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Lyapunov-Type Inequalities for Discrete
Riemann-Liouville Fractional Boundary Value

Problems
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Abstract: In this article we establish a few Lyapunov-type inequalities for two-
point discrete fractional boundary value problems involving Riemann-Liouville
type backward differences. To illustrate the applicability of established results,
we obtain criteria for the nonexistence of nontrivial solutions and estimate lower
bounds for eigenvalues of the corresponding eigenvalue problems. We also apply
these inequalities to deduce criteria for the nonexistence of real zeros of certain
discrete Mittag-Leffler functions.
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1. Introduction

In 1907, Lyapunov [31] provided a necessary condition, known as the Lyapunov
inequality, for the existence of a nontrivial solution of Hill’s equation associated
with Dirichlet boundary conditions.

Theorem 1.1. [31] If the boundary value problem
{

y′′(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,
(1.1)

has a nontrivial solution, where p : [a, b] → R is a continuous function, then
∫ b

a

|p(s)|ds >
4

(b− a)
. (1.2)

The Lyapunov inequality (1.2) is applicable in various problems related to the
theory differential equations. Due to its importance, the Lyapunov inequality has
been generalized in many forms. For more details, we refer [9, 35, 36, 40, 42, 43]
and the references therein.

In this line, several authors [12, 16, 18, 19, 28, 29, 34, 38, 39] have investi-
gated Lyapunov-type inequalities for various classes of fractional boundary value
problems. In 2013, Ferreira [18] generalized Theorem 1.1 to the case where the
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classical second-order derivative in (1.1) is replaced by an αth-order (1 < α ≤ 2)
Riemann-Liouville derivative.

Theorem 1.2. [18] If the fractional boundary value problem
{

(

Dα
a y

)

(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

has a nontrivial solution, where p : [a, b] → R is a continuous function, then
∫ b

a

|p(s)|ds > Γ(α)
( 4

b− a

)α−1

.

Moving to discrete calculus, in 1983, Cheng [10] developed the following discrete
analogue of the Lyapunov inequality for the first time.

Theorem 1.3. [10] If the boundary value problem
{

(

∆2u
)

(t− 1) + q(t)y(t) = 0, t ∈ N
b
a,

u(a− 1) = 0, u(b+ 1) = 0,

has a nontrivial solution, where q is a nonnegative function defined on N
b
a, then

b
∑

s=a

q(s) >

{

2(b−a+1)+1
(b−a+1)(b−a+2)

, if (b− a) is odd,
2

(b−a+2)
, if (b− a) is even.

Here ∆2 denotes the classical second-order difference operator. For a detailed
discussion, we refer the reader to [11, 15, 25, 26, 32, 41, 44] and the references
therein.

On the other hand, in 2015, Ferreira [20] generalized Theorem 1.3 for αth-order
(1 < α ≤ 2) Riemann-Liouville type forward differences ∆α.

Theorem 1.4. [20] If the fractional boundary value problem
{

(

∆αu
)

(t) + q(t+ α− 1)u(t+ α− 1) = 0, t ∈ N
b+1
1 , b ≥ 2,

y(α− 2) = 0, y(α+ b+ 1) = 0,

has a nontrivial solution, where q is a nonnegative function defined on {α, α +
(α− 1), α + 2(α− 1), · · · , α+ b}, then

b+1
∑

s=0

q(s+ α− 1) >







4Γ(α)
Γ(b+α+2)Γ2( b

2
+2)

(b+2α)(b+2)Γ2( b
2
+α)Γ(b+3)

, if b is even,

Γ(α)
Γ(b+α+2)Γ2( b+3

2
+2)

Γ(b+3)Γ2( b+1

2
+α)

, if b is odd.

Following Ferreira, authors of [13, 14, 23] have obtained generalized Lyapunov-
type inequalities for various classes of delta fractional boundary value problems.

Motivated by these developments, in this article, we derive Lyapunov-type in-
equalities for two-point nabla Riemann-Liouville fractional boundary value prob-
lems.
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2. Preliminaries

Throughout, we shall use the following notations, definitions and known results
of fractional nabla calculus [1, 5, 6, 21]. Denote the set of all real numbers by R.
Define

Na := {a, a+ 1, a+ 2, · · · } and N
b
a := {a, a+ 1, a+ 2, · · · , b},

for any a, b ∈ R such that (b− a) is a positive integer. Assume that empty sums
and products are taken to be 0 and 1, respectively.

Definition 2.1. (Backward Jump Operator) [7] The backward jump operator
ρ : Na → Na is defined by

ρ(t) = max{a, (t− 1)}, t ∈ Na.

