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THE DIXMIER-MOEGLIN EQUIVALENCE, MORITA EQUIVALENCE, AND

HOMEOMORPHISM OF SPECTRA

JASON P. BELL, XINGTING WANG, AND DANIEL YEE

Abstract. Let k be a field and let R be a left noetherian k-algebra. The algebra R satisfies the
Dixmier-Moeglin equivalence if the annihilators of irreducible representations are precisely those
prime ideals that are locally closed in the Spec(R) and if, moreover, these prime ideals are precisely
those whose extended centres are algebraic extensions of the base field. We show that if R and S

are two left noetherian k-algebras with dimk(R),dimk(S) < |k| then if R and S have homeomorphic
spectra then R satisfies the Dixmier-Moeglin equivalence if and only if S does. In particular, the
topology of Spec(R) can detect the Dixmier-Moeglin equivalence in this case. In addition, we show
that if k is uncountable and R is affine noetherian and its prime spectrum is a disjoint union
of subspaces that are each homeomorphic to the spectrum of an affine commutative ring then R

satisfies the Dixmier-Moeglin equivalence. We show that neither of these results need hold if k is
countable and R is infinite-dimensional. Finally, we make the remark that satisfying the Dixmier-
Moeglin equivalence is a Morita invariant and finally we show that R and S are left noetherian
k-algebras that satisfy the Dixmier-Moeglin equivalence then R ⊗k S does too, provided it is left
noetherian and satisfies the Nullstellensatz; and we show that eRe also satisfies the Dixmier-Moeglin
equivalence, where e is a nonzero idempotent of R.

1. Introduction

Given a ring R, one of the most valuable methods of gaining information about the structure
of R is via its representation theory; that is, by first understanding the structure of the simple
left R-modules and then using this information to gain insight into the ring itself. Although this
is a highly useful method for many classes of rings, in practice it is often very difficult to do so,
and so often one instead settles for a coarser understanding of the representation theory by instead
understanding the annihilators of simple modules; that is the primitive ideals of R. If the Jacobson
radical of R is zero then R is a subdirect product of rings R/P , where P ranges over the primitive
ideals; and by Jacobson’s density theorem, rings of the form R/P are dense subrings of rings of
linear operators, and so many structure-theoretic problems about a ring can still be resolved with
a sufficiently good understanding of the primitive ideals of a ring.

One of the most beautiful results in this direction of characterizing primitive ideals is the work
of Dixmier and Moeglin [Dix77, Moe80], who showed that if L is a finite-dimensional complex Lie
algebra then the primitive ideals of the enveloping algebra U(L) are precisely the prime ideals of
Spec(U(L)) that are locally closed in the Zariski topology. In addition to this, they proved that a
prime ideal P of U(L) is primitive if and only if the Goldie ring of quotients of U(L)/P has the
property that its centre is just the base field of the complex numbers. In general, for a field k and
a left noetherian k-algebra R, prime ideals P for which the centre of the Goldie ring of quotients
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Q(R/P ) of R/P has the property that its centre is an algebraic extension of k are called rational
prime ideals. Hence Dixmier and Moeglin’s result can be regarded as saying that for primes P of
Spec(U(L)) we have the following equivalences:

P locally closed ⇐⇒ P primitive ⇐⇒ P rational.

In their honour, we today say that a left noetherian k-algebra R satisfies the Dixmier-Moeglin
equivalence if we have the equivalence of the three above properties for primes in the spectrum of R.
It is now known that the Dixmier-Moeglin equivalence is a very general phenomenon that holds for
many classes of algebras beyond just enveloping algebras of finite-dimensional Lie algebras. Some
additional examples include affine PI algebras [Von96, 2.6], group algebras of nilpotent-by-finite
groups [Zal71], various quantum algebras [GL00] (and see [BG01, II.8.5]), affine cocommutative
Hopf algebras of finite Gelfand-Kirillov dimension in characteristic zero [BL14], Hopf Ore extensions
of affine commutative Hopf algebras [BSM18], twisted homogeneous coordinate rings of surfaces
[BRS10], Hopf algebras of Gelfand-Kirillov dimension two (under mild homological assumptions)
[GZ10], and even in settings where the noetherian property does not hold and in which one must
suitably modify the rationality property [ABR12, Lor09, Lor08]. Nevertheless, the equivalence is
not universal and there are several finitely generated noetherian counterexamples are now known
[BLLM17, BCM17, Irv79, Lor77].

In this short note, our main result is to show that for a left noetherian k-algebra R with the
property that dimk(R) < |k|, the poset of prime ideals can detect whether the Dixmier-Moeglin
equivalence holds.

Theorem 1.1. Let k be a field and let R and S be left noetherian k-algebras with dimk(R),dimk(S) <
|k| and suppose that there is an inclusion-preserving bijection between the poset of prime ideals of R
and the poset of prime ideals of S. Then R satisfies the Dixmier-Moeglin equivalence if and only if S
satisfies the Dixmier-Moeglin equivalence. In particular, if Spec(R) and Spec(S) are homeomorphic
then R satisfies the Dixmier-Moeglin equivalence if and only if S does.

This result is somewhat curious, because it says that for sufficiently large base fields the un-
derlying topology on the prime spectrum “sees” the Dixmier-Moeglin equivalence. This is perhaps
somewhat surprising because the rationality property has no obvious strong connection to the topo-
logical structure of the prime spectrum of a ring. In fact, we are able to give an example, inspired by
a construction of Lorenz [Lor77], to show that if the hypothesis dimk(R) < |k| does not hold then
one can have an example of algebras with homeomorphic spectra in which the Dixmier-Moeglin
equivalence holds for one but not the other.

We are able to prove a related theorem.

