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Abstract

We investigate the asymptotic behavior of the nodal lines for random spherical
harmonics restricted to shrinking domains, in the 2-dimensional case: e.g., the length
of the zero set Z;,, = ZP(T}) = len({xz € S> N B,, : Ty(z) = 0}), where B,,
is the spherical cap of radius r,. We show that the variance of the nodal length is
logarithmic in the high energy limit; moreover, it is asymptotically fully equivalent,
in the L?-sense, to the “local sample trispectrum”, namely, the integral on the ball of
the fourth-order Hermite polynomial. This result extends and generalizes some recent
findings for the full spherical case. As a consequence a Central Limit Theorem is
established.
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1 Introduction and Background

Let us consider the spherical Laplacian Ag2, defined as usual by
1 0 0 1 0

Aco = ———< sinf— - =

%7 sin6 00 { S50 } * sin? 0 0%

and {Ty(z),z € S?}, satisfying AgaTy(x)+£({+1)T,(x) = 0, the centred isotropic Gaussian
random spherical harmonics with covariance function given by

E[Ty(z)Ti(y)] = Pe(cosd(z,y)),

being P, the Legendre polynomial and d(x,y) the spherical geodesic distance between x
and y, d(z,y) = arccos({z,y)). As usual, the nodal set of T} is given by T, }(0) = {z €
S%: Ty(x) = 0} and we denote its volume by

Z(Ty) =len({z € 8% : Ty(x) = 0}); (1.1)
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the analysis of these domains has been considered by many authors, see e.g. [13], [34], [35],
[14], [8], [9]. As a consequence of the general Yau’s conjecture ([34], [35]) for eigenfunctions
on compact manifolds (proved in [14] for real analytic metrics and by [17], [16] and [I8]
for the smooth case) we know that, in the high energy limit, the length of the nodal set is
bounded by

eV O+ 1) < len(T, 1(0)) < ea/E(L + 1),

where c1, co > 0. In the case of Gaussian random eigenfunctions, some sharper probabilis-
tic bounds can be given. The asymptotic behavior of the expected value was given in [4];
for any dimension m,m > 2, they obtained

E[Z(Ty)"] = cm VAL +m — 1),

m/2
where ¢, = %{%) (see also [22] and [33]). As far as the variance is concerned, [22]
gave an upper bound which was later improved in [33] and [32], where it was computed
to be 1
Var(Z(Ty)) = o) log ¢ + O(1) (1.2)

as ¢ — oo. As a consequence, the variance of the nodal length Z(7}) has smaller order
O(log¥), in the high energy limit, with respect to the variance of boundary length at
thresholds different from zero, which has been shown to be O(¢) (see for instance [27]).
This phenomenon is known as “Berry’s cancellation” ([5]); it is known to occur on the
torus ([I5]) and on other geometric functionals of random eigenfunctions, see e.g., [11],
[12], [I0]. More precisely, as far as the torus is concerned, [29] and [I5] studied the
volume of the nodal line (denoted with £;) of random eigenfunctions (“arithmetic random
waves”) T2 = R?/Z?. The expected length was evaluated with the Kac-Rice formula in
[29] (Proposition 4.1),

ElL,] = 2—\1/5\/4#6,

and the asymptotic behavior of the variance was established in [15]; it holds that

470 1
Var(ﬁg) = Cyp - Tg <1 + O(J\/_Z 1/2>>7

where Ny is the number of lattice points lying on the radius-v// circle ([I5]) and ¢ is the
leading coefficient, depending on the distribution of the lattice points on the circle. Hence,
as mentioned before, the “Berry’s cancellation” phenomenon ([5]) takes place also for the
toral nodal length. The distribution of £, was investigated in [19], where the authors
established a nonCentral Limit Theorem. See also [28] for nodal intersections, [9] for the
number of nodal domains. Berry’s random planar wave model was also considered (see
[24]), both in the real and complex case.

A general interpretation of these results can be given quickly as follows (see [19], [20],
[26] for more discussions and details). The nodal length £y of random eigenfunctions can



be expanded, in the L?—sense, in terms of its ¢g-th order chaotic components, to obtain
the orthogonal expansion:

Lo— E[L] =) Proj[L|Cy],
q=1

Proj[L|Cy] denoting the projection on the g—component (see the supplement article
[31], Section A.1). It can be shown that, in the case of functionals evaluated on the full
sphere or torus, the projection on the first component vanishes identically; in the nodal
case, Proj|L|Cs] vanishes as well, and the whole series is dominated simply by the term
Proj[L¢|Cy), e.g., the so-called fourth-order chaos, which has indeed logarithmic variance.
More explicitly, the variance of this single term is asymptotically equivalent to the variance
of the full series, and its asymptotic distribution (Gaussian in the spherical case, nonGaus-
sian for the torus, see [29]) gives also the limiting behavior of the nodal fluctuations. It
should also be noted that, in the case of the sphere, Proj[Ly|Cy] takes a very simple form,
because it is proportional to the so-called sample trispectrum of Ty, [¢» Hy(Ty(z)) dz (be-
ing H; the j—th Hermite polynomial): this is to some extent unexpected, because the
fourth-order chaotic term should in general be given by a complicated linear combination
of polynomials involving also the gradient of the eigenfunctions (see the supplement ar-
ticle [31], Section A.1.1), as it happens for arithmetic random waves on the torus, see [19]).

A natural question at this stage is to investigate what happens on subdomains of the
sphere or other manifolds (see for example [3] for arithmetic random waves). The nodal
volume inside a “nice” domain F C S? of the sphere, is defined as

ZE(T)) :=1en({T; = 0} N F). (1.3)

In [32], to address this issue the so-called linear statistics of the nodal set are introduced;
more precisely, let ¢ : S2 — R be a smooth function, and define the random variable
Z¥(Ty) as

Z9(Ty) = /T_l((]) o(z) dlenTl—l(O)(x). (1.4)
4

Apparently this definition is well-posed only for continuous test function ¢ € C(S?); nev-

ertheless, it was shown in [32] that bounded variation functions BV (S?) can be considered:

indeed, it is possible to prove that, for ¢ € BV (S?) N L>(S?) a not identically vanishing

function, as £ — oo, the variance satisfies

||80||%2(52) _

Var(Z2¥(Ty)) = 198,

log ¢ + O,(1). (1.5)
These results allow to cover indicator functions, indeed (L3)) is equal to (L4) for p(z) =
1p(z), e.g. Z9(Ty) =len({x € S? N F : Ty(x) = 0}).

As a consequence of (L)), for F C S? a submanifold of the sphere with C? boundary,
and |F| denotes its area, it was proved in [32] that, as £ — oo, the variance of (3] is



given by:

F
Var(2F(Ty)) = % log £ + Op(1),

e.g., logarithmic behavior occurs also in subdomains.

As far as the torus is concerned, the nodal length of arithmetic random waves restricted
to shrinking balls (denoted with L, ,,, where r; is the radius of the ball) was investigated
in [3] under the condition r, > £~%/2. The mean was easily obtained by means of Kac-Rice
formula ([1], [2])

1
ElLe,,] = ﬁ(ﬂr?) - VA4r2g,

whereas the variance was shown to be proportional to the variance of the toral nodal

length, e.g.,
A2l 1
Var(Ley,) =co - (777"%)2 . TZQ <1 + O<./\/'T/2>>.

More surprisingly, it was shown that asymptotically the local and global nodal lengths
are fully correlated. This result entails also that, up to a scaling factor, the same limiting
nonGaussian distribution holds in both cases.

2 Main Results

In this paper, we investigate the behavior of the nodal length for random spherical har-
monics evaluated in a shrinking ball on the sphere. Without loss of generality, we consider
spherical caps centered in the North Pole N. We prove that the nodal length is still
dominated by a single term, corresponding to the fourth chaotic projection; moreover,
this term can be written as a local form of the sample trispectrum, and its asymptotic
variance is logarithmic (e.g., O(r?log(rs¢))). Contrary to the case of the torus, however,
full correlation does not hold between nodal and global statistics. “Berry’s cancellation”
phenomenon takes place in this framework as well, and indeed the first and second order
chaotic components are still of lower order with respect to the leading term, although not
identically equal to zero as in the full spherical case.

