
On the interior of projections of planar self-similar sets

YUKI TAKAHASHI

Abstract. We consider projections of planar self-similar sets, and show that
one can create nonempty interior in the projections by applying arbitrary small

perturbations, if the self-similar set satisfies the open set condition and has
Hausdorff dimension greater than 1.

1. Introduction and main results

1.1. Planar self-similar sets and their projections. The study of or-
thogonal projections of fractal sets has a long history, dating back to Marstrand’s
projection theorem [10]. Ever since, it has been considered in many papers and in
many different settings (e.g. [1], [2], [4], [5], [6], [7], [8], [9], [14]). For a broad view
of the subject, the reader is referred to the survey [3]. For the recent developments
of the study, see [13].

Recall that, an Iterated Function System (IFS) on Rn is a finite collection
F = {fa}a∈A of strictly contractive self-maps of Rn. It is well known that for any
such IFS there exists a unique nonempty compact set K, called the attractor, such
that

K =
⋃
a∈A

fa(K).

When the maps are similarities, the set K is called a self-similar set (we will later
modify the definition of self-similar sets slightly). The similarity dimension of an
IFS F = {fa}a∈A is the unique solution d > 0 of∑

a∈A
rda = 1,

where ra > 0 is the contraction ratio of fa. Recall that the IFS F = {fa}a∈A
satisfies the open set condition (OSC) if there exists a nonempty open set O such
that faO ⊂ O for all a ∈ A, and the images fa(O) are pairwise disjoint. It is well
known that Hausdorff dimension and similarity dimension agree whenever OSC
holds.

In this paper we consider projections of planar self-similar sets. Our interest
in this paper is the case that projections have nonempty interior. Since projec-
tion does not increase Hausdorff dimension, we can restrict our consideration to
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the case that self-similar sets have Hausdorff dimension greater than 1. In [10],
Marstrand showed that for any planar Borel set with Hausdorff dimension greater
than 1, for a.e. directions the projections have positive Lebesgue measure. Re-
cently, P. Shmerkin and B. Solomyak showed that for any planar self-similar set
with Hausdorff dimension greater than 1, the projections have positive Lebesgue
measure except for the directions that have Hausdorff dimension 0 [14].

However, very few results are known concerning the nonempty interior of pro-
jections of planar self-similar sets. It is natural to expect that for any planar
self-similar set with Hausdorff dimension greater than 1, one can create nonempty
interior in the projections by applying arbitrary small perturbations to the gen-
erating contracting similarities, but this problem is known to be extremely hard.
In this paper we consider weaker form of this question. We allow more freedom
to the perturbation, and show that by applying this perturbation one can create
nonempty interior in the projections. The basic idea of the proof is borrowed from
[11] and [15]. In [15], by relying on the techniques invented by Moreira and Yoc-
coz in [11], the author showed that for any planar self-similar set one can create
nonempty interior in a projection by applying arbitrary small perturbations, if the
projection of a uniform self-similar measure has L2-density and the generating con-
tracting similarities are homotheties (f : R2 → R2 is a homothety if f(x) = rx+ t
for some r ∈ (0, 1) and t ∈ R2). This paper can be considered as an extension of
[15]. Additional complication comes from the fact that the contracting similarities
are no longer homotheties.

1.2. Main results. As explained in the introduction, self-similar set is nor-
mally defined as a setK together with a set of contracting similarities that generates
K. From below we modify the definition of self-similar sets to be the following:

Definition 1.1. A set K ⊂ R2 is self-similar if the following holds: there
exists a finite alphabet A and a set of contracting similarities F = {fa}a∈A on R2

such that

K =
⋃
a∈A

fa(K).

Write I = [0, 1]2. Without loss of generality, we can further assume that K ⊂ I.

Definition 1.2. Let K be a self-similar set. We say that K satisfies the OSC
if there exists a set of contracting similarities F = {fa}a∈A that generates K and
satisfies the OSC.

