KERNELS, TRUTH AND SATISFACTION

JAMES H. SCHMERL

Prologue. The well known Kotlarski-Krajewski-Lachlan Theorem [KKL81] says that every model \mathcal{M} of Peano Arithmetic (PA) has an elementary extension $\mathcal{N} \succ \mathcal{M}$ having a full satisfaction class (or, equivalently, every resplendent model has a full satisfaction class). Later, Enayat & Visser [EV15] gave another proof. According to [EV15], the proof in [KKL81] used some "rather exotic proof-theoretic technology", while the proof in [EV15] uses "a perspicuous method for the construction of full satisfaction classes". Although not made explicit there, the proof in [EV15], when stripped to its essentials, is seen to ultimately depend on showing that certain digraphs have kernels. This is made explicit here.

There is a lengthy discussion in §4 of [EV15] about the relationship of full satisfaction classes to full truth classes. Satisfaction classes, which are sets of ordered pairs consisting of a formula in the language of arithmetic and an assignment for that formula, are exclusively used in [EV15]. Truth classes are sets of arithmetic sentences that may also have domain constants. By [EV15, Prop. 4.3] (whose "routine but laborious proof is left to the reader"), there is a canonical correspondence between full truth classes and *extensional* full satisfaction classes. The culmination of [EV15, §4] is the construction of extensional full satisfaction classes. In §2 of this paper, we will avoid the intricacies of [EV15, §4] by working exclusively with truth classes to easily obtain the same conclusion.

§1. Digraphs and kernels. A binary relational structure $\mathcal{A} = (A, E)$ is referred to here as a directed graph, or digraph for short.¹ A subset $K \subseteq A$ is a kernel of \mathcal{A} if for every $a \in A$, $a \in K$ iff whenever aEb, then $b \notin K$. According to [BJG09], kernels were introduced by von Neumann [vNM44] and have subsequently found many applications. For $n < \omega$, define the binary relation E^n on A by recursion: xE^0y iff x = y; $xE^{n+1}y$ iff xEz and zE^ny for some $z \in A$. A digraph

Date: August 1, 2018.

¹Henceforth, \mathcal{A} always denotes a digraph (A, E). If $B \subseteq A$, then we often identify B with the the induced subdigraph $\mathcal{B} = (B, E \cap B^2)$.

JAMES H. SCHMERL

 \mathcal{A} is a **directed acyclic graph** (**DAG**) if whenever $n < \omega$ and aE^na , then n = 0. Some DAGs have kernels while others do not. For example, if < is a linear order of A with no maximum element, then (A, <) is a DAG with no kernel. However, every *finite* DAG has a (unique) kernel, as was first noted in [vNM44].

An element $b \in A$ for which there is no $c \in A$ such that bEc is a **sink** of \mathcal{A} . We say that \mathcal{A} is **well-founded** if every nonempty subdigraph of \mathcal{A} has a sink. Every finite DAG is well-founded, and every wellfounded digraph is a DAG having a kernel. The next proposition, for which we need some more definitions, says even more is true. A subset D of a digraph \mathcal{A} is **closed** if whenever $d \in D$ and dEa, then $a \in D$. If $X \subseteq A$ and $k < \omega$, then define $\operatorname{Cl}_k^{\mathcal{A}}(X)$ by recursion: $\operatorname{Cl}_0^{\mathcal{A}}(X) = X$ and $\operatorname{Cl}_{k+1}^{\mathcal{A}}(X) = X \cup \{a \in A : dEa \text{ for some } d \in \operatorname{Cl}_k^{\mathcal{A}}(X)\}$. Let $\operatorname{Cl}^{\mathcal{A}}(X) = \bigcup_{k < \omega} \operatorname{Cl}_k^{\mathcal{A}}(X)$, which is the smallest closed superset of X.

PROPOSITION 1: Suppose that \mathcal{A} is a digraph, $D \subseteq A$ is closed, $K_0 \subseteq D$ is a kernel of D, and $A \setminus D$ is well-founded. Then \mathcal{A} has a (unique) kernel K such that $K_0 = K \cap D$.

Proof. By recursion on ordinals α , define D_{α} so that $D_0 = D$, $D_{\alpha+1} = D_{\alpha} \cup \{b \in D : b \text{ is a sink of } A \setminus D_{\alpha}\}$, and $D_{\alpha} = \bigcup_{\beta < \alpha} D_{\beta}$ if α is a limit ordinal. Then, there is γ such that $A = D_{\gamma}$. For each α , there is a unique kernel K_{α} of D_{α} such that $K_{\beta} = K_{\alpha} \cap D_{\beta}$ whenever $\beta < \alpha$. Let $K = K_{\gamma}$.

