the quantum GBFV operator is a coboundary operator, such that
we have a well-defined cohomology theory.

• In Section 5 we show how the state and the BFV boundary operator transform under change
of propagator, residual fields and exponential maps.

Various details are discussed in the appendices:

• In Appendix A we recall the compactification of various configuration spaces and their
boundary strata.

• In Appendix B we recall some notions of fomal geometry and its extension to graded man-
ifolds.

Acknowledgements. We thank I. Contreras for helpful comments. Moreover, we want to thank
the referee for pointing out important and helpful comments.

2. The BV-BFV formalism

The BV-BFV formalism is a gauge fixing formalism for gauge theories on manifolds with boundary,
both at the classical ([19]) and quantum ([20]) level. We briefly recall the most important ideas.
Readers already familiar with the BV-BFV formalism as in [20] can skip this section. Another
reference for learning about this formalism is [22].

2.1. Field theory. We start with the following definition of a classical field theory.

Definition 2.1 (Classical field theory). A d-dimensional classical field theory associates to every
d-dimensional manifold M a space of fields FM and an action functional SM : FM → R.

Field theories are usually required to be local. For the purpose of the present paper, the following
definition will suffice.

Definition 2.2 (Local field theory). We say that a field theory (FM , SM ) is local if there is a fiber
bundle E →M such that FM = Γ(E) and there is an integer k such that

(7) SM (φ) =

∫

M
L[jk(φ)],

where jk denotes k-th jet prolongation and L : JkE → Dens(M) is a function on the k-th jet bundle
of E with values in densities of M . L is called the Lagrangian of the theory.

Let (FM , SM ) be a local field theory. If M 6= ∅ and we don’t fix any boundary conditions, there is
a 1-form α∂M ∈ Ω1(F∂M ) (the Noether 1-form) such that the variation of the action SM is given by

δSM = ELM + π∗Mα∂M ,
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where πM : FM → F∂M is the natural surjective submersion from the space of fields FM onto the
space of fields F∂M on the boundary ∂M . F∂M is given by restrictions of bulk fields and their normal
jets to the boundary. We denote by ELM the 1-form2 coming from the Euler-Lagrange equations
(EL equations). The classical solutions are given by the critical points of SM , i.e. by solutions of
δSM = 0. One can define a presymplectic form ω∂M on F∂M by setting ω∂M := δα∂M (we think
of δ as the de Rham differential on the space of fields). By techniques of symplectic geometry,
such as symplectic reduction, one can obtain a symplectic manifold (F ∂

∂M , ω
∂
∂M ). Moreover, this

construction is compatible with cutting and gluing ([19, 18]). This construction leads to a nice
quantum formulation in the guise of path integrals after choosing a suitable polarization ([20]). We
will discuss these issues in this section.

Remark 2.3. Note that if ∂M = ∅ we get the usual Euler-Lagrange equations from δSM = 0.

2.2. Finite dimensional BV theory. Let M be a closed manifold and let FM denote the space
of fields associated to M . If we consider a regular3 local field theory SM : FM → R the partition
function in the path integral approach is

(8) ψM =

∫

φ∈FM

e
i
~
SM (φ)

Dφ.

Usually, FM is infinite-dimensional, and one cannot define4 Dφ. The way out is usually to translate
the formal asymptotics as ~→ 0 of finite-dimensional integrals to the infinite-dimensional case. The
terms in the asymptotic expansion are convenienetly labeled by Feynman diagrams [30, 29, 47]. If
the critical points of the action functional SM are degenerate, one needs to gauge-fix the theory
before one can use the formal asymptotics .The most powerful gauge fixing formalism is the BV
formalism. We briefly review its finite-dimensional version. Further references for gauge theories,
different gauge fixing formalisms (including BV) and their perturbative quantization are [45, 46,
48].
The start is the following definition:

Definition 2.4 (BV manifold). A BV manifold is a triple (F, ω, S), where F is a supermanifold
with Z-grading, ω an odd symplectic form of degree −1 on F, and S is an even function of degree
zero on F, such that

(9) (S, S) = 0.

Here, following Batalin and Vilkovisky ([7, 6]), we denote the Poisson bracket induced by the odd
symplectic form with round brackets ( , ).

Remark 2.5 (Grading on F). Note that we have two different gradings on F, the Z2-grading from
the supermanifold structure and an additional Z-grading. In phyics, the Z-grading is referred to
as ghost number and the parity corresponds to bosonic and fermionic particles. Since we consider
only bosonic theories, the Z2-grading coincides with the reduction of the Z-grading.

In a Darboux chart (qi, pi), we can define the BV Laplacian by

∆loc =
∑

i

(−1)|q
i| ∂2

∂qi∂pi
.

Then we get that (∆loc)2 = 0 and for two functions f, g, ∆loc(fg) = ∆locfg± f∆locg± (f, g). This
extends to a well-defined global operator ∆ on half-densities (see [41, 52]).

2ELM is the term that depends only on the variations of the fields but not on higher jets.
3This means that the Hessian of the Lagrangian is weakly non degenerate.
4Only in special situations, i.e. dimM = 1, and some examples discussed in [35].
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Moreover, given a half-density f and a Lagrangian submanifold L ⊂ F, we can define a BV integral∫
L
f by restricting the half-density to the Lagrangian where it becomes a density and can be

integrated. The main result in the Batalin–Vilkovisky formalism is the following Theorem.

Theorem 2.6 (Batalin–Vilkovisky [7]). If we assume that the integrals converge, then

• If f = ∆g, then
∫
L
f = 0,

• If ∆f = 0 and (Lt) is a smoothly varying family of Lagrangians, then d
dt

∫
Lt
f = 0.

Remark 2.7. The second point of Theorem 2.6 tells us that if we would have an ill-defined integral∫
L0
f for some Lagrangian submanifold L0, but we know that ∆f = 0, then we can define the value

of the integral by a well-defined one
∫
L1
f for some Lagrangian submanifold L1, and this does not

depend on the choice of L1 as long as we deform it continuously.

This procedure is called gauge-fixing. This construction can be extended to any (super)manifold.

Moreover, considering f = e
i
~
S , two other conditions arise, which are the Master Equations for the

classical and quantum level:

(S, S) = 0,(Classical Master Equation (CME))

(S, S)− 2i~∆S = 0.(Quantum Master Equation (QME))

The latter is equivalent to ∆e
i
~
S = 0. The former is the classical limit of the latter for ~→ 0, and

motivates the definition of BV manifold as given above.

2.3. Classical BV-BFV formalism. We now turn to the infinite-dimensional case and review
the main definitions of references [19]. We first consider the classical BV formalism in field theory
and its extension to manifolds with boundary.

Definition 2.8 (BV theory). A d-dimensional BV theory is the association of a BV manifold
M 7→ (FM , ωM , SM ) to every closed d-manifold M .

Remark 2.9. These BV manifolds are typically infinite-dimensional. This means that neither the
BV Laplacian nor the BV integral are defined (at least not without further work).

Definition 2.10 (BV extension). We say that a BV theory (FM , ωM , SM ) is a BV extension of a
local field theory M 7→ (FM , SM ) if for all closed d-manifolds M , we have that the degree 0 part
(FM )0 of FM satisfies (FM )0 = FM and SM

∣∣
(FM )0

= SM . Moreover, we want FM , SM and ωM to

be local.

To extend the BV formalism to manifolds with boundary one needs its Hamiltonian counterpart,
the BFV formalism [5, 4, 32, 31].

Definition 2.11 (BFV manifold). A BFV manifold is a triple

(10) F∂ = (F∂ , ω∂ , Q∂)

where F∂ is a graded manifold, ω an even symplectic form of degree 0, and Q∂ a degree 1 co-
homological, symplectic vector field on F∂ . If ω∂ = δα∂ is exact, the BFV manifold is called
exact.

Again, we denote by δ the de Rham differential on the space of fields. The notion of BV theory
can be extended to manifolds with boundary as was shown in [19, 20]. On the boundary we will
use the BFV formalism. The compatibility between the BV formalism and the BFV formalism is
captured in the following definition.

Definition 2.12 (BV-BFV manifold). A BV-BFV manifold over a given exact BFV manifold F∂ =
(F∂ , ω∂ = δα∂ , Q∂) is a quintuple

(11) F = (F, ω, S, Q, π),
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where

• F is a graded manifold,
• ω is an even symplectic form of degree 0,
• S is an even function of degree 0,
• Q is a degree 1 cohomological vector field,
• π : F → F∂ is a surjective submersion

such that

(12) ιQω = δS + π∗α∂

and Q∂ = δπQ where δπ denotes the differential of π.

Remark 2.13. If F∂ is a point, we get that (FM , ωM , SM ) is a BV manifold. The shorthand notation
for a BV-BFV manifold is π : F → F∂

Note that by Remark 2.13, the following notion generalizes the one of a BV theory.

Definition 2.14 (BV-BFV theory). A d-dimensional BV-BFV theory associates to every closed
(d − 1)-dimensional manifold Σ a BFV manifold F∂

Σ, and to a d-dimensional manifold M with

boundary ∂M a BV-BFV manifold πM : FM → F∂
∂M .

Remark 2.15. Formally, for the Hamiltonian vector field Q of S, one can write (S, S) = ιQιQω =
Q(S). If we consider a BV-BFV theory for a manifold M with boundary ∂M , we get that

Q(S) = π∗(2S∂ − ιQ∂α∂).

Equivalently, we get

(13) ιQιQω = 2π∗S∂ .

We call (13) the modified Classical Master Equation (mCME).

It was shown in [19] that abelian BF theory is an example of a BV-BFV theory.

Example 2.16 (Abelian BF theory). Abelian BF theory is given by the following data:

FM = Ω•(M)[1] ⊕ Ω•(M)[d − 2] ∋ X⊕ η

ωM =

∫

M
δX ∧ δη

SM =

∫

M
η ∧ dX

QM = (−1)d
∫

M

(
dη ∧

δ

δη
+ dX ∧

δ

δX

)

Definition 2.17 (BF -like theories). We say that a BV-BFV theory is BF -like if

FM = (Ω•(M)⊗ V [1])⊕ (Ω•(M)⊗ V ∗[d− 2])(14)

SM =

∫

M
(〈η,dX〉+ V(X,η)) ,(15)

where V is a graded vector space, 〈 , 〉 denotes the pairing between V ∗ and V , and V denotes some
density-valued function of the fields X and η, such that SM satisfies the Classical Master Equation
for M without boundary.

Example 2.18 (Quantum mechanics). Consider M to be a 1-dimensional manifold, i.e. d = 1
and V = W [−1] with W concentrated in degree zero. Denote by P and Q the degree-zero form
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components of X and η, respectively. Choose a volume form dt on M and a function H on T ∗W .
Set V(X,η) := H(X,η)dt = H(Q,P )dt. Then

(16) SM =

∫

M

(
∑

i

PiQ̇
i +H(Q,P )

)
dt,

is the action of classical mechanics in the Hamiltonian formalism.

Example 2.19 (BF -like AKSZ theories [1]). Assume we are given a function Θ on T ∗[d−1](V [1]) =
V [1] ⊕ V ∗[d − 2] that is of degree d such that {Θ,Θ} = 0, where { , } is the canonical Poisson
structure on the shifted cotangent bundle. Set V(X,η) to be the top degree part of Θ(X,η).

2.4. Quantum BV-BFV formalism. In [20] the notion of a quantum BV-BFV theory was given
and it was shown how to perturbatively quantize a classical BV-BFV theory5. Let us briefly review
this6.

Definition 2.20 (Quantum BV-BFV theory). A d-dimensional quantum BV-BFV theory associates

• To every closed (d− 1)-dimensional manifold Σ a graded C[[~]]-module HΣ,
• To every d-dimensional manifold (possibly with boundary)M a finite-dimensional BV man-
ifold VM , a degree 1 coboundary operator Ω∂M on H∂M and a homogeneous element7

ψM ∈ ĤM := Dens
1
2 (VM )⊗H∂M ,

where Dens
1
2 (VM ) denotes the space of half-densities on VM ,

such that

(17) (~2∆VM
+Ω∂M)ψM = 0.

The shorthand notation for a quantum BV-BFV theory is M 7→ (ĤM , ψM ,∆VM
,Ω∂M ). Let us

introduce some terminology: We call VM the space of residual fields, H∂M the space of boundary
states and ψM the state. ∆VM

denotes the canonical BV Laplacian on half-densities on the BV

manifold VM . Recall that ∆2
VM

= 0. Hence, ĤM carries the two commuting differentials ∆VM

and Ω∂M which gives it the structure of a bicomplex. We call Ω∂M the quantum BFV boundary
operator. The condition (17) is called the modified Quantum Master Equation.

Definition 2.21 (Equivalence). We say that two quantum BV-BFV theories (ĤM ,∆VM
,Ω∂M , ψM )

and (Ĥ′
M ,∆V′

M
,Ω′

∂M , ψ
′M) are equivalent if for every manifold M with boundary ∂M there is a

quasi-isomorphism of bicomplexes

(18) IM : (ĤM ,∆VM
,Ω∂M )→ (Ĥ′

M ,∆V′
M
,Ω′

∂M )

such that IM (ψM ) = ψ′
M .

