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ON THE SPECTRAL GAP OF SOME CAYLEY GRAPHS

ON THE WEYL GROUP W (Bn)

FILIPPO CESI

Abstract. The Laplacian of a (weighted) Cayley graph on the Weyl
group W (Bn) is a N × N matrix with N = 2nn! equal to the order
of the group. We show that for a class of (weighted) generating sets,
its spectral gap (lowest nontrivial eigenvalue), is actually equal to the
spectral gap of a 2n× 2n matrix associated to a 2n-dimensional permu-
tation representation of Wn. This result can be viewed as an extension
to W (Bn) of an analogous result valid for the symmetric group, known
as “Aldous’ spectral gap conjecture”, proven in 2010 by Caputo, Liggett
and Richthammer.

1. Introduction

Let G be a finite group with complex group algebra CG. If w =
∑

g∈G wg g
is an element of the group algebra such that all coefficients wg are real,
nonnegative and symmetric, i.e. wg−1 = wg, we denote with Cay(G,w)
the weighted Cayley graph whose vertices are the elements of G and whose
(undirected) edges are the pairs {g, hg} with g, h ∈ G. Each edge {g, hg}
carries a weight equal to wh. The Laplacian of Cay(G,w) is a linear operator
acting on functions f : G→ C as

[
∆Cay(G,w)f

]
(g) =

∑

h∈G

wh

(
f(g)− f(hg)

)
.

Since (weighted) Cayley graphs are regular, the Laplacian is strictly related
to the (weighted) adjacency matrix ACay(G,w), namely

∆Cay(G,w) =
(∑

g∈G

wg

)
IN −ACay(G,w) ,

where N is the order of G and IN is the N ×N identity matrix. The lowest
eigenvalue of the Laplacian is trivially zero with constant eigenvector. The
spectral gap of Cay(G,w) is defined as the second lowest eigenvalue of the
associated Laplacian and it is denoted with ψG(w). It is strictly positive if
and only if the support of w generates G, that is if Cay(G,w) is connected.

Taking into account the symmetry of w, we can rewrite the Laplacian as

∆Cay(G,w) =
∑

h∈G

wh [IN − L(h)] , (1.1)

where L is the left regular representation of G acting on functions on G as

[L(h)f ](g) = f(h−1g) . (1.2)
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Formula (1.1) suggests the following generalization: Given a representation
R of G on the d-dimensional complex vector space V , and given w ∈ CG,
following [Ces16], we define the representation Laplacian ∆G(w,R) as the
linear operator on V given by

∆G(w,R) :=
∑

h∈G

wh [IV −R(h)] wh ∈ C, (1.3)

where IV is the identity on V . To the pair (w,R) we also associate a spectral
gap, denoted by ψG(w,R), which is again the smallest nontrivial eigenvalue
of ∆G(w,R) (see Section 2 for a precise definition). Thus the Laplacian of
the Cayley graph is a special case of the representation Laplacian, and we
can write

∆Cay(G,w) = ∆G(w,L) ψG(w) = ψG(w,L) . (1.4)

In this paper we pursue the general idea of [Ces16] that, although L contains
all irreducible representations of G, in some interesting cases it is possible
to pinpoint those representations which are “responsible” for the spectral
gap of the Cayley graph. These representations can then replace L in (1.4),
with the advantage of having to deal with a possibly much smaller matrix
than ∆Cay(G,w).

The most important result so far in this direction is the proof of the
so called Aldous’ spectral gap conjecture, concerning the symmetric group.
After several partial successes in a series of papers [DS81], [FOW85], [Bac94],
[HJ96], [KN97], [Mor08], [SC11], [Ces10], [Die10] spanning about 25 years,
a general proof was finally given in [CLR10]. While the original formulation
was given in a probabilistic framework [Ald], the statement can be translated
as follows (see [Ces10] for more details on the equivalence): let Sn be the
symmetric group on {1, . . . , n}, and let Tn be the set of all transpositions in
Sn.

Theorem 1.1. (Aldous’ spectral gap conjecture, proven in [CLR10]). Let
w ∈ CSn be given by

w =
∑

(ij)∈Tn

bij (ij) ,

where (ij) is the transposition which exchanges i and j, and bij ≥ 0. Then

ψG(w) = ψG(w,D
0
n) , (1.5)

where D0
n is the n-dimensional defining representation of Sn, associated

with the natural action of Sn on the set {1, 2, . . . , n}.

Thanks to this theorem, if w is supported on transpositions, in order to find
the spectral gap of the Laplacian of Cay(Sn, w), which is a n!× n! matrix,
all one has to do is to find the smallest nontrivial eigenvalue of a n × n
matrix.

The spectral gap of Cayley graphs on the symmetric or alternating groups
has been computed also in some particular cases where the generators are not
transpositions. Examples are the initial reversal graph [Ces09], the (com-
plete, extended) alternating group graph [HH17] and the substring reversal
graph [CT17]. In [PP18] the authors prove that if w =

∑
π∈[α] π, where [α]

is a conjugacy class of Sn, then, for n large enough, the spectral gap of w
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is associated with one of eight low-dimensional representations. A weaker
statement is also proven for the more general case where w is invariant under
conjugation.

In [Ces16] we described a general strategy for proving results analogous
to Theorem 1.1 for arbitrary finite groups and we gave a slightly simpler
proof based on this point of view. In particular, in this strategy, it appears
that the representations “responsible” for the spectral gap are the nontrivial
irreducible representations of Sn which, when restricted to Sn−1, contain
the trivial representation. In the case of the symmetric group there is a
unique such representation, namely the one associated with the partition
(n− 1, 1). This representation, apart from a trivial summand, is equivalent
to D0

n (see (3.6)).
In this paper we apply the idea of [Ces16] to the Weyl/Coxeter group

W (Bn) associated with the Bn (or Cn) root system, also called the hype-
roctahedral group. For simplicity we let Wn = W (Bn). There are several
equivalent ways to define this group. One possible realizationis as the sub-
group of GL(n,C) consisting of all n × n matrices which have exactly one
non-zero entry in each row and each column, and this non-zero entry is
either 1 or −1. We have thus a natural embedding Sn −֒→ Wn where the
symmetric group is the subgroup of all matrices with nonnegative entries.
The groupWn can also be described as a group of signed permutations. This
leads to another embedding

Pn :Wn −֒→ S2n ,

where Pn is a 2n-dimensional faithful permutation representation described
in more details in Section 3.