Definition 2.2. (Gamma Function) [30, 37] The Euler gamma function is defined
by

Γ(z) :=

∫

∞

0

tz−1e−tdt, ℜ(z) > 0.

Using the reduction formula

Γ(z + 1) = zΓ(z), ℜ(z) > 0,

the Euler gamma function can be extended to the half-plane ℜ(z) ≤ 0 except for
z 6= 0,−1,−2, · · · .

Definition 2.3. (Generalized Rising Function) [21] For t ∈ R \ {· · · ,−2,−1, 0}
and r ∈ R such that (t+ r) ∈ R \ {· · · ,−2,−1, 0}, the generalized rising function
is defined by

tr =
Γ(t+ r)

Γ(t)
, 0r := 0.

Definition 2.4. (Nabla Difference) [7] Let u : Na → R and N ∈ N1. The first
order backward (nabla) difference of u is defined by

(

∇u
)

(t) := u(t)− u(t− 1), t ∈ Na+1,

and the N th-order nabla difference of u is defined recursively by

(

∇Nu
)

(t) :=
(

∇
(

∇N−1u
)

)

(t), t ∈ Na+N .

Definition 2.5. (Nabla Sum) [21] Let u : Na+1 → R and N ∈ N1. The N th-order
nabla sum of u based at a is given by

(

∇−N
a u

)

(t) :=
1

(N − 1)!

t
∑

s=a+1

(t− ρ(s))N−1u(s), t ∈ Na+1.

We define
(

∇−0
a u

)

(t) = u(t), t ∈ Na+1.
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Definition 2.6. (Nabla Fractional Sum) [21] Let u : Na+1 → R and ν > 0. The
νth-order nabla sum of u based at a is given by

(

∇−ν
a u

)

(t) =
1

Γ(ν)

t
∑

s=a+1

(t− ρ(s))ν−1u(s), t ∈ Na+1.

Definition 2.7. (Nabla Fractional Difference) [21] Let u : Na+1 → R, ν > 0 and
choose N ∈ N1 such that N − 1 < ν ≤ N . The Riemann-Liouville type νth-order
nabla difference of u is given by

(

∇ν
au
)

(t) =
(

∇N
(

∇−(N−ν)
a u

)

)

(t), t ∈ Na+N .

Theorem 2.1. (Alternative Definition of the Nabla Fractional Difference) [3] Let
u : Na → R, ν > 0, ν 6∈ N1, and choose N ∈ N1 such that N − 1 < ν < N . Then,

(

∇ν
au
)

(t) =
1

Γ(−ν)

t
∑

s=a+1

(t− ρ(s))−ν−1u(s), t ∈ Na+1.

We observe the following properties of gamma and generalized rising functions.

Theorem 2.2. [27] Assume the following gamma and generalized rising functions
are well defined.

(1) Γ(t) > 0 for all t > 0;

(2) tα(t + α)β = tα+β;
(3) If t ≤ r then tα ≤ rα;
(4) If α < t ≤ r then r−α ≤ t−α;

(5) ∇(t+ α)β = β(t+ α)β−1;

(6) ∇(α− t)β = −β(α− ρ(t))β−1.

Theorem 2.3. (Generalized Power Rules) [2] Let ν > 0 and µ ∈ R such that µ,
µ+ ν and µ− ν are nonnegative integers. Then,

∇−ν
a (t− a)µ =

Γ(µ+ 1)

Γ(µ+ ν + 1)
(t− a)µ+ν , t ∈ Na+1,

∇ν
a(t− a)µ =

Γ(µ+ 1)

Γ(µ− ν + 1)
(t− a)µ−ν , t ∈ Na+1.

Definition 2.8. (Nabla Mittag-Leffler Function) [21] For |p| < 1, α > 0 and
β ∈ R, we define the nabla Mittag-Leffler function by

Ep,α,β(t, a) =

∞
∑

k=0

pk
(t− a)αk+β

Γ(αk + β + 1)
, t ∈ Na.

Clearly, we have E0,α,0(t, a) = 1 and Ep,α,0(a, a) = 1.

Theorem 2.4. [21] Assume |p| < 1, α > 0 and β ∈ R. Then,

∇ν
aEp,α,β(t, a) = Ep,α,β−ν(t, a), t ∈ Na+1.
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Theorem 2.5. [21] Let ν, µ > 0 and u : Na → R. Then,
(

∇ν
a

(

∇−µ
a u

)

)

(t) =
(

∇ν−µ
a u

)

(t), t ∈ Na+1.

