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KERNELS, TRUTH AND SATISFACTION

JAMES H. SCHMERL

Prologue. The well known Kotlarski-Krajewski-Lachlan Theorem
[KKLS&1] says that every model M of Peano Arithmetic (PA) has an
elementary extension N = M having a full satisfaction class (or, equiv-
alently, every resplendent model has a full satisfaction class). Later,
Enayat & Visser [EV15] gave another proof. According to [EV15], the
proof in [KKL81] used some “rather exotic proof-theoretic technology”,
while the proof in [EV15] uses “a perspicuous method for the construc-
tion of full satisfaction classes”. Although not made explicit there, the
proof in [EVI5], when stripped to its essentials, is seen to ultimately
depend on showing that certain digraphs have kernels. This is made
explicit here.

There is a lengthy discussion in §4 of [EVI5] about the relationship
of full satisfaction classes to full truth classes. Satisfaction classes,
which are sets of ordered pairs consisting of a formula in the language
of arithmetic and an assignment for that formula, are exclusively used
in [EV15]. Truth classes are sets of arithmetic sentences that may also
have domain constants. By [EV15, Prop. 4.3] (whose “routine but la-
borious proof is left to the reader”), there is a canonical correspondence
between full truth classes and extensional full satisfaction classes. The
culmination of [EV15, §4] is the construction of extensional full sat-
isfaction classes. In §2 of this paper, we will avoid the intricacies of
[EV15L §4] by working exclusively with truth classes to easily obtain
the same conclusion.

81. Digraphs and kernels. A binary relational structure A4 =
(A, F) is referred to here as a directed graph, or digraph for short[]
A subset K C A is a kernel of A if for every a € A, a € K iff when-
ever aFb, then b ¢ K. According to [BJG09], kernels were introduced
by von Neumann [vNM44] and have subsequently found many appli-
cations. For n < w, define the binary relation £™ on A by recursion:
xE% iff v = y; v By iff 2 Ez and zE™y for some z € A. A digraph
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B with the the induced subdigraph B = (B, E N B?).
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A is a directed acyclic graph (DAG) if whenever n < w and aE"a,
then n = 0. Some DAGs have kernels while others do not. For exam-
ple, if < is a linear order of A with no maximum element, then (A, <)
is a DAG with no kernel. However, every finite DAG has a (unique)
kernel, as was first noted in [vNM44].

An element b € A for which there is no ¢ € A such that bEc is a sink
of A. We say that A is well-founded if every nonempty subdigraph
of A has a sink. Every finite DAG is well-founded, and every well-
founded digraph is a DAG having a kernel. The next proposition, for
which we need some more definitions, says even more is true. A subset
D of a digraph A is closed if whenever d € D and dFEa, then a € D.
If X C Aandk < w, then define CI(X) by recursion: CI'(X) = X
and Cli% (X)) = X U{a € A : dEa for some d € CI;'(X)}. Let
CI(X) = U, w CI2(X), which is the smallest closed superset of X.

PRrROPOSITION 1: Suppose that A is a digraph, D C A is closed,
Ko C D is a kernel of D, and A\D is well-founded. Then A has a
(unique) kernel K such that Ko = K N D.

Proof. By recursion on ordinals «, define D, so that Dy = D,
Dyi1=Dy,U{be D :bisasink of A\D,}, and D, = Uﬁ<a Dg if o is
a limit ordinal. Then, there is v such that A = D,. For each «, there
is a unique kernel K, of D, such that K3 = K, N Dsz whenever § < a.
Let K = K. O

Let A be a digraph. If there is k¥ < w for which there are no a,b € A
such that aE**'b, then A has finite height, and we let ht(A), the
height of A, be the least such k. If A has finite height, then it is well-
founded. We say that A has local finite height if for every m < w
there is k < w such that ht(Cl}(F)) < k for every F C A having
cardinality at most m. If A has local finite height, then it is a DAG.
Having local finite height is a first-order property: if B = A and A has
local finite height, then so does B.

THEOREM 2: FEvery digraph A having local finite height has an ele-
mentary extension B >~ A that has a kernel.

Proof. This proof is modeled after Theorem 3.2(b)’s in [EV15].