Here and in the rest of the paper we will always denote with B,, C S? a shrinking
spherical cap of radius ry, with r, — 0, as £ — oo, centered in N such that

rel — 00 (2.1)

as ¢ — oo (meaning that the support is not shrinking too rapidly). Indeed, the average
length on the disc of radius r; is r%f < r¢l; hence, if condition (2.1J) is not satisfied, we
cannot expect any asymptotic result to observe. We denote the nodal length in these
domains by

24y, = 2ZP(T)) =len({z € SN B,, : Ty(z) = 0}). (2.2)



From the Kac-Rice formula ([I], [2]), it is easy to see that

(e+1) B

E[ZZJ‘Z] = 2 2

Note that, since the area of a spherical cap B, of radius r; is given by |B,,| = 2m(1—cos1y),

we have that
0+1
EZ,,] = %w(l — COSTYy).
Now let ¢, : S? — R, V£, be the indicator function ¢y(x) = 1 B,,(2); our first non-trivial
result concerns the asymptotic variance is the following.
Theorem 2.1. Let Zy,, be the nodal length defined in (Z2), then its variance, as { — oo,
s given by

1
Var(2y,,) = 56 r? log(ref) + O(r?). (2.3)

The next result is the following Central Limit Theorem.
Theorem 2.2. Let Z;,, defined in (2.3), then, as £ — oo, we have that

ngre - E[Zfﬂ"e] —
Var(Zy,,)

where —4 denote the convergence in distribution and Z ~ N(0,1).

Theorem follows by exploiting Theorem 5.2.6 in [23] to the fourth chaotic compo-
nent, after lengthy computations of the fourth cumulant (which is, for Y a centred random
variable, cumy(Y) = EY* — 3(EY?)?2) of this chaotic projection.

2.1 Comparison with the 2-dimensional Torus

Although the differences and the similarities of the results obtained for the torus and for
the sphere have already been discussed, we make them clearer in this subsection.

e In contrast to the torus, where a full correlation between the nodal length in shrinking
domains and the one in the total manifold has been proved (see [3]), in the sphere
the following proposition holds.

Proposition 2.3. Let Z;,, be defined in (2.2) and Z(T}) in (11), the correlation
between Zy,, and Z(1y), as { — oo, is given by

log ¢
Corr(Z,,; Z(Ty)) = O(’I“M / Tog T€€> = o(1).




Proposition 2.3] entails on the contrary that the correlation between the “local” and
“global” nodal length is zero, in the high frequency limit. The discrepancy between
these two results can be heuristically explained as follows: in the case of the torus,
local integrals for products of four eigenfunctions have the same form, whatever
the centre of the disc on which they are computed (see [3]). This is not the case
when integral of the products of four spherical harmonics is computed on a disc; this
integral has different values depending on the centre of the disc and because of this
full correlation cannot be expected.

e In the case of the torus, the full correlation result allows to establish immediately
the (nonCentral) Limit Theorem for the nodal length in the shrinking set; indeed,
the “local” limiting distribution is the same as the “global” one, up to a different
scaling constant. On the contrary, to establish a (Central) Limit Theorem for the
spherical cap, a different proof is required; indeed we need to apply Theorem 5.2.6
in [23] and hence to compute the fourth cumulant of the leading chaos projection of
the nodal length. In passing we stress that the limiting in distribution is Gaussian
in the present framework, while it is a linear combinations of Chi-square random
variables in the torus.

e In both the manifolds and their subregions, the fourth chaotic component is the
leading term of the chaos expansion of the nodal length and the “Berry’s cancella-
tion” phenomenon occurs. However, only in the sphere and in its subdomains, the
dominant component is asymptotic to the sample trispectrum, e.g. it has a much
simpler form as the integral of the fourth Hermite polynomial, computed only on
the eigenfunctions themselves.

2.2 Plan of the paper

In Section [ we explain the basic ideas for proving the main results of the paper; while the
main tools to succeed in our computations are introduced in Section [ where an auxiliary
function and its properties and the construction of a smooth approximation of the indicator
function are discussed. Chapter [l is splitted in two subsections; [B.1] contains the proof
of the asymptotic behavior of the variance and proves the Central Limit Theorem.
In Section [@ the correlation between “local” and “global” nodal length is computed and
finally Section [7] collects some technical tools exploited in the computations.

2.3 Some conventions

Given a set F' C S?, we denote its area by |F| and for a smooth curve C' C S2, len(C) its
length. We will use A < B and A = O(B) in the same way. O, means that the constants
involved depend on the function ¢ and they stay bounded when ¢ stays bounded.



3 On the proof of the main results

In this section we give the guideline of the proof of the main results. In the full sphere, it
is possible to write the second moment as

E[(Z2(Ty))?] = /SQXSQ Ky(z,y) dedy (3.1)

(see [6] Theorem 2.2, [7] Theorem 4.3, [33] Proposition 3.3), where Ky(z,y) = Ky(d(z,y))
is the two-point correlation function (see Section [7]), and the symmetry of the domain
implies that, changing coordinates, ([B.I]) yields

EIE(T)P) = 87° [ RKalp)sinpdp

which allows to handle the computations and to establish the asymptotic behavior of the
variance. Focussing instead on a subdomain, the lack of this symmetry prevents this
change of coordinates. However, using ([.4]) and the same argument as in [32] (Proof of
Theorem 1.4), it can be shown that for any function ¢ : S — R in C1(S?), we have that

PUEAT)P) = [ ela)e)Rila.y) dudy

Now, introducing an auxiliary function W% : [0, 7] — R (see also [32]), defined as

1

W*#(p) := 2

/ o(@)oly) dedy oy € 57, (3.2)
d(:v,y):p
and employing Fubini, we get that

El(2°(Ty))?] = 82 /0 Ro(p)W*(p) dp

with Ky(p) = Ky(z,y), 2,y € S? being any pair of points with d(z,y) = p. The crucial
observation is that the case of a spherical cap can be cast in this framework, simply taking
¢ = 1p,,, which is a function in BV (S?) N L>(S?), VL.

More precisely, the key role in the proof of Theorem 2.1] will be played by a sequence of
auxiliary functions, W%¢ : [0, 2ry] — R, defined as

1
W (p) = g o) eo(x)pe(y)dedy =,y € S%; (3.3)
z,y)=p

and using a density argument and approximating 1 B, with C! functions <p2, the second
moment could be written as

21y

E[(29(Ty))?] = 8n° i Ki(p)W¥(p) dp.



Note that (3.3) is not zero if and only if the variables x,y are inside the spherical cap B,,,
hence the maximum distance allowed between two points to make ([B.3]) different from zero
is p = 2ry. For ¢y = 1p,, and for z,y € B, B3) can be written also as

1
Wolp) = gz [ lenly € B, s d(o.y) = p} da.

872
L

Then, if we fix  “far” from the boundary, the integrand will be given by len{y € B,, :
d(xz,y) = p} = 27 sin p; note that, however, W¥¢ depends on the position of z. Moreover,
for decreasing sequence r, a tangent plane approximation can be shown to hold, whence,
we can also define the function W, : [0,2r¢] — R as

- 1 ~ ~
W, (p) = = Go(z)Ge(y)dady  x,y € R?, (3.4)
87 Ja(z.u)=p
where @y is given by the composition ¢, o exp and exp is the exponential map. Note that
W, is nonzero if z,y € B,,, which is the disc contained in R? of radius ry and centered in
the origin of the axes. In order to scale the support of ¢, from B,, in By, we define also

-~ 1 1 - -
Wi (p—) = W/ Go(rex)Ge(rey) dedy  x,y € R>. (3.5)
Te T Jd(z,y)

—£
e

Denoting W, (p) = W' (p) (e.g. @p = 1p,,), it is easy to check the validity of the
asymptotic relation below:

~ 1
W) =it (o) (1 O(2)) (36)
as r¢ — 0 uniformly in p (see Lemma B.3 in the supplement article [31]).

Hence, as we said before, in order to prove Theorem 1] we want to apply a standard
approximation argument; approximating the characteristic function 1 By, with a sequence
of C function for which we can apply the following Proposition .1

P;‘opositipn 3.1. Lgt ©h be a sequence of C1 functions satisfying @) and let define
Pi(x) = @i(rew) = @b oexp(rex). Then, as £ — oo, the variance Var(Z¥:(Ty)) is given by
H‘ﬁﬁ”iz(gl)

Var(291(Ty)) = —5

17 10g(rel) + Oy 5 10 v (g (1) (3.7)
denoting V() the total variation of a test function .

The computations of the variance in Proposition [3.1] will follow from the analysis of
the integral of the two-point correlation function and W%; the main contribution will
actually be given from points far from the diagonal z = y.

To take the limit in (3.7) and obtain the result in Theorem 2.1}, we need to check that if ¢}



approximates 1p, , as i — 0o, the corresponding statement holds for the random variables

Z“"z, Zyr, and their variance. It is easy to see that, if ' — ¢ in L'(S?), then for every
fixed ¢, we also have _
E[Z27(Ty)] — E[Z7(T1)); (3.8)

indeed, it follows from the expected value of a linear statistic,

_ fsz ‘P(x) dx

B29(1)) =~ 55

(+1) (3.9)

([32] Proposition 1.4, starting from (121)). We will see that the analogous result holds for
the variance in view of Proposition

Proposition 3.2. We have that, as ¢ — oo,
B[2%(Ty)?) = O(ril| &1 1,16 oo)-

Another question is that, when applying Proposition [3.1] for gp@, one needs to control
the error term in (7)) (which may a priori depend on ¢}). Since we manage to control
it in terms of its L® norm and total variation, we can solve this issue requiring ¢} to be
essentially uniformly bounded and having uniformly bounded total variation.