Theorem 2.6. [21] Assume ν > 0 and N − 1 < ν ≤ N . Then, a general solution
of

(

∇ν
au

)

(t) = 0, t ∈ Na+N ,

is given by

u(t) = C1(t− a)ν−1 + C2(t− a)ν−2 + · · ·+ CN(t− a)ν−N , t ∈ Na+1,

where C1, C2, · · · , CN ∈ R.

Theorem 2.7. [21] Assume ν > 0, N − 1 < ν ≤ N and |c| < 1. Then, a general
solution of

(

∇ν
au
)

(t) + cu(t) = 0, t ∈ Na+N ,

is given by

u(t) = C1E−c,ν,ν−1(t, a) + C2E−c,ν,ν−2(t, a) + · · ·+ CNE−c,ν,ν−N(t, a), t ∈ Na+1,

where C1, C2, · · · , CN ∈ R.

3. Left-Focal Type Boundary Value Problem

In this section, we derive a few important properties of the Green’s function for
a left-focal type discrete boundary value problem and obtain the corresponding
Lyapunov-type inequality.

Theorem 3.1. Let 1 < α < 2 and h : Nb
a+1 → R. The discrete fractional boundary

value problem
{

(

∇α
au

)

(t) + h(t) = 0, t ∈ N
b
a+2,

(

∇α−1
a u

)

(a+ 1) = 0, u(b) = 0,
(3.1)

has the unique solution

u(t) =
b

∑

s=a+2

Gl(t, s)h(s), t ∈ N
b
a+1, (3.2)

where

Gl(t, s) =







1
Γ(α)

(b−s+1)α−1(t−a)α−2

(b−a)α−2
, t ∈ N

ρ(s)
a+1,

1
Γ(α)

[

(b−s+1)α−1(t−a)α−2

(b−a)α−2
− (t− s+ 1)α−1

]

, t ∈ N
b
s.

(3.3)

Proof. Applying ∇−α
a on both sides of (3.1) and using Theorem 2.6, we have

u(t) = −
(

∇−α
a h

)

(t) + C1(t− a)α−1 + C2(t− a)α−2, t ∈ Na+1, (3.4)

for some C1, C2 ∈ R. Applying ∇α−1
a on both sides of (3.4) and using Theorems

2.3 - 2.5, we have
(

∇α−1
a u

)

(t) = −
(

∇−1
a h

)

(t) + C1Γ(α), t ∈ Na+1. (3.5)
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Using
(

∇α−1
a u

)

(a+ 1) = 0 in (3.5), we get

C1 =
h(a+ 1)

Γ(α)
.

Using u(b) = 0 in (3.4), we get

C2 =
1

(b− a)α−2Γ(α)

b
∑

s=a+2

(b− s+ 1)α−1h(s).

Substituting the values of C1 and C2 in (3.4), we have

u(t) = −
1

Γ(α)

t
∑

s=a+1

(t− s+ 1)α−1h(s) +
h(a+ 1)

Γ(α)
(t− a)α−1

+
(t− a)α−2

(b− a)α−2Γ(α)

b
∑

s=a+2

(b− s+ 1)α−1h(s)

= −
1

Γ(α)

t
∑

s=a+2

(t− s+ 1)α−1h(s) +
(t− a)α−2

(b− a)α−2Γ(α)

b
∑

s=a+2

(b− s+ 1)α−1h(s)

=
1

Γ(α)

t
∑

s=a+2

[(b− s+ 1)α−1(t− a)α−2

(b− a)α−2
− (t− s+ 1)α−1

]

h(s)

+
1

Γ(α)

b
∑

s=t+1

(b− s+ 1)α−1(t− a)α−2

(b− a)α−2
h(s)

=
b

∑

s=a+2

Gl(t, s)h(s).

�

First, we show that this Green’s function is nonnegative and obtain an upper
bound for the Green’s function and its integral.

Theorem 3.2. The Green’s function Gl(t, s) satisfies Gl(t, s) ≥ 0 for (t, s) ∈
N

b
a+1 × N

b
a+2.

Proof. For t ∈ N
ρ(s)
a+1, using Theorem 2.2,

Gl(t, s) =
(b− s+ 1)α−1(t− a)α−2

Γ(α)(b− a)α−2

=
Γ(b− s+ α)Γ(t− a+ α− 2)Γ(b− a)

Γ(α)Γ(b− s+ 1)Γ(b− a+ α− 2)Γ(t− a)
> 0.