We can now state the main result of this paper: for A ⊂ {1, . . . , n}, let
s{i} ∈Wn be the diagonal matrix1

s{i} = diag(1, . . . , 1,−1, 1, . . . , 1) , (1.6)

where the unique −1 occurs in the ith place. Then we have:

Theorem 1.2. Let w ∈ CWn be given by

w =

n∑

i=1

ai s{i} +
∑

(ij)∈Tn

bij (ij) ai ≥ 0, bij ≥ 0 . (1.7)

Then

ψWn(w) = ψWn(w,Pn) . (1.8)

In our approach the representation Pn appears in (1.8) for the same reason
that the defining representation of the symmetric group appears in (1.5),
that is Pn contains all irreducible representations of Wn which, when re-
stricted to Wn−1, contain the trivial representation.

There is another result which is worth mentioning since it has an inter-
esting overlap with Theorem 1.2. In [Kas11] it is proved that if (G,S) is a

1In this introduction we are implicitly using the defining representation for describing

the elements of Wn. See (4.8). This particular realization of Wn will be denoted with W̃n

in Section 3.
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finite Coxeter system, then both the spectral gap and the Kazhdan constant
are determined by the defining representation. In our notation, this implies
that if G =W (Bn) and if w is the sum of a Coxeter generating set, that is

w = s{1} +

n−1∑

i=1

(i, i+ 1) (1.9)

the ψWn(w) = ψWn(w,Dn). This result covers every finite Coxeter group,
but applies (essentially) to only one element of the group algebra, namely
w =

∑
s∈S s, where S is a Coxeter generator for G. The approach used in the

proof of this theorem is very different from ours, and in Section 5 of [Ces16]
we explain why it is unlikely that it could be effective for dealing with more
general elements w of the group algebra. Since the defining representation
Dn of Wn is a subrepresentation of Pn, Kassabov’s result is stronger than
ours for w of the form (1.9). Nevertheless, (1.8) is optimal for a general w
of type (1.7). In Section 5 we show, in fact, that the theorem is (in general)
false if we try to improve it by replacing Pn with a subrepresentation. We
also discuss a possible generalization of Theorem 1.2.

2. The representation Laplacian and its spectral gap

If G is a finite group, rep(G) denotes the set of all finite-dimensional complex
representations of G, while Irr(G) is the set of all equivalence classes of
irreducible representations. By Maschke’s theorem, we have for each R ∈
rep(G),

R ∼=
⊕

T∈Irr(G)

µ(R,T)T , (2.1)

where µ(R,T) is a nonnegative integer called the multiplicity of T in R. If
R is a representation of G on the complex vector space V , V G,R stands for
the subspace of all invariant vectors

V G,R = {v ∈ V : R(g)v = v, ∀g ∈ G}.

By definition we have

dimV G,R = µ(R, I) , (2.2)

where I is the one-dimensional trivial representation. An eigenvalue λ of the
representation Laplacian ∆G(w,R), defined in (1.3), will be called trivial if
its corresponding eigenspace consists entirely of invariant vectors v ∈ V G,R.

If w ∈ CG, the support of w is defined as

suppw = {g ∈ G : wg 6= 0} .

We introduce a canonical involution in the group algebra CG as

w =
∑

g∈G

wg g −→ w∗ :=
∑

g∈G

wg g
−1 .

An element w ∈ CG is called symmetric if w = w∗, and it is called positive
if wg ≥ 0 for all g ∈ G. We let

CG(s) = {w ∈ CG : w is symmetric}

R+G
(s) = {w ∈ CG : w is symmetric and positive}.
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It is easy to prove [Ces16, Sect. 2] that ∆G(w,R) has real eigenvalues if w is
symmetric and real nonnegative eigenvalues if w is symmetric and positive.
If w is symmetric we can label the eigenvalues of ∆G(w,R), with possible
repetitions according to their multiplicity, in nondecreasing order as

λ1(∆G(w,R)) ≤ λ2(∆G(w,R)) ≤ · · · ≤ λs(∆G(w,R)) ,

where s id the degree (or dimension) of the representation R. If w ∈ R+G
(s),

we define the spectral gap of the pair (w,R) as

ψG(w,R) := min{λ ∈ spec∆G(w,R) : λ is nontrivial}, (2.3)

with the convention that min ∅ = +∞. If t = dimV G,R, then ∆G(w,R) has
exactly t trivial eigenvalues, thus, thanks to (2.2), we have2

ψG(w,R) = λt+1 (∆G(w,R)) where t = µ(R, I). (2.4)

The spectral gap of w is defined by minimizing over representations

ψG(w) = inf
{
ψG(w,R) : R ∈ rep(G)

}
. (2.5)

From (2.1) it follows that

spec∆G(w,R) =
⋃

T∈Irr(G): µ(R,T)>0

spec∆G(w,T) (2.6)

which implies

ψG(w,R) = min{ψG(w,T) : T ∈ Irr(G), µ(R,T) > 0} . (2.7)

By consequence, in (2.5) we can just consider irreducible representations, so

ψG(w) = min
{
ψG(w,R) : R ∈ Irr(G)

}
. (2.8)

Let L be the left regular representation of G defined in (1.2). Since

L =
⊕

T∈Irr(G)

fTT , (2.9)

where fT is the degree od T, we have µ(L, I) = 1. Therefore ψG(w) =
ψG(w,L) = λ2(∆G(w,L)). This shows that definitions (2.5) and (2.8) for
the quantity ψG(w) actually agree with the definition given in Section 1 as
the second lowest eigenvalue of the Cayley graph Cay(G,w).