The next step will be the derivation of the Central Limit Theorem, stated in Theorem
To this aim, we will start following a similar argument as in [20]; more precisely we define
first the sequence of centered random variables (“local sample trispectrum”)

1 [e(t+1)1 1 [e(e+1)1
=—- — H,(T, der = —— —hy 1
M&W 4 ) 4! /BTZ 4( f(x)) €z 4 9 4! £,r;4 (3 0)

where for £ =1,2,...,

hg,”;4 = L H4(Tg(1‘))d1‘ (311)

The key idea is to prove the asymptotic full correlation between the “local” nodal length
and the “local sample trispectrum”:

Proposition 3.3. The correlation between Z;,, and My,,, in the high energy limit £ —
00, 15 given by

Corr(Zp,,; Myy,) =14+ O( ) =1+o0(1). (3.12)

log rpl
This result requires the evaluation of the variance of My,,.
Proposition 3.4. The variance of My, is, as { — oo, given by

1
Var[My,,| = %r% log rol + O(r%).



The strategy of the proof is the same as for the variance of Zy ,,; hence, for gp@ a sequence
of C! functions satisfying (&I]), we define the sequence of centered random variables

wtim - [ AED L Gl dy (3.13)

and we prove the following propositions.

Proposition 3.5. The variance of MPe, as £ — oo, is given by
SOi ||¢£||i2(§1) 9 2
Var[./\/( Z] = WTZ 10g 7”[6 + OH@EHOWV(@z) (7"@). (314)

Proposition 3.6. We have that, as { — oo,

BIMA(TY] = Ot og(rst) Gl il s, )

In view of the orthogonality of the projections, the result in (812]) implies that the
fourth chaotic component is the leading term of the chaos expansion of Z,,, and hence it
is sufficient to study its asymptotic behavior. In particular, exploiting the Stein-Malliavin
approach (see [23]), it is enough to focus on the behavior of their fourth order cumulant
([23], Theorem 5.2.7). Here, it is important to note that our argument is quite differ-
ent from the proof given by [20]; in particular, in the full sphere the behavior of the
fourth-order cumulant was already established by means of Clebsch-Gordan coefficients:
the latter cannot be used here due to the lack of analogous explicit results on subdomains.
Hence, we derive efficient bounds by a careful exploitation of Hilb’s asymptotics for powers
of Legendre polynomials.

From now on we will denote with B, C 52 the ball of radius r, 0 < r < 7 centered
in N and with B, the disc of radius r in R2.

4 Auxiliary functions

In this section we introduce the auxiliary functions, announced in Section B involved into
the proofs of our main results.

The indicator function 1p,, belongs to the space BV (5?)N L>*(S?); to make some compu-
tations easier, it is more convenient to deal with continuously differentiable functions. In
order to control the error term of the variance for the approximating functions (and thus
pass to the limit), it is sufficient that go% is uniformly bounded and with uniformly bounded
variation (see [32]) and to prove that the same conditions still hold for @}, obtained through
the exponential map. In [32] the existence of such a sequence was established. Denoting
with V(p) the total variation of a test function ¢, let consider {¢}}; a sequence of C*
functions such that, as £ — 400,

b — 1p,, in LY(S?),
V(ph) — V(lg,,) and (4.1)

1eblloo < 1115, lloc-

10



Our goal is to check whether analogous conditions still hold for gbé 902 o exp, defined on
R?. To simplify the notation we set @j(z) := cpg(rgx) z € R% Note that, since ¢} has
support on S2, which is compact, it follows that ¢, has compact support in B;. Hence, it
is easy to prove the validity of the lemma below.

Lemma 4.1. Let ¢i(z) := @y(rex),x € R?, where §5 = ¢, o exp and {pi}; a sequence
which satisfies ([{-1)). Then, @} : R?> — R are continuously differentiable functions such
that, as i — oo,

@y — 15, in L'(R?)
V(gy) = V(lg,) (4.2)
1el oo < (115, loo-

Now, let ¢y : S? — R be the indicator function 1p,,, V¢. We denote W, (+) the function
defined in (B:3) with this choice of ¢, and Wi(-) the one in (335).

Lemma 4.2. Let us consider the sequence @} satisfying (7.1)), W“’f’(-) and W@;’(-) defined
as (33) and (31), respectively; then

W¥i(p) = wHwHLz B0 T Olgillevign (010 + O] 725,  (43)

and

W (p) = O(pr?||il|%)- (4.4)

Proof. As already stated in Section [], it is quite simple, and it can be found in the sup-
plemental article [31], Lemma B.3, to establish the asymptotic geometric relation between
W;, and W1, given in (3.8). If we consider the sequence @y satisfying (4.1)), W‘pe( ) and
W (- -) defined as (8.3) and (B.5), respectively, it is easy to see that (3.6]) holds for Wi
and W“’f namely, as £ — oo,

Wk (p) = 13 Wi <P%><1 +0(p?), (4.5)

uniformly for p € [0, 2] (for the proof see the supplement article [31], Section B.3, Corol-
lary B.4). ’
We can also get further informations on W%, e.g., using polar coordinates with centre x,

for each z € R?, (e.g. v = (y1,¥2) — (¢,¢) with ¢ = p and ¢ = arctan Z?:—ﬁ) we write

1

2T
»t QN i p ~i =i .
W*(p) = 7= / Po(x)pp(y) dedy = —— / Gu(z) / Doz (pcos g, psin @) dp dx
87 Jaay)=p 87 J g2 0

for a suitable defined function gb%w : R? — {0, 1}. Defining
~ @'L . 2m .
W)= [ @@ [ Galpeospsing) dods. (46)

11



we have that

Wi(p) = L5 o™ (p) (4.7)
T
Note that WSZ’E (p) is bounded by
W5 * (0)] < 2| GlloclIBbl1 1 3, < 271 B0l 12 (4.8)

and in zero, it is equal to

Wo™ (0) = 27134117 5, - (4.9)
Moreover, it can be seen that the derivative of Wg) “(p) is uniformly bounded by
W5 ()| < 27|l oV (&)); (4.10)

indeed, exchanging the order of the derivative and the integral, we obtain

0 - i /
apWO ( )‘ = Jre
< 27T/B e @IV G ()] dv = 27| G |oc V (0)-
1

2
oy(x) 8—@%(p cos ¢, psin ¢) do| dx
0 P

Then, in view of (£9) and the continuous differentiability of WS‘B ‘ (p), the Mean Value
Theorem implies that, as p — 0,

W (p) = 27184725,y + Ol vigi) (P)- (4.11)

Now, putting (A7) in (£35]) we can state that, as £ — oo,

W% (p) = = . W <m> (1+0(p%), (4.12)
with p € [0,7].
Finally, replacing ([@II]) in ([AI2]), we obtain (£3) and then thanks also to (43]), (IZZI)
follows.

From now on {¢}}; will denote a sequence satisfying (@I]) and {¢5}; the one satisfying
@2).
5 Proof of the main results

5.1 Proof of Theorem [2.1] (Asymptotics for the variance)

As we have already mentioned, we apply an approximation argument; hence assuming the
validity of Proposition [3.1] and Proposition we prove Theorem 2.1

12



Proof of Theorem [21] assuming Proposition [31] and Proposition . Let go% € C* be a
sequence of smooth functions satisfying (1) and let @/, defined as in Lemma [ lsatisfying
([£2). Proposition 31 states that

H‘ﬁz”i%];l)

Var(Z¥:(Ty)) = ST 17 10g(rel) + Oy 5011 g (17); (5.1)

since @) and 1 5, are uniformly bounded, L'(R?)-convergence implies L?(R?)-convergence,
||85é||L2(R2) — |11 5,1lL2(r2) = /7 and it remains to prove that

Var[Z294(T)] — Var[Z4,,].