Theorem 1.2. Let k be an uncountable field and let R be a finitely generated left noetherian k-
algebra. Suppose that Spec(R) is a finite disjoint union of locally closed subsets X1, . . . ,Xd with
each Xi, when endowed with the subspace topology, homeomorphic to the prime spectrum of an
affine commutative k-algebra. Then R satisfies the Dixmier-Moeglin equivalence.

The relevance of this theorem is seen in the fact that many quantum algebras have prime spectra
of this form [GL00], although generally in these cases work of Goodearl and Letzter [GL00] allows
one to deduce that the Dixmier-Moeglin equivalence holds. The stratification is a key ingredient in
the important work of Goodearl and Letzter in obtaining the Dixmier-Moeglin equivalence for many
classes of quantum algebras, where to obtain the Dixmier-Moeglin equivalence they use additional
information about the stratification coming from the rational action of an affine algebraic group on
the algebra. Theorem 1.2 again shows that for large base fields having an abstract stratification with
parts homeomorphic to affine schemes of finite type over k immediately gives the Dixmier-Moeglin
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equivalence without having any underlying action of an algebraic group. Again, the counterexample
we produce to Theorem 1.1 when k is countable is a finitely generated noetherian algebra whose
prime spectrum is homeomorphic to the spectrum of a polynomial ring in one variable over k and
hence Theorem 1.2 does not hold if one relaxes the hypothesis that k be uncountable.

For the remainder of the paper we consider the Dixmier-Moeglin equivalence in three settings
where there is known to be a strong relationship between prime spectra; namely, Morita equivalence
(where equivalent rings have homeomorphic spectra), rings of the form eRe with e an idempotent,
in which there is a relationship between Spec(eRe) and an open subset of Spec(R), and tensor
products of rings (in which the spectrum shares a strong relationship with the cartesian product of
the spectra of the underlying rings). The first setting we consider is Morita equivalence of algebras,
which is a somewhat stronger property than having homeomorphic spectra. Two rings are Morita
equivalent if they have equivalent categories of left modules (which in turn gives that the categories
of right modules over these rings are equivalent). A ring theoretic property is called a Morita
invariant if whenever a ring has this property then every ring that is Morita equivalent to it also
has this property. Many ring theoretic properties are well known to be Morita invariants, including
being Artinian, noetherian, prime, semiprime, and having finite left or right global dimension
[MR01, Proposition 3.5.10]. We show that satisfying the Dixmier-Moeglin equivalence is a Morita
invariant. Much of this is already known and we stress that this is more of an observation, since it
is well known that there is an inclusion-preserving bijection between the prime spectra of Morita
equivalent rings that preserves primitivity and hence it is not much additional work to obtain that
the Dixmier-Moeglin equivalence is a Morita invariant. A coarser notion of equivalence is derived
equivalence and we do not know whether satisfying the Dixmier-Moeglin equivalence is a derived
invariant.

In addition to results concerning Morita equivalent rings, we prove that if R satisfies the
Dixmier-Moeglin equivalence and e is a nonzero idempotent then eRe satisfies the Dixmier-Moeglin
equivalence—in this case it is well known that there is a continuous surjection from an open subset
of Spec(R) onto Spec(eRe) (see Remark 3.2) and we give an application to invariant subalgebras
of the form AH , where H is a finite-dimensional semisimple Hopf algebra that acts on an algebra
A. Finally, we show that if R and S are left noetherian k-algebras that both satisfy the Dixmier-
Moeglin equivalence then so does R ⊗k S under a hypothesis on the cardinality of the base field.
That is, the Dixmier-Moeglin equivalence is closed under the process of taking tensor products of
reasonably well behaved algebras. We now make these statements precise.

Theorem 1.3. Let k be a field and let R and S be left noetherian k-algebras. Then we have the
following:

(a) If R and S are Morita equivalent then R satisfies the Dixmier-Moeglin equivalence if and
only if S does;

(b) If R satisfies the Dixmier-Moeglin equivalence and e is a nonzero idempotent then eRe
satisfies the Dixmier-Moeglin equivalence;

(c) If R and S satisfy the Dixmier-Moeglin equivalence and if R ⊗k S is left noetherian and
satisfies the Nullstellensatz then R⊗k S satisfies the Dixmier-Moeglin equivalence.

The outline of the paper is as follows. In §2 we prove Theorems 1.1 and 1.2 and give an example
to show that the conclusion to the statements of these theorems does not hold if we remove the
hypotheses on the cardinality of the base field. In §3 we prove that satisfying the Dixmier-Moeglin
equivalence is a Morita invariant and prove Theorem 1.3(b) and give an application of this result
to invariant subalgebras. Finally in §4 we prove Theorem 1.3(c).
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2. Homeomorphic spectra and stratification

In this section, we prove Theorems 1.1 and 1.2 and show they do not hold without the hypotheses
on the cardinality of the base field. To do this, we need a few preliminary results. The following
lemma is closely related to results that are well known—specifically, those concerning ideals in rings
obtained by extending scalars in centrally closed algebras. This lemma is somewhat stronger than
these results but requires a hypothesis that when one extends scalars one obtains a prime ring in
order to work.

Lemma 2.1. Let R be a prime noetherian k-algebra and suppose that (0) is rational. If F is an
extension of k such that Q(R) ⊗k F is a prime ring then every nonzero ideal of R ⊗k F contains
an element of the form r ⊗ 1 with r 6= 0.

Proof. Let I be a nonzero ideal of R⊗k F and pick a nonzero element x ∈ I with x =
∑d

i=1 ai ⊗ λi

with d minimal. We claim that d = 1. To see this, suppose that d > 1. We note that any element
of the form

m∑

j=1

(cj ⊗ 1)x(dj ⊗ 1) =

d∑

i=1



∑

j

cjaidj


⊗ λi

is again in I. By minimality of d, a1 is nonzero; and since the two-sided ideal generated by a1
contains a regular element, by the above remarks, we may assume that a1 is regular. Then for
r ∈ R we have

x(ra1 ⊗ 1)− (a1r ⊗ 1)x =

d∑

i=2

(aira1 − a1rai)⊗ λi.