3. Groups Sn, W (Bn) and their representations

In this section we review some more or less well known facts about the
symmetric group, the Weyl (or Coxeter) group Wn := W (Bn) and their
representations. For more details we refer the reader to [GP00], [JK81],
[GK78].
A partition of n is a nonincreasing sequence α = (α1, α2, . . . , αr) of positive
integers such that

∑r
i=1 αi = n. The size of α is defined as |α| =

∑r
i=1 αi.

We write α⊢n if α is a partition of n. The irreducible representations of Sn

are indexed (modulo equivalence) by the partitions of n. If α⊢n, we denote
with [α] the corresponding irreducible representation of Sn.

2unless R is a multiple of I in which case all eigenvalues are trivial, and thus the
spectral gap is equal to +∞.
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The groupWn can be realized as the set of all pairs (η, π) with η ∈ {0, 1}n

and π ∈ Sn with product

(η, π) · (ζ, σ) = (η + ζ ◦ π−1, πσ)

where the sum of two elements of {0, 1}n is componentwise mod 2, and
elements of {0, 1}n are identified with functions from {1, . . . , n} to {0, 1}.
Observe that (η, π) = (η, 1Sn

) · (0, π) = (0, π) · (η ◦π, 1Sn
). Consider the two

subgroups

Nn := {(η, 1Sn
) : η ∈ {0, 1}n} ∼= (Z/2Z)n

Sn := {(0, π) : π ∈ Sn} ∼= Sn .

Nn is a normal subgroup of Wn and Wn can be written as a semidirect
product

Wn = Nn ⋊ Sn ∼= (Z/2Z)n ⋊Sn .

The irreducible representations of Wn are indexed by ordered pairs of par-
titions (α, β) such that |α|+ |β| = n. We denote with [α, β] the irreducible

representation corresponding to (α, β). We denote with Tα and T(α,β) some
specific (but arbitrary) choice of representations in the equivalence classes
[α] and [α, β] respectively. Given a pair of partitions (α, β) with |α| = k and
|β| = n− k, the representation [α, β] can be obtained [GK78, Sect. 2] as an
induced representation as3

[α, β] ∼=
(
Uk ⊗ [α]⊗ [β]

)xWn

Nn×Sk×Sn−k
, (3.1)

where Uk is the one-dimensional representation of Nn given by

Uk(η) = (−1)card{i∈{k+1,...,n} : ηi=1} η ∈ {0, 1}n, k ∈ {0, . . . , n} .

In particular, when k = n (and thus β = ∅), we have that Un is the trivial
representation and [α, ∅] is the pullback of the [α] representation of Sn ∼=
Wn/Nn, that is

T(α,∅)(η, π) = Tα(π) (η, π) ∈Wn . (3.2)

The trivial representation of Wn is given by In = [(n), ∅].

Branching rules. An irreducible representation of a finite group is in general
no longer irreducible when restricted to a subgroup, but it can be expressed
as a direct sum of irreducible representations of the subgroup. The branching
rule Sn → Sn−1 is [GP00, Sect. 6.1.8]

[α]
ySn

Sn−1
=

⊕

β∈α−

[β] α⊢n (3.3)

where, if α = (α1, . . . , αr), α
− is defined as the collection of all sequences of

the form

(α1, . . . , αi−1, αi − 1, αi+1, . . . , αr)

3we use the same notation as [GP00], while in [GK78] the order of [α, β] is reversed.
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which are partitions of n − 1. The branching rule Wn → Wn−1 is [GP00,
Sect. 6.1.9]

[α, β]
yWn

Wn−1
=

⊕

γ∈α−

[γ, β]⊕
⊕

γ∈β−

[α, γ] . (3.4)

The defining representation of Sn. Let D0
n be the defining n-dimensional

representation of Sn with matrix elements

[D0
n(π)]ij = δi,π(j) π ∈ Sn . (3.5)

This representation is not irreducible, but it can be decomposed as

D0
n = (n)⊕ (n− 1, 1) . (3.6)

The defining representation of Wn. We let Dn be the n-dimensional defining
representation of Wn given by

[Dn(η, π)]ij = (−1)ηi δi,π(j) . (3.7)

This is a faithful representation, henceWn is isomorphic to the image of Dn

which is the group W̃n of all n×n matrices which have exactly one non-zero
entry in each row and each column, and this non-zero entry is either 1 or −1.
The normal subgroupNn is mapped to the subgroup of the diagonal matrices

of W̃n, while the restriction of Dn to Sn is just the n-dimensional defining
representation of Sn. It follows from (3.1) (see also [GP00, Proposition
5.5.7] for a more general statement) that Dn is irreducible and that, in
particular,

Dn
∼= [(n− 1), (1)] . (3.8)

The representation D̃0
n. Since Nn is normal inWn, every representation R of

the quotient Wn/Nn
∼= Sn can be pulled back (or lifted) to a representation

R̃ of Wn letting

R̃(η, π) = R(π) (η, π) ∈Wn . (3.9)

Furthermore R̃ is irreducible if and only if R is. We define D̃0
n as the

pullback of the defining n-dimensional representation of Sn. Its matrix
elements are then

[D̃0
n(η, π)]ij = δi,π(j) . (3.10)

From (3.6) and (3.2) it follows that

D̃0
n = [(n), ∅] ⊕ [(n− 1, 1), ∅] . (3.11)

The permutation representation Pn. Let Xn = {−n, . . . ,−1} ∪ {1, . . . , n}
and consider the (left) group action of Wn on Xn given by

(η, π)k = (−1)(η◦π)(|k|) sgn(k)π(|k|) k ∈ Xn . (3.12)

We define Pn as the 2n-dimensional permutation representation associated
with this action. Pn acts on the complex vector space

Vn = CXn := {(xi)i∈Xn : xi ∈ C} .
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If (ei)i∈Xn is the canonical basis of Vn, such that

∑

i∈Xn

xiei = (x−n, . . . , x−1, x1, . . . , xn) ,

the representation matrices are determined by the equalities

Pn(g)ek = egk g ∈Wn, k ∈ Xn ,

where gk is given by (3.12). Therefore the matrix elements of Pn are given
by

[Pn(η, π)]ij =

{
1 if π(|j|) = |i| and sgn(j) = sgn(i) (−1)η|i|

0 otherwise.