To take the limit we need to show that the distribution of Z%¢ depends continuously on
@y- Indeed, by linearity of Z¥ on ¢, we have that

B(Z91(Ty) — Z¢5,)%] = BI(Z77 177 )?)
and applying Proposition to the difference ¢, — 1 B,,» We get that
i_l o .
B[(Z77 %)) = O(ri 1@y — 1, | 1 I — L, 1le) = 0,
as ¢ — 00, hence
| Var[294(Ty)] — Var[Zy,,]| = |E(Z%4(T2))* = (Ze,,))] + (BI294(T0)))* — (B[Z0,,))?]-

The second summand goes to zero for ([8.9]), whereas for the first summand we have that

VAN
s
®
s
S
|
N
N
S
+
N
=
m
s
S
N
5
N
N
S

(5.2)

which goes to zero for Proposition Hence, taking the limit, as i — oo, in (5.1]) we
obtain the thesis of Theorem 2.1 O

Before proving Proposition[3.Iland Proposition 3.2l we introduce the 2-point correlation
function Ky(z,y) = Ky(d(x,y)), defined as

. 1
Ky(z,y) = N Pg(gg’y)QE[IIVTz(fv)ll ANV (W) Te(2) = Te(y) = 0]

(see [32]). The following result is proved in [32], Proposition 3.5.
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Proposition 5.1. For any choice of C' > 0, as £ — oo, we have

% 1 1 sin(2y) 1 1 9  cos(2¢)
) = 27l Sln(¢/L) 256 720 sin(i/)/L)i/) 32 w0y sin(vp/L) (5.3)
2z s1n(21/1) 2 cos(41)) 0 N 1 .
w2 sin(y /L) 1,113 4]
uniformly for C' < 1 < %, where f{g(%) z(K—H)Kg(?/)).
It is also known that, for 0 < ¢ < C, we may bound ([32], equation (98))
K| =o(3). (5.

Proof of Proposition [31l In [32] (Proof of Theorem 1.4), it is shown that for functions in
C1(S?), it is possible to write

PUEAM = [ | l@eiwRita,y) dedy (5.5)

Employing Fubini, we get

) 2rp )
PUEAT)] =37 [ Rl )W) do (5.6)

with K;(p) = K¢(z,y), =,y € S? being any pair of points with d(x,y) = p. Indeed, we
change coordinates in (5.5]), centering x and parameterizing y in terms of (I,6), where
l = d(x,y) € [0,2ry] is the distance between = and y and 6 € [0,27]. The norm of the
Jacobian of this change of coordintaes is 1, since every transformation in the sphere can
be seen as a rotation; then, applying Fubini and doing the same change of coordinates in
the definition of W¥¢ (this time [ is fixed inside the integral to be p) it is seen the validity
of equation (B5.6]). Now, denoting L = ¢ + %, changing the coordinates p = %, and writing
872 as 27|S?|, we have that

2 2 27.‘.’52‘ ZrZL 5 ; w ‘
E[(29(T)) / < >wso (z) m

setting K (%) €(€+1)Kg(1f)), we obtain that

) T 2 2roL ;
Bz @ =" e [ ko () av.

Moreover, from (3.9) it follows that

iz = T [ ) dady

14



and applying Fubini and changing cordinates as above we obtain

i €(€ + 1) 2reL i [
® 2 _ 2 e [ 2
Blam)f = amst [ we (L) aw,
from which we conclude that
i 2lee+1) [Fred 1 i
Var[Z9:(T})] = %/ <K4(1,Z)) — Z) Wt (%) dip. (5.7)
0

Splitting the interval of the integral in [0, 1] and [1,2r;L], we have that

i 2 1 ! 1 i
Var[(Z¥¢(1Ty))] = M/ (Kg(w) — _> W¢e <f> dip
L o 4 L
m|S2e(L + 1) [k 1\ i (0
 IEEED [T (o) - 1) wet (1) aw
and in view of (5.4]) and (Z4) the first integral in (5.8)) is equal to
T S2ee+1) 5 [
On@;zoo( 72 W/O

The second integral in the right hand side of (5.8)) is, exploiting (£.3)), given by

T S?| P43, 5 L +1)  p2reL 1
(B1) 2 1
y i (sz) 4) v+

1 1
v g'wdﬂ)) = Oy (7).

~~

@
0(0+1 2rel 1
+ Osaloo,vm)( ( )W/l <K€W)) - 1) 4 d¢> * (5.9)

N~

(®)
E E 1 27'[[/ 1
+ 0154l <%T?/l <Ke(7/)) - Z) ¥ d¢> :

(©)

Thanks to Corollary [T.5] equation (7)), integral (a) is given by

H ZHLQ B
(a) =~z 7 log rel + O(17).

In view of Lemma [T} the error term in (b) is

(6) = O3 1wV (50) (7(27%— 1)> = Ojigiloe,viep) (1)- (5.10)

15



Regarding (c), similar computations lead to (¢) = O(%((2ref)? — 1)) = OH%HM(T?) and

then, we can conclude that the variance of Z¥:(Ty) is

[

Var[Z‘pz (Tg)] = WT@ log(rﬂ) + OIISOZHoo,V(%)(T?)
O
Proof of Proposition[3.2. As we did in the proof of Proposition 3.1l we write
E[(Z9:(T0))*] = Ko(z, )0 ()¢ (y) drdy
S52x .52 (5 11)
SPe(e+1) et '
L 0 L

Splitting the integral, in [1,2r4¢], thanks to Lemma [T K/,(¢)) is bounded by a constant
so that |K;(¢)] = Oc(1); whereas in [0, 1], we exploit (5.4). Hence, using (£3]), we get

2rL 2
L A i 00| < s [ oo < Ll 5,
(5.12)
and
1
A 1<< [ 16122 5,0 (5.13)
which is dominated by (5.12]) and the thesis follows. O

5.2 Proof of Theorem (Central Limit Theorem)

We split this section in more subsections to make our argument clearer. Firstly, in 5271
we show that the nodal length and the integral of Hy(7y(z)) in the shrinking spherical
cap are fully correlated; secondly, in we compute the fourth cumulant of the “local”
sample trispectrum in order to apply the Fourth Moment Theorem ([23], Theorem 5.2.6)
and to conclude the proof of the Central Limit Theorem in [5.2.3]

5.2.1 Correlation between Z,,, and M,,, (Proof of Proposition [3.3])

Here we show the asymptotic equivalence (in the L?(£2)-sense) of the nodal length Z,,
and the trispectrum [ Hy(Ty(z)) dz. In [20], the case of the full sphere was considered
¢

and it was established that, as £ — +o0,

1
Corr(Z(Ty); Me) =1+ O<10gf>’

where M, is the integral of Hy(Ty(z)) on S%. In decreasing domains the full correlation

still holds. Let us define the sequence of centered random variables My, as in (3.10). To
prove Proposition [3.3] we shall need Proposition [3.4] and the lemma below.

16



Lemma 5.2. The covariance between Zy,, and My,,, as { — oo, is given by

Cov(Z¢r,; Miy,) = rg log 7p¢ + O(rg) (5.14)

256

Putting together Lemma [(.2] Proposition B.4] and Theorem 211 Proposition B3] is
easily proved:

COI‘I‘(Z&W; _/\/(Z’”) — COV( K,T’[aM&T’g) -1 <

\/Var(Zg,,) Var(Mg,, ) log We).

Hence, we need to prove Lemma and Proposition 3.4l In order to do that we define
the 2-point cross correlation function Jp(1),4). We shall write z = (0,0) for the North
Pole and y(0) = (0, 6) for the points on the meridian where ¢ = 0. Then,

(f+1)1

Jz<w;4>=[—i v on (o (o(2))] 6w

(see the supplement article [31], Section A.1, for the definition of W,(z,4) and see also
[20]). The following result is proved in [20], Proposition 3.1.

Proposition 5.3. For any constant C' > 0, uniformly over £ we have, for 0 < ¢ < C,

Jr=0(0), (5.16)
and, for C <1 < L3,
1 1 5 cos4y 3 sin(2¢) 1
”Wg‘awwww»+@wmwwf7&mmwm*Oﬁwmwmﬁ —
| .
+0 (o)
Proof of Lemma[22. In the supplement article [31], Lemma B.2, we show that
21l ; w
Cov (2t Ma) = i [ vy () a
11— 00 0

where J;(1;4) is the two point cross-correlation function defined in (5I5). Then, to
compute this integral we split it in:

2ryL

L —/ Te(,4 W“O“(w) dp  and Iz := Te(¥, )WW<¢> dp;

1

exploiting ([4.4)) it follows that
n= [ awawd (L) a <L [awopidie 619

17



and thanks to (5.16), we have,

2 1
I < f/o 180115 db = Oy (1),

as { — oo. Regarding I, equation (4.3]) implies

~il12 7,.3 27"@[/ QT[L ¢2
I :||¢£||L2(Bl)4ﬂ'—L . ~7£(¢,4)¢d¢+0¢;w,v(¢;})< . Je(,4)re dlD) 510)
5.19

QT[L 21/}3
+O¢;||oo< . ﬂ(¢,4)re§dw>;

thanks to Lemma [[2] it is easy to see that the second and the third terms of (5.19) are,
respectively, given by
r 21l
05 [ = Poy(¥) dip ) = Oy 2y (12)
[1@¢l100,V (27) L J 2 [18)]]00, V(p)\" €/

and

2 QTMP 1/} 2
Olgil1oo (2—5/1 Z,(a Ly d¢> = Oligilee <%(2W— UZ) = O (rd):

where P5(1)) is defined in (7.4]). Finally, (Z.6]) applied to the first term of (5.19) leads to

||¢ZZ||%I2(351) 2 2
IQ = WTZ 10g(27“gL) + O(T[)
and hence the conclusion of the lemma follows. O

Proposition 3.4] is easily seen as a corollary of Proposition and Proposition as
follows.