Definition 1.3. Let K, K̃ be self-similar sets. We say that K and K̃ are ε-
close if the following holds: there exist sets of contracting similarities F = {fa}a∈A
(resp. F̃ = {f̃ã}ã∈Ã) that generates K (resp. K̃) such that

(i) A = Ã;
(ii) ra = r̃a for all a ∈ A;

(iii) ‖fa − f̃a‖I/ra < ε for all a ∈ A,

where ‖fa − f̃a‖I = sup{|fa(x)− f̃a(x)| : x ∈ I}.
Let `θ 3 0 be the line that makes the angle θ+π/2 with the x-axis, and let Πθ

be the projection onto `θ. Our main result is the following:
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Theorem 1.1. Let K be a self-similar set. Assume that K satisfies the OSC
and has Hausdorff dimension greater than 1. Then, for every ε > 0 there exists an

open set E ⊂ [0, π) and a self-similar set K̃ such that

(i) |[0, π) r E| < ε;

(ii) K̃ is ε-close to K;

(iii) ΠθK̃ contains an interval for all θ ∈ E.

Definition 1.4. A set K ⊂ R2 is h-self-similar if the following holds: there
exists a finite alphabet A and a set of contracting homotheties F = {fa}a∈A on R2

such that

K =
⋃
a∈A

fa(K).

In [15], the author proved the following:

Theorem 1.2. Let K be a h-self-similar set. Assume that K satisfies the OSC
and has Hausdorff dimension greater than 1. Then, for a.e. θ ∈ [0, π) we have the

following: for every ε > 0 there exists a h-self-similar set K̃ such that

(i) K̃ is ε-close to K;

(ii) ΠθK̃ contains an interval.

Theorem 1.1 is an extension of Theorem 1.2. In Theorem 1.1 the set K is a
general self-similar set (not necessarily h-self-similar), and furthermore, projections
of the perturbed set have nonempty interior in “most of the directions”, while in
Theorem 1.2 projection of the perturbed set has nonempty interior only in one
particular direction.

Remark 1.1. Let K be a h-self-similar set and {fa}a∈A be a generating homo-
theties. Write fa(x) = rax+ ta. Then it is easy to see that for any θ ∈ [0, π), ΠθK
is a self-similar set generated by {rax + Πθta}a∈A. Therefore, considering projec-
tions of h-self-similar sets is equivalent to considering one-dimensional self-similar
sets. In [15], Theorem 1.2 is stated in terms of one-dimensional self-similar sets
(with overlaps). If K is not h-self-somilar then a projection of K is not necessarily
self-similar.

Remark 1.2. The a.e. directions in Theorem 1.2 is the directions such that
the projections of uniform self-similar measure have L2-density. See section 4.1.

1.3. Structure of the paper. In section 2 we define renormalization opera-
tors and recurrent sets. The outline of the proof of Theorem 1.1 is given in section
3. In section 4 we will construct the set L which is the candidate of a recurrent
set. The main difference of the proof between [15] is in section 4. In section 5 we
will prove the key proposition, which roughly claims that with “very high proba-
bility” any point in the set L can return to itself by an action of a renormalization
operator.
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2. Projections of planar self-similar sets and recurrent sets

2.1. Renormalization. For any θ ∈ [0, π), we parametrize the line `θ by

R→ `θ

t 7→ t

(
− sin θ
cos θ

)
.

We use this identification freely. Throughout this section, we fix a self-similar set
K ⊂ I and a set of contracting similarities F = {fa}a∈A that generates K. Let Q
be the set of all lines in R2. For u ∈ Q, we denote by arg u ∈ [0, π) the angle that
u makes with the x-axis. Write u∩ `arg u ∈ R by 〈u〉. It is easy to see that the map

(2.1)
Q→ [0, π)× R
u 7→ (arg u, 〈u〉)

is a bijection. From below we use this identification freely. For a ∈ A, we define a
renormalization operator Ta(·) : Q→ Q by

(2.2) Ta(u) = f−1
a (u).

Similarly, for a1, a2 ∈ A we define a map Ta1a2(·) : Q→ Q by

Ta1a2(u) = f−1
a2 ◦ f−1

a1 (u),

and call this also a renormalization operator. Note that we have Ta1a2 = Ta2 ◦ Ta1 .