By minimality of d we have λ2, . . . , λd are linearly independent over k and hence by minimality of d
we then have aira1−a1rai = 0 for all r ∈ R. In particular, taking r = 1 we see that [ai, a1] = 0 for all
i and so a−1

1 ai commutes with every r ∈ R. Then a−1
1 ai ∈ Z(Q(R)) and since (0) is rational we have

that a−1
1 ai is algebraic over k. Then in Q(R)⊗k F we may write x = (a1 ⊗ 1)

(∑d
i=1 zi ⊗ λi

)
with

z1, . . . , zd ∈ Z(Q(R)). Let Z0 denote the finite extension of k generated by z1, . . . , zd. Then we have
x = (a1 ⊗ 1)y for some nonzero y ∈ Z0 ⊗k F . Since Q(R)⊗k F is prime, we see that Z(Q(R))⊗k F
is an integral domain and since [Z0 : k] < ∞, we see that y is algebraic over F = k ⊗k F . In
particular, there is a non-trivial relation ym(1 ⊗ cm) + ym−1(1 ⊗ cm−1) + · · · + (1 ⊗ c0) = 0 with
the ci ∈ F . Furthermore, we may assume c0 is nonzero since Z0 ⊗k F is an integral domain. In
particular, we may assume c0 = 1. Then by construction

m∑

j=0

(a1 ⊗ 1)m−jxj(1⊗ cj) = 0

and since
m∑

j=1

(a1 ⊗ 1)m−jxj(1⊗ cj) ∈ I,

we then see that am1 ⊗ 1 ∈ I. Since a1 is regular, we have am1 is nonzero and the result follows. �

Remark 2.2. We note that this result need not hold if Q(R)⊗k F is not a prime ring. For example,
if R = F = Q(

√
2) and k = Q. Then R ⊗k F is not an integral domain and hence there is some

nonzero prime ideal P of R⊗k F . But R is a field, so P ∩ (R ⊗ 1) is necessarily zero.
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The next result is the key part of the proof of Theorem 1.1: it shows that rationality of prime
ideals can be captured purely in terms of the poset of prime ideals when the base field is sufficiently
large compared to the dimension of the algebra.

Lemma 2.3. Let k be a field and let R be a prime Noetherian k-algebra and suppose that dimk(R) <
|k|. Then the zero ideal is rational in R if and only if there is a set X of cardinality less than |k|
and a set of nonzero prime ideals {Px : x ∈ X} such that every nonzero prime ideal P of R contains
Px for some x ∈ X.

Proof. Notice that if |k| ≤ ℵ0 then dimk(R) < ∞ and so R is a prime Artinian k-algebra and hence
R is simple. In this case (0) is a rational, maximal ideal and the claim is vacuously true in this
case. Thus we assume henceforth that k is uncountable.

First suppose that (0) is not rational. Then there is some z = ab−1 ∈ Z(Q(R)) that is not
algebraic over k, where a, b ∈ R are regular elements. Let B = {rα : α ∈ J} be a basis for R where
J is an index set with |J | < |k|. Since z is not in k, we have a and b are linearly independent over
k and we may assume without loss of generality that a, b ∈ B.

Then for α, β ∈ J , we have rαrβ =
∑

γ∈J c
(γ)
α,βrγ , where c

(γ)
α,β is zero for all but finitely many

γ ∈ J . Let T = {c(γ)α,β : α, β, γ ∈ J}. Then notice that since for (α, β) ∈ J ×J there are only finitely

many values of γ for which c
(γ)
α,β is nonzero we have injection from T → J × J × N. In particular,

|T | ≤ |J |2|N| < |k|, since k is uncountable and |J | < |k|.
Now let k0 denote the prime subfield of k and let F denote the extension of k0 generated by T .

Then the cardinality of F is at most max(|T |,ℵ0).

Notice that if we let R0 denote the F -subalgebra of R generated by {rα : α ∈ J} then by
construction R0 = V :=

∑
α∈J Frα as an F -vector space since by construction any product of

elements in V is again in V since F contains T . Furthermore, by construction we have R0⊗F k ∼= R.
Notice that R0 is prime since R is prime and since R is a free R0-module, we have that there is
an inclusion-preserving injection from the set of left R0-modules to the set of left R-modules by
extension. In particular, R0 is left noetherian since R is. Then Q(R0)⊗F k is a localization of R and
since a, b ∈ R0 we have z ∈ Q(R0). Moreover, since dimF (R0) < |k| and since |F | < |k| and since
k is uncountable, we have |R0| < |k|. Moreover, since every element of Q(R0) can be expressed in
the form sr−1 with s, r ∈ R0 we have that |Q(R0)| < |k|. Now for λ ∈ k, let zλ = z⊗ 1− 1⊗λ. We
note that by the Amitsur trick that the set of λ ∈ k for which zλ is a unit in Q(R)⊗F k must have
cardinality strictly less than |k|. Explicitly, since Q(R0)⊗F k has dimension strictly less than |k| if

Y := {λ ∈ k : zλ is a unit in Q(R)⊗F k}
has cardinality |k| then there is necessarily a (finite) k-dependence of z−1

λ with λ ∈ Y ; after clearing
denominators in this dependence, we get that z is algebraic over k, which is a contradiction.