Proof of Proposition assuming Proposition and Proposition . Let M¥t defined
as in (B.I3)); since M¥ is linear in ¢, we have that

E[(M#t — My,,)%) = E[(M7 15 )?)

and applying Proposition to the function @2 —1g,, and doing similar computations we
did in (5.2]), we get

| Var(M#h) — Var(My,,)| < |E(M 20 2| + 2] B(M#: — My, )2 E[ME,,1Y2|+

(EIM#])? — (E[Mq,,)?

which goes to zero, as i — oo, by the L' convergence of go% and Proposition Then,
taking the limit in Proposition B.5] the thesis follows. O

18



Let us now prove Proposition and Proposition We recall that Py is the covari-
ance function of Ty and the following expansion for FPy(cos %)4 is given in [32], Lemma 3.9:
for £ > 1 and any constant C > 0, C' < ¢ < wL/2,

3 — 2sin(2¢) — & cos(4e)) 1
4 _ 2 2
PK(COS(¢/L)) 7'(262 Sln(w/L)Q +O<E> (520)
Recall also that, for 0 < ¢ < %, as £ — oo,
Py(cos %)‘ =0 <ﬁ>, (5.21)

(see (L), see also [32]).

Proof of Proposition [3.5 The idea of the proof is quite similar to the one in Proposition
B.I actually, we write the variance of M¥¢ as

Var(MW = [ i\/ (1) 4,/ x) Hy (To( ))d$]
+1) i
S

T 16 2 %E[/ o(2)Hy(Ty(x)) do (y)H4(Tz(y))dy} =
B R TR

16 2 412 Jo,q 4\2e 4Le(y))]pe(x) ey Yy
RYADE

A4l P, Lol (2) b (y) dod
Gt [ Pl el dody,

where in the last passage we exploited property (A.1) of the supplement article [31].
Employing Fubini, (5.:22]) is equal to

10e+1)1
16 2

2ry )
1 —8m /0 Py(cos p) W (p) dp. (5.23)
Changing variable p = % and splitting the integral, (5.23)) is equal to
sT2l(l+1)1 (! AN,
o - | p v i (¥
16 2L 4!/0’5COSL W) v
82 U0+ 1)1 [l P\ (Y

In view of (£4]), the first integral in (5.24]) is

1
0150 (/0 P, <cos f) or? d1/1> (5.25)

we bound |Py(z)| with 1 and then we obtain that (B.25)) is OH@@IIOO(T!%)' To compute the
second integral in (5.24]), we exploit (£3]) to get

(5.24)
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1e(+1)1_ 5 r2 [k AR
2 AE D Lor L47T/1 Py (eos Y ) YlgiRas, d

~~

(i

Loe+1) 1 grp [2red AN
+ Ol v (2)) (E oL a2 ) Telesg w dw (5.26)
(i)
16(+1) 1 r2 [k P\ o?
+O¢2||‘X’<E 9 ISTI’ f . Pg COSZ ﬁd’l/} .
(ii)
Now, the leading term is
oL+, i \*
() =15 g2l s [ P(cos) i 62D
and thanks to Lemma [7.7] and Lemma [7.4] (7) is
[EAlZS
WWIT? log(rgf). (528)

With similar calculations, it is easy to verify that (ii) is OH@;LHOO,V(@;;)(T?) and (i) is

Oll@}? Hoo(r%) and hence the conclusion of the proposition follows. O
We prove now Proposition

Proof of Proposition [3.0. In a similar way to the proof of Proposition [3.2] we can write

EM# (1)?] :o(f“ ) / i <%) Ww<¢>dw> (5.29)

Splitting [0, 2r¢¢] = [0,1] U [1,74], for ¢ € [0,1], we can bound |FP(z)| < 1,Vz € [—1,1]
and exploiting (4.4]), we get that

1 , , 1 .
ofe [ pi (s )wet (3 ) aw) =o( g [ wav) =02l ). (530

Moreover, (5.2]]), Lemma [Z.4] and (£3]) imply that

2r¢L 2€ 2r¢L
O<€/1 P} (CO& ﬂ) W <7/1> d?/)) (7“2 /1 () <COS %> ||80£||L2 (B1) ¢>

27’[L 1 » ~i
(Rl [ s ) =0 (Rl 5, o ret).

(5.31)
Since (£.30) is dominated by (5.31]), the conclusion of the Proposition follows. O
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5.2.2 Fourth cumulant of the fourth chaotic component

In light of the orthogonality of the chaotic components, the full correlation between Z .,
and My ,, implies that

) 1
Corr(My,ry; Proj(Zey,|Cs)) =1+ O <10g Tz€>.

Now to establish the validity of the CLT for the sequence Z;,,, we prove first that it
holds for My,,. In order to do that we appeal to the Fourth Moment Theorem ([23],
Theorem 5.2.6), which states that, for random variables belonging to a Wiener chaos it is
sufficient to show that the fourth cumulant divided by the square of the variance tends to
zero to conclude that the CLT holds. Hence we investigate in the lemma below the fourth
cumulant of hy,, 4 (defined in B.1T]).

Lemma 5.4. Let hy,, 4 defined as (311), as £ — oo,

4

cumy{hp,,a} = O <Z—i log rﬂ) . (5.32)

Proof. Following [21], in order to find a bound for the fourth cumulant of hy, 4, we need
to control the following two quantities A; and Ay (see the supplement article [31], Section
A.2 and [21] for details):

Ay :/(B )4Pe(<$1a$2>)Pé(<fU1a$3>)3P£(<$3a$4>)P£(($2a$4>)3M(dfﬂl)M(dfﬂz)u(dfﬂs)u(du),

A2:/(B Py((1, 22))* Po((21, 23))* Po((w3, 24) ) Po((2, 24))? pu(daxy ) p(dw) p(dg) p(dza),

o)t

where p(dz;) denotes Lebesgue measure on the sphere. Let us focus on Aj; its absolute
value is bounded by

/ | Py(cos d(z1,x2))| |Pg(cos d(xl,xg))3| | Pp(cosd(x3,xq))| X
(Bry)* (5.33)

X | Py(cos d(x, x4))3| p(dzy)p(de) p(des)u(dey).

Arguing as in [24], we use the inequality: oy < 200 4 4o+t where z, y are positive, to
obtain that (5.33]) can be bounded by

/(B y | P;(cos d(xg,m))\g | Py(cos d(x3,x4))| | Pe(cos d(xl,xg))]4 w(dzy)p(dro)p(des)u(dey)

+ /(B )|4Pg(cos d(xa, x4))|3 | Pp(cos d(xs3,x4))| | Pe(cos d(xq, xg))|4 p(dzy)p(dzo) p(des)p(dey).

(5.34)
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Let us focus on the first term of (5.34]). It is simple to check that, for any x2 € B,

| IPcosdar ) ulden) < [ |Pileosd(V.oa))* o),
B Bar,

e

where N denotes the North Pole (note the doubling of the radius in By,,). Since |P(z)| <

1, for z € [0,1], we have that %fol Pg(cos%)q%dw = O(g%), Vq > 1; then by Hilb’s
asymptotics (see Lemma [7.6])

1 20ry 1
/ |Py(cos d(N,z)))|* p(dzy) < Const x 7 wdl/]—l—O( )
Bar, c

1 1
< Const x og el —|—O<—>

2 02
and similarly

/ | Py(cos d(x3,x4))| pu(dzs) S/ | Py(cos d(N, x3))| u(dxs)
B Bar,

e
1 20ry
< Constxg—/ \/7d1/)—i—0<€2>

3/2 1
< £
< Const x \/Z +O<£2)

/ (Py(cos d(aa, 24))|P p(dza) < / |Py(cos d(N, 22))[* u(ds)
B Bor,

e

20ry 1
< Const x dw—i-O( >

2Je VO
1/2 1
< £
< Const x \/ﬁ_ +O<£2>

while obviously

/ u(dzs) = O(r2).
B

e

It follows that

/(B . | Py(cos d(z1,x2))| |Pg(COS d(wl,xg))3| | Py(cos d(x3,x4))| X

X {Pg(cos d(xa, x4))3{ p(dxy)p(des) p(des)p(dey) = O<T21 logEIM),

as needed. Equivalent computations give the same bound for the second term in (5.34)).
As far as the term A, is concerned, we need to bound

/ | Py(cos d($1,$2))2‘ | Py(cos d(ml,xg))2‘ | Py(cos d(xg,x4))2| X
(Bt (5.35)
X ‘Pg(cos d($2,$4))2‘ p(dzy ) p(dee) p(des) p(dey).
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The same strategy we have applied to A; leads (5.35]) to be bounded by