Remark 2.1. It is convenient to see u ∈ Q as the “relative position” between
I and u. For any a ∈ A, Ta(u) can be seen as the “relative position” between the
square fa(I) and u.

2.2. Recurrent sets. We say that u ∈ Q is intersecting if K ∩ u 6= ∅.
Lemma 2.1. Let u ∈ Q. Then u is intersecting if and only if the following

holds: there exists M > 0 and ai ∈ A (i = 1, 2, · · · ) such that the sequence {ui} (i =
0, 1, · · · ) defined by

(2.3) u0 = u, ui = Taiui−1

satisfies |〈ui〉| < M (i = 0, 1, 2, · · · ).
Proof. Assume first that u is intersecting. Let x ∈ K be such that x ∈ u,

and let ai ∈ A (i = 1, 2, · · · ) be a sequence such that

x =

∞⋂
i=1

fa1 ◦ · · · ◦ fai(I).

Note that

(2.4) f−1
ai ◦ · · · ◦ f−1

a1 (x) ∈ I
for all i ∈ N. Define {ui} by (2.3). Then we have

(2.5) ui = f−1
ai ◦ · · · ◦ f−1

a1 (u).

Since x ∈ u, by (2.4) and (2.5) we conclude that ui ∩ I 6= ∅. This implies that
|〈ui〉| ≤ 1.
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Assume next that u is not intersecting. Let us take ai ∈ A (i = 1, 2, · · · ), and
let {ui} be the sequence defined by (2.3). Write

x =

∞⋂
i=1

fa1 ◦ · · · ◦ fai(I).

Since x /∈ u, we have fa1 ◦ · · · ◦ fai(I) ∩ u = ∅ for sufficiently large i. Since the size
of the square fa1 ◦ · · · ◦ fai(I) goes to 0, we obtain limi→∞ |〈ui〉| =∞. �

The above lemma leads to the following definition:

Definition 2.1. We call a nonempty bounded set L ⊂ Q a recurrent set if for
every u ∈ L, there exists a ∈ A such that Tau ∈ L.

Lemma 2.1 implies the following:

Proposition 2.1. Let L be a recurrent set and θ ∈ [0, π). If the set {t : (θ, t) ∈
L} contains an interval, then ΠθK contains an interval.

3. Outline of the proof of the main theorem

3.1. Perturbation. In this section, we discuss the outline of the proof of
Theorem 1.1. Let ε > 0. Let K ⊂ I be a self-similar set, and let F = {fa}a∈A be a
set of contracting similarities that generates K. Denote the Hausdorff dimension of
K by d. Let µ be the associated uniform self-similar measure, i.e., µ is the unique
Borel probability measure such that

µ =
∑
a∈A

rdafaµ,

where faµ is the push-forward of µ under the map fa. By retaking F if necessary,
we can further assume that

c−1
0 ρ1/2 < ra < c0ρ

1/2

for sufficiently small ρ > 0. Let A1,A2 be such that A1 t A2 = A and |A1| =
|A2| = |A|/2. Let c1 > 0 be a sufficiently large constant, to be chosen later.

Remark 3.1. In the proof we use constants ck (k = 0, 1, · · · , 10). They may
depend on each other but can be taken independently of ρ > 0.

Let a ∈ A1 and ω ∈ (−ε, ε) × (−1, 1)2. Write ω = (ϕ, γ), where ϕ ∈ (−ε, ε)
and γ ∈ (−1, 1)2. Let fωa be the contracting similarity which satisfies the following:
fωa (I) is the square that is obtained by rotating the square fa(I) by the angle
ϕ ∈ (−ε, ε) and shifted by γc1ρ ∈ (−c1ρ, c1ρ)2.

Define
Ω =

(
(−ε, ε)× (−1, 1)2

)A1
.