Since R is left noetherian, we see that Q(R0)⊗F k is also left noetherian, as it is a localization
of R. It follows from Jategaonkar’s principal ideal theorem [Jat74] that for λ ∈ k \ Y we have
zλQ(R) ⊗F k is contained in a height one prime ideal Pλ. Then we let Qλ = Pλ ∩ R, which is a
height one prime ideal of R for λ ∈ k \ Y . Now suppose that we have a set X with |X| < |k|
and a set of nonzero prime ideals {Jx : x ∈ X} such that every nonzero prime ideal contains some
some Jx. Then since |X| < |k| and |k \ Y | = |k| we then have that there is some x ∈ X such
that Jx ⊆ Qλ for infinitely many λ ∈ k \ Y . But the Qλ are height one primes of R and hence
L :=

⋂
Qλ = (0), since by Noether’s theorem there is a finite set of primes that are minimal with

respect to containing L and if L is nonzero then since each Qλ is height one it must be minimal
over L. In particular, we get a contradiction. Thus we have shown one direction.
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For the remaining direction, suppose that (0) is rational. Then as above we have that R ∼= R0⊗F k
where k is an extension of F , R0 is a prime left noetherian F -algebra and |F |, |Q(R0)| < |k|. By
Lemma 2.1, since (0) is rational and Q(R0)⊗F k is a prime ring, every nonzero ideal of R contains
an element of the form a⊗1 with a a nonzero element of R0. For nonzero a ∈ R0, we let Xa denote
the set of prime ideals of R that contain a ⊗ 1. Then the nonzero prime ideals of R is equal to
the union of the Xa as a ranges over nonzero elements of R0. Now for each nonzero a ∈ R0 let
Ja =

⋂
Q∈Xa

Q. Then Ja is a nonzero semiprime ideal of R since a ⊗ 1 ∈ Ja. Thus by Noether’s
theorem, Ja is a finite intersection of prime ideals Qa,1 ∩ · · · ∩Qa,na and every nonzero prime ideal
containing Ja contains Qa,i for some i. We now let U = {Qa,i : a ∈ R0 \ 0, i ∈ {1, . . . , na}}. Then
U is a set of nonzero prime ideals of R of cardinality at most |R0| × |N| < |k| and by construction,
every nonzero prime ideal of R contains some prime ideal from U . This completes the proof. �

We are now able to give the proof of our main result.

Proof of Theorem 1.1. We may assume that R satisfies the Dixmier-Moeglin equivalence. Since
dimk(S) < |k|, we have that S satisfies the Nullstellensatz [BG01, II.7.16]. Hence by a result from
the book of Brown and Goodearl [BG01, II.7.15], we have the implications

P locally closed =⇒ P primitive =⇒ P rational

for P ∈ Spec(S). Hence it suffices to prove that a rational prime ideal of S is locally closed. Fix
an inclusion preserving bijection Ψ : Spec(R) → Spec(S) and let Q = Ψ−1(P ). Then the prime
ideals containing Q are precisely the prime ideals {Ψ−1(J) : J ) P}. Since P is rational, we have
by Lemma 2.3 that there is a set X with |X| < |k| and a set of prime ideals {Jx : x ∈ X} of prime
ideals of S that properly contain P such that every prime ideal of S that properly contains P must
contain Jx. Then since Ψ is an inclusion-preserving bijection we then see that every prime ideal
that properly contains Q must contain a prime ideal from {Ψ−1(Jx) : x ∈ X}. In particular, by
Lemma 2.3 we see that Q is a rational prime ideal of R. Then since R satisfies the Dixmier-Moeglin
equivalence, we have that Q is locally closed. Thus by Noether’s theorem there is a finite set of
prime ideals Q1, . . . , Qd of R that properly contain Q such that every prime ideal that properly
contains Q must contain some Qi. But then every prime ideal that properly contains P must
contain Ψ(Qi) for some i ∈ {1, . . . , d}. But this means that P is locally closed in Spec(S). This
completes the proof. �

We are able to prove Theorem 1.2 now.

Proof of Theorem 1.2. Again since dimk(R) < |k| we have that R satisfies the Nullstellensatz and
so it suffices to prove that a rational prime ideal is locally closed in Spec(R). Let P be rational.
Then by Lemma 2.3, there is a countable set (possibly finite or empty) of prime ideals Q1, Q2, . . .
that properly contain P such that every prime ideal properly containing P contains Qi for some
i. If {Qi : i ≥ 1} is finite then P is locally closed and we are done. Thus we may assume that the
set {Qi : i ≥ 1} is infinite. We have Spec(R) = X1 ⊔X2 ⊔ · · · ⊔Xd with each Xi homeomorphic to
Spec(Ti) for some finitely generated commutative k-algebra Ti. For each j ∈ {1, . . . , d} we let

Lj :=
⋂

{i : Qi∈Xj}

Qi.

Then for j ∈ {1, . . . , d} we either have Lj = P or Lj properly contains P in which case there is a
finite set Sj of primes that are minimal with respect to containing Lj. If Lj properly contains P
for j = 1, . . . , d then every prime ideal properly containing P contains some prime ideal from the

finite set
⋃d

j=1 Sj and hence P is locally closed and we are done. Alternatively, we have Lj = P for
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some j. In this case, P ∈ Xj since Xj is locally closed and we also have that P is not locally closed
in Xj since Lj = P . Thus since Tj satisfies the Dixmier-Moeglin equivalence, we see by Lemma
2.3 that there are uncountably many height one primes in Tj/P (where we now identify P with its
image in Spec(Tj) ∼= Xj) and in particular, there are uncountably many height one prime ideals in
R/P and so P is not a rational prime ideal of R by Lemma 2.3, a contradiction. �

Remark 2.4. We note that in the proof of Theorem 1.2 the only place that Ti is affine commutative
is used is to ensure that the Ti satisfy the Dixmier-Moeglin equivalence and so one can relax the
statement of the theorem to only require that the Ti be k-affine algebras that satisfy the Dixmier-
Moeglin equivalence.