Now, suppose t ∈ N
b
s. Since t ≤ b and (α − 2) < (t − a) ≤ (b − a), by Theorem

2.2, we have

(t− s+ 1)α−1 ≤ (b− s+ 1)α−1 and (b− a)α−2 ≤ (t− a)α−2,
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implies

Gl(t, s) =
1

Γ(α)

[(b− s + 1)α−1(t− a)α−2

(b− a)α−2
− (t− s+ 1)α−1

]

≥
(b− s+ 1)α−1

Γ(α)

[ (t− a)α−2

(b− a)α−2
− 1

]

≥ 0.

Hence the proof. �

Theorem 3.3. The maximum of the Green’s function Gl(t, s) defined in (3.3) is
given by

max
(t,s)∈Nb

a+1
×Nb

a+2

Gl(t, s) =
(b− a− 1)

(α− 1)
.

Proof. Fix s ∈ N
b
a+2. Let t ∈ N

ρ(s)
a+2. Consider

∇t

[

Gl(t, s)
]

=
1

Γ(α)

(b− s+ 1)α−1

(b− a)α−2
∇t

[

(t− a)α−2
]

= −
(2− α)

Γ(α)

(b− s+ 1)α−1(t− a)α−3

(b− a)α−2

= −
(2− α)

Γ(α)

Γ(b− s+ α)Γ(t− a+ α− 3)Γ(b− a)

Γ(b− s+ 1)Γ(b− a+ α− 2)Γ(t− a)
< 0,

implies Gl(t, s) is a decreasing function of t. Now, suppose t ∈ N
b
s. Consider

∇t

[

Gl(t, s)
]

=
1

Γ(α)

[(b− s+ 1)α−1

(b− a)α−2
∇t

[

(t− a)α−2
]

−∇t

[

(t− s+ 1)α−1
]

]

= −
(2− α)

Γ(α)

(b− s+ 1)α−1(t− a)α−3

(b− a)α−2
−

(α− 1)

Γ(α)
(t− s+ 1)α−2

= −
(2− α)

Γ(α)

Γ(b− s+ α)Γ(t− a+ α− 3)Γ(b− a)

Γ(b− s+ 1)Γ(b− a+ α− 2)Γ(t− a)

−
(α− 1)

Γ(α)

Γ(t− s+ α− 1)

Γ(t− s+ 1)
< 0,

implies Gl(t, s) is a decreasing function of t. Now, we examine the Green’s function
to determine whether the maximum for a fixed s will occur at (a+1, s), (a+2, s)
or (s, s). We have

Gl(a + 1, s) =
(b− s+ 1)α−1

(α− 1)(b− a)α−2
,

Gl(a+ 2, s) =
(b− s+ 1)α−1

(b− a)α−2
,

and

Gl(s, s) =
(b− s + 1)α−1(s− a)α−2

Γ(α)(b− a)α−2
− 1.
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Clearly, Gl(a+ 2, s) < Gl(a + 1, s) and

max
s∈Nb

a+2

Gl(a+ 1, s) =
(b− a− 1)α−1

(α− 1)(b− a)α−2
=

(b− a− 1)

(α− 1)
.

Also,

max
s∈Nb

a+2

Gl(s, s) =
(b− a− 1)α−1

(b− a)α−2
− 1 = (b− a− 2).

Thus,

max
(t,s)∈Nb

a+1
×Nb

a+2

Gl(t, s) =
(b− a− 1)

(α− 1)
.

�

Theorem 3.4. The following inequality holds for the Green’s function Gl(t, s)
from (3.3).

b
∑

s=a+2

Gl(t, s) ≤
(b− a− 1)(b− a+ α− 2)

α(α− 1)
, (t, s) ∈ N

b
a+1 × N

b
a+2.

Proof. Consider

b
∑

s=a+2

Gl(t, s) =
1

Γ(α)

t
∑

s=a+2

[(b− s + 1)α−1(t− a)α−2

(b− a)α−2
− (t− s+ 1)α−1

]

+
1

Γ(α)

b
∑

s=t+1

(b− s+ 1)α−1(t− a)α−2

(b− a)α−2

=
(t− a)α−2

(b− a)α−2

b
∑

s=a+2

(b− s+ 1)α−1

Γ(α)
−

t
∑

s=a+2

(t− s+ 1)α−1

Γ(α)

=
(t− a)α−2

(b− a)α−2

(b− a− 1)α

Γ(α + 1)
−

(t− a− 1)α

Γ(α + 1)
.