Definition 2.22 (Change of data). We say that two quantum BV-BFV theories (ĤM ,∆VM
,Ω∂M , ψM )

and (ĤM ,∆V′
M
,Ω′

∂M , ψ
′
M ) are related by change of data if there is an operator τ of degree 0 on

H∂M and an element χ ∈ ĤM with deg(χ) = deg(ψ)− 1 such that

Ω′
∂M = [Ω∂M , τ ]

ψ′
M = (~2∆VM

+Ω∂M)χM − τψM

(19)

5We have to assume certain condtions which are in particular satisfied for BF -like theories
6We slighty changed the definition of quantum BV-BFV theory so that in principle it does not depend on a classical

BV-BFV theory.
7Typically, ψ will have degree 0. This is the case when the gauge-fixing Lagrangian (see below) has degree zero,

in the sense that its Berezinian bundle has degree zero. This is the case in all examples we consider.
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Let us now explain how to produce a quantum BV-BFV theory by perturbative quantization of
a classical BV-BFV theory. Fix a classical BV-BFV theory π : F → F∂ . For simplicity we shall
assume that F and F∂ are always vector spaces, which is sufficient for the present paper. For a
general discussion see [20].

2.4.1. The space of states. Consider a (d− 1)-dimensional manifold Σ. Then the BV-BFV theory
associates a symplectic vector space (F∂

Σ, ω
∂
Σ, Q

∂
Σ). Morally, we want to construct HΣ and ΩΣ as a

geometric quantization of this symplectic vector space. More precisely, the construction proceeds as
follows. We require the data of a polarization8 P of this symplectic vector space. For our purposes,
a splitting

(20) F∂
Σ = BP

Σ ⊕KP
Σ

of F∂
Σ into Lagrangian subspaces is sufficient. Here KP

Σ is thought of as the Lagrangian distribution

on F∂
Σ and BP

Σ is identified with the leaf space of the polarization. Given a polarization P the

associated space of states H∂M is a certain space of functionals on BP
Σ. We will discuss the space

of states for BF -like theories in 2.4.3.

2.4.2. Splitting the space of fields. To define the quantum state we proceed with the following
constructions. Consider a d-manifold M (possibly with boundary) and the associated BV-BFV
manifold (FM , ωM , SM , QM , πM ) over the exact BFV manifold (F∂

∂M , ω
∂
∂M = δα∂

∂M , Q
∂
∂M ). Then,

choosing a polarization P on ∂M , we choose a splitting

(21) FM
∼= BP

∂M ⊕ Y,

where Y denotes some complement. This splitting is subject to the following assumption9.

Assumption 2.23 ([20]). There is a weakly symplectic form ωY on Y such that ωM is the extension
of ωY to FM .

Formally, we can think of BP
∂M as the space of boundary fields and Y the space of bulk fields.

Depending on the boundary polarization, we split Y into residual fields and some complement, i.e.
we choose a splitting

(22) Y = VP
M ⊕ Y′

subject to the following assumption10

Assumption 2.24. We assume the following hold:

(1) VP
M ,Y

′ are BV manifolds,

(2) VP
M is finite-dimensional

(3) ωY = ωVP

M
+ ωY′.

We call the complement Y′ the space of fluctuation fields. Residual fields are also called low energy
fields or slow fields and fluctuation fields are also called high energy fields or fast fields. Typically
we choose VP

M as the solutions of δS0M = 0 modulo gauge transformations, where S0M denotes the
quadratic part of the action SM . This is the minimal choice, and is typically called the space of
zero modes. Other choices are related by the equivalence relations above.

Definition 2.25. A splitting

(23) FM
∼= BP

∂M ⊕ VP
M ⊕ Y′

is called good if it satisfies Assumptions 2.23 and 2.24

8We have only considered the case of real polarizations so far.
9This assumption forces one to choose singular extensions of boundary fields
10This assumption is rather strong but can be slightly relaxed to the notion of hedgehog fibration.



10 A. S. CATTANEO, N. MOSHAYEDI, AND K. WERNLI

Remark 2.26 (Connection to Atiyah’s TQFT formulation). From the point of view of topologi-
cal quantum field theories (TQFTs) as functors Cobn → VectC from the n-cobordism category
(objects are (n − 1)-manifolds bounding an n-manifold and morphisms are exactly the bounding
n-manifolds connecting the objects) to the category of vector spaces over the complex numbers, it
is clear that the quantum state should depend on the bulk. This can be seen by using the fact that
the state represents exactly the bounding manifold between the objects and thus a morphism of
the cobordism category. This also makes sense for manifolds without boundary, in which case the
state is given by a partition function Z : C → C, where as a morphism in Cobn it represents any
closed n-manifold, seen as a bounding manifold connecting the empty (n − 1)-manifold, i.e. as a
morphism ∅→ ∅.

2.4.3. The quantum state in BF -like theories. The quantum state in BF -like theories is defined
perturbatively in terms of Feynman graphs by considering integrals defined on the configuration
space of these graphs. In BF -like theories there are two preferred polarizations, namely the δ

δX -

and δ
δη -polarization. We specify a polarization by splitting the boundary ∂M of the manifold M

into two parts ∂1M and ∂2M , where we choose the δ
δη -polarization on ∂1M and the δ

δX -polarization

on ∂2M . We denote the X-leaf by X ∈ B
δ
δη

∂M and the η-leaf by E ∈ B
δ
δX
∂M .

For BF -like theories, the polarization determines the first splitting as

BP
∂M = (Ω•(∂1M)⊗ V [1]) ⊕ (Ω•(∂2M)⊗ V ∗[d− 2])

Y = (Ω•(M,∂1M)⊗ V [1]) ⊕ (Ω•(M,∂2M)⊗ V ∗[d− 2])

The minimal space of residual fields is isomorphic to

(24) VP
M
∼= (H•(M,∂1M)⊗ V [1])⊕ (H•(M,∂2M)⊗ V ∗[d− 2]),

for some graded vector space V . A good splitting is then determined by an splitting of the complex
of de Rham forms with relative boundary conditions into a subspace VP

M isomorphic to cohomology
and a complement Y′ in a way compatible with the symplectic structure. One possibility to do so
is to use a Riemannian metric and embed the cohomology as harmonic forms.
Before we can introduce the quantum state we need to introduce the concept of composite fields,
which we denote by square brackets [ ], e.g. for a boundary field A we will write [Ai1 · · ·Aik ].
They can be understood as a regularization of higher functional derivatives: the higher functional

derivative δk

δAi1 ···δAik
gets replaced by a first order functional derivative δ

δ[Ai1 ···Aik ]
. Concretely, this

corresponds to introducing additional boundary vertices as in Figure 2.

Remark 2.27. In fact, this concept will not be needed for the definition of the principal part of the
quantum state. We will use this concept to define the full part of the quantum state where we need
to make sure that it will be compatible with the quantum BFV boundary operator, where higher
functional derivatives do indeed appear as we will see.

Definition 2.28 (Regular functional). A regular functional on the space of base boundary fields is
a linear combination of expressions of the form
(25)
∫

Cm1 (∂1M)×Cm2 (∂2M)
L
J1
1 ...J

ℓ1
1 J2...J

ℓ2
2 ...

I11 ....I
r1
1 I12 ...I

r2
2 ...
∧π∗1

r1∏

j=1

[
X
Ij1

]
∧· · ·∧π∗m1

rm1∏

j=1

[
X
Ijm1

]
∧π∗1

ℓ1∏

j=1

[
E
Jj
1

]
∧· · ·∧π∗m1

ℓm2∏

j=1

[
E
Jj
m2

]
,

where Iji and J j
i are (target) multi-indices and L

J1
1 ...J

ℓ1
1 J2...J

ℓ2
2 ...

I11 ....I
r1
1 I12 ...I

r2
2 ...

is a smooth differential form on

the direct product of compactified configuration spaces (see Appendix A) Cm1(∂1M)× Cm2(∂2M)
depending on residual fields. A regular functional is called principal if all multi-indices have length
one.



GLOB. FOR PERT. QUANT. OF NONL. SPLIT AKSZ SIGMA MODELS ON MANIFOLDS WITH BOUNDARY 11

Definition 2.29 (Full space of boundary states). The full space of boundary states HP
∂M is given

by the linear combinations of regular functionals of the form (25).

Definition 2.30 (Principal space of boundary states). We define the principal space of boundary

states HP,princ
∂M as the subspace of HP

∂M , where we only consider principal regular functionals.

The state is defined in terms of Feynman graphs and rules. We briefly explain what these terms
mean in the BV-BFV context (for perturbations of abelian BF theory).

Definition 2.31 ((BF ) Feynman graph). A (BF ) Feynman graph is an oriented graph with three
types of vertices V (Γ) = Vbulk(Γ) ⊔ V∂1 ⊔ V∂2 , called bulk vertices and type 1 and 2 boundary
vertices, such that

• bulk vertices can have any valence,
• type 1 boundary vertices carry any number of incoming half-edges (and no outgoing half-
edges),
• type 2 boundary vertices carry any number of outgoing half-edges (and no incoming half-
edges),
• multiple edges and loose half-edges (leaves) are allowed but not short loops (tadpoles).

A labeling of a Feynman graph is a function from the set of half-edges to {1, . . . ,dimV }.

Definition 2.32 (Principal graph). A Feynman graph is called principal if all boundary vertices
(type 1 and type 2) are univalent or zero valent.

For a set S and a manifold M , the open configuration space of S in M is

ConfS(M) := {ι : S →֒M |ι injection}.

Let Γ be a Feynman graph and M a manifold with boundary ∂M = ∂1M ⊔ ∂2M and denote

(26) ConfΓ(M) := ConfVbulk
(M)× ConfV∂1

(∂1M)× ConfV∂2
(∂2M)

The Feynman rules are a map that associate to a Feynman graph Γ a differential form ωΓ ∈
Ω•(ConfΓ(M)).

Definition 2.33 ((BF ) Feynman rules). Let Γ be a labeled Feynman graph, and choose a config-
uration ι : V (Γ) → Conf(Γ) (that respects the decompositions). We decorate the graph according
to the following rules (called Feynman rules):

• Bulk vertices in M decorated by “vertex tensors”

V
j1...jt
i1...is

:=
∂s+t

∂Xi1 · · · ∂Xis∂η
j1 · · · ∂ηjt

∣∣
X=η=0

V(X,η),

where s, t are the out- and in- valencies of the vertex and i1, . . . , is and j1, . . . , jt are the
labels of the out (resp. in-)oriented half-edges.
• Boundary vertices v ∈ V∂1(Γ) with incoming half-edges labeled i1, . . . , ik and no out-going
half-edges are decorated by a composite field [Xi1 . . .Xik ] evaluated at the point (vertex
location) ι(v) on ∂1M .
• Boundary vertices v ∈ V∂2(Γ) on ∂2M with outgoing half-edges labeled j1, . . . , jl are deco-
rated by [Ej1 . . .Ejl ] evaluated at the point on ∂2M .
• Edges between vertices v1, v2 are decorated with the propagator ζ(ι(v1), ι(v2)) · δ

i
j , where ζ

is the propagator induced by L ⊂ Y′, the chosen gauge-fixing Lagrangian.
• Loose half-edges (leaves) attached to a vertex v and labeled i are decorated with the residual
fields xi (for out-orientation), e

i (for in-orientation) evaluated at the point ι(v).
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We denote the differential forms given by the decorations collectively by ωd. The differential form
ωΓ at ι is then defined by multiplying all decorations and summing over all labelings:

(27) ωΓ =
∑

labelings
of Γ

∏

decorations
d of Γ

ωd

The Feynman rules are summarized in Figures 1 and 2.

Remark 2.34 (Configuration spaces). We will work with the Fulton–MacPherson/Axelrod–Singer
compactification of configuration spaces on manifolds with boundary and corners (FMAS compact-
ification, see Appendix A). It is a non-trivial analytic statement (proven first by Axelrod and Singer
[3]) that the propagator, a priori defined only on the open configuration space Conf2(M), extends
to the compactification C2(M). It follows that also ωΓ, for all Feynman graphs Γ, extends to the
compactification CΓ(M) of ConfΓ(M). Since integrals remain unchanged by adding strata of lower
codimension, this immediately proves that all integrals in Equation (28) below are finite. Moreover,
the combinatorics of the stratification can be used for various computations using Stokes’ theorem.

Definition 2.35 (Principal quantum state). Let M be a manifold, possibly with boundary. Given
a BF -like BV-BFV theory πM : FM → F∂

∂M , a polarization P on F∂
∂M , a good splitting FM =

BP
∂M ⊕ VP

M ⊕ Y′, and a gauge-fixing Lagrangian L ⊂ Y′, we define the principal part of the quantum
state by the formal power series

(28) ψM (X,E; x, e) := TM exp

(
i

~

∑

Γ

(−i~)loops(Γ)

|Aut(Γ)|

∫

CΓ(M)
ωΓ(X,E; x, e)

)
,

where we denote for an element X⊕ η ∈ FM the split by

X = X⊕ x⊕X ,(29)

η = E⊕ e⊕ E .(30)

Here the sum is taken over all connected, oriented, principal BF Feynman graphs Γ, Aut(Γ) denotes
the set of all automorphisms of Γ, and loops(Γ) denotes the number of all loops of Γ.