/(B )4|Pz(COS d(w1,22))|" | Pu(cos d(xs, 4))?| | Pe(cos d(xa, 24))|* p(dar ) p(dae) pu(devs) p(day)

—|—/( |4Pg(cos d(z1, z3))[* | Py(cos d(w3, x4))2‘ |Py(cos d(xg, 24)) [ pu(day) p(das ) pu(das) p(day)

¢)
J

and since

Py(cos d(z3,4))? p(dxs) < / | Py(cos d(N, x3))|? p(das)

B2'rz

1 2ryL 1
< Const x 6_2/0 d¢+0<€—2>

1
< Const x %+O<€—2>,

e

we obtain that

B o Terelogrel) rzl log r¢l
A2_O<TKX?7 62 >—O<€74

and the conclusion of the lemma follows. O

5.2.3 Proof of Theorem

From Lemma [5.4] we conclude that
cumg(My,,) = O <r§‘ 10g(7"g€)> (5.36)

and, in view of Proposition B.4], the Fourth Moment Theorem ([23], Theorem 5.2.6) implies
that

cumyg(My,,) !
dw(MZ,rp ) — c VaI'(MK,T[)Z O< >7

where Z ~ N(0,1) and C is an explicit constant. Defining

it follows that, as ¢ — oo,

~ ~ ~ ~ 1
dW(ZZ,rp Z) < dW(MZ,rga Z) + \/E[ZZ,W - MZM]Q = O(w)'
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6 Further Result: Correlation between 2Z;,, and Z(7}) (proof
of Proposition [2.3))

As we have already said in the introduction, contrary to the 2-dimensional torus, the
nodal length on the total sphere and the one on its subregions are not correlated; indeed
we prove here Proposition 223l Before doing that, we compute the covariance between
Zp,, and Z(Ty) in the lemma here below.

Lemma 6.1. The covariance between Zy,, and Z(Ty) is given by

Cov(Zy,,, Z(Ty)) = ||§7";|| Var(Z(Ty)).

Proof. The proof of this lemma follows from the field’s rotation invariance. Indeed, let
consider B, the ball of radius r, for any r > 0; we shall write the covariance as

Blze, - 2(0] = £| [ V@)oo do [ 1970116 dy
= [, EUVT@IIVT )83 T dady (6.1
:/ R’g(x,y)dxdy:\Br]/ Ky(N,y)dy.
S2x By S2

Then, taking r = rp and r = 7, B, = B,, and B, = 5?2, respectively, we get

E[Ze,, - Z(T)] = |By,| /S RN, y) dy (6.2)
and
Var[Z(Ty)] = |5?| / Ku(N,y)dy (6.3)
S
and the conclusion of the lemma follows. O

Proof of Proposition[2.3. By definition, the correlation is

) B Cov(Zy,,; 2(1y))
COH(ZZ”’Z(TK))_\/Var(ZgM)\/Var(Z(Tg)) (6.4)

and Lemma [6.1] implies that

_ |By,| /Var(Z(Ty)) _ 27(1 — cosry) +/ Var(Z(1y))
|52 /Var(Zy,, 4 Var(Zy,,) (6.5)
_ (1 —cosry) \/Var(Z(1y)) .

2 Var(Z,,) ’

)

COI‘I‘(Zg,”; Z(Tg))
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in view of Theorem 2.1 and (I.2)), it results that

1—cosr llogf%—Ol 1—cosr log ¢
Corr(Z,,; 2(T))) = ) ¢ r232 (1) _ - z\/l g ;
L Jog br + O(r2) re | log(ref)

~ 1—cosry [, logt 9 B o log?
N 27’% \/Té log ¢l * O(TZ)\/g =0 " logrel )’

Now, to prove that this quantity goes to zero, we note that, either r, > Lg, then

+0(1)V8

(6.6)

5 log?t 5 log/t

"log 7

1/2

= 7’%

"t log rpf

which goes to zero because r; — 0; or if 7y < £~/ since 1y — 400, we can bound log rp¢

from below for ¢ large and get

log ¢ 1
rglogw = O(r}logt) = O <Zlog€> =o(1).
O
7 Technical tools
In this section we collect some results exploited in the previous computations.
For the purpose of the present paper, let us note the following result.
Lemma 7.1. For 1 < < ri, as { — oo,
1 1 sin(2 P, 1
L 1sin@y) 1(y)+0 13
172§ v v
where Py () is the trigonometric polynomial given by
1 9 27 75
P =4+ — 2 ——sin(2¢) — —— 4ah). 7.1
1(V) = 35503 T 3 COS(2W) F G SIn(2V) — 555 cos(4) (7.1)

L
Proof. Let us consider the expansion in (5.3]) holding uniformly for C' < ¢ < % In the

regime [1,7,¢], 7¢¢ = o(L) and the terms sin(¢)/L) appearing in all the denominators can
be replaced by

sin % + O(g) (7.2)
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Hence, we have

1 [sin2¢ 1 9 cos 2v) 511121/) 256 5 cos(41)) 1
Kp) =7 = [ ol 256m20p | 32wl + 20 sin(v /L) } o(wa/Ls)Jr

4
1 1
+O<w3 @)

_ [sin2y 1 9 cos 21 sm 21 — 2—56 cos(41)) 1
N [ 271 * 256242 32m)? + w292 sin(¢ /L) ] * O<¢3>

(7.3)

Denoting P (1)) the trigonometric polynomial given in (1) the conclusion of the lemma
follows. O

Lemma 7.2. For 1 <y <rpl, as £ — oo,

ptvr =29 (1)

where the trigonometric polynomial Py(v) is

Po() = é + % cos At — % sin(2¢)). (7.4)

Proof. Similarly to the proof of Lemma [TT], we substitute sin(¢)/L) with its Taylor ex-
pansion (Z.2) in equation (5.I7), holding for C' < ¢ < L7, and defining P»(v) as in (Z.4])
the thesis follows. O

Other useful results for our computations are given by the following lemmas.

Lemma 7.3. Asx — oo,
x
1
L U2
Lemma 7.4. Let P(v)) = ag+ a1 cosy) + - -+ + ay, cos(map) + by sin(y)) + - - - + by, sin(ma))
a general trigonometric polynomial. Then, as © — 400,

dip = O(1).

/JC PY) dy = aplog(z) + O(1).
T
Proof. We have that

/xMOM:/xao—i—alcosw—i----—i-amcos(mw)—i—blsin(zp)—i—---—i—bmsin(mw)
1Y (G

Let us focus, for example, on

dip.

" cos()
/1 al ¢ dlb
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Integrating by parts, it becomes
. T T
o [sm(zp) B sm;p dw}
G 1Y

and thanks to the Lemma [.3] and to the fact that the function sint is bounded, it is
O(1), as £ — co. In the same way, it is possible to see that, as ¢ — oo,

1

/“” ag €os 2t + -+ - + ayy, cos(map) + by sin(y) + - - - + by, sin(ma))
1

; dip = O(1)

and hence the leading term of flx % dv is given by

a0 B
/1 m dy = aglog(x).

As a consequence of Lemma [7.4], we get the following corallary.

Corollary 7.5. As { — oo,

ek 1 1
[ (Fatw) = ) v = g ot + O) (7.5)

and

1 [t 1
I s = og(rt) + o). (76)
1
Lemma 7.6 (Hilb’s Asymptotics (formula (8.21.17) on page 197 in [30])).

¢

sin ¢

1/2
fwm@:( ) (€ +1/2)6) + 8(6), (7.7)

uniformly for 0 < ¢ < w/2, where Jy is the Bessel function of order 0, defined as Jo(x) =
-1 k .2k

o %, and the error term is

P03, Crl < ¢ < 7)2

5(9) < {¢2O(1), 0< o< Ol

where C' > 0 is any constant and the constants involved in the “O” -notation depend on C
only.

In particular, for 0 € [0,7/2],

Py(cos ) < (7.8)

al-
)
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Actually, changing variable ¥ = L@, with L = ¢ + %, we have that

(o) 0

2 cos(y —m/4 1
(see also [21]).

Lemma [7.0] implies (5.21]) and the following result can be easily seen.

and

Lemma 7.7. For 1 < ¢ <rpl, as £ — oo,

Preos(u/))* = 2 + O(%)
where 5 5 )
Pg(’l/}) = 2—71_2 — F Sln(2¢) — 2—71_2 COS(4'[/}).
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Supplementary Material
A Background Material

A.1 Wiener Chaos

In this part we recall the notion of Wiener chaos mentioned in the introduction. For a
complete discussion see [23], Chap. 2.2. Let us consider the sequence {H;},cn of Hermite
polynomials on R, defined as follows

Hy =1

Hy(t) = tH, 1 () — Hy (1), q > L.