We now find the maximum of this expression with respect to t ∈ N
b
a+1. Using

Theorem 2.2, for t ∈ N
b
a+1,

(t− a− 1)α

Γ(α + 1)
=

Γ(t− a + α− 1)

Γ(α+ 1)Γ(t− a− 1)
≥ 0.

Thus,

max
t∈Nb

a+1

[

b
∑

s=a+2

Gl(t, s)
]

=
(b− a− 1)α

α(α− 1)(b− a)α−2
=

(b− a− 1)(b− a+ α− 2)

α(α− 1)
.

Hence the proof. �

We are now able to formulate a Lyapunov-type inequality for the left-focal type
discrete boundary value problem.



9

Theorem 3.5. If the following discrete fractional boundary value problem
{

(

∇α
au

)

(t) + q(t)y(t) = 0, t ∈ N
b
a+2,

(

∇α−1
a u

)

(a+ 1) = 0, u(b) = 0,
(3.6)

has a nontrivial solution, then

b
∑

s=a+2

|q(s)| ≥
(α− 1)

(b− a− 1)
. (3.7)

Proof. Let B be the Banach space of functions endowed with norm

‖u‖ = max
t∈Nb

a+1

|u(t)|.

It follows from Theorem 3.1 that a solution to (3.6) satisfies the equation

u(t) =
b

∑

s=a+2

G(t, s)q(s)u(s).

Hence,

‖u‖ = max
t∈Nb

a+1

∣

∣

∣

b
∑

s=a+2

G(t, s)q(s)u(s)
∣

∣

∣

≤ max
t∈Nb

a+1

[

b
∑

s=a+2

G(t, s)|q(s)||u(s)|
]

≤ ‖u‖
[

max
t∈Nb

a+1

b
∑

s=a+2

G(t, s)|q(s)|
]

≤ ‖u‖
[

max
t∈Nb

a+1
, s∈Nb

a+2

G(t, s)
]

b
∑

s=a+2

|q(s)|,

or, equivalently,

1 ≤
[

max
t∈Nb

a+1
, s∈Nb

a+2

G(t, s)
]

b
∑

s=a+2

|q(s)|.

An application of Theorem 3.3 yields the result. �

Now, we discuss three applications of Theorem 3.5. First, we obtain a criterion
for the nonexistence of nontrivial solutions of (3.6).

Theorem 3.6. Assume that 1 < α < 2 and
b

∑

s=a+2

|q(s)| <
(α− 1)

(b− a− 1)
. (3.8)

Then, the discrete fractional boundary value problem (3.6) has no nontrivial solu-
tion on N

b
a+1.
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Next, we estimate a lower bound for eigenvalues of the eigenvalue problem
corresponding to (3.6).

Theorem 3.7. Assume that 1 < α < 2 and u is a nontrivial solution of the
eigenvalue problem

{

(

∇α
au

)

(t) + λu(t) = 0, t ∈ N
b
a+2,

(

∇α−1
a u

)

(a+ 1) = 0, u(b) = 0,
(3.9)

where u(t) 6= 0 for each t ∈ N
b−1
a+2. Then,

|λ| ≥
(α− 1)

(b− a− 1)2
. (3.10)

Finally, we deduce a criterion for the nonexistence of real zeros of certain nabla
Mittag-Leffler functions.

Theorem 3.8. Let 1 < α < 2. Then, the function λE−λ,α,α−1(t, 0)+E−λ,α,α−2(t, 0)
has no real zeros for

|λ| <
(α− 1)

(n− 1)2
.

Proof. Let a = 0, b = n ∈ N2 and consider the eigenvalue problem
{

(

∇α
0u

)

(t) + λu(t) = 0, t ∈ N
n
2 ,

(

∇α−1
0 u

)

(1) = 0, u(n) = 0.
(3.11)

By Theorem 2.7, a general solution of (3.11) is given by

u(t) = C1E−λ,α,α−1(t, 0) + C2E−λ,α,α−2(t, 0), t ∈ N1, (3.12)

where C1, C2 ∈ R. Applying ∇α−1
0 on both sides of (3.12), we get

(

∇α−1
0 u

)

(t) = C1E−λ,α,0(t, 0)− λC2E−λ,α,α−1(t, 0), n ∈ N1. (3.13)

Using
(

∇α−1
0 u

)

(1) = 0, we get C1 = λC2. Using u(n) = 0, we have that the
eigenvalues λ ∈ R of (3.11) are the solutions of

λE−λ,α,α−1(n, 0) + E−λ,α,α−2(n, 0) = 0, (3.14)

and the corresponding eigenfunctions are given by

u(t) = λE−λ,α,α−1(t, 0) + E−λ,α,α−2(t, 0), t ∈ N1. (3.15)

By Theorem 3.5, if a real eigenvalue λ of (3.11) exists, i.e. λ is a zero of (3.11),

then |λ| ≥ (α−1)
(n−1)2

.