We now show that the conclusions to the statements of Theorems 1.1 and 1.2 do not hold if we
relax the hypotheses on the cardinality of the base field. We note that Lorenz [Lor77] gives an
example of an algebra that does not satisfy the Dixmier-Moeglin equivalence. We are unable to use
his example to produce a counterexample to the statements of Theorems 1.1 and 1.2 when k is a
countable field, but by modifying his construction appropriately we can construct a counterexample.
Thus the following example should be seen as heavily drawing inspiration from the construction of
Lorenz. We suspect, in fact, that the example of Lorenz does not have a prime spectrum that is
homeomorphic to that of an algebra that satisfies the Dixmier-Moeglin equivalence.

Example 2.5. Let k = Q̄. Then there exists a finitely generated infinite-dimensional prime noe-
therian k-algebra R such that R does not satisfy the Dixmier-Moeglin equivalence and Spec(R) is
homeomorphic to Spec(k[t]). Thus neither Theorem 1.1 nor Theorem 1.2 hold when one removes
the hypotheses on the cardinality of the base field.

To do this we require a few basic results. We begin our construction by taking B = k[x±1, y±1]
and letting σ be the k-algebra automorphism of B given by x 7→ x5y4 and y 7→ xy. We note that
σ is an automorphism since it has inverse given by x 7→ xy−4, y 7→ x−1y5.

Lemma 2.6. The algebra B has no nonzero proper principal σ-invariant ideals.

Proof. Suppose that (f(x, y)) is σ-invariant with f 6= 0. Then σ(f) = γxpyqf for some nonzero
γ and some integers p and q. We write f =

∑
ci,jx

iyj and since f is a non-unit and nonzero, we
have that the set of (i, j) such that ci,j is nonzero has at least two elements. By multiplying f by
a unit we may assume that c0,0 6= 0. Then we have

σ(f) =
∑

ci,jx
5i+jy4i+j =

∑
ci,jγx

p+iyq+j.

So now let M : Z2 → Z2 be the Z-linear map given by M(m,n) = (5m + n, 4m + n) and let
Φ : Z2 → Z2 be the Z-affine linear map given by Φ(m,n) = (5m+n−p, 4m+n−q) = M(m,n)−(p, q).
Let T = {(0, 0) = (i1, j1), . . . , (id, jd)} denote the set of pairs (i, j) for which ci,j 6= 0. Then by
construction the orbit of (0, 0) under Φ must be contained in T and hence is finite. But notice
that Φn(0, 0) = (I + M + M2 + · · · + Mn−1)(−p,−q), which is infinite unless p = q = 0. But
now this means that the set of values taken by (M − I) ◦ Φn(0, 0) − (p, q) = Mn(−p,−q) must be
finite. But M is invertible and has eigenvalues that are not roots of unity and so this only occurs
if (p, q) = (0, 0). Thus Ψ = M . Now since f is a non-unit there is some (i, j) 6= (0, 0) such that
(i, j) ∈ T . Again, the orbit of (i, j) under Ψ = M must lie in T and hence must be finite. But this
is impossible since (i, j) 6= (0, 0) and M is invertible and has no eigenvalues that are roots of unity.
The result follows. �

Now we take A = B[u±1] and we extend σ to A by declaring that σ(u) = 2u. We now characterize
the σ-prime ideals of A.
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Lemma 2.7. Let I be a nonzero σ-prime ideal of A. Then I = JA, for some σ-prime ideal J of
B having finite codimension in B.

Proof. We first claim that I intersects B non-trivially. To see this, let a =
∑m

i=0 biu
i be a nonzero

element of I with m minimal. By minimality of m we have b0 6= 0. We claim that m = 0. To see
this, observe that σ(a) =

∑m
j=0 σ(bi)2

iui. So

2mσ(bm)a− bmσ(a) =
m−1∑

j=0

(2mσ(bm)bj − 2jbmσ(bj))u
j ∈ I.

By minimality of m we see that

2mσ(bm)b0 = bmσ(b0),

and so if we set c = b0/bm then we have σ(c) = 2mc. Now we write c = r/s with r, s relatively
prime elements of B. Then σ(c) = σ(r)/σ(s) and so 2mrσ(s) = σ(r)s. Since B is a UFD and r
and s are coprime we see that σ(s) = u1s and σ(r) = u2r for some units u1, u2 of B. But this
means that (s) and (r) are nonzero σ-invariant ideals of B and by Lemma 2.6 we then see that
s and r are units and so c is a unit in B. But then c = γxpyq and it is straightforward to see
that σ(c) 6= 2mc has no solutions of this form unless m = 0 and γ is constant. It follows that
J := I ∩ B is nonzero and since I is σ-prime, J is a σ-prime ideal of B. Since J is σ-prime, we
have J = Q∩σ(Q)∩ · · · ∩σn−1(Q) for some nonzero prime ideal Q of B with σn(Q) = Q. If Q has
height one then Q is principal since B is a UFD and hence J is principal. But this cannot occur
by Lemma 2.6. Thus Q has height at least 2 and since B has Krull dimension 2, we see that Q is
maximal and so J is of finite codimension in B as required. Now we claim that I = JA. To see
this, observe that QA is a height two prime ideal of A and if I is not JA then there must be a
σ-periodic prime ideal P strictly containing QA such that I is the intersection of the σ-orbit of P .
But if P properly contains QA then it must have height at least three and hence must be maximal
and so u − γ ∈ P for some nonzero γ by the Nullstellensatz. But σn(u − γ) = 2nu − γ and since
σn(Q) = Q for some n ≥ 1, we then get that (2n − 1)γ ∈ Q, a contradiction. �

Proof of Example 2.5. Let S = A[z±1;σ]. Then we claim that A does not satisfy the Dixmier-
Moeglin equivalence and Spec(S) and Spec(k[t]) are homeomorphic. To see this, first notice that if
α and β are roots of unity, then the point (α, β) has finite orbit under σ and hence the intersection
of the prime ideals in the σ-orbit of (x−α, y−β) is a σ-prime ideal of A. In particular, since there
are infinitely many ordered pairs of roots of unity, we see that there is an infinite set of nonzero
σ-prime ideals of A and by Lemma 2.7 they are all maximal σ-prime ideals of A. Notice from the
above that if I is a nonzero σ-prime ideal of A then A/I ∼= (B/Q)[u±1] and since σ has infinite order
on (B/Q)[u±1] and I is a maximal σ-prime ideal of A we see that (A/I)[z±1;σ] is simple. Thus we
have shown that (0) is not locally closed and all nonzero prime ideals of S are maximal. Moreover,
since S is noetherian we have that any infinite set of maximal ideals is Zariski dense. Thus Spec(S)
is homeomorphic to Spec(k[t]). Thus to finish the proof it suffices to show that (0) is rational.
Notice this occurs, if and only if there is a non-constant rational map f : Spec(A) 99K P1 such that
f ◦ σ = f [BG18, Lemma 3.5]. Notice that we can write f as P (x, y, u)/Q(x, y, u) where P,Q ∈ A
are coprime. Then f ◦σ = f gives that P (x5y4, xy, 2u)/Q(x5y4, xy, 2u) = P (x, y, u)/Q(x, y, u) and
so

P (x5y4, xy, 2u)Q(x, y, u) = P (x, y, u)Q(x5y4, xy, 2u).

Then since P and Q are coprime and A is a UFD, we have (P (x5y4, xy, 2u)) = (P (x, y, u)) and
(Q(x5y4, xy, 2u)) = (Q(x, y, u)). By considering the degree in u and using the fact that A∗ =
k∗〈x±1, y±1, u±1〉, we see that σ(P ) = γxpyqP and σ(Q) = δxsytQ with γ, δ ∈ k∗ and p, q, s, t ∈ Z.



DIXMIER-MOEGLIN EQUIVALENCE AND MORITA EQUIVALENCE 9

Now we consider P as a polynomial in u and write P =
∑

Piu
i. Then σ(P ) = γxpyqP gives

σ(Pi)2
i = γxpyqPi and so each Pi is a σ-invariant prime ideal of P and hence Pi is either 0 or

a unit in B by Lemma 2.6. But the units of B are of the form k∗xpyq and it is straightforward
to check that there are no unit solutions to σ(Pi)2

i = γxpyqPi if i > 0. Hence P = P0 ∈ B and
similarly Q = Q0 ∈ B and from the above remarks we have that P0 and Q0 are units in B and
so f is a unit of B. Thus f = γxpyq for some nonzero γ and some integers p and q. But now
f ◦ σ = γx5p+qy4p+q = γxpyq and so p = q = 0 and so we see f is necessarily constant and thus P
is rational. Thus S does not satisfy the Dixmier-Moeglin equivalence as claimed. �

3. Morita Equivalence and corners

In this section we prove that satisfying the Dixmier-Moeglin equivalence is a Morita invariant.
Large parts of this result were already well known and the result itself is not too difficult, but since
it doesn’t appear in the literature and since there are non-trivial consequences of this result, we
find it useful to record this fact. We first make the following well known remark, which shows that
Morita equivalence is a much stronger condition than assuming homeomorphic spectra.

Remark 3.1. Let R and S be Morita equivalent algebras. Then there is a homeomorphism Ψ :
Spec(R) → Spec(S) with the property that Ψ(P ) is primitive if and only if P is primitive.

Proof. This is essentially given by Theorem 3.5.9 (i) of McConnell and Robson [MR01]. Let SMR

be a progenerator. Then the map Ψ from ideals of R to ideals of S given by I 7→ MIM∗ gives a
semigroup isomorphism between the ideals of R and those of S that induces a bijection from Spec(R)
to Spec(S) that preserves primitivity [MR01, Theorem 3.5.9]. We note that Ψ : Spec(R) → Spec(S)
and Ψ−1 : Spec(S) → Spec(R) are continuous since the collection of prime ideals in R containing
I is mapped to the collection of prime ideals in S that contain Ψ(I) and conversely

Ψ−1({P ∈ Spec(S) : P ⊇ J}) = {Q ∈ Spec(R) : Q ⊇ Ψ−1(J)}.
�

We now show that satisfying the Dixmier-Moeglin equivalence is a Morita invariant.

Proof of Theorem 1.3(a). Let SMR be a progenerator and let Ψ : Spec(R) → Spec(S) be the
homeomorphism described in Remark 3.1. Let P be a prime ideal of R. Then since being locally
closed is a topological property we see that P is locally closed in Spec(R) if and only if Ψ(P ) is
locally closed in Spec(S). By Remark 3.1 we have that P is primitive if and only if Ψ(P ) is primitive.
Finally to see P is rational if and only if Ψ(P ) is rational, suppose that P is a rational prime ideal
of R. Then by McConnell and Robson [MR01, Theorem 3.5.9 (ii)] we have R/P and S/Ψ(P ) are
Morita equivalent and hence Q(R/P ) and Q(S/Ψ(P )) are Morita equivalent [MR01, Proposition
3.6.9]. Thus there is a k-algebra isomorphism Z(Q(R/P )) ∼= Z(Q(S/Ψ(P )) (cf. [MR01, Theorem
3.59(iii)]), and so P is rational if and only if Ψ(P ) is rational. �

We note that if R is a ring and e is an idempotent of R then eRe is not in general Morita
equivalent to R; one typically requires that e be full; i.e., that ReR = R. So in general the Dixmier-
Moeglin equivalence being satisfied by R is not equivalent to being satisfied by eRe. For example,
if R is a ring that does satisfy the Dixmier-Moeglin equivalence and S does then T = R × S does
not, but R is of the from eTe for an idempotent of T . On the other hand, we are able to show that
if R satisfies the Dixmier-Moeglin equivalence then eRe must too. To do this, we begin with an
easy remark, which is folklore, although we are unable to find a reference so we give a proof.
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Remark 3.2. Let R be a ring with nonzero idempotent e. Let U denote the open subset of Spec(R)
consisting of prime ideals for which e 6∈ P . Then there is a continuous surjection from U (endowed
with the subspace topology) to Spec(eRe) given by P ∈ U 7→ ePe.