This representation is also faithful, so Wn is isomorphic to the image of Pn

which consists of the set of all permutations π of Xn such that π(−k) =
−π(k) for each k ∈ Xn (the so called signed permutations).

In the following proposition we find the irreducible components of Pn.

Proposition 3.1. We have

Pn = Dn ⊕ D̃0
n = [(n − 1), (1)] ⊕ In ⊕ [(n− 1, 1), ∅] . (3.13)

Proof. Let Vn = CXn and (ei)i∈Xn be as above, and let

e+k = ek + e−k e−k = ek − e−k k = 1, . . . , n .

Let V +
n (V −

n ) be the subspace of Vn spanned by (e+k )
n
k=1 ((e−k )

n
k=1). In other

words V +
n is the subspace of the “even” vectors such that x−i = xi, while

V −
n is the subspace of the odd vectors.
Let g = (η, π) ∈Wn. The action defined in (3.12) satisfies g(−k) = −g(k).

By consequence we have, for k = 1, . . . , n,

Pn(g)e
+
k = egk + eg(−k) = egk + e−gk = e+|gk| = e+π(k) (3.14)

and

Pn(g)e
−
k = egk − eg(−k) = egk − e−gk = sgn(gk) e−|gk|

= (−1)(η◦π)(k) e−π(k) .
(3.15)

It follows that both V +
n and V −

n are invariant under Pn(g), thus we have a
direct sum decomposition

Pn = P+
n ⊕P−

n Vn = V +
n ⊕ V −

n P±
n := Pn ↾V ±

n
.

By comparing (3.14), (3.15) with (3.10), (3.7), we obtain

P+
n = D̃0

n P−
n = Dn . (3.16)

The second equality in (3.13) follows from (3.8), (3.11). �
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4. Proof of Theorem 1.2

In this section we prove Theorem 1.2 following the strategy described in
[Ces16, Sect. 3].

Since G is a finite group, we can always assume the representations are
unitary with respect to some (positive definite) inner product 〈·, ·〉 defined
on the representation space V . This will ensure that, if w is a symmetric el-
ement of the group algebra, then ∆G(w,R) is self-adjoint. For a self-adjoint
linear operator A we write A ≥ 0 if 〈A·, ·〉 is a positive semidefinite bilinear
form. We will write ∆G(w,R) ≥ 0 if ∆G(w,R) is positive semidefinite for
some (equivalently for each) unitary version of R. We can thus define

Γ(G) = {w ∈ CG(s) : ∆G(w,R) ≥ 0, ∀R ∈ rep(G)} . (4.1)

For future reference we summarize a few elementary properties of the set
Γ(G) in the following proposition.

Proposition 4.1. We have:

(1) Γ(G) is a convex cone, i.e. if w, z ∈ Γ(G), then for any α, β ∈ R+,
αw + βz ∈ Γ(G);

(2) ∆G(w,⊕
n
i=1Ri) ≥ 0 if and only if ∆G(w,Ri) ≥ 0 for every i = 1, . . . , n;

(3) Γ(G) = {w ∈ CG(s) : ∆G(w,T) ≥ 0, ∀T ∈ Irr(G)};

(4) Γ(G) = {w ∈ CG(s) : ∆G(w,L) ≥ 0}, where L is the left regular repre-
sentation of G;

(5) R+G
(s) ⊂ Γ(G);

(6) If H is a subgroup of G, then Γ(H) ⊂ Γ(G).

Proof. (1) and (2) follow from the definitions. (3) follows from (2) and (2.1).
(4) follows from (2), (3) and (2.9). If R is a unitary representation on V , and
w ∈ CG(s), a straightforward computation (see Proposition 2.1 in [Ces16])
yields

〈
∆G(w,R)v, v

〉
=

1

2

∑

g∈G

wg ‖R(g)v − v‖2 v ∈ V .

Thus ∆G(w,R) ≥ 0 if w is positive, which proves (5).
Finally, let w ∈ Γ(H). Then ∆H(w,T) ≥ 0 for every T ∈ Irr(H). If

S ∈ Irr(G), then we have a branching rule

S
yG

H
∼=

⊕

T∈Irr(H)

k(T)T

where k(T) are suitable nonnegative integers. Since w is an element of the
group algebra of H, the same decomposition applies to the representation
Laplacian

∆G(w,S) =
⊕

T∈Irr(H)

k(T)∆H(w,T) .

Therefore ∆G(w,S) ≥ 0 and (6) follows. �
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In the following we regard Wn−1 as the subgroup of Wn which fixes the last
coordinate, that is

Wn−1
∼= {(η, π) ∈Wn : ηn = 0 and π(n) = n} .

The key point of the proof is the following “semirecursive” result:

Proposition 4.2. Let w ∈ R+W
(s)
n and z ∈ R+W

(s)
n−1, be such that w− z ∈

Γ(Wn). Then

ψWn(w) ≥ min
{
ψWn−1(z), ψWn(w,Pn)

}
. (4.2)

Proof. Let In be the set of all irreducible representations of Wn that, when
restricted to Wn−1, contain the trivial representation. The branching rule
(3.4) implies that

In =
{
In, [(n− 1, 1), ∅], [(n− 1), (1)]

}
. (4.3)

Thanks to Proposition 3.1 and (2.7), and using the fact that ψG(w, I) = +∞,
we obtain

ψWn(w,Pn) = min{ψWn(w, [(n − 1, 1), ∅]), ψWn (w, [(n − 1), (1)])} .