�
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4. Right-Focal Type Boundary Value Problem

In this section, we derive a few properties of the Green’s function for a right-focal
type discrete boundary value problem and obtain the corresponding Lyapunov-
type inequality.

Theorem 4.1. Let 1 < α < 2 and h : Nb
a+1 → R. The discrete fractional boundary

value problem

{

(

∇α
au

)

(t) + h(t) = 0, t ∈ N
b
a+2,

u(a+ 1) = 0,
(

∇α−1
a u

)

(b) = 0,
(4.1)

has the unique solution

u(t) =

b
∑

s=a+2

Gr(t, s)h(s), t ∈ N
b
a+1, (4.2)

where

Gr(t, s) =

{

1
Γ(α)

(t− a− 1)α−1, t ∈ N
ρ(s)
a+1,

1
Γ(α)

[

(t− a− 1)α−1 − (t− s+ 1)α−1
]

, t ∈ N
b
s.

(4.3)

Proof. Using
(

∇α−1
a u

)

(b) = 0 in (3.5), we get

C1 =
1

Γ(α)

b
∑

s=a+1

h(s).

Using u(a+ 1) = 0 in (3.4), we get

C2 = −
1

Γ(α− 1)

b
∑

s=a+2

h(s).
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Substituting the values of C1 and C2 in (3.4), we have

u(t) = −
1

Γ(α)

t
∑

s=a+1

(t− s+ 1)α−1h(s) +
(t− a)α−1

Γ(α)

b
∑

s=a+1

h(s)

−
(t− a)α−2

Γ(α− 1)

b
∑

s=a+2

h(s)

= −
1

Γ(α)

t
∑

s=a+2

(t− s+ 1)α−1h(s) +
(t− a)α−1

Γ(α)

b
∑

s=a+2

h(s)

−
(t− a)α−2

Γ(α− 1)

b
∑

s=a+2

h(s)

=
1

Γ(α)

t
∑

s=a+2

[

(t− a)α−1 − (α− 1)(t− a)α−2 − (t− s + 1)α−1
]

h(s)

+
1

Γ(α)

b
∑

s=t+1

[

(t− a)α−1 − (α− 1)(t− a)α−2
]

h(s)

=
1

Γ(α)

t
∑

s=a+2

[

(t− a− 1)α−1 − (t− s+ 1)α−1
]

h(s)

+
1

Γ(α)

b
∑

s=t+1

(t− a− 1)α−1h(s)

=

b
∑

s=a+2

Gr(t, s)h(s).

�

First, we show that this Green’s function is nonnegative and obtain an upper
bound for the Green’s function and its integral.

Theorem 4.2. The Green’s function Gr(t, s) satisfies Gr(t, s) ≥ 0 for (t, s) ∈
N

b
a+1 × N

b
a+2.

Proof. For t ∈ N
ρ(s)
a+1,

Gr(t, s) =
(t− a− 1)α−1

Γ(α)
=

Γ(t− a+ α− 2)

Γ(α)Γ(t− a− 1)
≥ 0.

Suppose t ∈ N
b
s. Since a+ 2 ≤ s, we have

(t− a− 1)α−1 ≥ (t− s+ 1)α−1,

implies

Gr(t, s) =
1

Γ(α)

[

(t− a− 1)α−1 − (t− s+ 1)α−1
]

≥ 0.
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Hence the proof. �

Theorem 4.3. The maximum of the Green’s function Gr(t, s) defined in (4.3) is
given by

max
(t,s)∈Nb

a+1
×Nb

a+2

Gr(t, s) =
(b− a− 1)α−1

Γ(α)
.

Proof. Clearly, Gr(a + 1, s) = 0 for each s ∈ N
b
a+2. Fix t ∈ N

b
a+2. For s ∈ N

b
t+1,

∇s

[

Gr(t, s)
]

= 0 implies Gr(t, s) is a constant function of s. Now, suppose s ∈
N

t
a+1. Consider

∇sGr(t, s) =
(α− 1)

Γ(α)
(t− s+ 2)α−2 =

Γ(t− s+ α)

Γ(α− 1)Γ(t− s + 2)
> 0,

implies Gr(t, s) is an increasing function of s. We examine the Green’s function
to determine whether the maximum for a fixed t will occur at (t, t) or (t, t + 1).
We have

Gr(t, t+ 1) =
(t− a− 1)α−1

Γ(α)
, (4.4)

and

Gr(t, t) =
(t− a− 1)α−1

Γ(α)
− 1. (4.5)

Clearly,

Gr(t, t) < Gr(t, t+ 1), t ∈ N
b
a+2,

and

max
t∈Nb

a+1

Gr(t, t+ 1) =
(b− a− 1)α−1

Γ(α)
.