Let ω = (ωa)a∈A1
∈ Ω, and denote ωa = (ϕa, γa), where ϕa ∈ (−ε, ε) and γa ∈

(−1, 1)2. We define
Fω = {fωa }a∈A,

a set of contracting similarities, in the following way:

fωa =

{
fωa
a if a ∈ A1

fa if a ∈ A2.
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Figure 1. Recurrent set

Let Kω be the self-similar set generated by Fω. Note that if ρ > 0 is sufficiently
small, then Kω is ε-close to K.

Recall that we defined the renormalization operator in (2.2). For a ∈ A1 and
ω ∈ (−ε, ε)× (−1, 1)2, we define the renormalization operator Tωa in analogous way.
For ω = (ωa)a∈A1 ∈ Ω, we define

Tωa =

{
Tωa
a if a ∈ A1

Ta if a ∈ A2.

3.2. Outline of the proof. In section 4, we will construct the set E ⊂ [0, π),
and the set L(θ) ⊂ (−1, 1) for all θ ∈ E. Define

L0 = {(θ, t) : θ ∈ E, t ∈ L(θ)} .
Let

L1 =
{

(θ, t) : ∃(θ0, t0) ∈ L0 with |θ − θ0| < ρ, |t− t0| < ρ
}

and

L =
{

(θ, t) : ∃(θ0, t0) ∈ L0 with |θ − θ0| < ρ/2, |t− t0| < ρ/2
}
.

We show that L is a recurrent set for some ω ∈ Ω. For u ∈ L1, we define Ω0(u) ⊂ Ω
to be the set of all ω ∈ Ω such that the following holds: there exists b ∈ A2 and
the image

T
ω
b (u) = û

satisfies û ∈ L0. The following crucial estimate will be proven in section 5.

Proposition 3.1. There exists c2 > 0 such that for any u ∈ L1,

P
(
Ω r Ω0(u)

)
≤ exp

(
−c2ρ−

1
2 (d−1)

)
.

The sets E and L(θ) are constructed in such a way that Proposition 3.1 holds.
Below we prove Theorem 1.1 assuming Proposition 3.1. In section 4 we construct
E and L(θ), and show that the measure of the set L(θ) is bounded away from zero
uniformly. Combining all these properties we prove Proposition 3.1 in section 5.
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We choose a finite ρ5/2-dense subset ∆ of L1. Note that

|∆| ≤ c3ρ−5/2 · ρ−5/2 = c3ρ
−5.

Now, if ρ > 0 is small enough,

c3 ρ
−5 exp

(
−c2ρ−

1
2 (d−1)

)
< 1,

and therefore we can find ω0 ∈ Ω such that ω0 ∈ Ω0(u) for all u ∈ ∆.

Remark 3.2. The above is saying that any u ∈ ∆ can return to L0 by an
action of the renormalization operator of the form T

ω0

b .

Theorem 1.1 follows from the following claim:

Claim 3.1. For ω0 ∈ Ω, the set L is a recurrent set.

proof of the claim. Let u ∈ L. Let u0 ∈ ∆ be such that | arg u− arg u0| <
ρ5/2 and |〈u〉 − 〈u0〉| < ρ5/2. By the choice of ω0, we have ω0 ∈ Ω0(u0). Therefore,
there exists b ∈ A2 such that, writing

T
ω0

b (u0) = û0,

we have û0 ∈ L0. Let
T
ω0

b (u) = û.

It is easy to see that | arg û − arg û0| < ρ5/2 and |〈û〉 − 〈û0〉| is of order ρ3/2.
Therefore, we obtain û ∈ L. �

4. Construction of the set E and L(θ)

4.1. Construction of E. Kaufman’s proof of Marstrand’s theorem tell us
that the measure Πθµ is absolutely continuous with respect to Lebesgue measure
for a.e. θ ∈ [0, π), with L2-density χθ satisfying∫

[0,π)

‖χθ‖2L2 dθ < c4.

See, for example, [12]. We define

E =
{
θ ∈ [0, π) : ‖χθ‖2L2 < c5

}
,

where c5 > 0 is a sufficiently large constant so that |[0, π) r E| < ε/2.