Thus Proposition 4.2 follows from Proposition 3.2 in [Ces16]. �

Let An be the subset of R+W
(s)
n considered in the hypothesis of Theorem

1.2

An =
{
w =

n∑

i=1

ai s{i} +
∑

(ij)∈Tn

bij (ij) : ai ≥ 0, bij ≥ 0
}
. (4.4)

If w ∈ An, let us write w = wN + wT with

wN =

n∑

i=1

ai s{i} wT =
∑

(ij)∈Tn

bij (ij) . (4.5)

We observe that in the (η, π) notation for the elements of Wn we have

s{i} =
(
η{i}, 1Sn

)
where (η{i})j = δij =

{
1 if j = i

0 if j 6= i.
(4.6)

It follows from (3.7) and (3.10) that

D̃0
n

(
s{i}

)
= In (4.7)

Dn

(
s{i}

)
= diag

(
(−1)δij

)n

j=1
. (4.8)

Thus we get

∆Wn(wN , D̃
0
n) = 0 (4.9)

∆Wn(wN ,Dn) = 2diag(ai)
n
i=1 (4.10)

∆Wn(wT , D̃
0
n) = ∆Wn(wT ,Dn) . (4.11)

Strategy for proving Theorem 1.2.

Let us now assume that we find a map ϑ : An → An−1 such that the
following holds for each w ∈ An:

(a) w − ϑ(w) ∈ Γ(Wn);
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(b) ψWn(w,Pn) ≤ ψWn−1(ϑ(w),Pn−1).

Then we can prove (1.8) by induction. Assume in fact that (1.8) holds for
n = k − 1, that is

ψWk−1
(z) = ψWk−1

(z,Pk−1) ∀z ∈ Ak−1 . (4.12)

From Proposition 4.2 and (4.12) with z = ϑ(w), and from properties (a),
(b) of the map ϑ it follows that

ψWk
(w) ≥ min

{
ψWk−1

(ϑ(w),Pk−1), ψWk
(w,Pk)

}
= ψWk

(w,Pk) ,

which, combined with the reversed inequality which is a trivial consequence
of (2.5), implies ψWk

(w) = ψWk
(w,Pk). The induction step is completed.

In the next proposition we take care of the starting point of the induction,
n = 2.

Proposition 4.3. If w ∈ A2, then ψW2(w) = ψW2(w,P2).

Proof. We have

Irr(W2) = {I2, [(1, 1), ∅], [(1), (1)], [∅, (2)], [∅, (1, 1)]} . (4.13)

Proposition II.1 of [GK78] states that if [α, β] ∈ Irr(Wn), then

[β, α] ∼= Jn ⊗̂ [α, β] , (4.14)

where ⊗̂ denotes the inner tensor product of representations and Jn =
[∅, (n)] is the one-dimensional representation of Wn given by

Jn(η, π) = (−1)card{i∈{1,...,n} : ηi=1} (η, π) ∈Wn . (4.15)

Using (3.2) and (4.6), we have

T(∅,α)(s{i}) = Jn(η{i}, 1Sn
)Tα(1Sn

) = (−1)Tα(1Sn
) = −Id

T(∅,α)((ij)) = Jn(0, (ij))T
α((ij)) = Tα((ij)) ,

where d is the degree of [α]. This implies that, for every w ∈ An of the form
(4.4), we have

∆Wn(w, [∅, α]) −∆Wn(w, [α, ∅]) =
(
2

n∑

i=1

ai
)
Id . (4.16)

Therefore the eigenvalues of ∆Wn(w, [∅, α]) are shifted, with respect to the
eigenvalues of ∆Wn(w, [α, ∅]) by a nonnegative quantity. In particular, if
α 6= (n), then [α, ∅] is nontrivial and it has a spectral gap which is not
greater than the spectral gap of [∅, α]. For this reason, representations of
type [∅, α] with α 6= (n) can be safely omitted in the minimization process
(2.8) which produces the spectral gap of w.

Going back to the case n = 2, we can take care of the representation
[∅, (2)] with an explicit calculation. If w ∈ A2, it can be written as

w = x s{1} + y s{2} + z (12) x, y, z ≥ 0 .

Since the Laplacian of the trivial representation is null, (4.16) becomes

∆W2(w, [∅, (2)]) = 2(x+ y) I1 .
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On the other hand, using (3.7), we get

∆W2(w,D2) =

[
2x+ z −z
−z 2y + z

]
=: B2

with spectral gap

ψW2(w,D2) = λ1(B2) = x+ y + z − ((x− y)2 + z2)1/2

≤ x+ y ≤ 2(x+ y) = ψW2(w, [∅, (2)]) .

Thus, for the purpose of computing the spectral gap of w, representation
[∅, (2)] can also be disregarded in the list (4.13). By consequence

ψW2(w) = min{ψW2(w, [(1, 1), ∅]), ψW2(w, [(1), (1)])} = ψW2(w,P2) . �

The mapping ϑ. In order to conclude the proof of Theorem 1.2 we are going
to define a map ϑ : An → An−1 which satisfies properties (a) and (b) stated
above.