Thus,

max
(t,s)∈Nb

a+1
×Nb

a+2

Gr(t, s) =
(b− a− 1)α−1

Γ(α)
.

�

Theorem 4.4. The following inequality holds for the Green’s function Gr(t, s)
from (4.3).

b
∑

s=a+2

Gr(t, s) ≤
(b− a− 1)α−1

Γ(α)
(b− a− 1), (t, s) ∈ N

b
a+1 × N

b
a+2.
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Proof. Consider
b

∑

s=a+2

Gr(t, s) =

t
∑

s=a+2

Gr(t, s) +

b
∑

s=t+1

Gr(t, s)

=
1

Γ(α)

t
∑

s=a+2

[

(t− a− 1)α−1 − (t− s+ 1)α−1
]

+
1

Γ(α)

b
∑

s=t+1

(t− a− 1)α−1

=
(t− a− 1)α−1

Γ(α)
(t− a− 1)−

t
∑

s=a+2

(t− s+ 1)α−1

Γ(α)

=
(t− a− 1)α−1

Γ(α)
(t− a− 1)−

(t− a− 1)α

Γ(α + 1)
.

We now find the maximum of this expression with respect to t ∈ N
b
a+1. Since

(t− a− 1)α

Γ(α + 1)
≥ 0

for t ∈ N
b
a+1,

max
t∈Nb

a+1

[

b
∑

s=a+2

Gr(t, s)
]

=
(b− a− 1)

Γ(α)
max
t∈Nb

a+1

[

(t− a− 1)α−1
]

=
(b− a− 1)α−1

Γ(α)
(b− a− 1).

�

We are now able to formulate a Lyapunov-type inequality for the right focal
boundary value problem.

Theorem 4.5. If the following discrete fractional boundary value problem
{

(

∇α
au

)

(t) + q(t)y(t) = 0, t ∈ N
b
a+2,

u(a+ 1) = 0,
(

∇α−1
a u

)

(b) = 0,
(4.6)

has a nontrivial solution, then
b

∑

s=a+2

|q(s)| ≥
Γ(α)

(b− a− 1)α−1
. (4.7)

Now, we discuss three applications of Theorem 4.5. First, we obtain a criterion
for the nonexistence of nontrivial solutions of (4.6).

Theorem 4.6. Assume that 1 < α < 2 and
b

∑

s=a+2

|q(s)| <
Γ(α)

(b− a− 1)α−1
. (4.8)
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Then, the discrete fractional boundary value problem (4.6) has no nontrivial solu-
tion on N

b
a+1.

Next, we estimate a lower bound for eigenvalues of the eigenvalue problem
corresponding to (4.6).

Theorem 4.7. Assume that 1 < α < 2 and u is a nontrivial solution of the
eigenvalue problem

{

(

∇α
au

)

(t) + λy(t) = 0, t ∈ N
b
a+2,

u(a+ 1) = 0,
(

∇α−1
a u

)

(b) = 0,
(4.9)

where u(t) 6= 0 for each t ∈ N
b−1
a+2. Then,

|λ| ≥
Γ(α)

(b− a− 1)(b− a− 1)α−1
. (4.10)

Finally, we deduce a criterion for the nonexistence of real zeros of certain nabla
Mittag-Leffler functions.

Theorem 4.8. Let 1 < α < 2. Then, the function E−λ,α,0(t, 0) + λE−λ,α,α−1(t, 0)
has no real zeros for

|λ| <
Γ(α)

(n− 1)(n− 1)α−1
.