To get B with a kernel K, we let By = &, and then obtain an
elementary chain A = By < By < B3 < --- and an increasing sequence
@ =Ky C Ky C Ky C--- such that for every n < w, K, is a kernel
of CI°"+(B,) . Having these sequences, we let B = |J _ B, and

n<w
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K =, K, so that B = A and K is a kernel of B. The next lemma
allows us to get B,,42 and K, when we already have B,,, B,,.1 and K,,.

LEMMA 3: Suppose that B,11 is a digraph having local finite height,
D is a closed subset of B,i1, and K, is a kernel of D. Then there
are B0 = B,i1 and a kernel K, 1 of CIB"”(B,@H) such that K, =
K,1NnD.

To prove Lemma 3, let ¥ be the union of the following three sets of
sentences:

b Th((BTH-l?a)UEBnJrl);
o {0p): k <wand F C B, is finite}, where o5 is the sentence

Va € CLy(F)[U(z) <+ Vy € Clys (F) (zEy — =U(y))];
o {U(d):de K,}U{=U(d) :d € D\K,}.
This ¥ is a set of L-sentences, where £ = {E,U} U B,;; and U is a
new unary relation symbol.

It suffices to show that ¥ is consistent, for then we can let (B,12,U) E
Y and let K,,,1 =UN CIB”“(BHH). To do so, we need only show that
every finite subset of X is consistent.

Let ¥¢ C ¥ be finite. Let ky < w and finite Fy C B, 11 be such that
if 0y € Do, then k < ko and F C Fy. Let D = CI"*' (Fy). Since By
has local finite height, then D has finite height and, therefore, is well-
founded. By Proposition 1, B,, ;1 has a kernel U such that K,, = UND.

Then, (B,41,U) | X, so X is consistent, thereby proving Lemma 3
and also Theorem 2. U

COROLLARY 4: FEvery resplendent (or countable, recursively satu-
rated) digraph that has local finite height has a kernel.

Proof. This is just a definitional consequence of Theorem 2 and the
fact [BS76] that countable, recursively structures are resplendent. [J

82. Truth Classes. There are various ways that syntax for arith-
metic can defined in a model M of PA. It usually makes little difference
how it is done, so we will choose a way that is very convenient.

We will formalize the language of arithmetic by using just two ternary
relation symbols: one for addition and one for multiplication. Suppose
that M |= PA. For each a € M, we have a constant symbol ¢,. Then
let LM consist of the two ternary relations and all the ¢,’s. The only
propositional connective we will use is the NOR connective |, where
0ol o1 is (09 V 01). The only quantifier we will use is the “there are
none such that” quantifier U1, where Nvp(v) is Vo[~ (v)]. Let Sent™ be
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the set of LM-sentences as defined in M. A subset S C Sent™ is a full
truth class for M provided the following hold for every o € Sent™:
o if c =0g ] 01, then 0 € S iff 0g,01 & 5
o If 0 = Nvyp(v), then o € S iff there is no a € M such that
o(c,) € S;
e If o is atomic, then 0 € S iff M = 0.

Let AM = {o € Sent™ : if ¢ is atomic, then M = o}. Define the
binary relation EM on AM so that if 0,00 € AM, then o, EMoy iff
one of the following holds:

e there is oy such that o9 = ¢ | 01 or 09 = 01 | 0yp;
e 0y = Nup(v) and o7 = ¢(c,) for some a € M.

Let A = AM = (AM EM). Obviously, A is a DAG. Moreover, it has
local finite height: if F C AM is finite and m < w, then ht(CIA(F)) <
(2m+1 — 1)|F|. We easily see that S is a full truth class for M iff S is
a kernel of A.

We can now infer the following version of the KKL Theorem.

COROLLARY 5: FEwvery resplendent (or countable, recursively satu-
rated) M = PA has a full truth class.

Proof. Since AM is definable in M and M is resplendent, then AM
is also resplendent. Thus, by Corollary 4, AM has a kernel, which we

have seen is a full truth class for M. O

Corollary 5 can be improved by replacing PA with any of its subthe-
ories in which enough syntax is definable.
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