If w =
∑n

i=1 ai s{i} with ai ≥ 0, we let ℓ be the largest index j such that
aj = mini ai, and we define

ϑN (w) =
n∑

i=1, i 6=ℓ

ai s{i} . (4.17)

If w =
∑

(ij)∈Tn
bij (ij) with bij ≥ 0, for each m = 1, . . . , n we let

ϑTm(w) =
∑

(ik)∈Tn
i,k 6=m

[
wik +

wim wkm∑
j 6=mwjm

]
(ik) . (4.18)

Finally we define a mapping ϑ(w) as follows: let w = wN + wT as in (4.5).
Then we let

ϑ(w) = ϑN (wN ) + ϑTℓ (wT ) (4.19)

where ℓ is defined as above.

Remark 4.4. We can assume, without loss of generality, that ℓ = n in (4.19).
In this way ϑ(An) ⊂ An−1. Otherwise one can defineWn−1 as the subgroup
of Wn obtained by “dropping the ℓth coordinate”.

Remark 4.5. The mapping ϑTm, amazingly, appeared almost simultaneously
in the preprint versions of [Die10] and [CLR10] and it was key point which,
together with a quite tricky inequality, called the “octopus inequality”, pro-
duced a proof of Aldous’ spectral gap conjecture in [CLR10].

Properties (a) and (b) of the mapping ϑ will be proved in Lemmas 4.6 and
4.7 respectively, completing in this way the proof of Theorem 1.2.

Lemma 4.6. If w ∈ An, then w − ϑ(w) ∈ Γ(Wn).

Proof. We can write

w − ϑ(w) = wN − ϑN (wN )︸ ︷︷ ︸
δwN

+wT − ϑT (wT )︸ ︷︷ ︸
δwT

,

Since δwN is positive and symmetric, we have δwN ∈ Γ(Wn), thanks to
Proposition 4.1(5).
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On the other hand Theorem 2.3 of [CLR10], the “octopus inequality” (see
also Section 4 of [Ces16] for a slightly simpler proof in which the algebraic
perspective is more explicit), states that δwT ∈ Γ(Sn). By Proposition
4.1(6) we get δwT ∈ Γ(Wn).

Hence w − ϑ(w) = δwN + δwT ∈ Γ(Wn) by Proposition 4.1(1) �

Lemma 4.7. If w ∈ An, then

ψWn(w,Pn) ≤ ψWn−1(ϑw,Pn−1) . (4.20)

Proof. From Proposition 3.1 we know that P−
n = Dn is irreducible, while

P+
n = D̃0

n contains the trivial representation with multiplicity 1, hence, by
(2.4), we obtain

ψWn(w,Pn) = min{ψWn(w,P
+
n ), ψWn(w,P

−
n )}

= min{λ2
(
∆Wn(w,P

+
n )

)
, λ1

(
∆Wn(w,P

−
n )

)
} .

(4.21)

Since supp(ϑw) ∈Wn−1, the last row and column of its Laplacian are zero,
thus we can write its representation Laplacian in block diagonal form as

∆Wn(ϑw,P
±
n ) = ∆Wn−1(ϑw,P

±
n−1)⊕ [0]1×1 , (4.22)

where [x]1×1 is the 1 × 1 matrix whose unique entry is equal to x. This
implies

ψWn−1(ϑw,Pn−1)

= min{λ2
(
∆Wn−1(ϑw,P

+
n−1)

)
, λ1

(
∆Wn−1(ϑw,P

−
n−1)

)
}

= min{λ3
(
∆Wn(ϑw,P

+
n )

)
, λ2

(
∆Wn(ϑw,P

−
n )

)
} .

(4.23)

We write w = wN +wT with wN and wT as in (4.5). For simplicity we also
define the following matrices:

Mn = ∆Wn(wT ,P
+
n ) Mϑ

n = ∆Wn(ϑ
TwT ,P

+
n )

Fn = 2diag(ai)
n
i=1 Fϑ

n = 2diag(a1, . . . , an−1, 0) .

We are assuming (remember Remark 4.4) the an = minj aj. It follows from
(3.16), (4.9), (4.10), (4.11) that

∆Wn(w,P
+
n ) =Mn ∆Wn(ϑw,P

+
n ) =Mϑ

n (4.24)

∆Wn(w,P
−
n ) =Mn + Fn ∆Wn(ϑw,P

−
n ) =Mϑ

n + Fϑ
n . (4.25)

By (4.22) and (4.25) we can write

Mϑ
n + Fϑ

n = Bn−1 ⊕ [0]1×1 (4.26)

with Bn−1 = ∆Wn−1(ϑw,P
−
n−1). But then we have

Mϑ
n + Fn = Bn−1 ⊕ [2an]1×1 .

By consequence4

spec(Mϑ
n + Fn) = spec(Bn−1) ∪ {2an} . (4.27)

4the spectrum is always considered as a multiset, so if, for instance, spec(A) =
{0, 0, 1, 2}, then (spec(A)\{0}) ∪ {1} = {0, 1, 1, 2}.
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Since ϑTwT is symmetric and positive, by Proposition 4.1(5) the matrixMϑ
n

is positive semidefinite, which implies (see, for instance, [HJ90, Corollary
4.3.3])

λk(M
ϑ + Fn) ≥ λk(Fn) k = 1, . . . , n . (4.28)

Thus we get

2an = λ1(Fn) ≤ λ1(M
ϑ
n + Fn) .