The coefficient TM is related to the Reidemeister torsion of M , but its precise nature is irrelevant
for the purpose of a present paper. For a definition see [19].

Remark 2.36. The formal power series (28) is our definition of the formal perturbative expansion
of the BV integral

(31) ψM =

∫

L⊂Y′

e
i
~
SM [(X,η)] ∈ ĤP

M := ĤP
∂M ⊗Dens

1
2 (VP

M ).

It was observed in [20] that, given a good splitting of the form (23), one can decompose the action
as

(32) SPM = ŜM,0 + ŜM,pert + Sres + Ssource

with

ŜM,0 =

∫

M
〈E ,dX 〉

ŜM,pert =

∫

M
V(X ,E )

Sres = (−1)d−1

(∫

∂1M
〈E, x〉+

∫

∂2M
〈X, e〉

)

Ssource = (−1)d−1

(∫

∂1M
〈E,X 〉+

∫

∂2M
〈X,E 〉

)
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i1

i2

is

j1
j2

jt

 V
j1...jt
i1...is

(a) Interaction vertex

xi
i

j
ej

(b) Residual fields

X

E

(c) Boundary vertices

Figure 1. Summary of Feynman graphs and rules

In that way we can rewrite

ψM = TM

〈
e

i
~
(Sres+Ssource)

〉

where 〈 〉 denotes the expectation value with respect to the bulk theory (ŜM,0 + ŜM,pert).

Remark 2.37. Note that we sum over connected graphs, such that the sum is given by the effective
action.

[Xi1 · · ·Xik ]

i1

i2

ik

(a) Boundary vertex on ∂1Σ

[Ei1 · · ·Eik ]

i1

i2

ik

(b) Boundary vertex on ∂2Σ

Figure 2. Composite field vertices.

We want to construct a product on the full state space using composite fields as in [20]. We
construct the bullet product by

(33)

∫

∂1M
ui ∧X

i •

∫

∂1M
vj ∧ X

j :=

(−1)|X
i|(d−1+|vj |)+|ui|(d−1)

(∫

C2(∂1M)
π∗1ui ∧ π

∗
2vj ∧ π

∗
1X

i ∧ π∗2X
j +

∫

∂1M
ui ∧ vj ∧ [Xi

X
j]

)
,

where u and v are smooth differential forms depending on the bulk and residual fields.
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Remark 2.38. Consider an operator
∫
∂1M

F ij δ2

δXiδXj . Such an operator can be interprated as∫
∂1M

F ij δ
δ[XiXj ]

, so one gets

(34)

∫

∂1M
F ij δ2

δXiδXj

(∫

∂1M
ui ∧ X

i •

∫

∂1M
vj ∧ X

j

)
=

∫

∂1M
uivjF

ij ,

in accordance with our naive expectation.

Definition 2.39 (Full quantum state). Let M be a manifold, possibly with boundary. Given
a BF -like BV-BFV theory πM : FM → F∂

∂M , a polarization P on F∂
∂M , a good splitting FM =

BP
∂M ⊕ VP

M ⊕ Y′, and a gauge-fixing Lagrangian L ⊂ Y′, we define the full quantum state by the
formal power series

(35) ψM (X,E; x, e) = TM exp

(
i

~

∑

Γ

(−i~)loops(Γ)

|Aut(Γ)|

∫

CΓ(M)
ωΓ(X,E; x, e)

)
,

Remark 2.40. The full state can be interpreted as an expectation value with help of the bullet
product:

(36) ψM = TM

〈
e

i
~
(Sres+Ssource)

•

〉

where e• denotes the exponential with respect to the bullet product.

2.4.4. The BFV boundary operator. We want to define the quantum BFV boundary operator for
BF -like theories according to [20]. Similarly to the state, we will express at first its principal part
and then extend it to a regularization using the notion of composite fields. The quantum BFV
boundary operator is constructed as a quantization of the BFV action such that Theorem 2.43
below holds.

Definition 2.41 (Principal part of the BFV boundary operator). The principal part of the BFV
boundary operator is given by

(37) Ωprinc = ΩX
0 +ΩE

0︸ ︷︷ ︸
=:Ω0

+ΩX
pert +ΩE

pert︸ ︷︷ ︸
=:Ωprinc

pert

,

where

ΩX
0 := (−1)di~

∫

∂1M

(
dX

δ

δX

)
,

(38)

ΩE
0 := (−1)di~

∫

∂2M

(
dE

δ

δE

)
,

(39)

ΩX
pert :=

∑

n,k≥0

∑

Γ′
1

(i~)loops(Γ
′
1)

|Aut(Γ′
1)|

∫

∂1M

(
σΓ′

1

)j1...jk
i1....in

∧ X
i1 ∧ · · · ∧X

in

(
(−1)di~

δ

δXj1

)
· · ·

(
(−1)di~

δ

δXjk

)
,

(40)

ΩE
pert :=

∑

n,k≥0

∑

Γ′
2

(i~)loops(Γ
′
2)

|Aut(Γ′
2)|

∫

∂2M

(
σΓ′

2

)j1...jk
i1....in

∧ E
i1 ∧ · · · ∧ E

in

(
(−1)di~

δ

δEj1

)
· · ·

(
(−1)di~

δ

δEjk

)
,

(41)

where, for F1 = X and F2 = E and ℓ ∈ {1, 2}, Γ′
ℓ runs over graphs with
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• n vertices on ∂ℓM of valence 1 with adjacent half-edges oriented inwards and decorated
with boundary fields Fi1

ℓ , ...,F
in
ℓ all evaluated at the point of collapse p ∈ ∂ℓM ,

• k outward leaves if ℓ = 1 and k inward leaves if ℓ = 2, decorated with variational derivatives
in boundary fields

(−1)di~
δ

δFj1
ℓ

, ..., (−1)di~
δ

δFjk
ℓ

at the point of collapse,
• no outward leaves if ℓ = 2 and no inward leaves if ℓ = 1 (graphs with them do not con-
tribute).

The form σΓ′
ℓ
is obtained as the integral over the compactified configuration space C̃Γ′

ℓ
(Hd), where

H
d denotes the d-dimensional upper half plane, given by

(42) σΓ′
ℓ
=

∫

C̃Γ′
ℓ
(Hd)

ωΓ′
ℓ
,

with ωΓ′
ℓ
being the product of limiting propagators at the point p of collapse and vertex tensors.

We want to roughly describe the construction of the BFV boundary operator with composite fields
(see [20] for a more detailed discussion). First, we need to define the following notion.
On a regular functional as in (25), we get a term L replaced by dL plus all the terms corresponding
to the boundary of the configuration space. As L is smooth, its restriction to the boundary is also
smooth and can be integrated on the fibers yielding a smooth form on the base configuration space;
for example

Ω0

∫

∂1M
LIJ ∧ [XI ] ∧ [XJ ] = ±i~

∫

∂1M
dLIJ ∧ [XI ] ∧ [XJ ],

Ω0

∫

C2(∂1M)
LIJK ∧ π

∗
1([X

I ] ∧ [XJ ]) ∧ π∗2 [X
K ]

= ±i~

∫

C2(∂1M)
dLIJK ∧ π

∗
1([X

I ] ∧ [XJ ]) ∧ π∗2 [X
K ]± i~

∫

∂1M
LIJK ∧ [XI ] ∧ [XJ ] ∧ [XK ],

with LIJK = π∂∗LIJK , where π∂ : ∂C2(∂1M)→ ∂1M is the canonical projection.
Notice that for any two regular functionals S1 and S2 we have

Ω0(S1 • S2) = Ω0(S1) • S2 ± S1 • Ω0(S2).

The other generators that we allow are products of expressions of the form
∫

∂1M
LJ
I1...Ir

[
X
I1
]
∧ · · · ∧

[
X
Ir
] δ|J |

δ[XJ ]
(43)

∫

∂2M
LJ1...Jℓ

I [EJ1 ] ∧ · · · ∧ [EJℓ ]
δ|I|

δ[EI ]
.(44)

Definition 2.42 (Full BFV boundary operator). The full BFV boundary operator is given by

(45) Ω∂M := Ω0 +ΩX
pert +ΩE

pert︸ ︷︷ ︸
Ωpert

,

where
(46)

ΩX
pert :=

∑

n,k≥0

∑

Γ′
1

(i~)loops(Γ
′
1)

|Aut(Γ′
1)|

∫

∂1M

(
σΓ′

1

)J1...Jk
I1....In

∧
[
X
I1
]
∧ · · · ∧

[
X
In
]
(
(−1)kd(i~)k

δ|J1|+···+|Jk|

δ [XJ1 · · ·XJk ]

)
,
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(47)

ΩE
pert :=

∑

n,k≥0

∑

Γ′
2

(i~)loops(Γ
′
2)

|Aut(Γ′
2)|

∫

∂2M

(
σΓ′

2

)I1....In
J1...Jk

∧ [EI1 ] ∧ · · · ∧ [EIn ]

(
(−1)kd(i~)k

δ|J1|+···+|Jk|

δ [EJ1 · · ·EJk ]

)

where, for F1 = X and F2 = E and ℓ ∈ {1, 2}, Γ′
ℓ runs over graphs with

• n vertices on ∂ℓM , where vertex s has valence |Is| ≥ 1, with adjacent half-edges oriented

inwards and decorated with boundary fields [FI1
ℓ ], ..., [FIn

ℓ ] all evaluated at the point of
collapse p ∈ ∂ℓM ,
• |J1|+ · · ·+ |Jk| outward leaves if ℓ = 1 and |J1|+ · · ·+ |Jk| inward leaves if ℓ = 2, decorated
with variational derivatives in boundary fields

(−1)di~
δ

δ[FJ1
ℓ ]
, ..., (−1)di~

δ

δ[FJk
ℓ ]

at the point of collapse,
• no outward leaves if ℓ = 2 and no inward leaves if ℓ = 1 (graphs with them do not con-
tribute).

The form σΓ′
ℓ
is obtained as the integral over the compactified configuration space C̃Γ′

ℓ
(Hd), where

H
d denotes the d-dimensional upper half plane, given by

(48) σΓ′
ℓ
=

∫

C̃Γ′
ℓ
(Hd)

ωΓ′
ℓ
,

with ωΓ′
ℓ
being the product of limiting propagators at the point p of collapse and vertex tensors.

Figure 3. Example of a graph collapsing to the boundary with three bulk and two
boundary vertices. The semicircle represents the collapsing of the graph.

Theorem 2.43 ([20]). Let M be a smooth manifold (possibly with boundary). Then the following
hold:

(1) The full covariant state ψM satisfies the mQME:

(49) (~2∆VM
+Ω∂M )ψM = 0.

(2) The full BFV boundary operator Ω∂M squares to zero:

(50) (Ω∂M )2 = 0.

(3) A change of propagator or residual fields leads to a theory related by change of data as in
2.22.
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3. Perturbative Quantization of AKSZ Sigma Models

3.1. Review of AKSZ Sigma Models in the BV-BFV formalism. We will begin with a brief
review of AKSZ Sigma Models ([1]) as described in [19].

Definition 3.1 (Differential graded symplectic manifold). A dg symplectic manifold of degree d
is a graded manifold M endowed with a symplectic form ω = dα of degree d and a Hamiltonian
function Θ of degree d+1 satisfying {Θ,Θ} = 0, where { , } is the Poisson bracket induced by ω.

Remark 3.2. This is also called a Hamiltonian manifold.

Definition 3.3 (AKSZ Sigma Model). The AKSZ Sigma Model with target a Hamiltonian manifold
(M, ω = dα,Θ) of degree d − 1 is the BV theory, which associates to a d-manifold Σ the BV
manifold (FΣ, ωΣ, SΣ), where FΣ = Map(T [1]Σ,M), ωΣ is of the form ωΣ =

∫
Σ ωµνδA

µ ∧ δAν , and

SΣ[A] =
∫
Σ (αµ(A

µ)dAµ +Θ(A)), where A ∈ FΣ, ωµν are the components of the symplectic form ω,
αµ are the components of α and Aµ are the components of A in local coordinates.

Here “Map” denotes the right adjoint functor to the Cartesian product of graded manifolds (with
a fixed factor). On objects we have Hom(X,Map(Y,Z)) = Hom(X × Y,Z), where Hom denotes
the set of graded manifold morphisms.

3.2. Split AKSZ Sigma Models. In this paper we will especially be interested in the case where
M = T ∗[d−1]M , withM a graded manifold, such that the symplectic form is given by the canonical
symplectic structure ω0.

Definition 3.4 (Split AKSZ Sigma Model). We call an AKSZ Sigma Model split, if the target is
of the form

(51) M = T ∗[d− 1]M

with canonical symplectic structure, where M is a graded manifold.

Coordinates on the space of fields can be considered as a pair (X,η), where X and η are the base
and fiber components of the map respectively. The action can be written as

(52) SΣ[(X,η)] = SkinΣ [(X,η)] + SintΣ [(X,η)]

where the kinetic and interaction terms are given by

SkinΣ [(X,η)] :=

∫

Σ
〈η,dX〉,

SintΣ [(X,η)] :=

∫

Σ
Θ(X,η),

where 〈 , 〉 denotes the canonical pairing between tangent and cotangent bundle of M and we
think of elements of C∞(T [1]Σ) as differential forms in the usual way, i.e. of elements in Ω•(Σ). In
[19] it was shown that these data define a BV-BFV theory as in Definition 2.14 in Section 2.