Let \mathcal{A} be a digraph. If there is $k < \omega$ for which there are no $a, b \in \mathcal{A}$ such that $aE^{k+1}b$, then \mathcal{A} has **finite height**, and we let $ht(\mathcal{A})$, the **height** of \mathcal{A} , be the least such k. If \mathcal{A} has finite height, then it is wellfounded. We say that \mathcal{A} has **local finite height** if for every $m < \omega$ there is $k < \omega$ such that $ht(Cl_m^{\mathcal{A}}(F)) \leq k$ for every $F \subseteq \mathcal{A}$ having cardinality at most m. If \mathcal{A} has local finite height, then it is a DAG. Having local finite height is a first-order property: if $\mathcal{B} \equiv \mathcal{A}$ and \mathcal{A} has local finite height, then so does \mathcal{B} .

THEOREM 2: Every digraph \mathcal{A} having local finite height has an elementary extension $\mathcal{B} \succ \mathcal{A}$ that has a kernel.

Proof. This proof is modeled after Theorem 3.2(b)'s in [EV15].

To get \mathcal{B} with a kernel K, we let $B_0 = \emptyset$, and then obtain an elementary chain $\mathcal{A} = \mathcal{B}_1 \prec \mathcal{B}_2 \prec \mathcal{B}_3 \prec \cdots$ and an increasing sequence $\emptyset = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots$ such that for every $n < \omega, K_n$ is a kernel of $\operatorname{Cl}^{\mathcal{B}_{n+1}}(B_n)$. Having these sequences, we let $\mathcal{B} = \bigcup_{n < \omega} \mathcal{B}_{n+1}$ and

 $K = \bigcup_{n < \omega} K_n$, so that $\mathcal{B} \succ \mathcal{A}$ and K is a kernel of \mathcal{B} . The next lemma allows us to get \mathcal{B}_{n+2} and K_{n+1} when we already have B_n , \mathcal{B}_{n+1} and K_n .

LEMMA 3: Suppose that \mathcal{B}_{n+1} is a digraph having local finite height, D is a closed subset of B_{n+1} , and K_n is a kernel of D. Then there are $\mathcal{B}_{n+2} \succ \mathcal{B}_{n+1}$ and a kernel K_{n+1} of $\operatorname{Cl}^{\mathcal{B}_{n+2}}(B_{n+1})$ such that $K_n = K_{n+1} \cap D$.

To prove Lemma 3, let Σ be the union of the following three sets of sentences:

- Th $((\mathcal{B}_{n+1}, a)_{a \in B_{n+1}});$
- { $\sigma_{F,k} : k < \omega$ and $F \subseteq B_{n+1}$ is finite}, where $\sigma_{F,k}$ is the sentence $\forall x \in \operatorname{Cl}_k(F)[U(x) \leftrightarrow \forall y \in \operatorname{Cl}_{k+1}(F)(xEy \to \neg U(y))];$
- $\{U(d): d \in K_n\} \cup \{\neg U(d): d \in D \setminus K_n\}.$

This Σ is a set of \mathcal{L} -sentences, where $\mathcal{L} = \{E, U\} \cup B_{n+1}$ and U is a new unary relation symbol.

It suffices to show that Σ is consistent, for then we can let $(\mathcal{B}_{n+2}, U) \models \Sigma$ and let $K_{n+1} = U \cap \operatorname{Cl}^{\mathcal{B}_{n+2}}(B_{n+1})$. To do so, we need only show that every finite subset of Σ is consistent.

Let $\Sigma_0 \subseteq \Sigma$ be finite. Let $k_0 < \omega$ and finite $F_0 \subseteq B_{n+1}$ be such that if $\sigma_{F,k} \in \Sigma_0$, then $k < k_0$ and $F \subseteq F_0$. Let $D = \operatorname{Cl}_{k_0}^{\mathcal{B}_{n+1}}(F_0)$. Since \mathcal{B}_{n+1} has local finite height, then D has finite height and, therefore, is wellfounded. By Proposition 1, \mathcal{B}_{n+1} has a kernel U such that $K_n = U \cap D$. Then, $(\mathcal{B}_{n+1}, U) \models \Sigma_0$, so Σ_0 is consistent, thereby proving Lemma 3 and also Theorem 2.

COROLLARY 4: Every resplendent (or countable, recursively saturated) digraph that has local finite height has a kernel.