4.2. Construction of L(θ). Let a1 ∈ A1, a2 ∈ A2 and ω = (ϕ, γ) ∈ (−ε, ε)×
(−1, 1)2. We denote the square fωa1(I) by Iϕ,γ(a1), and the square fωa1 ◦ fa2(I) by
Iϕ,γ(a1a2). Let u = (θ, t) ∈ Q. For

(θ̂, t̂) = Tωa1(u),

we denote θ̂ by argθ I
ϕ,γ(a1) and t̂ by pos(θ,t)I

ϕ,γ(a1). Define argθ I
ϕ,γ(a1a2) and

pos(θ,t)I
ϕ,γ(a1a2) analogously.

With c6 > 0 conveniently small, to be chosen later, let

N = c26ρ
− 1

2 (d−1).

Let θ ∈ E. We define L(θ) to be the set of points t ∈ (−1, 1) such that the
following holds (c7 > 0 is a sufficiently small constant to be chosen later) : there
exist mutually distinct words {a1

1, a
2
1, · · · , aN1 } ⊂ A1 and the sets Φi ⊂ (−ε, ε) with
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|Φi| > c7 (i = 1, 2, · · · , N) such that for all ai1 and ϕ ∈ Φi, there exists ai2 ∈ A2

such that

argθ I
ϕ,0(ai1a

i
2) ∈ E and |pos(θ,t)I

ϕ,0(ai1a
i
2)| ≤ 1.

In the next section, we will prove the following estimate:

Proposition 4.1. If c6 > 0 is sufficiently small, there exists c8 > 0 such that
|L(θ)| > c8 for all θ ∈ E.

4.3. Projections of the squares I(a). Let θ ∈ E, and let Ã ⊂ A be such

that |Ã| > |A|/8. For a ∈ Ã, we have

(4.1) c−1
9 ρ

1
2d < µ(I(a)) < c9ρ

1
2d.

Write J (a) := Πθ(I(a)). Then

c−1
9 ρ1/2 < |J (a)| < c9ρ

1/2.

We call a ∈ Ã (Ã, θ)-good if there are no more than c−1
6 ρ−

1
2 (d−1) intervals J (ã)

(ã ∈ Ã) whose centers are distant from the center of J (a) by less than c−1
9 ρ1/2.

Call a ∈ Ã (Ã, θ)-bad if it is not (Ã, θ)-good. Recall that, since θ ∈ E, the measure

Πθµ has L2-density χθ which satisfies ‖χθ‖2L2 < c5.

Lemma 4.1. The number of (Ã, θ)-bad words is less than

6c5c6c
3
9ρ
− 1

2d.

In particular, if c6 > 0 is sufficiently small, the number of (Ã, θ)-good words is at

least |Ã|/2.

Proof. Let a ∈ Ã be (Ã, θ)-bad. Then we have∫
3J (a)

χθ ≥ c−1
9 ρ

1
2d · c−1

6 ρ−
1
2 (d−1)

= c−1
6 c−1

9 ρ1/2 >
1

3
c−1
6 c−2

9 |3J (a)|,

where 3J (a) is the interval of the same center as J (a) and length 3|J (a)|. By the
Cauchy-Schwarz inequality,

1

3
c−1
6 c−2

9 |3J (a)|
∫

3J (a)

χθ ≤
(∫

3J (a)

χθ

)2

≤ |3J (a)|
∫

3J (a)

χ2
θ,

and thus ∫
3J (a)

χ2
θ ≥

1

3
c−1
6 c−2

9

∫
3J (a)

χθ.

Let J ∗ be the union over all bad words a ∈ Ã of the intervals 3J (a). One can
extract a subfamily of intervals whose union is J ∗ and does not cover any point
more than twice. Then we obtain∫

J ∗
χ2
θ ≥

1

6
c−1
6 c−2

9

∫
J ∗

χθ.
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Therefore, ∫
J ∗

χθ ≤ 6c5c6c
2
9.

As J ∗ contains J (a) for all bad a ∈ Ã, together with (4.1) the estimate of the
lemma follows. �

Lemma 4.1 implies the following:

Lemma 4.2. ∣∣∣ ⋃
a∈Ã

J (a)
∣∣∣ > c6c10.