3.3. Coordinatization of split AKSZ theories. In this paper we want to quantize split AKSZ
theories as perturbations of abelian BF theory. This can be done by “coordinatizing the target”,
i.e. replacing the space of fields with the formal neighbourhood of a constant field. Using methods
of formal geometry as in [34, 9, 16, 8, 24] one can do this consistently for all constant solutions
at once. In Appendix B we recall this procedure and its extension to graded manifolds, which is
discussed in [44]. For more details we refer to [16, 8].
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3.3.1. Coordinatizing the AKSZ construction. The idea now is to expand the theory around critical
points of the kinetic part of the action. Denote by M the body of the graded manifold M , and let
x ∈M . We will work in formal neighbourhoods of constant maps

x = (X,η) ≡ (x, 0) ∈ Map(T [1]Σ,M)

Let ϕ be a formal exponential map (see Appendix B.2) on M . This induces a map

ϕx : TxM →M

which lifts to a map

ϕ̃x : FΣ,x := Map(T [1]Σ, T ∗[d− 1]TxM)→ Map(T [1]Σ,M)

(X̂, η̂) 7→ (X,η)

by taking post-composition with the cotangent lift. Notice that ϕ̃ is a local symplectomorphism
and that

(53) SkinΣ,x := Tϕ̃∗
xS

kin
Σ =

∫

Σ
〈η̂,d X̂〉,

where T denotes the Taylor expansion as in B.2. If we define

(54) SintΣ,x := Tϕ̃∗
xS

int
Σ =

∫

Σ
Tϕ̃∗

xΘ(X,η)

and

(55) SΣ,x := SkinΣ,x + SintΣ,x =

∫

Σ

(
〈η̂,dX̂〉+ Tϕ̃∗

xΘ(X,η)
)

then the pair (FΣ,x, SΣ,x) is a BF -like theory in the sense of [20], i.e. the kinetic part of the action

is a sum of copies of the kinetic part of abelian BF -theory and for every x ∈ M it satisfies the
mCME (see Equation (13) in Section 2)

ιQΣ,x
ωΣ,x − δSΣ,x = π∗Σα

∂
∂Σ,x.

where QΣ,x is the Hamiltonian vector field of SΣ,x. Moreover, ωΣ,x and α∂
∂Σ,x are the corresponding

symplectic form and boundary 1-form of the BV-BFV manifold associated to the space of fields
FΣ,x. Notice that it could be obtained from the AKSZ construction with target T ∗[d− 1]TxM and
Hamiltonian function Θx := Tϕ̃∗

xΘ. We regard Θx as a formal function on T ∗[d − 1]TxM and we
will write

(56) Θx(y
1, . . . , yr, ξ1, . . . ξr) =

∞∑

k,l=0

Θj1...jl
i1...ik

(x)yi1 · · · yikξj1 · · · ξjl

where r = dimM and the ξi are the cotangent coordinates of the coordinates yi.

3.3.2. Varying the classical background. We now define the map ŜΣ to be given by ŜΣ : x 7→ SΣ,x.

In local coordinates (xi) on M , we define

(57) SΣ,x,R :=

∫

Σ
Y j
i (x; X̂)η̂j ∧ dxi,

where Y ∈ Γ(M, ŜT ∗M) is defined in Appendix B, which is also a formal power series in the second
argument, hence we can express Y as

(58) Y j
i (x; y) =

∞∑

k=0

Y j
i;i1,...,ik

(x)yi1 · · · yik .
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Notice that here we pull back to the body M of M via the zero section of M →M . Moreover, on
a closed manifold we have

dxŜΣ = (SΣ,x,R, ŜΣ).

Definition 3.5 (Formal global action). The formal global action for a split AKSZ theory is defined
by

(59) S̃Σ,x :=

∫

Σ

(
η̂i ∧ dX̂i + Tϕ̃∗

xΘ(X,η) + Y j
i (x; X̂)η̂j ∧ dxi

)
= SΣ,x + SΣ,x,R.

Using the formal global action, we get

(60) dxS̃Σ,x +
1

2
(S̃Σ,x, S̃Σ,x) = 0.

This condition is called the differential Classical Master Equation (dCME) (see [8, 19, 20, 24]). On a

manifold with boundary, we get the cohomological vector field Q̃Σ,x from the BV-BFV theory on
FΣ,x. Recall the construction of a vector field R in the setting of formal geometry as in Appendix

B.3. For a section σ ∈ Γ(ŜT ∗M) we have

R(σ) = −dyσ ◦ (dyϕ)
−1 ◦ dxϕ.

Indeed, we can lift the vector field R to a vector field R̃ on FΣ and define Q̃Σ,x = Q̂Σ + R̃, where

Q̂Σ is the Hamiltonian vector field for ŜΣ. Then we have

(61) ι
Q̃Σ,x

ωΣ,x − δS̃Σ,x = π∗Σα
∂
∂Σ,

the modified differential Classical Master Equation (mdCME).

Remark 3.6. A similar approach to globalization for closed manifolds was done by Grady–Gwilliam,
Costello, Grady–Li–Li ([37, 26, 36]). Their construction is based on the idea that one can replace
the target by an L∞ equivalent one, whereas the one introduced in [8] before was based on the idea
of using formal geometry to define a symplectomorphism on a neighborhood of each solution in
the space of fields to start the perturbation theory. The two approaches are essentially equivalent.
However, in [37, 26, 36] they only get BF∞ theories since they start with theories of a particular
simple type. We consider more general theories that do not fit into this. Here BF∞ means that one
of the two fields appears at most linearly, but this is not the case in our setting (e.g., in the Poisson
Sigma Model for a nonlinear Poisson structure). Moreover, in principle one should work around
more general solutions than just the constant ones. In principle, one should do formal geometry
on the moduli space of solutions. Note also that this construction can in principle be generalized
to non AKSZ models.

3.4. Quantization. We now have a bundle of BF -like theories over the body M of M . In every
fiber we can apply a perturbative BV-BFV quantization as in [20]. That is, we define a splitting
of the space of fields

FΣ,x = BP
∂Σ ⊕ VΣ,x ⊕ Y′

as in (23) and split the fields accordingly as

X̂ = X⊕ x⊕X ,

η̂ = E⊕ e⊕ E ,

where BP
∂Σ is the base space of a polarization P of boundary fields,

VΣ,x = H•(Σ, ∂1Σ)⊗ TxM ⊕H
•(Σ, ∂2Σ)⊗ T

∗
xM
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i1

i2

ik

j1
j2

jl

 Θj1...jl
i1...ik

(x)

(a) Interaction vertex

R
i1

i2

ik

j

 Y j
i;i1...ik

(x)dxi

(b) R vertex

xi
i

j
ej

(c) Residual fields

X

E

(d) Boundary vertices

Figure 4. Summary of Feynman graphs and rules

is the space of residual fields and Y is a symplectic complement of BP
∂Σ ⊕ VΣ,x. The polarizations

that we consider are defined by splitting the boundary ∂Σ = ∂1Σ ⊔ ∂2Σ and choosing the X-
representation on ∂1Σ and the E-representation on11 ∂2Σ. Let us denote by HP

∂Σ,x the boundary

state space as in Definition 2.29. Using the definition of the formal global action S̃Σ,x and Definition
2.35, we can define a covariant version of the principal part of the quantum state.

Definition 3.7 (Principal covariant quantum state). The principal covariant quantum state ψ̃Σ,x is
defined as in Definition 2.35, using the Feynman rules given in Figure 4 coming from the formal

global action S̃Σ,x.

3.4.1. Feynman graphs and rules. The Feynman graphs and rules are the same as in [20, 21, 24],
but there are additional interaction vertices given by SΣ,x,R. Namely, to an interaction vertex with
k incoming and l outgoing half-edges labeled by i1, . . . , ik and j1, . . . , jl respectively we associate

Θj1...jl
i1...ik

(x) as defined in (56). To a vertex labeled by R, with k incoming half-edges labeled i1, . . . , ik

and one outgoing edge labeled j, we associate Y j
i;i1,...,ik

(x) as in (58). Half-edges can start at e zero
modes and boundary vertices on ∂1Σ and end at x zero modes or boundary vertices on ∂2Σ. See
Figure 4.

3.4.2. The full covariant state. As we have seen in Section 2, we need to deal with composite fields
in order to regularize higher functional derivatives, hence we also need a covariant version of the
full state.

Definition 3.8 (Full covariant quantum state). We define the full covariant quantum state ψ̃Σ,x as

in Definition 2.39, using the Feynman rules in Figure 4 coming from the formal global action S̃Σ,x

and additionally with the rules for the boundary vertices as in Figure 2.

4. The modified differential Quantum Master Equation (mdQME)

The mQME, as a condition to hold in the BV-BFV formalism on manifolds with boundary, needs
to be modified for a globalized AKSZ theory. The more general condition is called the modified

11This simply means that we choose the δ
δX

-polarization on ∂2Σ and the δ
δE
-polarization on ∂1Σ
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differential Quantum Master Equation (mdQME). The classical and quantum aspects of this modifi-
cation are discussed in [8, 19], and first discussed for manifolds with boundary in [24]. We want to
think of the operator

∇G :=

(
dx−i~∆VΣ,x

+
i

~
Ω∂Σ

)

as a connection on the total bundle of spaces of states over (a part of) the moduli space of classical
solutions of the theory. We call this operator the quantum Grothendieck BFV (GBFV) operator.

Remark 4.1. As already mentioned, the quantum GBFV operator ∇G is an operator on forms
valued in sections of the total bundle of states, which is a graded vector space and it is an operator
of total degree 1, but not of form degree 1. We will call it an operator instead of a connection,
since it can be misleading to think of −i~∆VΣ,x

+ i
~
Ω∂Σ as a connection 1-form. Rather, it defines

a Maurer–Cartan element in the dg Lie algebra of differential forms with values in sections of the
endomorphism bundle of the total state space.

The goal of this section can be rephrased as showing that the state gives a well-defined ∇G-
cohomology class. For this we have to show that:

(1) The state defines a closed section with respect to ∇G (the mdQME),
(2) The operator ∇G is a coboundary operator, i.e. ∇2

G
= 0,

(3) The cohomology class of ψ̃Σ,x is independent of the choices made, i.e. if we alter any of
these choices, the state changes in a controlled way.

This will be the program of this section. Heuristically, this result can be interpreted as saying that
the state comes from a well-defined function on (a part of) the moduli space of classical solutions
of the theory.

4.1. Assumptions on the Theory. The proof for the program of this section depends on two
important assumptions on our theory, which we will discuss in this section.

4.1.1. No hidden faces anomalies. Let Γ be a Feynman graph and denote by V (Γ) the set of its
vertices; it decomposes into bulk vertices VB(Γ) and boundary vertices V ∂(Γ). The boundary of
the configuration space is a union of several faces. We will denote by Fij the faces where two
bulk vertices i, j ∈ VB(Γ) collapse in the bulk. By F≥3 we denote the union of the faces where at
least three bulk vertices collapse in the bulk, usually called “hidden faces”. By F ∂

i1,...,ik,j1,...,jl
we

denote faces where the bulk vertices i1, . . . , ik ∈ VB(Γ) and the boundary vertices j1, . . . , jl ∈ V
∂(Γ)

collapse at a point in the boundary; the union of all these faces is denoted by F ∂
Γ .

Definition 4.2. We say that a theory is (hidden faces) anomaly free if for every graph Γ we have
that

(62)

∫

F≥3

ωΓ = 0,

i.e. all possible contributions of hidden faces vanish.

Remark 4.3. A theory that is famously not anomaly free is Chern–Simons theory, see [2, 3] and
[10], where the first ansatz for the quantum theory depends on the choice of gauge fixing. In
this case one can get away of the anomaly with introducing a framing and a framing-dependent
counterterm for the dependence on the gauge fixing. On the other hand, there are many examples
of anomaly free theories. In particular, Kontsevich’s result [42] implies that any 2-dimensional
theory is anomaly-free, e.g. the Poisson Sigma Model ([39, 50, 49, 14]).

Remark 4.4 (Counterterms). A general ansatz to deal with theories with anomalies is the addition
of counterterms to the action. If the differential form which results from integrating over a hidden
face is exact, one can add the corresponding primitive to the action, thus producing new vertices
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cancelling the anomaly. In Chern–Simons theory, this produces the “framing” anomaly, since the
only hidden faces contribution comes from faces where all vertices in a graph collapse. The resulting
differential form is a representative of the relative Pontryagin class of M × I, whose primitive is
the Chern–Simons form of the flat connection used to construct the propagator.

4.1.2. Unimodularity. In the quantization of general AKSZ theories one can have tadpoles, also
called short loops, i.e. arrows starting and ending at the same vertex. They need to be treated
seperately and can in principle spoil the mdQME. The best way to get around them is to assume
that the theory satisfies a “unimodularity” condition.

Definition 4.5 (Unimodularity). We say that a given theory is unimodular if any contraction of
the vertex tensor Θ with itself is zero.