Proof. This is just a definitional consequence of Theorem 2 and the fact [BS76] that countable, recursively structures are resplendent. \Box

§2. Truth Classes. There are various ways that syntax for arithmetic can defined in a model \mathcal{M} of PA. It usually makes little difference how it is done, so we will choose a way that is very convenient.

We will formalize the language of arithmetic by using just two ternary relation symbols: one for addition and one for multiplication. Suppose that $\mathcal{M} \models \mathsf{PA}$. For each $a \in M$, we have a constant symbol c_a . Then let \mathcal{L}^M consist of the two ternary relations and all the c_a 's. The only propositional connective we will use is the NOR connective \downarrow , where $\sigma_0 \downarrow \sigma_1$ is $\neg(\sigma_0 \lor \sigma_1)$. The only quantifier we will use is the "there are none such that" quantifier N , where $\mathsf{N}v\varphi(v)$ is $\forall v[\neg\varphi(v)]$. Let $\mathsf{Sent}^{\mathcal{M}}$ be

JAMES H. SCHMERL

the set of $\mathcal{L}^{\mathcal{M}}$ -sentences as defined in \mathcal{M} . A subset $S \subseteq \mathsf{Sent}^{\mathcal{M}}$ is a **full truth class** for \mathcal{M} provided the following hold for every $\sigma \in \mathsf{Sent}^{\mathcal{M}}$:

- if $\sigma = \sigma_0 \downarrow \sigma_1$, then $\sigma \in S$ iff $\sigma_0, \sigma_1 \notin S$;
- If $\sigma = \mathsf{M}v\varphi(v)$, then $\sigma \in S$ iff there is no $a \in M$ such that $\varphi(c_a) \in S$;
- If σ is atomic, then $\sigma \in S$ iff $\mathcal{M} \models \sigma$.

Let $A^{\mathcal{M}} = \{ \sigma \in \mathsf{Sent}^{\mathcal{M}} : \text{ if } \sigma \text{ is atomic, then } \mathcal{M} \models \sigma \}$. Define the binary relation $E^{\mathcal{M}}$ on $A^{\mathcal{M}}$ so that if $\sigma_1, \sigma_2 \in A^{\mathcal{M}}$, then $\sigma_2 E^{\mathcal{M}} \sigma_1$ iff one of the following holds:

- there is σ_0 such that $\sigma_2 = \sigma_0 \downarrow \sigma_1$ or $\sigma_2 = \sigma_1 \downarrow \sigma_0$;
- $\sigma_2 = \mathsf{M} v \varphi(v)$ and $\sigma_1 = \varphi(c_a)$ for some $a \in M$.

Let $\mathcal{A} = \mathcal{A}^{\mathcal{M}} = (A^{\mathcal{M}}, E^{\mathcal{M}})$. Obviously, \mathcal{A} is a DAG. Moreover, it has local finite height: if $F \subseteq A^{\mathcal{M}}$ is finite and $m < \omega$, then $\operatorname{ht}(\operatorname{Cl}_m^{\mathcal{A}}(F)) \leq (2^{m+1}-1)|F|$. We easily see that S is a full truth class for \mathcal{M} iff S is a kernel of \mathcal{A} .

We can now infer the following version of the KKL Theorem.

COROLLARY 5: Every resplendent (or countable, recursively saturated) $\mathcal{M} \models \mathsf{PA}$ has a full truth class.

Proof. Since $\mathcal{A}^{\mathcal{M}}$ is definable in \mathcal{M} and \mathcal{M} is resplendent, then $\mathcal{A}^{\mathcal{M}}$ is also resplendent. Thus, by Corollary 4, $\mathcal{A}^{\mathcal{M}}$ has a kernel, which we have seen is a full truth class for \mathcal{M} .

Corollary 5 can be improved by replacing PA with any of its subtheories in which enough syntax is definable.

References

- [BJG09] J. Bang-Jensen and G. Gutin, Digraphs. Theory, algorithms and applications, 2nd edition, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2009.
- [BS76] Jon Barwise and John Schlipf, An introduction to recursively saturated and resplendent models, J. Symbolic Logic 41 (1976), 531–536.
- [EV15] Ali Enayat and Albert Visser, New constructions of satisfaction classes. Unifying the philosophy of truth, 321–335, Log. Epistemol. Unity Sci., 36, Springer, Dordrecht, 2015.
- [KKL81] H. Kotlarski, S. Krajewski and A. H. Lachlan, Construction of satisfaction classes for nonstandard models, Canad. Math. Bull. 24 (1981), 283–293.
- [vNM44] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior Princeton University Press, Princeton, 1944.

4