Proof. We have∣∣∣ ⋃
a∈Ã

J (a)
∣∣∣ > 1

2
|Ã| ·

(
c−1
6 ρ−

1
2 (d−1)

)−1

· c−1
9 ρ1/2

>
1

2
· 1

8
c−1
9 ρ−

1
2d · c6ρ

1
2 (d−1) · c−1

9 ρ1/2 =
1

16
c6c
−2
9 .

�

4.4. Proof of Proposition 4.1. We fix θ ∈ E for the rest of the section. For
a1 ∈ A1 and ϕ ∈ (−ε, ε), define

Λa1,ϕ =
{
a2 ∈ A2 : argθ I

ϕ,0(a1a2) ∈ E
}

and
Φ∗a1 = {ϕ ∈ (−ε, ε) : |Λa1,ϕ| > |A2|/4} .

The following lemma is immediate.

Lemma 4.3. For any a1 ∈ A1, we have |Φ∗a1 | > ε.

Proof. By the construction of E, we have∣∣{ϕ ∈ (−ε, ε) : argθ I
ϕ,0(a1a2) ∈ E}

∣∣ > 3

2
ε

for all a2 ∈ A2. Let ψ be the sum, over a2 ∈ A2, of the characteristic functions of
{ϕ ∈ (−ε, ε) : arg Iϕ,0θ (a1a2) ∈ E}. Note that 0 ≤ ψ ≤ |A2| and

ϕ ∈ Ψ∗a1 ⇐⇒ ψ(ϕ) > |A2|/4.
Therefore, we have

3

2
ε · |A2| <

∫
(−ε,ε)

ψ =

∫
Φ∗a1

ψ +

∫
(−ε,ε)rΦ∗a1

ψ

< |A2||Φ∗a1 |+
|A2|

4
· 2ε.

The claim follows from this. �

For a1 ∈ A1, let

Φ∗∗a1 = Φ∗a1 ∩ {ϕ ∈ (−ε, ε) : argθ I
ϕ,0(a1) ∈ E}.

By the above lemma, we have |Φ∗∗a1 | > ε/2. For a1 ∈ A1, a2 ∈ A2 and ϕ ∈ Φ∗∗a1 , we
denote

Jϕ(a1a2) = Πθ(I
ϕ,0(a1a2)),
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and for a1 ∈ A1 and ϕ ∈ Φ∗∗a1 , write

Jϕ(a1) =
⋃

a2∈Λa1,ϕ

Jϕ(a1a2).

By Lemma 4.2, we have

|Jϕ(a1)| > c6c10ρ
1/2.

For t ∈ R, let

Φa1,t =
{
ϕ ∈ Φ∗∗a1 : t ∈ Jϕ(a1)

}
.

Write

Ja1 =

{
t ∈ R : |Φa1,t| >

1

2
c6c
−1
9 c10|Φ∗∗a1 |

}
.

Note that we have
1

2
c6c
−1
9 c10|Φ∗∗a1 | >

1

2
c6c
−1
9 c10 ·

1

2
ε

= c7.

Lemma 4.4. We have

|Ja1 | >
1

2
c6c10ρ

1/2.

Proof. Let us integrate the characteristic function of{
(t, ϕ) : t ∈ Jϕ(a1) for some ϕ ∈ Φ∗∗a1

}
over {(t, ϕ) : t ∈ R, ϕ ∈ (−ε, ε)}. By Fubini’s theorem, we have

|Φ∗∗a1 | · c6c10ρ
1/2 <

∫
ϕ∈(−ε,ε)

∫
t∈R

=

∫
t∈R

∫
ϕ∈(−ε,ε)

=

∫
t∈Ja1

∫
ϕ∈(−ε,ε)

+

∫
t∈RrJa1

∫
ϕ∈(−ε,ε)

< |Ja1 ||Φ∗∗a1 |+ c9ρ
1/2 · 1

2
c6c
−1
9 c10|Φ∗∗ai |.