But (4.27) says that 2an is actually an eigenvalue of Mϑ
n +Fn, so it must be

the lowest one

2an = λ1(M
ϑ
n + Fn) . (4.29)

Therefore, by (4.26), we get

λ2(M
ϑ
n + Fn) = λ1(Bn−1) = λ2(M

ϑ
n + Fϑ

n ) . (4.30)

Using the explicit expression (3.10) for the matrix elements of the represen-

tation P+
n = D̃0

n, it is straightforward to check that the matrix elements of
Mn −Mϑ

n are given by

[Ln]ij :=
[
Mn −Mϑ

n

]
ij
=
di dj
dn

, (4.31)

where di = −bin for i = 1, . . . , n − 1 and dn =
∑n−1

i=1 bin. Following [Die10]
we observe that Ln is a rank-1 matrix, so by standard linear algebra results
as [HJ90, Thm. 4.3.4], one obtains, in particular, that

λ2(Mn) = λ2(M
ϑ
n + Ln) ≤ λ3(M

ϑ
n ) (4.32)

λ1(Mn + Fn) = λ1(M
ϑ
n + Fn + Ln) ≤ λ2(M

ϑ
n + Fn) . (4.33)

Thus, using (4.30), we get

λ1(Mn + Fn) ≤ λ2(M
ϑ
n + Fϑ

n ) . (4.34)

Relations (4.21), (4.23), (4.24), (4.25), (4.32) and (4.34) imply Lemma 4.7
�

5. A few concluding remarks and one open problem

Theorem 1.2, together with Proposition 3.1, states that if w ∈ An, then the
representation “responsible” for the spectral gap is either Dn

∼= [(n−1), (1)]

or D̃0
n that is [(n−1, 1), ∅], since the trivial summand in (3.13) plays no role.

In our proof we are led to consider these two representations because they
are the representations which, when restricted to Wn−1 contain the trivial
one.

We show that this is not an artifact of our strategy: we actually need
to include both of them, that is the statement of Theorem 1.2 cannot be

strengthened by replacing Pn with either Dn or D̃0
n. Let

wN =

n∑

i=1

ai s{i} wT =
∑

(ij)∈Tn

bij (ij) ai ≥ 0, bij ≥ 0 .

Let a := mini ai and assume a > 0. Assume also that:

(i) there are enough strictly positive bij so that supp(w) generates Sn.



SPECTRAL GAP OF W (Bn) 15

This condition is equivalent to requiring that the graph on {1, . . . , n} with
edge set E = {{i, j} : bij > 0} is connected.

For ε > 0 define

wε = wN + εwT .

Thanks to (4.9), (4.10), (4.11) we can write

Fn := ∆Wn(wN ,Dn) = 2diag(ai)
n
i=1

Mn := ∆Wn(wT ,Dn) = ∆Wn(wT , D̃
0
n) .

Hence

∆Wn(wε,Dn) = Fn + εMn

∆Wn(wε, D̃
0
n) = εMn .

The lowest eigenvalue ofMn is trivially λ1(Mn) = 0 with eigenvector equal to
any constant vector. It is easy to show that hypothesis (i) above implies that
0 is a simple eigenvalue, that is λ2(Mn) > 0 (see, for instance, Proposition
2.1 of [Ces16]). By perturbation theory we obtain, using (2.4),

ψWn(wε,Dn) = λ1(Fn + εMn) = 2a+O(ε)

ψWn(wε, D̃
0
n) = ελ2(Mn) = O(ε) ,

where O(ε) is a generic quantity which goes to 0 as ε → 0+. Hence, for

small ε the spectral gap of wε is determined by D̃0
n.

Consider now the opposite situation with

wε = εwN + wT .

We obtain

ψWn(wε,Dn) = λ1(Mn) +O(ε) = O(ε)

ψWn(wε, D̃
0
n) = λ2(Mn) > 0 ,

hence, in this case, for ε small enough, the spectral gap of wε is determined
by Dn.

Lastly we want to discuss the possibility of proving our main theorem for
more general elements w of the group algebra than those considered in (1.7).
For A ⊂ {1, . . . , n}, let sA be the element of Wn which in the defining
representation is given by the diagonal matrix

Dn(sA) = diag(xi)
n
i=1 where xi =

{
−1 if i ∈ A

+1 if i /∈ A.
(5.1)

Let then Y +
n (Y −

n ) be the set of all subsets of {1, . . . , n} of even (odd)
cardinality, and let

w±
N =

∑

A∈Y ±
n

aAsA wT =
∑

(ij)∈Tn

bij (ij) aA ≥ 0, bij ≥ 0 .

Question 5.1. Does the equality ψWn(w) = ψWn(w,Pn) also hold for ele-
ments w of the form w = w+

N + w−
N + wT ?
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We show that the answer is (in general) negative.

Let

â±i =
∑

A∈Y ±
n :A∋i

aA

and assume that:

(i) there are enough strictly positive bij so that supp(w) generates Sn;

(ii) w−
N 6= 0;

(iii) a+ := mini â
+
i > 0.

The first two conditions are necessary, since otherwise the support of w does
not generate Wn, the spectral is trivially zero, and the problem becomes
uninteresting.

For ε > 0, let

wε = w+
N + εw−

N + wT . (5.2)

Thanks to (4.14) and (4.15) we have

Tβ,α(w+
N ) = Tα,β(w+

N ) Tβ,α(wT ) = Tα,β(wT )

which, since [(n), ∅] is the trivial representation In, implies in particular that

∆Wn(w
+
N , [∅, (n)]) = ∆Wn(wT , [∅, (n)]) = 0 . (5.3)

As for the “odd term” w−
N , using (4.15) we obtain

T(∅,α)(sA) = (−1)Tα(1Sn
) = −Id ,

where d is the degree of the representation [α], thus

∆Wn(w
−
N , [∅, α]) = 2

(∑
A∈Y −

n

aA

)
Id . (5.4)

From (5.3) and (5.4) it follows that

ψWn(wε, [∅, (n)]) = ελ1
(
∆Wn(w

−
N , [∅, (n)])

)
= 2ε

∑
A∈Y −

n

aA = O(ε) .

On the other hand we claim that ψWn(wε,Pn) can be bounded from below by
a strictly positive (independent of ε) quantity. It easy to see that equalities
(4.9) and (4.10) become

∆Wn(w
±
N , D̃

0
n) = 0 (5.5)

∆Wn(w
±
N ,Dn) = 2diag(â±i )

n
i=1 . (5.6)

Let (remember (4.11))

F±
n := ∆Wn(w

±
N ,Dn) = 2diag(â±i )

n
i=1

Mn := ∆Wn(wT ,Dn) = ∆Wn(wT , D̃
0
n) .