4.2. The modified differential Quantum Master Equation. One of the main results, and the
first point of the program is the following theorem:

Theorem 4.6 (mdQME for split AKSZ theories). Consider the full covariant perturbative state

ψ̃Σ,x as a quantization of an anomaly free and unimodular split AKSZ theory with target T ∗[d−1]M ,
where M is a graded manifold. Then

(63)

(
dx−i~∆VΣ,x

+
i

~
Ω∂Σ

)
ψ̃Σ,x = 0,

where we denote by dx the de Rham differential on M , the body of the graded manifold M .

We will prove this by considering the Feynman graphs of the theory analogously to the proof of
the mQME in [20].

Proof. For the following computation we consider Feynman graphs which also have vertices, of any
possible valency, on the boundary deriving the functions attached there. Let G denote the set of

Feynman graphs of the theory. Then ψ̃Σ,x can be written as

(64) ψ̃Σ,x = TΣ
∑

Γ∈G

∫

CΓ

ωΓ,

where we include the combinatorial prefactor (−i~)loops(Γ)

|Aut(Γ)| in ωΓ (here loops(Γ) denotes the number

of loops of a graph Γ). Moreover, we denote the configuration space CΓ(Σ) by CΓ for simplicity.
Note that ωΓ is a (VΣ,x-dependent) differential form on CΓ ×M . Now recall Stokes’ theorem for
integration along a compact fiber with corners:

(65) dπ∗ = π∗ d−π
∂
∗ .

The integrals in (64) are fiber integrals, hence we can apply (65) to yield

(66) dx

∫

CΓ

ωΓ =

∫

CΓ

dωΓ −

∫

∂CΓ

ωΓ.

Here d inside the integral is the total differential on M × CΓ, and thus we can split it as

(67) d = dx+d1 +d2

Here d1 denotes the part of the de Rham differential acting on the propagators in ωΓ, and d2 the
part acting on X and E fields. Let us introduce some more notation: The set of edges of Γ will be
denoted by E(Γ). We denote by Ek(Γ) the set of edges e whose removal increases the number of
connected components by k. Clearly E(Γ) = E0(Γ) ⊔ E1(Γ), and e ∈ E1(Γ) if and only if e is not
part of a loop in Γ.

Proposition 4.7. The following hold:
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(i) The action of the BV Laplacian on the state is given by

(68) i~∆VΣ,x
ψ̃Σ,x = TΣ

∑

Γ∈G

∫

CΓ

d1 ωΓ

(ii) The action of Ω0 on the state is given by

(69) −
i

~
Ω0ψ̃Σ,x = TΣ

∑

Γ∈G

∫

CΓ

d2 ωΓ

(iii) For the boundary contributions we have
∑

Γ∈G

∑

i,j∈VB(Γ)

∫

Fij

ωΓ =
∑

Γ∈G

∫

CΓ

dx ωΓ,(70)

where we denote by Fij the boundary faces where two bulk vertices i, j ∈ VB(Γ) collapse in the
bulk, and furthermore

(71) TΣ
∑

Γ∈G

∫

F ∂
Γ

ωΓ =
i

~
Ωpertψ̃Σ,x,

where F ∂
Γ is the union of the F ∂

i1,...,ik,j1,...,jl
, which denote the boundary faces where the bulk

vertices i1, . . . , ik ∈ VB(Γ) and the boundary vertices j1, . . . , jl ∈ V
∂(Γ) collapse at a point in

the boundary.

Proposition 4.7 immediately implies the mdQME for anomaly free theories by the following simple
computation:

dx ψ̃Σ,x = TΣ
∑

Γ∈G

dx

∫

CΓ

ωΓ = TΣ
∑

Γ∈G

(∫

CΓ

dωΓ −

∫

∂CΓ

ωΓ

)

= TΣ
∑

Γ∈G

(∫

CΓ

dx ωΓ + d1 ωΓ + d2 ωΓ −

∫

∂CΓ

ωΓ

)

= i~∆VΣ,x
ψ̃Σ,x −

i

~
Ω0ψ̃Σ,x −

i

~
Ωpertψ̃Σ,x

�

4.3. Proof of Proposition 4.7. The proof of Theorem 4.6 is relied on the proof of Proposition
4.7. We split the proof into four parts. Namely, we show the Equations (68), (69), (70) and (71)
seperately and conclude.

4.3.1. Proof of Equation (68). Consider a propagator12 ζ as in [20] and denote by ζij := ζ(ui, uj)
for ui, uj ∈ Σ. Moreover, let χi denote a representative for the basis of VΣ,x and denote by χi a
representative of its dual basis. Hence, in local coordinates, we can write the residual fields, x and
e as x =

∑
i z

iχi and e =
∑

i z
+
i χ

i. Then we have the identity

(72) d ζ12 = ±
∑

k

π∗1χkπ
∗
2χ

k = ±∆VΣ,x
(x1e2),

where π1 and π2 denote the projections to the first and second factor of C2(Σ) respectively and
where xi := x(ui) and ej := e(uj). Recall also that the BV Laplacian is given by

∆VΣ,x
= ±

∑

k

∂2

∂zk∂z+k

12This means that we want ζ to be given by ±
1

TΣ

1
i~

∫
L
e

i

~
SΣX ∧ E , where TΣ =

∫
L
e

i

~
SΣ and SΣ =

∫
Σ

E ∧ dX .

Here the Lagrangian L is given by the direct sum of the image of the Hodge-theoretic chain contraction and the
image of its dual (with the correct shift).
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where deg ∂
∂z+k

= − deg z+k = deg zk − 1 = 1− degχk − 1 = − degχk. Since deg x = 1 we get

∆VΣ,x
(π∗1xπ

∗
2e) = ±

∑

k

π∗1χkπ
∗
2χ

k.

Let us introduce some more notation for certain operations on graphs. For any graph Γ, let •
denote either an edge e = (i, j) or a pair of residual fields xi, ej

13. Denote by Γ′
• the graph resulting

from removing the component labeled by • and replacing it with a diagonal class between points i
and j, i.e. the sum

∑
k ±π

∗
i χkπ

∗
jχ

k (see also Figure 5).

1

2

e

x

e

x

x

(a) A connected graph Γ.

1

2

x

e

x

x

χi χi

(b) Γ′
e

1

2

e

χi

χi

x

x

(c) Γ′
x1e2

Figure 5. Explanation of the operation Γ′
•.

Clearly, we have

(73)
∑

Γ∈G

∫

CΓ

d1 ωΓ =
∑

Γ∈G

∑

e∈E(Γ)

∫

CΓ

ωΓ′
e

On the other hand, the properties of the BV Laplacian imply

∆VΣ,x
ωΓ =

∑

pairs of
residual fields (xi,ej) in Γ

ωΓ′
xiej
,

which we can interpret as a first order differential operator on a product z+i z
i. By construction we

get that if the edge e starts at i and ends at j, we have

(74) ωΓ′
e
= (i~)ωΓ′

xiej
,

since each edge comes with a factor of (−i~). Now consider the action of ∆VΣ,x
on ψ̃Σ,x, and note

that

(75) ∆VΣ,x
ψ̃Σ,x = TΣ

∑

Γ∈G

∫

CΓ

∆VΣ,x
ωΓ = TΣ

∑

Γ∈G

∫

CΓ

∑

pairs of
residual fields (xi,ej) in Γ

ωΓ′
xiej

13Note that an edge denotes a contracted X -E -pair, so • denotes either an X -E or an x-e-pair.
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The sum in Equation (73) above can be seen as summing over all graphs with one egde marked -
we will denote this set by G E . In the sum in Equation (75) above we sum over all graphs with one
pair of residual fields marked - we will denote this set by G pair. Now define a map

G
E → G

pair

Γ 7→ Γ̃

which exchanges the marked edge for a marked pair of residual fields. Clearly this map is invertible
and its inverse exchanges the marked pair of residual fields for a marked edge. The contributions

to sum labeled by Γ and Γ̃ agree up to a factor by Equation (74). We conclude the proof of (68).

4.3.2. Proof of Equation (69). Recall from Section 2 that Ω0 is given by

Ω0 = (−1)dimΣi~

(∫

∂1Σ
dXi δ

δXi
+

∫

∂2Σ
dEi

δ

δEi

)
.

Hence Equation (69) follows immediatly from the definition of the de Rham differential on the X

and E fields. Moreover, note that ωΓ is given as a product of propagators, residual fields, boundary
fields and vertex tensors as in Section 2 Equation (28).

4.3.3. Proof of Equation (70). First notice that all the x-dependence of ωΓ lies in the bulk vertex

tensors. There are two types of bulk vertex tensors, arising from VΣ,x(X̂, η̂) := Tϕ̃∗Θ(X,η) and
SΣ,x,R respectively, we will call them type I and type II vertices. Let us analyse them in more
detail.
First, recall that

(76) VΣ,x(X̂, η̂) =
∞∑

k,l=0

Θi1...ik
j1...jl

(x)X̂i1 · · · X̂ik η̂j1 · · · η̂jl

(the Θ’s are exactly one set of vertex tensors in the Feynman graphs). The fact that (VΣ,x,VΣ,x) = 0

is equivalent to
∑

r±
δ

δX̂r
VΣ,x(X̂, η̂)

δ
δη̂r

VΣ,x(X̂, η̂) = 0. In terms of the vertex tensors it reads as

(77)
∑

k′+k′′=k
l′+l′′=l

∑

1≤s′≤k′

1≤s′′≤k′′

∑

r

δri′
s′
δ
j′′
s′′
r Θ

i′1...i
′
k′

j′1...j
′
l′
(x)Θ

i′′1 ...i
′′
k′′

j′1...j
′
l′′
(x) = 0

for every k, l ≥ 0. This can be understood as follows: From a (k′, l′)-tensor Θ′ and a (k′′, l′′)-tensor
Θ′′ we can form a (k, l) = (k′+k′′−1, l′+ l′′−1)-tensor Θ by contracting exactly one index. We will
say Θ has been merged from Θ′ and Θ′′. If we sum over all possibilities of constructing (k, l)-tensors
this way, the result vanishes. Now, suppose we have a graph Γ with an edge e between two type
I vertices v′ and v′′, with vertex tensors Θ′ and Θ′′, respectively. The boundary of CΓ contains a
face where these two vertices collapse; by normalization of the propagator, the integral over the
corresponding fiber yields ±1. We are left with a new graph Γ/e where the edge has been collapsed
into a new marked vertex. The vertex tensor at this new vertex has been merged from Θ′, Θ′′. Now,
sum over all graphs, and the corresponding boundary contributions of edges between type I vertices.
Then we will sum over all ways of merging a vertex in Γ/e. Hence these contributions vanish by
(77). Similarly, one can argue for edges between type II vertices, since also (SΣ,x,R, SΣ,x,R) = 0.
For edges between type I and type II vertices, the relation dxVΣ,x = (SΣ,x,R,VΣ,x) implies (70).

4.3.4. Proof of Equation (71). Recall that we have Ωpert = ΩX
pert+ΩE

pert, whereΩ
X
pert is constructed

as follows. Denote by Γ a Feynman graph of the theory, and let Γ′ be a subgraph of Γ (we use the
notation Γ′ ≤ Γ) which contains only bulk vertices and vertices on the boundary component, say,
where we work in the X-representation. Then there is a corresponding contribution ΩΓ′≤Γ to Ω∂Σ

given as follows. If Γ′ has inward leaves (i.e. there is an arrow from some vertex in Γ\Γ′ to a vertex
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in Γ′) then ΩΓ′≤Γ vanishes. Suppose the l outward leaves are labeled by j1, . . . , jl and suppose Γ′

has k boundary vertices with boundary fields [XIj ], j = 1, . . . , k. Then

(78) ΩΓ′≤Γ =
(−i~)loops(Γ

′)

|Aut(Γ′)|

∫

∂1Σ
(σΓ′)JI1...Ik [X

I1 ] · · · [XIk ]
δ

δ[XJ ]

where σΓ′ is the differential form on ∂1Σ whose value at x ∈ ∂1Σ is given by integrating the limiting

propagators over the compactified configuration space C̃Γ′(H) in the upper half-space (see Definition

2.42), which we denote simply by C̃Γ′ for simplicity, as in Appendix A. Recall that in C̃Γ′ we take
the quotient by translation and scaling. Put differently, there is a boundary face ∂1,Γ′CΓ of CΓ

corresponding to the collapse of Γ′ at ∂1Σ, that face is given by

∂1,Γ′CΓ
∼= C̃Γ′ × CΓ/Γ′ ,

where we denote by Γ/Γ′ the collapse of Γ′ in Γ to a new boundary vertex in ∂1Σ. Let Γ′
amp

be the “amputated” graph Γ′ where we cut off all the outward leaves and the ones containing
residual fields. Then σΓ′ is given as follows. Let σ̃Γ′ be the pushforward of ωΓ′

amp
along the map

π : C̃Γ′ × CΓ/Γ′ → CΓ/Γ′ . Since we take the amputated Γ′, this pushforward is a basic form in
p : CΓ/Γ′ → ∂1Σ, and the corresponding form on ∂1Σ is σΓ′ , i.e. σ̃Γ′ = p∗σΓ′ . Then

(79) ΩX
pert =

∑

Γ′≤Γ

ΩΓ′≤Γ,

where the sum runs over all Feynman graphs Γ of the theory and all their subgraphs Γ′.

y[Xi] [Xj]

i1

i2

i3
 
∫
∂1Σ

σΓ′ [Xi][Xj ] δ
δ[Xi1Xi2Xi3 ]

Figure 6. An example of a term in Ω∂Σ.