It is useful to recall the following property: let Zi,Zs jointly Gaussian; then, for all

q1,92 = 0
E[th (Zl)HQQ (ZQ)] = Q1!535E[Z1Z2]- (A.l)

Now, we recall that the family H = {H,,¢q > 0} is a complete orthogonal system in the
space of square integrable functions L?(y), where v denotes the standard Gaussian density
on R. We define the space x to be the closure in L?(P) of all real finite linear combinations
of random variables £ of the form £ = zay,, + Z(—l)éa&_m, z € C and ayy, independent
Gaussian random variables with the condition @z, = (—1)%as_,. The space x is a real
centered Gaussian Hilbert subspace of L?(P).

We define the space of constants Cy := R C L?(P) and for ¢ > 1 an integer, the g—th
Wiener chaos Cj associated with x is the closure of all real finite linear combinations of
random variables of the type

le (fl)Hm (52) e Hpk (gk‘)

k > 1, where the integers p1,...,pr > 0 are such that py +---+pr = ¢ and (&1,...,&;) is
a standard real Gaussian vector extracted from x. It is possible to prove that C; L C,,
in L(P) for ¢ # m and that

LQ(Q7U(X)7P) = @Cq

=0

L)

Then, every real-valued functional F' of x can be (uniquely) represented as a series, con-
verging in L?, of the form

F =Y Proj(F|C,)
q=0

where the Proj(F'|Cy) is the projection of F' onto C (in particular Proj(F|Cy) = E[F]).
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A.1.1 Chaotic expansion for nodal lengths

In the same lines of the case of the sphere (see [20], [26]) an integral representation for the
nodal length Z;,, can be given by

Zir = [ B(T@)IVT@)| e

where &y denotes the dirac delta function and || - || the standard Euclidean norm in R2.
This representation can be shown to hold almost surely in © and it is shown hold in L?(£2)
(see [20]). The L? expansion of nodal lengths takes the form (see [20], [19] and [26])

. €(€ + 1) X L& Oék,ufkﬁq—u
Zﬁ,re - E[Z&W] - 9 Z Z kz k!(u — k;)!(q — u)!
=0

<, et S (L o

where

O — k:/Bq u al;:vTﬁ(x)
\/ sz' q_u)'Hqu(TZ(x))Hk< €(€+1)/2>

=0 k=0
x Hu—k<M> dx
0(0+1)/2

In spherical coordinates (0, ¢) and for z = (0., ¢z),

(A.2)

5 0 1 0
Lz = 7, ; U2z = 72 - .
df |y_g sin 0 dy 00, o=
~ 2o, — E|Z
In particular, denoting as Z;,, = MZV—(Z[&T)YL the projection of the nodal length on
ar(Zy,r,

the fourth-order chaos has the expression

P?“oj(gg,”](]’él) :/ Uy(x;4) dx
B

e

e+ 1) [ anpba 2,02 ATy ()
-/ { i, - S / H(Ty(a ( e<z+1>/>d””

o084 O1:.2Ty(x) > a2 < 01Ty () > ( 02Ty () >
T /r[H“( W) ™ o /BWHZ )\ i) ™
ap2/32

: DTy () 0,45 DT ()
220 Jp, HQ(TZ(”U))%( 62(€4f1)/2> drt = O/B H4< Z(ef1)/2> dw}'

e

_l’_
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A.2 On the Fourth cumulant of the fourth chaotic projection

Let us consider in this section the following lemma proved in the paper.

Lemma A.1. Let hy,, 4 defined as
P ya = / Hy(Ty(x)) de, (A.3)
Br,
then, as £ — oo,

4
cuma{hg,, 4} = O<€—i log 7"%). (A.4)

We stated at the beginning of the proof of Lemma 5.4 that, to bound the fourth
cumulant of hy,, 4, it is sufficient to study the two integrals:

A= /34 Py((ar, 22)) Po((x1, 23))> Po((23, 24)) Po((w2, 24))? pu(day ) p(da) p(dws) p(day)

e

and

Ay = /34 Py((w1, 22))* Po((w1, 23))* Po((w3, m4))* ({2, 74))? p(dar) pu(da) p(dacs) p(dars),

where p(dz;) denotes Lebesgue measure on the sphere. To see that, we can follow exactly
the argument in [21], which we report for completeness. Hence, we recall that a diagram is
a graph with (o +- -+« vertexes labelled by 1, ..., p, such that each vertex has degree
1. The set of all such graphs v is denoted by I'(a1, ..., a;). We denote by I'c(a, ..., ap)
the graphs which are connected.

Given a diagram =, let n(y) = 7;;(7) € 7(2) the vector whose (5) elements n;;(v) (i < j)
are the number of edges between i and j in the graph . The vector 7 satisfies ), Mg = 24

The following lemma is proved in [21].

Lemma A.2. [[2]], Lemma 2.1] Let v € Tc(q, q, q,q) with arbitrary ¢ > 1, and n = n(y).
Let e = (i,7) any edge in v and € = (i, j') the unique edge with vertexes disjoint with e,
so that {i,7,7,7'} = {1,2,3,4}. Then ne = ner.

It is shown in [21] that the fourth cumulant can be computed by

uma| [ @) =S wa)

’YEFC (4747474)

where for a vector n € Z9,

M) = [ TT PG (),

rg i<j
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where p(dz) = p(dz)p(des)p(des)u(des). Now, we use Lemma [A.2] and the Cauchy-
Schwartz inequality to reduce the number of different angles; when we apply the latter
inequality, it is advantageous to pair up angles corresponding to disjoint edges in the
diagram. In the end all the configuarations can be bounded by ones where 1 has one of
the following two shapes

n=(22,2,200)

or
n=(1,3,1,3,0,0).

Then the proof of Lemma [A 1] reduces to the control of the two integrals A; and Ay. An-
other way to prove this reduction follows by [25], Proposition 11.2, where it is proved that
it is sufficient to bound only the terms corresponding to circular diagrams (i.e. diagrams,
all of whose rows are linked with precisely two other rows) to establish the CLT.

B Technical tools

B.1 L? approximation for nodal lengths
Following the same idea and notation in [20], we define
Zaie = [ VI eTile) do (B.1)
e

We show the L? convergence of the nodal length in the lemma here below.

Lemma B.1. Let 2 ,,. be defined as in (B.1), we have that, as e — 0,

lim E[|Z,.c — Z0r,]*] = 0. (B.2)
e—0

Proof. This argument follows closely [20] and it is included for completeness. Hence, the
nodal length is defined almost-surely by

lim [ xe(To ()| VT ()] do
e—0 BTZ

and from the standard argument ([29], Lemma 3.1) the almost-sure convergence follows.
Indeed, since x.(:) = 2—161[76,51(-) is integrable and 7Ty is smooth, we have thanks to the
co-area formula ([I], p.169)

[ @i [ { [ e

4 £

Since
0 forax:Ty(z)>e¢
2_15 for x : Ty(x) < e

Xe(To () = {
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and the function s — Vol[T;(s)~! N B,,] is continuous for regular (Morse) functions, we
obtain

/ { /1 Xe(Ty(x)) dw} ds = 2—16/ Vol [T[l(s) N BW] ds — Vol [T[l(o) N BW] ,
R UJT, Y (5)NBy, —

as ¢ — 0. We now show that the convergence occurs also in the L? sense. To this aim,
since the convergence holds almost surely, it is sufficient to prove that

: 2 2

hm E[ZK,T‘LE] = E[ZK,T‘@]'

e—0

Note that,

E[22, ]=E { /BW {Xa(Tg(x))HVTe(x)H}dxﬂ

-5\ [ /{ iy DTNV d” (B.3)

~2{ [ Zun ) du}] .

The application u — E[{Z,(u)}?], where Z,,,(u) =len({z € S*N By, : Ty(z) = u}), is
continuous, where

ElZ},,(u)]= ; 57[IIVTe(fﬂl)IHIVTe(m)HITe(:vl)=u,Te(:ﬂ2)ZU] DT (21),Ty (w3) (U, ) dy iy
2ry

=87 ; E|[VT(N)INVTe(y (o) Te(N) = u, Te(y(p)) = ul d1,(3) 10 (5)) (s W) We, () dp-

(B.4)

To check the continuity, it is enough to show that the Dominated Convergence Theorem
holds; we first note that

1
(ng(N),Tg(y(p))(u?u)WT’l (p) S ¢T[(N),Tg(y(p)) (07 O)WT’Z (p) = QWWWT’[([))

which is O(1) uniformly in p since W,.,(p) ~ Tg’ [/]71(;%) (where ~ means that lim,_¢ 3‘/;2 Epg) —
T‘Z a
1) and
R p 1 2T ~ )
VVl(r_g) = 21 )y Pz (pcos ¢, psin @) dpdx

with @, (pcos ¢, psin ¢) a bounded function. On the other hand the evaluation of

ENVT(N)IVTey(e)[Te(N) = u, Te(y(p)) = u]

is given in [20] and it is seen to be uniformly bounded over p. Then, the Dominated
Convergence Theorem holds. It follows that
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plzt,) <imipte|{ [ M{xe<Tg<x>>||vn<x>||}dx}Z]

IR TI 2 . 3 2
= liminf BIL7,,. ] < lim sup £ [Z0re]

— s 2| { [ W{x€<n<x>>||vn<x>||}dx}Z] (B.5)

e—0

_ limsup EH /R {zm(u)xs(u)}duﬂ

e—0

<timsup [ B2, (wlx.(u) du = B[22, |
R

e—0

B.2 On the proof of Lemma 5.2

In this section we want to prove the following result.