In this way we have obtained

∆Wn(wε,Dn) =Mn + F+
n + εF−

n ≥ F+
n

∆Wn(wε, D̃
0
n) =Mn ,
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where the inequality is intended in the sense of quadratic forms. Thanks to
assumption (i) above, we know that λ2(Mn) is strictly positive, therefore

ψWn(wε,Pn) = min{ψWn(wε,Dn), ψWn(wε, D̃
0
n)}

≥ min{λ1(F
+
n ), λ2(Mn)} = min{2a+, λ2(Mn)} > 0 .

Thus, for ε small enough, we have ψWn(wε, [∅, (n)]) < ψWn(wε,Pn), which
implies a negative answer to Question 5.1.

We observe that a crucial element for this “counterexample” is assumption
(iii) above. This leaves room for a conjecture.

Conjecture 5.2. If w = w−
N + wT , then ψWn(w) = ψWn(w,Pn).

The most obvious approach for proving this result would be to generalize
the map ϑN of (4.17) as

ϑN (w−
N ) =

∑

A∈Y −
n :A 6∋ℓ

aAsA , (5.7)

where ℓ is the largest index j such that â−j = mini â
−
i , Unfortunately this

does not work because, with this choice, Lemma 4.7 is false. A counterex-
ample can be found already for n = 3: if

w =

3∑

i=1

s{i} + s{1,2,3} + (12) + (23) + (13)

then

ϑ(w) = s{1} + s{2} +
3

2
(12)

which produces ψW3(w,P3) = 3 > 2 = ψW2(ϑ(w),P2). We emphasize that
this is a counterexample to Lemma 4.7, not to Conjecture 5.2, since we have
in fact ψW3(w) = 3. Hence one should devise a different map ϑ : An → An−1,
keeping in mind that there is a delicate balance between the two properties
(a) and (b) of Section 4 which must be satisfied by ϑ.

Acknowledgements. In the first version of this paper we erroneously
claimed to have proven Conjecture 5.2 due to a a mistake in the proof of (a
more general version of) Lemma 4.7 where (5.7) was used. We thank one of
the referees for finding the mistake in the proof, which prompted us to find
the above counterexample.

References

[Ald] D. Aldous, www.stat.berkeley.edu/%7Ealdous/Research/OP/sgap.html.
[Bac94] R. Bacher, Valeur propre minimale du laplacien de Coxeter pour le groupe

symétrique, J. Algebra 167 (1994), no. 2, 460–472.
[Ces09] F. Cesi, Cayley graphs on the symmetric group generated by initial reversals

have unit spectral gap, Electron. J. Combin. 16 (2009), no. 1, Note 29, 7.
[Ces10] , On the eigenvalues of Cayley graphs on the symmetric group generated

by a complete multipartite set of transpositions, J. Algebraic Combin. 32 (2010),
no. 2, 155–185.

[Ces16] , A few remarks on the octopus inequality and Aldous’ spectral gap con-
jecture, Communications in Algebra 44 (2016), no. 1, 279–302.

[CLR10] P. Caputo, T. M. Liggett, and T. Richthammer, Proof of Aldous’ spectral gap
conjecture, J. Amer. Math. Soc. 23 (2010), no. 3, 831–851.



18 FILIPPO CESI

[CT17] F. Chung and J. Tobin, The spectral gap of graphs arising from substring rever-
sals, The Electronic Journal of Combinatorics 24 (2017), no. 3, 3–4.

[Die10] A. B. Dieker, Interlacings for random walks on weighted graphs and the inter-
change process, SIAM J. Discrete Math. 24 (2010), no. 1, 191–206.

[DS81] P. Diaconis and M. Shahshahani, Generating a random permutation with ran-
dom transpositions, Z. Wahrsch. Verw. Gebiete 57 (1981), no. 2, 159–179.

[FOW85] L. Flatto, A. M. Odlyzko, and D. B. Wales, Random shuffles and group repre-
sentations, Ann. Probab. 13 (1985), no. 1, 154–178.

[GK78] L. Geissinger and D. Kinch, Representations of the hyperoctahedral groups, Jour-
nal of algebra 53 (1978), no. 1, 1–20.

[GP00] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke
algebras, London Mathematical Society Monographs. New Series, vol. 21, The
Clarendon Press Oxford University Press, New York, 2000.

[HH17] X. Huang and Q. Huang, The adjacency spectral gap of some cayley graphs on
alternating groups, arXiv:1711.08944 (2017).

[HJ90] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press,
Cambridge, 1990, Corrected reprint of the 1985 original.

[HJ96] S. Handjani and D. Jungreis, Rate of convergence for shuffling cards by trans-
positions, J. Theoret. Probab. 9 (1996), no. 4, 983–993.

[JK81] G. James and A. Kerber, The representation theory of the symmetric group,
Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley
Publishing Co., Reading, Mass., 1981.

[Kas11] M. Kassabov, Subspace arrangements and property T, Groups, Geometry, and
Dynamics 5 (2011), no. 2, 445–477.

[KN97] T. Koma and B. Nachtergaele, The spectral gap of the ferromagnetic XXZ chain,
Lett. Math. Phys. 40 (1997), no. 1, 1–16.

[Mor08] B. Morris, Spectral gap for the interchange process in a box, Electron. Commun.
Probab. 13 (2008), 311–318.

[PP18] O. Parzanchevski and D. Puder, Aldous’ spectral gap conjecture for normal sets,
arXiv:1804.02776 (2018).

[SC11] S. Starr and M. P. Conomos, Asymptotics of the spectral gap for the interchange
process on large hypercubes, Journal of Statistical Mechanics: Theory and Ex-
periment 2011 (2011), no. 10, P10018.

Filippo Cesi

Dipartimento di Fisica
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