We can see that ∫

∂Γ′CΓ

ωΓ = ΩΓ′≤Γ

∫

CΓ/Γ′

ωΓ/Γ′ ,

and hence we conclude Equation (71) by summing over all graphs. One can construct ΩE
pert anal-

ogously.

4.4. Flatness of the quantum GBFV operator. We have the following theorem:

Theorem 4.8. The quantum GBFV operator ∇G squares to zero, i.e.

(80) (∇G)
2 ≡ 0.

Proof. Note that condition (80) is the same as saying that

(81) i~∆VΣ,x
(dxΩ∂Σ +Ω∂Σdx) = Ω2

∂Σ

since ∆VΣ,x
Ω∂Σ+Ω∂Σ∆VΣ,x

= dx∆VΣ,x
+∆VΣ,x

dx = 0. Here we interpret dx andΩ∂Σ as operators on
Htot-valued differential forms. Equivalently, we can interpret Ω∂Σ as an element of the differential
graded Lie algebra of sections of

∧• T ∗M ⊗ End(Htot) and rewrite equation (81) in the following
intriguing fashion:

(82) i~dxΩ∂Σ −
1

2
[Ω∂Σ,Ω∂Σ] = 0.
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Equation (82) shows that i
~
Ω∂Σ is a Maurer–Cartan element in this dg-Lie algebra. One can prove

this equation by using Stokes’ theorem for the definition with Feynman diagrams, similarly as in
the proof of flatness in the mQME section of [20]. The crucial point is the following lemma.

Lemma 4.9. We have that

(83)
(
ΩX

pert

)2
=

∑

Γ′′≤Γ′≤Γ

∫

∂1Σ
σΓ′′σΓ′/Γ′′ [XI1 ] · · · [XIk ]

δ

δ[XJ ]
,

where I1, . . . , Ik are the boundary vertices of Γ′ and the outward leaves of Γ′ are labeled by J =
j1, . . . , jl. An analogous statement holds in the E-representation.

Proof of Lemma 4.9. Since ΩX
pert has degree 1 we can write

(
ΩX

pert

)2
=

1

2

[
ΩX

pert,Ω
X
pert

]
=

1

2

∑

Γ′
1≤Γ1,Γ′

2≤Γ2

[
ΩΓ′

1≤Γ1
,ΩΓ′

2≤Γ2

]
.

By definition, Ω∂Σ contains only first order derivatives (with respect to composite fields). Hence
in the commutator the quadratic terms cancel and we are left with the terms where the derivatives
act on the coefficients. The bracket [

ΩΓ′
1≤Γ1

,ΩΓ′
2≤Γ2

]

is nonzero if and only if the outward leaves of Γ′
1 exactly match the composite field at one of the

vertices of Γ′
2 (or vice versa). In the first case, the corresponding contribution is (for simplicity we

assume that the corresponding vertex is labeled by 1 in Γ′
2)∫

∂1Σ
σΓ′

1
σΓ′

2
[XI11 ] · · · [X

I1k1 ][XI22 ] · · · [X
I2k2 ]

δ

δ[XJ ]
,

where the composite fields at the vertices of Γ′
i are labeled by Iij , 1 ≤ j ≤ ki, and the outward leaves

of Γ′
2 are labeled by J . “Blowing up” the corresponding vertex i (we denote this operation by ◦i)

by replacing it by Γ′
1, from Γ2 we obtain a new graph Γ, and from Γ′

2 a subgraph Γ′ of Γ. Denoting
the subgraph Γ′

1 ≤ Γ′ ≤ Γ by Γ′′, we obtain that Γ′
2 = Γ′/Γ′′. In this way we obtain all possible

graphs Γ with all possible combinations of subgraphs Γ′′ ≤ Γ′ ≤ Γ. See also Figure 7. �

[Xa]

Γ′
1

j2

j1

◦2

Γ′
2

[Xj1Xj2][Xi] [Xk]

l1

l2

l3 =

Γ′

[Xa][Xi] [Xk]

l1

l2

l3

Figure 7. An example of a term in Ω2.

Now the proof that Ω∂Σ satisfies the Maurer–Cartan equation can be done very similarly to the
original one in [20].

Proof of (82). We prove the equation for ΩX, but the proof for ΩE is analogous and then the claim
follows because ΩX and ΩE anticommute. We use again Stokes’ theorem (twice). Suppose we apply
dx to a summand ΩΓ′≤Γ =

∫
∂1Σ

σΓ′ [XI1 ] · · · [XIk ] δ
δ[XJ ]

. Then, applying Stokes’ theorem we find

dxΩΓ′≤Γ =

∫

∂1Σ
(dσΓ′)[XI1 ] · · · [XIk ]

δ

δ[XJ ]
+ [Ω0,ΩΓ′≤Γ]
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(the second term is produced when dx acts on the X fields). Now, we have

dxσΓ′ = dx

∫

C̃Γ′

ωΓ′ =

∫

C̃Γ′

dωΓ′ ±

∫

∂C̃Γ′

ωΓ′ .

Since the limiting propagator on C̃Γ′ is closed we have dω = dxω. In the boundary integral, we
have again three classes of faces. The faces where two bulk points collapse cancel out with dxω by
the mCME. The terms where more than two bulk points collapse vanish by our assumption that
the theory is anomaly free. The terms where a subgraph of Γ′ collapses at the boundary produce
exactly 1

2

[
ΩX

pert,Ω
X
pert

]
by Lemma 4.9. �

Now since we have shown that (82) holds, we can conclude that ∇G squares to zero. �

5. Dependence on choices

5.1. Covariant gauge transformation. The definition of the state depends on the choices of

• the propagator,
• the residual fields,
• the formal exponential map.

In this section we will explicitly show how the state and the BFV boundary operator transform
under a change in any of these choices. Similarly to Definition 2.22 we have the following theorem:

Theorem 5.1 (Covariant change of data). Let Ωt be defined as in Definition 2.42 and let ψ̃t be
defined as in 3.8 for all t ∈ [0, 1]. Then we have

d

dt

∣∣∣
t=0

Ωt = dxτ + [Ωt=0, τ ](84)

d

dt

∣∣∣
t=0
ψ̃t = ∇G(ψ̃t=0 • ̺)− τψ̃t=0(85)

for some operator τ ∈ Γ(End(Htot)) and a section ̺ ∈ Γ(Htot). Recall that • is the product
constructed as in (33)

Remark 5.2. In particular if τ is zero, the operator ∇G does not change and the state changes by a
∇G-exact term. Theorem 5.1 shall be seen as the behaviour of the full covariant state and the full
BFV boundary operator under infinitesimal gauge transformation.

5.1.1. Possible choices. We have three different choices of how we can mark the graphs according to
the change of the state. One possibility is to mark the leaves of a graph Γ, which corresponds to the
change of residual fields and the propagator, another one is to mark the edges which corresponds
to the change of the propagator and the last choice is to mark the vertices, which corresponds to
the change of the formal exponential map.

5.2. Changing the residual fields. We have the following proposition:

Proposition 5.3 (Change of data: residual fields). Fix some representatives χi and χ
i and consider

their change by exact forms as

χ̇i = dσi, σi ∈ Ωdegχi−1
D1

(Σ)

χ̇i = dσi, σi ∈ Ωdeg χi−1
D2

(Σ),

where Ω•
Di
(Σ) = {γ ∈ Ω•(Σ) | ι∗i γ = 0} with ιi the inclusion map from ∂iΣ into Σ for i ∈ {1, 2} (D

stands for Dirichlet). Then the family of states (ψ̃t) changes by

(86)
d

dt

∣∣∣
t=0
ψ̃t = ∇G(ψ̃t=0 • ̺)− τψ̃t=0,
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where τ = 0 and

(87) ̺ =
∑

Γl

m
marked

and connected graph

̺Γl
m
=

∑

Γl

m
marked

and connected graph

∫

C
Γl
m

ω′
Γl
m
∈ Γ(Htot),

where Γl
m denotes a marked connnected graph with l ∈ {x, e}, i.e. a graph with a labeled l leaf and

ω′
Γl
m

is the form constructed with the usual Feynman rules where we place z+i σ
i at the marked leaf.

Proof. The propagator changes by

(88) ζ̇ =
∑

i

±π∗1σiπ
∗
2χ

i ±
∑

i

±π∗1χiπ
∗
2σ

i.

Let ψ̃ =
∑

Γ

∫
CΓ
ωΓ. Then

d

dt
ψ̃ =

d

dt

∑

Γ

∫

CΓ

ωΓ =
∑

Γ

∫

CΓ

ω̇Γ =
∑

Γx
m

ωΓx
m
+
∑

Γe
m

ωΓe
m
+
∑

Γe
m

ω
eσχ

Γe
m

+ ω
eχσ

Γe
m
,

where by Γx
m we mean graphs with a labeled x leaf and ωΓx

m
is the usual ωΓ but with ziχ̇i placed at

the marked leaf. Similarly, by Γe
m we mean graphs with a labeled e leaf and by ωΓe

m
the usual ωΓ

but with z+i χ̇
i placed at the marked leaf. These terms arise when the time derivative hits a leaf.

Finally, Γe
m denotes graphs with a marked edge e ∈ E(Γ), and ω

eσχ

Γe
m

denotes the usual ωΓ, where

at the marked edge we place
∑
±π∗1σiπ

∗
2χ

i. These terms arise when the time derivative hits a
propagator. We call them “edge splits” since the corresponding propagator in ω is split, see Figure
8. Define

̺ :=
∑

Γl
m

marked
and connected graph

̺Γl
m
=

∑

Γl
m

marked
and connected graph

∫

C
Γl
m

ω′
Γl
m
∈ Γ(Htot).

Here l ∈ {x, e}. Again Γl
m denotes a graph with a marked l leaf. In ω′

Γl
m

however we replace the

marked leaf by ziσi or z
+
i σ

i respectively.
Now we show that

(89)
d

dt
ψ̃ =

(
dx − i~∆VΣ

+
i

~
Ω∂Σ

)
(ψ̃ • ̺).

The easiest way to see this is by considering graphs. We can expand

(90) ψ̃ • ̺ =
∑

Γl
m

∫

C
Γl
m

ω′
Γl
m

where now the sum runs over all graphs, either connected or not. Now, we again consider Stokes’
theorem for integrals along the fiber

(91) dx(ψ̃ • ̺) =
∑

Γl
m

∫

C
Γl
m

dω′
Γl
m
±

∫

∂C
Γl
m

ω′
Γl
m

One can check that the edge split in d
dtψ̃ corresponds to ∆VΣ

applied to a graph (up to some signs)
having the same amount of leaves and carrying the same residual fields with the difference that for
the two leafs splitting an edge, where one leaf carries a residual field x = ziχi (e = z+i χ

i) and the

other one a primitve field z+i σ
i (ziσi). Moreover, one can check that the graphs with the dσi (dσ

i)
leaves on the left hand side get produced by applying the de Rham differential on the configuration
space to graphs with a σi (σ

i) leaf. The rest of terms cancels out as in the proof of the mdQME. �
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d
dt

= + +

x

e

χ̇i = dσi

e

x

χ̇i = dσi e

x

σi

χi

+ + Other edge splits

x

e χi

σi

Figure 8. Graphical illustration of the time derivative, the first two terms come
from time derivatives of leaves, all other terms - “edge splits” - from time derivatives
of the propagator.

5.3. Changing the propagator. We have the following proposition:

Proposition 5.4 (Change of data: propagator). Suppose we change the propagator ζ by an exact
form λ ∈ Ωn−2(C2(Σ)) with the appropriate boundary conditions (but keep the residual fields fixed),

(92) ζ̇ = dλ.

Then the family of states (ψ̃t) and the familiy of BFV boundary operators (Ωt) change by

d

dt

∣∣∣
t=0

Ωt = dxτ + [Ωt=0, τ ](93)

d

dt

∣∣∣
t=0
ψ̃t = ∇G(ψ̃t=0 • ̺)− τψ̃t=0(94)

where τ = τX + τE with

τX =
∑

n,k≥0

∑

Γe′
m

(i~)loops(Γ
e′
m)

|Aut(Γe′
m)|

∫

∂1Σ

(
σΓe′

m

)J1...Jk
I1....In

∧
[
X
I1
]
∧ · · · ∧

[
X
In
]
(
(−1)kd(i~)k

δ|J1|+···+|Jk|

δ [XJ1 · · ·XJk ]

)
,

(95)

τE =
∑

n,k≥0

∑

Γe′
m

(i~)loops(Γ
e′
m)

|Aut(Γe′
m)|

∫

∂2Σ

(
σΓe′

m

)I1....In
J1...Jk

∧ [EI1 ] ∧ · · · ∧ [EIn ]

(
(−1)kd(i~)k

δ|J1|+···+|Jk|

δ [EJ1 · · ·EJk ]

)
,

(96)
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where σΓe′
m

is given similarly as in Definition 2.42, with the difference that we place λ at the marked

edge, and

(97) ̺ =
∑

Γe

m
marked

and connected graph

̺Γe
m
=

∑

Γe

m
marked

and connected graph

∫

CΓe
m

ωe
Γe
m
∈ Γ(Htot),

where Γe
m denotes a marked connnected graph with edge e labeled by λ. and ωe

Γe
m

is the form

constructed with the usual Feynman rules where we place λ at the marked edge e.