The claim follows from this. �

Let ψ be the sum, over (A1, θ)-good words a1 ∈ A1, of the characteristic
functions of Ja1 . Note that suppψ ⊂ (−1, 1) and

0 ≤ ψ ≤ c−1
6 ρ−

1
2 (d−1).

Let D = {ψ ≥ c26ρ−
1
2 (d−1)}. Then we have

|D| · c−1
6 ρ−

1
2 (d−1) + 2 · c26ρ−

1
2 (d−1) ≥

∫
L

ψ +

∫
(−1,1)rL

ψ

=

∫
ψ

≥ 1

2
c6c10ρ

1/2 · 1

2
· 1

2
· c−1

9 ρ−
1
2d.
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Take c6 > 0 small enough so that

2c26 <
1

16
c6c
−1
9 c10.

holds. Then we obtain

|D| ≥ 1

16
c6c
−1
9 c10 · c6 =: c8.

Since D ⊂ L(θ), we have proved that

|L(θ)| ≥ c8.
This concludes the proof of Proposition 4.1.

5. Proof of the key Proposition

5.1. Proof of Proposition 3.1. In this section, we prove Proposition 3.1.
Fix (θ, t) ∈ L1. Let (θ′, t′) ∈ L0 be such that |θ − θ′| < ρ and |t− t′| < ρ.

Then, there exist mutually distinct words {a1
1, a

2
1, · · · , aN1 } ⊂ A1 and the sets

Φi ⊂ (−ε, ε) with |Φi| > c7 (i = 1, 2, · · · , N) such that for all ai1 and ϕ′ ∈ Φi, there
exists ai2 ∈ A2 such that

argθ′ I
ϕ′,0(ai1a

i
2) ∈ E and |pos(θ′,t′)I

ϕ′,0(ai1a
i
2)| ≤ 1.

Let

A3 =
{
a1

1, a
2
1, · · · , aN1

}
.

Write

Ω =
(
(−ε, ε)× (−1, 1)2

)A3 ×
(
(−ε, ε)× (−1, 1)2

)A1rA3
,

ω = (ω′, ω′′), and ω′ = (ω1, ω2, · · · , ωN ) .

Denote ωi = (ϕi, ri), where ϕi ∈ (−ε, ε) and ri ∈ (−1, 1)2. By Fubini’s Theorem,
Proposition 3.1 follows from the following claim:

Claim 5.1. There exists c′2 > 0 such that for any ai1 ∈ A3,∣∣∣{ωi : ∃ai2 ∈ A2 such that Tωi

ai1a
i
2
(θ, t) ∈ L0

}∣∣∣ > c′2.

Proof of the claim. Let ai1 ∈ A3 and ϕ′ ∈ Φi. Let ϕ = ϕ′ + θ − θ′. Let
ai2 ∈ A2 be such that

argθ′ I
ϕ′,0(ai1a

i
2) ∈ E and |pos(θ′,t′)I

ϕ′,0(ai1a
i
2)| ≤ 1.

Therefore,

argθ I
ϕ,γ(ai1a

i
2) ∈ E

for all γ ∈ (−1, 1)2. It is easy to see that∣∣pos(θ,t)I
ϕ,0(ai1a

i
2)− pos(θ′t′)I

ϕ′,0(ai1a
i
2)
∣∣

is of order 1. Therefore, ∣∣pos(θ,t)I
ϕ,0(ai1a

i
2)
∣∣

is also of order 1. It follows that, by taking c1 > 0 large enough, we obtain∣∣∣{γ ∈ (−1, 1)2 : pos(θ,t)I
ϕ,γ(ai1a

i
2) ∈ L(θ)

}∣∣∣ > c′′2 .
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Therefore,∣∣∣{ωi : ∃ai2 ∈ A2 such that Tωi

ai1a
i
2
(θ, t) ∈ L0

}∣∣∣ > |(Φi + θ − θ′) ∩ (−ε, ε)| · c′′2/2

>
1

2
|Φi| ·

1

2
c′′2 =: c′2.

�
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