Proof. If P ∈ Spec(R) and e 6∈ P then ePe is a proper ideal of eRe and the fact that P is prime in R
immediately gives that ePe is prime in eRe. Now to get surjectivity of the map let Q ∈ Spec(eRe)
and let P denote the sum of all ideals I such that eIe ⊆ Q. Then this is a non-empty sum since
RQR has the property that eRQRe = Q. Moreover, P is a proper ideal and ePe = Q, since
ePe ⊆ Q by construction and P ⊇ RQR so ePe ⊇ Q. Finally, to check that P is prime, we note
that if J1 and J2 are ideals of R with J1J2 ⊆ P . Then eJ1J2e ⊆ Q and so (eJ1e)(eJ2e) ⊆ Q. But
since Q is prime, we then have either eJ1e ⊆ P or eJ2e ⊆ P and so either J1 or J2 is contained
in P by definition and so P is prime. Finally, to see continuity observe that the preimage of the
set of prime ideals of eRe that contains an ideal I is precisely the prime ideals of U that contain
RIR. �

Proof of Theorem 1.3(b). Let Q be a prime ideal of eRe and let P be a prime ideal of R such that
eRe = P . Then we replace R by R/P and assume that R and eRe are prime and that P and Q
are zero. First, we have that (0) is a primitive ideal of R if and only if (0) is a primitive ideal of
eRe by a result of Lanski, Resco, and Small [LRS79, Theorem 1]. Next observe that if (0) is locally
closed in Spec(R) then the intersection of the nonzero prime ideals of R is a nonzero ideal I. Since
every nonzero prime ideal of eRe is of the form ePe for some nonzero prime ideal P of R we see
that the intersection of the nonzero prime ideals of eRe contains eIe, which is nonzero since R is
prime. Thus (0) is locally closed in Spec(eRe) if (0) is locally closed in Spec(R). Conversely, if (0)
is not locally closed in Spec(R) then ⋂

P = (0),

where we take the intersection of all nonzero prime ideals P of R. But since ePe is either a nonzero
prime ideal of eRe or is equal to eRe we see that the intersection of the nonzero prime ideals of
eRe is contained in the intersection

⋂
P 6=0 ePe = e(

⋂
P 6=0 P )e = (0) and so (0) is not locally closed

in Spec(eRe). Finally, (0) is a rational prime of R if and only if the centre of Q(R) is an algebraic
extension of k. But now e becomes a full idempotent in Q(R) since the ideal ReR contains a regular
element and hence Q(R) and eQ(R)e are Morita equivalent and since Q(R) is prime Artinian, so is
eQ(R)e [MR01, Proposition 3.5.10]. In particular, since Q(eRe) is a localization of eQ(R)e we see
that Q(eRe) = eQ(R)e and so (0) is rational in R if and only if (0) is rational in eRe (cf. [MR01,
Theorem 3.59(iii)]). Finally since every prime ideal of eRe is of the form ePe for some prime ideal
of R we see that if R satisfies the Dixmier-Moeglin equivalence then so does eRe. �

Remark 3.3. As noted earlier, the converse of this result does not hold: if R and S are algebras and
R satisfies the Dixmier-Moeglin equivalence and S does not, then T := R× S does not satisfy the
Dixmier-Moeglin equivalence since S is a homomorphic image. On the other hand R = eTe with
e = (1, 0). The proof in the other direction fails because the argument gives no information about
primes P ∈ Spec(R) with e ∈ P . Thus the converse only holds in general if we know e is full; i.e.,
R = ReR. But in this case R and eRe are Morita equivalent and the result is already covered by
Theorem 1.3(a).

We now give an application of this result. We recall that if A is a k-algebra and H is a Hopf
k-algebra, then H acts on A if there is there is a k-bilinear map φ : H ×A → A (where we let h · a
denote φ(h, a)) such that for a, b ∈ A we have h · (ab) =

∑
i(fi · a)(gi · b), where ∆(h) =

∑
fi ⊗ gi,

and we have h · 1 = ǫ(h). Given a Hopf algebra H acting on A, we can then construct the invariant
subalgebra AH = {a ∈ A : h · a = ǫ(h)a for all h ∈ H}.
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Corollary 3.4. Let k be a field, let A be a left noetherian k-algebra of finite Gelfand-Kirillov
dimension, and let H be a finite-dimensional semisimple Hopf algebra that acts on A. If A satisfies
the Dixmier-Moeglin equivalence, then the invariant subalgebra AH satisfies the Dixmier-Moeglin
equivalence.

Proof. Since H is finite-dimensional, the smash-product algebra A#H is a finite free left and right
A-module and hence left noetherian and A#H satisfies the Dixmier-Moeglin equivalence by [Let89].
Now since H is semisimple, the trace map from A to AH is surjective and so [Mon93, Lemma 4.3.4]
gives that e(A#H)e ∼= AH for some nonzero idempotent e ∈ A#H. Theorem 1.3(b) now gives that
AH satisfies the Dixmier-Moeglin equivalence. �

Remark 3.5. We observe that if one follows the proof then we see that the semisimple hypothesis can
be replaced by the weaker condition that the trace map t : A → AH being surjective in Corollary
3.4.