Proof. Let us consider Ω first. Let ζt be a family of propagators with ζ̇ = d
dt |t=0ζ = dλ and Ωt cor-

responding family of BFV boundary operators, which we loosely write as Ωt =
∑

Γ′

∫
∂ΣΩΓ′,t. (Here

the prime on Γ′ should remember us that we are taking “boundary graphs”.) ΩΓ′ is constructed
from the propagators, boundary composite fields and derivatives with respect to composite fields.
The only thing that depends on t is the propagator, hence the time derivative satisfies

d

dt

∣∣∣
t=0

Ωt =
∑

Γe′
m

∫

∂Σ
ΩΓe′

m,t.

Here Γe′
m is a graph with a marked edge e and in ΩΓe′ we evaluate the marked edge to dλ. Using

Stokes’ theorem for fiber integration dx
∫

=
∫
d ±

∫
∂ , we can pull out the de Rham differential

on λ of the integration. This gives the term dxτ . The other terms from Stokes’ theorem are of
three kinds: The first kind are terms where the de Rham differential hits a propagator. These
vanishe, because the limiting propagator is closed. The second kind are terms where the de Rham
differential hits a boundary field, this corresponds to [τ,Ω0]. Finally, the boundary terms assemble
to [τ,Ωpert,t=0], similar to the proof of Lemma 4.9. This proves Equation (93).
The proof for the derivative of the state works in a similar way. In this case ̺ is given by the sum
of all connected Feynman graphs with one marked edge, evaluated using the usual Feynman rules,
but placing λ at the marked edge. Now, observe that

d

dt
ωΓ =

∑

e∈E(Γ)

ωe
Γ,

where ωe
Γ is the form obtained by placing dλ at the edge e. Again, we integrate by parts using

Stokes’ theorem. We get eight different types of terms.

(1) First, d can come out of the integral. This corresponds to dx(ψ̃ • ρ) ((ψ̃ • ρ) is precisely
given by summing over all graphs (not necessarily connected) with a single marked edge
that evaluates to λ).

(2) Terms where d hits a propagator correspond to the action of −i~∆VΣ
on (ψ̃ • ρ).

(3) Terms where d hits a boundary field correspond to the action of Ω0 on (ψ̃ • ρ).
(4) Terms where d hits a vertex, they cancel with boundary terms just below:
(5) Boundary terms corresponding to the collapse of two vertices in the bulk with a single edge

between them. If this edge is marked, the pushforward over the boundary sphere vanishes14.
The terms without marked edges cancel out with the terms where d hits a vertex.

(6) Boundary terms where a subgraph with more that two vertices collapses in the bulk, these
vanish by assumption.

(7) Boundary terms where a subgraph without a marked edge collapses on the boundary. These

correspond to the action of Ωpert,t=0 on (ψ̃ • ρ).
(8) Finally, in this case we can have graphs with a marked edge collapsing at the boundary,

which correspond to the action of τ to ψ̃.

This completes the proof of Equation (94). �

14The propagators ζt are normalised to integrate to ±1 over this sphere, hence the integral of λ must vanish.
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5.4. Changing the formal exponential map. We can also change the connection on the graded
manifold M used to construct the formal exponential map, which is described in Appendix B.5 and
B.6. From a multivector field Y on M we can construct a functional

(98) SΣ,Y =
1

k!

∫

Σ
Y i1,...,ik(X)ηi1 ∧ · · · ∧ ηik .

We can do the same construction pointwise for formal vertical multivector fields Ŷ , yielding

(99) S
Σ,Ŷ

=
1

k!

∫

Σ
Ŷ i1,...,ik(x; X̂)η̂i1 ∧ · · · ∧ η̂ik .

Moreover, writing ψ̃ =
∫
L
e

i
~
S̃Σ,x , for some Lagrangian submanifold L of the space of fields, one

formally obtains ([8]) that

(100)
d

dt
ψ̃ = (dx − i~∆VΣ,x

)

∫

L

e
i
~
S̃Σ,x

i

~
SΣ,C

if Σ is a closed manifold, where C ∈ Γ(M,TM ⊗ ŜT ∗M) is a generator of the gauge transformation
applied to the formal exponential map; see Appendix B.5 and B.6. Formula (100) motivates to
introduce graphs with one marked vertex, labeled by C, with vertex tensor coming from the formal
Taylor expansion of

(101) SΣ,C(X, η̂) =

∫

Σ
Ck(x;X)η̂k =

∫

Σ
Ck
i1...ik

(x)X̂i1 · · · X̂ik η̂k.

Proposition 5.5 (Change of data: formal exponential map). Let C be the generator of a gauge

transformation of the Grothendieck connection as in Appendix B. Then the family of states (ψ̃t)
and the familiy of BFV boundary operators (Ωt) change by

d

dt

∣∣∣
t=0

Ωt = dxτ + [Ωt=0, τ ](102)

d

dt

∣∣∣
t=0
ψ̃t = ∇G(ψ̃t=0 • ̺)− τψ̃t=0(103)

where τ = τX + τE with

τX =
∑

n,k≥0

∑

Γv′
m

(i~)loops(Γ
v′
m)

|Aut(Γv′
m)|

∫

∂1Σ

(
σΓv′

m

)J1...Jk
I1....In

∧
[
X
I1
]
∧ · · · ∧

[
X
In
]
(
(−1)kd(i~)k

δ|J1|+···+|Jk|

δ [XJ1 · · ·XJk ]

)
,

(104)

τE =
∑

n,k≥0

∑

Γv′
m

(i~)loops(Γ
v′
m)

|Aut(Γv′
m)|

∫

∂2Σ

(
σΓv′

m

)I1....In
J1...Jk

∧ [EI1 ] ∧ · · · ∧ [EIn ]

(
(−1)kd(i~)k

δ|J1|+···+|Jk|

δ [EJ1 · · ·EJk ]

)
,

(105)

where σΓv′
m

is given similarly as in Definition 2.42, with the difference that we place C at the marked

vertex, and

(106) ̺ =
∑

Γv

m
marked

and connected graph

̺Γv
m
=

∑

Γv

m
marked

and connected graph

∫

CΓv
m

ω′
Γv
m
∈ Γ(Htot),

where Γv
m denotes a marked connnected graph with vertex v labeled by C, i.e. a graph and ωv

Γv
m

is

the form constructed with the usual Feynman rules where we place C at the marked vertex v.
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Proof. If we vary the formal exponential map, the vertex tensors at interaction and R vertices
change according to the formulas

ṠΣ,x = −LCSΣ,x(107)

Ṙ = dxC + [R,C](108)

Since we have −LCSΣ,x = (SΣ,C , SΣ,x) and S[R,C] = (SΣ,R, SΣ,C), in terms of Taylor expansions the

time derivatives are obtained by contracting the terms in the Taylor expansion (Θi1...ik
j1...jl

or Y i
j,i1...ik

)

with Ci
j,i1...ik

in all possible ways (plus taking the differential in the case of Y ’s). Keeping this in

mind, the proof proceeds completely analogously to the proofs before: In the term ∇G(ψ̃ • ̺) on
left hand side of (103), the usual cancellations apply. Terms which survive are:

(1) Terms where dx hits the C vertex.
(2) Boundary terms corresponding to the collapse of a single edge with the C vertex at one

endpoint, and an R vertex at the other endpoint.
(3) Boundary terms corresponding to the collapse of a single edge with the C vertex at one

endpoint, and an interaction (Θ) vertex at the other endpoint.
(4) Boundary terms where a subgraph containing the C vertex collapses.

The first and the second type of terms yield the time derivative of R vertices. The third type of
terms yield time the derivative of an interaction vertex. Finally, the last type of terms yield the

action of τ on ψ̃. This completes the proof of (103). The proof of (102) is entirely the same, using
the method of the proof of (93). �

Remark 5.6. In this paper we only considered free boundaries. We could also consider a boundary
component ∂fixΣ where we put boundary condition. As explained in [15] boundary conditions
compatible with the BV formalism are Q-invariant Lagrangian submanifolds of the boundary space
of fields. As we prove the dQME (and the mdQME) by Stokes’ theorem, we have also to take
boundary contributions on ∂fixΣ into account. The classical boundary conditions mentioned above
make the contributions corresponding to a single bulk point approaching ∂fixΣ vanish. If the
terms where two or more bulk points collapsing at ∂fixΣ do not vanish, the theory needs quantum
boundary corrections (similarly to what happens in the Landau–Ginzburg model [40, 11, 43]). We
will consider this in the case of the Poisson Sigma Model in [23].

Appendix A. Configuration spaces and their compactifications

To define the quantum state, we need to recall the notion of configuration spaces and their com-
pactification as in [3, 33] due to Fulton–MacPherson and Axelrod–Singer.

A.1. FMAS compactification. We start with the definition of the configuration space.

Definition A.1. Let M be a manifold and S a finite set. The open configuration space of S in M
is defined as

(109) ConfS(M) := {ι : S →֒M |ι injection}

Elements of ConfS(M) are called S-configurations. To give an explicit definition of the compacti-
fication that can be extended to manifolds with boundaries and corners, we introduce the concept
of collapsed configurations. Intuitively, a collapsed S-configuration is the result of a collapse of a
subset of the points in the S-configuration. However, we remember the relative configuration of
the points before the collapse by directions in the tangent space. This is a configuration in the
tangent space that is well-defined only up to translations and scaling. The difficulty is that one
can imagine a limiting configuration where two points collapse first together and then with a third
(see Figure 9). This explains the recursive nature of the following definition. Recall that if X is a
vector space, then X × R>0 acts on X by translations and scaling.
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Definition A.2 (Collapsed configuration in M). Let M be a manifold, S a finite set and P =
{S1, . . . , Sk} be a partition of S. A P-collapsed configuration in M is a k-tuple (pσ, cσ) such that
((pσ, cσ))

k
σ=1 satisfies

(1) pσ ∈M and pσ 6= pσ′ , for σ 6= σ′,

(2) cσ ∈ C̃Sσ(TpσM), where for |S| = 1, C̃S(X) := {pt} and for |S| ≥ 2
(110)

C̃S(X) :=
∐

P={S1,...,Sk}
S=⊔σSσ ,k≥2

{
(xσ, cσ))1≤σ≤k

∣∣∣∣ (xσ, cσ) P-collapsed S-configuration in X

}/
(X × R>0)

Here, ϕ ∈ X × R>0 acts on (xσ, cσ) by (xσ, cσ) 7→ (ϕ(xσ),dϕxσcσ).

Intuitively, given a partition P = {S1, . . . , Sk}, a k-tuple (pσ, cσ) describes the collapse of the
points in Sσ to pσ. cσ remembers the relative configuration of the collapsing points. This relative
configuration can itself be the result of a collapse of some points. See Figure 9.

p1

p3

p2

M

p4

p5p6

Figure 9. An element of CS(M).

Definition A.3 (FMAS compactification). The compactified configuration space CS(M) of S in M
is given by

(111) CS(M) :=
∐

S1,...,Sk
S=⊔σSσ

{
(pσ, cσ)1≤σ≤k

∣∣∣∣ (pσ, cσ) P-collapsed S-configuration in M

}
.

A.2. Boundary strata. A precise description of the combinatorics of the stratification can be
found in [33], where it is also shown that CS(M) is a manifold with corners and is compact if M
is compact. For us, only strata in low codimensions are interesting. Let S = {s1, . . . , sk}. The
stratum of codimension 0 corresponds to the partition P = {{s1}, . . . , {sk}}. Strata of codimension
1 correspond to the collapse of exactly one subset S′ = {s1, . . . , sℓ} ⊂ S with no further collapses, i.e
a partition P = {{s1, . . . , sℓ}, {sℓ+1}, . . . , {sk}} and configuration (pσ, cσ) with cσ in the component

of C̃S′(X) given by the partition P = {{s1}, . . . , {sℓ}}. This boundary stratum will be denoted by
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∂S′CS(M), in particular, we have

(112) ∂CS(M) =
∐

S′⊂S

∂S′CS(M).

There is a natural fibration ∂S′CS(M) → CS\S′∪{pt}(M) whose fiber is C̃S(R
dimM ). Finally, we

note that if |S| = 2, then CS(M) ∼= Bl∆(M ×M), the differential-geometric blow-up of the diagonal

∆ ⊂M ×M , and C̃S(X) ∼= SdimX−1.

A.3. Configuration spaces on manifolds with boundary. We proceed to recall the definition
of a compactified configuration space on manifolds with boundary. Let M be a compact manifold
with boundary ∂M . Recall that for a manifold M with boundary ∂M , at points p ∈ ∂M there is
a well-defined notion of inward and outward half-space in TpM . If H ⊂ X is a half-space, then
∂H ⊂ X is a hyperplane. ∂H × R>0 acts on H by translations and scaling.