Lemma B.2.

2rpl )
Cov(Zen, M) = Tm [ G, et (D) ay,
1—00 0

atwt) = [~ 1L < e [wam (1 (s (4)))]

where we wrote T = (0,0) for the North Pole and y(p) = (0,p) for the points on the
meridian where ¢ = 0.

where

Proof. To prove this lemma we can follow the same steps as in [20], proof of Theorem 1.2..
We report them for completeness. Let us define

1

Ve(2) := [V fel@)lxe(Te(2), xe() = 521 1-cq)()-

VU_(x) admits the L2()) expansion

oo
Ve(z) = E[Vc(x)] + Z e (@3 q);
q=2
moreover, we established in Lemma [BI] the L?(§2) convergence

lim Uy(z)de = lim/ |V fe(2)||xe(Te(x)) de = 24,
e—0 B'r[

e—0 B'r[
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Note also that W,(z), Hy(Ty(y)) are both in L?(S? x Q) and they are isotropic and thus

1 /(4 +1
Cov(Zprye; Mey,) = - (+11 Cov </ U, (z)dx,
B

. HTi(0) dy

Ty BT[

le W; D1 E /BTZ U, (z) dz o Hy(Ty(y)) dy]

W@ /B ., P Ty docly

(0+1)1
L B> v )@ | 15, @)1, ) drdy
2 4! SQXSQ q:2 ¢ ¢

—3\/ D [ Bllele OHT) i, (2115, () oy
=i =G [ B T ) @) 0) dady

(B.6)
in the last passage we exploited the L'(S?) convergence of cpz} to 1p,,. Indeed,
[ EWea (T ()i 0) dady
S2x 52
- [ BN s, (@)L, ) dudy
S2x 52
< /SQ . | B[ e (2, 4) Ha(To ()| [0t (2) 04 (y) — 1B, (2)18,, (y)]| dedy (B.7)
X

< / B (2, ) Ha(To()) |64 () — L, (2) |0 (y) ddy
S2x 52

T / B e, Y Ha(To )] |0b ) — 15, )15, () dady
S2x 52

and since we can bound |E[W. (z)H4(T;(y))]| (see [20], Proposition 3.1), 1, () and ©i(y),
(B.1) goes to zero as i — oo.
Now, applying Fubini, equation (B.G)) is equal to

27y
LS \/ﬁ B[y (z,4)Hy(Tu(y))|W¥ (p) dp. (B.8)

In [20], Proposition 3.1, it is proved the term E[Wy..(x,4)H4(T;(y))] can be computed
explicitly and it is easily seen to be absolutely bounded for fixed ¢, uniformly over . Hence,
by the Dominated Convergence Theorem we may exchange the limit and the integral to
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obtain

COV(ZZ,TW Mf,rg) = ;I_I)I(l) COV(ZZ,W;Ea Mf,rg)

o 1 Jee+1)1 , [P B .
= lim lim —~ 5 g <8 ; B[ (z,4)Ha(Te(y(p))) W ?e (p)dp
1 e+ 5 [P _ i
= lim —= 5 g1 X o7 /O lim E[Wre (2, 4) Ha(Te(y(D))IW(p)dp  (B.9)
1 fee+1)1 2re ) Z.
= lim —— ( )1 x 82 E[Y(z,4)Hy(Ty(y(p))]W*e(p)dp
1—00 4 2 4' 0
21l ; w
=1l HWPe(=)d.
fm | Je(, )We(+)dy
]
B.3 Auxiliary function property
Let us recall the following definitions:
1
W#(p) = —5 oo(x)pe(y) dudy x,y € S (B.10)
8 d(z,y)=p
- 1 1 ~ ~ 2
Wilp— | == Ge(rex)fe(rey) dedy v,y € R (B.11)
re) 8T Ja@y)=£

We give now the proof of the following lemma, which gives relation (3.6) of the main
article.

Lemma B.3. Let W, (-) and Wi(-) as in (BI0) and (BI1), respectively; then,

W) =W () (1+0(%) (B.12)

as r¢ — 0 uniformly for p € [0, 2r,].

Proof. We set D, :={x € B,, : B,(x) C B,,}; then

1 1
Wr(p) = 2= / len{y € By, : d(z,y) = p}da+2— len{y € By, : d(z,y) = p} dz;
872 D, 82 Br,—D,
we denote 1
A= ) /Dp len{y € B;, : d(z,y) = p}dx
and

1
B:= —2/ len{y € By, : d(z,y) = p}dx.
8 BT[_DP
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A is easily computed to be

1 .
= ﬁ D, len{y € BW : d(m,y) = p} dr = @27T Slnp|Dp|

(B.13)

1
= ﬁ?ﬂ' sin p - 27(1 — cos(ry — p)).

Let us define also bp/w ={zeB: BP/” (z) C B1}; likewise, we write

~ 1 ~ ~

where .
121::—2 len{yeélzd(x,y)zﬁ} dx
8 bp/re Ty
and )
B::—Q len{yéélzd(az,y)zﬁ} dz.
87° JB\-D,,,, T
Note that

82 8m27 1y Ty

then, using the Taylor expansion of the sine and cosine as ry — 0 (and so p — 0), we get

-1 . 1 2
A= —QWT—/;]DP/TZ] = —27T£7T<1 — ﬁ) ;

A= 8—71TQQ7T,O(I +0(p?)m - (re = p)*(1 4+ O(p)* + O(r7))

2
- 8—717227T7% ' ”(1 - T—p) 31+ 0(p®))(1 + O(p)? + O(rd)) (B.14)

=17 A(1+ O0(p®) + O(r7)).
Now we prove that )
|B — B| < O(r} + p*)
and thus (BI12) follows. So,

|B—B| <
1 1 ~ P
<lg= len{y € By, :d(v,y) =p}dr — o= [ len{y € By :d(z,y) = —}dx
8 BW_DP 8 Bl_Dﬁ/W Ty
1 1 -
= @/ len{y € By, :d(z,y) = pyde — = [ _len{y € By, : d(w,y) = p}dz|,
™ JB,—D, 7 JB.,~D,
(B.15)

where B,, C R? is the disc of radius r; and D, := {z € B,, : B,(x) C B,,}; then (B.I3)
results to be

< 2m(1 = cosry) — 2m(1 — cos(rg — p)) — [wr2 — w(re — p)?] <€ O(r) + O(p*).
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As a consequence we can prove the following result.

Corollary B.4. Let W¥i(-) and W?:() defined as (BI0) and (BIL), respectively; o}
satisfies

b — lp,, in LY(S?),
V(ph) — V(lg,,) and (B.16)

llblloo < 111, lloo;

and Wi .= cp;} oexp. Then as £ — oo,

i s i 1

W) = % () (14 O() (B.17)
l

as r¢ — 0 uniformly for p € [0, 2r].

Proof. We have that

W (o) — P o)1+ O(57)| < [W¥e) ~ Wi (o)

W (o) = W) L+ () (B.13)
W) (14 0) = W (o) (14 ()

and the former and the latter quantities of (B8] go to zero for the L' convergence of
oy — 1p,, and @b — 1,5 in fact

W#h(p) — Wy, ()] < / Gh(@)Phw) — 15, (2) 15, ()| dudy
< [ 1e@le) - L, ()] dedy (B.19)
+ / 15, () l94(x) — 15, (x)| dady — 0.
S2x52

and the conclusion of the lemma follows. O

C Further result

C.1 The second chaotic component

In the lemma below, we show that the second chaotic component of the nodal length has
lower order than the fourth one.

Lemma C.1. The second component of the chaos expansion of Z;,, is, as { — oo,

Proj(2,,|C2) = O(rg).
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Proof. Theorem 1.1 shows that Var(Z,,,) ~ logref and Proposition 2.3 shows that the
orthogonal projection of Z,,, along a well chosen vector in the fourth chaos is close to

1
). Thus, the projection of Zy,, onto
og el ’
any chaos of order different from four has variance

Zy r, itself, up to a normalized error of O(

éx ar = 7'2
O(log(rgf) V (Zﬁ,r4)> O(ry).
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