4. Dixmier-Moeglin equivalence and Tensor Products

In this section, we prove that if R and S are algebras satisfying the Dixmier-Moeglin equivalence
then R⊗k S does too under a hypothesis on the base field. We note that there are some subtleties
that arise in general since a tensor product of prime rings need not be prime, and so we find
obtaining the result without some sort of hypothesis that gives the Nullstellensatz to be difficult.

Proof of Theorem 1.3(c). Since R⊗kS satisfies the Nullstellensatz, it suffices to prove that rational
prime ideals are locally closed.

Let P ∈ Spec(R ⊗k S). Let Q = {a ∈ R : a ⊗ 1 ∈ P}. Then Q is a prime ideal of R since if
a1, a2 ∈ R are such that a1Ra2 ⊆ Q then (a1 ⊗ 1)(R ⊗ S)(a2 ⊗ 1) ⊆ Q ⊗ S ⊆ P and so a1 ⊗ 1 or
a2 ⊗ 1 ∈ P , which then gives a1 or a2 is in Q.

Then (R⊗kS)/P is a homomorphic image of (R/Q)⊗S and so without loss of generality we may
replace R by R/Q and assume that R is prime and that (R⊗1)∩P = (0). Similarly, we may assume
that S is prime and that (1⊗S)∩P = (0). Notice that if a⊗ b ∈ P with a ∈ R and b ∈ S then for
x ∈ R and y ∈ S we have ax ⊗ yb = (1 ⊗ y)(a ⊗ b)(x ⊗ 1) ∈ P . Hence (a ⊗ 1)(R ⊗ S)(1 ⊗ b) ⊆ P
and thus by the above reduction we have either a = 0 or b = 0.

Now suppose that P is rational. We show that P is locally closed. To see this, let U denote the
regular elements of R and let T denote the regular elements of S. Then (U ⊗ T ) is an Ore set of
elements of R⊗S and by the above remarks the prime P survives in the localization (U⊗T )−1R⊗S.
In particular Q(R) ⊗k Q(S) is a subalgebra of Q((R ⊗k S)/P ) and Z(Q(R)) ⊗k Z(Q(S)) is a
subalgebra of Q((R⊗k S)/P ).

In particular, since P is rational, Z(Q(R)) ⊗k Z(Q(S)) is an algebraic extension of k and thus
Z(Q(R)) and Z(Q(S)) are algebraic extensions of k and so (0) is a rational prime of R and (0) is
a rational prime of S. By hypothesis, we then have that (0) is a locally closed ideal of R and (0) is
a locally closed ideal of S.

To see that P is locally closed, we let X denote the set of primes in Spec(R⊗k S) that properly
contain P . We let X1 denote the subset of primes Q ∈ X such that Q ∩ (R ⊗ 1) 6= (0) and we let
X2 denote the set of primes Q ∈ X such that Q ∩ (1⊗ S) 6= (0). Arguing as above, we see that for
Q ∈ X1, Q ∩ (R ⊗ 1) is a nonzero prime ideal of R. Since (0) is locally closed, we then have that
there is some nonzero a ∈ R such that a ⊗ 1 ∈ ∩Q∈X1

Q. Similarly, there is some nonzero b ∈ S
such that 1⊗ b ∈ ∩Q∈X2

Q.
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Finally, consider the primes Q such that Q ∩ (R ⊗ 1) = (0) and Q ∩ (1 ⊗ S) = (0). Then
as before, these primes have trivial intersection with the Ore set U ⊗ T , and so the primes in

X \ (X1 ∪X2) survive in the localization Q(R)⊗k Q(S)/P̃ , where P̃ = (U ⊗T )−1P . We claim that

P̃ is maximal. To see this, let I be an ideal of Q(R) ⊗k Q(S) that properly contains P̃ . Then we

pick x =
∑d

i=1 ai ⊗ bi ∈ I \ P̃ with a1, . . . , ad, b1, . . . , bd nonzero and d minimal. Then d > 1 since
a1 ⊗ b1 is a unit in Q(R)⊗k Q(S).

Then we may right-multiply by a−1
1 ⊗ b−1

1 and assume that a1 = b1 = 1. Then for c ∈ Q(R) we

have [x, c ⊗ 1] =
∑d

i=2[a2, c] ⊗ b2 ∈ I and so by minimality of d we see that it is in P̃ ; similarly,

[x, 1⊗ c′] ∈ P̃ for c′ ∈ Q(S). Thus x is central mod P̃ . But

Z(Q(R)⊗Q(S)/P̃ ) ⊆ Z(Q(Q(R)⊗k Q(S)/P̃ )) = Z(Q(R⊗ S)/P ),

which is an algebraic extension of k since P is rational. Hence Z(Q(R) ⊗k Q(S)/P̃ ) is a finite-
dimensional k-algebra that is a domain and hence it is a field. Thus x is a unit, which gives that
I = Q(R)⊗k Q(S) and so we obtain the desired result.

Thus X = X1 ∪X2 and so we see that 0 6= a⊗ b ∈ ⋂
Q∈X Q and so P is locally closed. Thus we

have obtained the result when dimk(R),dimk(S) < |k|. �

It would be interesting to remove the hypothesis that R ⊗k S satisfies the Nullstellensatz in
the proof of Theorem 1.3(c). We note that a tensor product of noetherian algebras need not be
noetherian; for example, if R = S = k(t1, t2, . . .) then R and S are noetherian but R⊗k S is not.

Remark 4.1. Throughout we have taken rationality of a prime ideal P of a left noetherian algebra R
to mean that Z(Q(R/P )) is an algebraic extension of the base field. If one instead takes rationality
to mean that Z(Q(R/P )) is a finite extension of the base field then all results go through, essentially
verbatim.
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