Definition A.4 (Configuration spaces on manifolds with boundary). Let M be a manifold with
boundary ∂M . For S, T finite sets, we define the open configuration space by

(113) ConfS,T (M,∂M) := {(ι, ι′) : S × T →֒M × ∂M}

Definition A.5 (Collapsed configuration on manifolds with boundary). Let (M,∂M) be a manifold
with boundary. Let S, T be finite sets and P = {S1, . . . , Sk} a partition of S ⊔ T . Then, a P-
collapsed (S, T )-configuration in M is a k-tuple of pairs (pσ, cσ) such that

(1) pσ ∈M and pσ 6= pσ′ , for all σ 6= σ′,
(2) Sσ ∩ T 6= ∅⇒ pσ ∈ ∂M ,
(3)

cσ ∈

{
C̃Sσ(TpσM) pσ ∈M \ ∂M

C̃S∩Sσ,T∩Sσ(H(TpσM)) pσ ∈ ∂M

where H(TpσM) ⊂ TpσM denotes the inward half-space in TpσM . Here, for a vector space X and

a half-space H ⊂ X, C̃∅,{pt}(H) := C̃{pt},∅(H) := {pt}, and for S ⊔ T | ≥ 2,

C̃S,T (H) :=
∐

P={S1,...,Sk}
S⊔T=⊔σSσ,k≥2

{
(vσ, cσ)

∣∣∣∣ (vσ, cσ) P-collapsed (S, T )-configuration in H

}/
(∂H×R>0)

Definition A.6 (FMAS compactification for manifolds with boundary). We define the compacti-
fication CS,T (M,∂M) of ConfS,T (M,∂M) by

(114) CS,T (M,∂M) =
∐

P={S1,...,Sk}
S⊔T=⊔σSσ

{
(pσ, cσ)1≤σ≤k

∣∣∣∣ (pσ, cσ) P-collapsed (S, T )-configuration

}

Again, this is a manifold with corners and is compact if M is compact. We proceed to de-
scribe the strata of low codimension. Let U = {u1, . . . , uk}, V = {v1, . . . , vk}. The codimen-
sion 0 stratum again is given by the partition P = {{u1}, . . . , {uk}, {v1}, . . . , {vℓ}}. Let us de-
scribe the strata of codimension 1. We denote by ∂ISCU,V (M,∂M) a boundary stratum where
a subset S ⊂ U collapses in the bulk, described in the same way as above. On manifolds
with boundary, there are new boundary strata in the compactified configuration space given
by the collapse of a subset of points to a point in the boundary. Concretely, given a subset
S = {u1, . . . , uk′ , v1, . . . , vℓ′} ⊂ U ⊔V , there is a boundary stratum ∂IIS CU,V (M,∂M) corresponding
to the partition P = {S, {uk′+1}, . . . , {uk}, {vℓ′+1}, . . . , {vℓ}} and collapsed configurations (pσ, cσ)
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with pσ ∈ ∂M and cσ corresponding to the partition P′ = {{u1}, . . . , {uk}, {v1}, . . . , {vℓ}}. The
boundary decomposes as

(115) ∂CU,V (M,∂M) =
∐

S⊆U

∂ISCU,V (M,∂M) ∐
∐

S⊆U⊔V

∂IIS CU,V (M,∂M)

Appendix B. Formal geometry

We are interested in how perturbative expansions change if one changes the point of expansion.
The language of formal geometry ([34, 9]) provides adequate tools to study how the coefficients of
Taylor expansions change if one changes coordinates. In this appendix we recollect some notions
of formal geometry. We follow the expositions of [16] and [8], and refer to these papers for proofs
of the statemets. Another good reference is [28].

B.1. Formal power series on vector spaces. We begin with a very short review of formal power
series on vector spaces. If V is a finite-dimensional vector space, the polynomial algebra on V is
the symmetric algebra of the dual vector space

S•V ∗ =
∞⊕

k=0

SkV ∗.

If e1, . . . , en is a basis of V , with dual basis y1, . . . , yn, then elements f ∈ S•V ∗ can be represented
by

f(y) =

∞∑

i1,...,in=1

fi1,...,iky
i1
1 · · · y

in
n =

∑

I

fIy
I ,

with only finitely many non-vanishing fI . Here I = {i1, . . . , ik} is a multi-index and we understand
yI = yi1 · · · yik , y∅ := 1.

We can complete this algebra to the algebra of formal power series ŜV ∗, where infinitely many

coefficents fI can be nonzero. Both S•V ∗ and ŜV ∗ are commutative algebras with the multiplication
of polynomials or formal power series respectively, generated by V ∗. Derivations of these algebras
are specified by their value on these generators, hence the map

V ⊗ S•V ∗ → Der(S•V ∗)

v ⊗ f 7→ (V ∗ ∋ α 7→ α(v) · f)(116)

is an isomorphism with inverse

Der(S•V ∗)→ V ⊗ S•V ∗

D 7→

n∑

i=1

ei ⊗D(yi)

In coordinates, it simply amounts to sending ei 7→ ∂
∂yi

.

B.2. Formal exponential maps. Let M be a smooth manifold. Let ϕ : U →M where U ⊂ TM
is a open neighbourhood of the zero section. For x ∈M,y ∈ TxM ∩U we write ϕ(x, y) = ϕx(y). We
say that ϕ is a generalized exponential map if for all x ∈M we have that ϕx(0) = x,dϕx(0) = idTxM .
In local coordinates we can write

ϕi
x(y) = xi + yi +

1

2
ϕi
x,jky

jyk +
1

3!
ϕi
x,jkℓy

jykyℓ + · · ·

where the xi are coordinates on the base and the yi are coordinates on the fibers. We identify
two generalised exponential maps if their jets agree to all orders. A formal exponential map is
an equivalence class of generalised exponential maps. It is completely specified by the sequence

of functions
(
ϕi
x,i1...ik

)∞
k=0

. By abuse of notation, we will denote equivalence classes and their
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representatives by ϕ. From a formal exponential map ϕ and a function f ∈ C∞(M), we can

produce a section σ ∈ Γ(ŜT ∗M) by defining σx = Tϕ∗
xf , where T denotes the Taylor expansion in

the fiber coordinates around y = 0 and we use any representative of ϕ to define the pullback. We
denote this section by Tϕ∗f , it is independent of the choice of representative, since it only depends
on the jets of the representative.

B.3. Grothendieck connection. One can define a flat connectionDG on ŜT ∗M with the property
that DGσ = 0 if and only if σ = Tϕ∗f for some f ∈ C∞(M). Namely, DG = d + R where

R ∈ Γ(T ∗M ⊗ TM ⊗ ŜT ∗M) is a one-form with values in derivations of ŜT ∗M , which we identify

with Γ(TM ⊗ ŜT ∗M) using the isomorphism (116)15. R can be defined in local coordinates by
R = Ridx

i and

(117) Ri(x; y) =

((
∂ϕx

∂y

)−1
)k

j

∂ϕj
x

∂xi
∂

∂yk
=: Y k

i (x; y)
∂

∂yk

so that

R(x; y) = Ri(x; y)dx
i = Y k

i

∂

∂yk
dxi,

where we use the Einstein summation convention. For σ ∈ Γ(ŜT ∗M), R(σ) is given by the Taylor
expansion (in the y coordinates) of

−dyσ ◦ (dyϕ)
−1 ◦ dxϕ : Γ(TM)→ Γ(ŜT ∗M),

this shows that R does not depend on the choice of coordinates. For a vector field ξ = ξ ∂
∂xi we get

(118) Dξ
G
= ξ + ξ̂,

where

(119) ξ̂(x; y) = ιξR(x; y) = ξi(x)Y k
i (x; y)

∂

∂yk
.

The connection DG is called a Grothendieck connection. Its flatness can be expressed by

dxR+
1

2
[R,R] = 0.

It can be shown that its cohomology is concentrated in degree 0 and is given by

H0
DG

(Γ(ŜT ∗M)) = Tϕ∗C∞(M) ∼= C∞(M).

B.4. Formal vertical tensor fields. Now, let E → M be any tensorial16 bundle, e.g. E =∧k TM . Its sections are called tensor fields of type E. Then its associated formal vertical bundle is

Ê := E ⊗ ŜT ∗M , and sections of this bundle are called formal vertical tensors of type E. One can
think of these bundles as tensors of the same type on TM where the dependence on fiber directions

is formal. The formal exponential map defines an injective map Tϕ∗ : E → Ê by taking the Taylor
expansion of a tensor field pulled back to U by ϕ17.We can let R act on formal vertical tensors by
Lie derivative. Thus we get a Grothendieck connection DG = d + R on any formal vertical tensor
bundle. Again, it is flat, and the flat sections are precisely the ones in the image of Tϕ∗. Moreover

the cohomology is concentrated in degree 0 and given by the flat sections, i.e. Ê-valued 0-forms.

15This is slightly confusing, since the basis of TxM is usually denoted ∂
∂xi , which under this isomorphism gets sent

to ∂
∂yi .
16I.e. any bundle which is a tensor product or antisymmetric or symmetric product of the tangent or cotangent

bundle, or a direct sum thereof.
17Since ϕ is a local diffeomorphism we can define the pullback of contravariant tensors as the pushforward of the

inverse.
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B.5. Changing the formal exponential map. Let φ be a family of formal exponential maps
depending on a parameter t belonging to an open interval I. Then we can associate this family
a formal exponential map ψ for the manifold M × I by ψ(x, t, y, τ) := ((φ)x,t(y), t + τ), where τ

denotes the tangent variable to t. We want to define the associated connection R̃: on a section σ̃

of ŜT ∗(M × I) we have, by definition

(120) R̃(σ̃) = −(dyσ̃,dτ σ̃) ◦

(
(dyφ)

−1 0
0 1

)
◦

(
dxφ φ̇
0 1

)
.

So we can write R̃ = R+ Cdt+ T with R defined as in Appendix B.3 (but now t-dependent),

C(σ̃) = −dyσ̃ ◦ (dyφ)
−1 ◦ φ̇,

and T = −dt ∂
∂τ . We can formulate the MC equation for R̃ observing that dxT = dtT = 0 and

that T commutes with both R and C. The (2, 0)-form component over M × I yields again the MC
equation for R, whereas the (1, 1)-component reads

Ṙ = dxC + [R,C].

Hence, under a change of formal exponential map, R changes by a gauge transformation with

generator the section C of X̂(TM) := TM ⊗ ŜT ∗M . Finally, if σ is a section in the image of Tφ∗,
then by a simple computation one gets

σ̇ = −LCσ,

which can be interpreted as the associated gauge transformation for sections.

B.6. Extension to graded manifolds. The results of the previous subsections can be generalised
to the category of graded manifolds using the algebraic reformulation of formal exponential maps
developed in [44].
Namely, given a formal exponential map ϕ on a smooth manifold M , one can construct a map

(121) pbw: Γ(ŜTM)→ D(M )

from sections of the completed symmetric algebra of the tangent bundle to the algebra of differential
operators D(M) by defining

(122) pbw(X1 ⊙ · · · ⊙Xn)(f) =
d

dt1

∣∣∣∣
t1=0

· · ·
d

dtn

∣∣∣∣
tn=0

f(ϕ(t1X1 + . . . + tnXn)).

This map can be defined also in the category of graded manifolds by choosing a torsion-free connec-
tion ∇ on the tangent bundle of a graded manifold M . In particular, there still exists an element

R∇ ∈ Ω1(M,TM ⊗ ŜT ∗M) with the property that DG = dM +R∇ is a flat connection on ŜT ∗M ,
namely

(123) R∇ = −δ + Γ +A∇,

where in local coordinates xi on M and corresponding coordinates yi on TM we have (see [28, 44])

δ = dxi
∂

∂yi
,(124)

Γ = −dxiΓk
ij(x)y

j ∂

∂yk
,(125)

A∇ = dxi
∑

|J |≥2

Ak
i,J(x)y

J ∂

∂yk
.(126)
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Here Γk
ij are the Christoffel symbols of ∇. We define Ri ∈ Γ(M, ŜT ∗M ⊗ TM) and Y k

i ∈

Γ(M, ŜT ∗M) by

(127) R∇ = Ri(x; y)dx
i = Y k

i (x; y)dx
i ∂

∂yk
.

DG extends to a differential on Ω•(M, ŜT ∗M). The “Taylor expansion” of a function f ∈ C∞(M)
can be defined as ([44])

(128) Tϕ∗f :=
∑

I

1

I!
yI pbw

(
∂Ix←−

)
(f)

where
∂Ix←−

= ∂x1 ⊙ · · · ⊙ ∂x1︸ ︷︷ ︸
i1

⊙ · · · ⊙ ∂xn ⊙ · · · ⊙ ∂xn︸ ︷︷ ︸
in

.

One can prove that (128) still has the same properties, namely, the image of Tϕ∗ consists precisely

of the DG-closed sections of ŜT ∗M .
One can describe how the formal exponential map varies under the choice of connection mimicking
the construction for the smooth case described in B.5. Namely, assume we have a smooth family

∇t of connections on TM , then we can associate to that family a connection ∇̃ on M × I. The

corresponding R∇̃ still can be split as

R∇̃ = R∇t
+ C∇t

dt+ T

as in subsection B.5, where C ∈ Γ(M, ŜT ∗M). The fact that (DG)
2 = 0 translates into the same

equations as before, namely, we have

(129) ˙R∇t = dMR
∇t

+
[
C∇t

, R∇t
]

and for any section σ in the image of Tϕ∗ we have

(130) σ̇ = −LC∇tσ.
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