Proof. Let a = 0, b = n ∈ N2 and consider the eigenvalue problem
{

(

∇α
0u

)

(t) + λu(t) = 0, t ∈ N
n
2 ,

u(1) = 0,
(

∇α−1
0 u

)

(n) = 0.
(4.11)

Using u(1) = 0 in (3.12), we get C1 = −C2. Using
(

∇α−1
0 u

)

(n) = 0 in (3.13), we
have that the eigenvalues λ ∈ R of (4.11) are the solutions of

E−λ,α,0(n, 0) + λE−λ,α,α−1(n, 0) = 0, (4.12)

and the corresponding eigenfunctions are given by

u(t) = E−λ,α,α−1(t, 0)− E−λ,α,α−2(t, 0), t ∈ N1. (4.13)

By Theorem 4.5, if a real eigenvalue λ of (4.11) exists, i.e. λ is a zero of (4.11),

then |λ| ≥ Γ(α)

(n−1)(n−1)α−1
. Hence the proof. �
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Applications, Birkhäuser, Boston, 2001.
[8] A.M. Brackins, L. Erbe and A. Peterson, Boundary Value Problems of Nabla Fractional

Difference Equations, Ph. D. Thesis, University of Nebraska-Lincoln, (2014).
[9] R.C. Brown and D.B. Hinton, Lyapunov Inequalities and Their Applications, In: Survey on

Classical Inequalities (Ed. T.M. Rassias), Math. Appl. 517, Kluwer Acad. Publ., Dordrecht
- London (2000), 1 - 25.

[10] S.S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J., 12 (1983)
105 - 112.

[11] S.S. Cheng, Lyapunov inequalities for differential and difference equations, Fasc. Math., 23
(1991), 25 - 41.

[12] A. Chidouh and D.F.M. Torres, A generalized Lyapunov’s inequality for a fractional bound-

ary value problem, J. Comput. Appl. Math., 312 (2017), 192 - 197.
[13] A. Chidouh and D.F.M. Torres, Existence of positive solutions to a discrete fractional bound-

ary value problem and corresponding Lyapunov-type inequalities, Opuscula Math. 38, (2018),
No. 1, 31 - 40.

[14] M. Cui, J. Xin, X. Huang and C. Houx, Lyapunov-type inequality for fractional order differ-

ence equations, Global Journal of Science Frontier Research: F Mathematics and Decision
Sciences, 16 (2016), No. 1, 10 Pages.

[15] S. Clark and D.B. Hinton, Discrete Lyapunov inequalities, Dynam. Systems Appl., 8 (1999),
369 - 380.

[16] S. Dhar and Q. Kong, Lyapunov-type Inequalities and Applications To Boundary Value

Problems, Ph. D. Thesis, Northern Illinois University, (2017).
[17] S. Elaydi, An Introduction to Difference Equations, Third Edition, Springer, New York,

2005.
[18] R.A.C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract.

Calc. Appl. Anal., 16 (2013), No. 4, 978 - 984.
[19] R.A.C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler

function, J. Math. Anal. Appl., 412 (2014), No. 2, 1058 - 1063.
[20] R.A.C. Ferreira, Some discrete fractional Lyapunov-type inequalities, Fract. Differ. Calc., 5

(2015), No.1, 87 - 92.
[21] C. Goodrich and A.C. Peterson, Discrete Fractional Calculus, Springer, 2015, DOI

10.1007/978-3-319-25562-0.
[22] C. Goodrich, Solutions to a discrete right-focal fractional boundary value problem, Interna-

tional Journal of Difference Equations, 5 (2010), No. 2, 195 - 216.
[23] K. Ghanbari and Y. Gholami, New classes of Lyapunov type inequalities of fractional ∆-

difference Sturm-Liouville problems with applications, Bulletin of the Iranian Mathematical
Society, 43 (2017), No. 2, 385 - 408.

[24] Y. Gholami and K. Ghanbari, Coupled systems of fractional ∇-difference boundary value

problems, Differential Equations and Applications, 8 (2016), No. 4, 459 - 470.
[25] G.Sh. Guseinov and B. Kaymakcalan, Lyapunov inequalities for discrete linear Hamiltonian

systems, Comput. Math. Appl., 45 (2003), 1399 - 1416.
[26] X. He and Q. Zhang, A discrete analogue of Lyapunov-type inequalities for nonlinear dif-

ference systems, Computers and Mathematics with Applications, 62 (2011), 677 - 684.
[27] J.M. Jonnalagadda, Analysis of a system of nonlinear fractional nabla difference equations,

International Journal of Dynamical Systems and Differential Equations, 5 (2015), No. 2,
149 - 174.

[28] M. Jleli and B. Samet, Lyapunov-type inequalities for a fractional differential equation with

mixed boundary conditions, Math. Inequal. Appl., 18 (2015), 443 - 451.



17

[29] M. Jleli, M. Kirane and B. Samet, Lyapunov-type inequalities for fractional quasilinear

problems via variational methods, J. Nonlinear Sci. Appl., 10 (2017), 2471 - 2486.
[30] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Dif-

ferential Equations, Elsevier, Amsterdam, 2006.
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