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New surfaces with canonical map of high degree

Christian Gleissner, Roberto Pignatelli, Carlos Rito

Abstract

We give an algorithm that, for a given value of the geometric genus pg, computes
all regular product-quotient surfaces with abelian group that have at most canonical
singularities and have canonical system with at most isolated base points. We use it to
show that there are exactly two families of such surfaces with canonical map of degree
32. We also construct a surface with q = 1 and canonical map of degree 24. These
are regular surfaces with pg = 3 and base point free canonical system. We discuss the
case of regular surfaces with pg = 4 and base point free canonical system.

1 Introduction

Let S be a smooth surface of general type with irregularity q and geometric genus pg ≥ 3.
Denote by φ the canonical map of S and let d := deg(φ). It is known since Beauville [6]
that if the canonical image φ(S) is a surface, then

d ≤ 36− 9q if q ≤ 3, d ≤ 8 if q ≥ 4.

Beauville has also constructed families of examples with χ(OS) arbitrarily large for d =
2, 4, 6, 8. Despite being a classical problem, for d > 8 the number of known examples is
scarce. Tan’s example [16, §5] with d = 9, q = 0 and Persson’s example [12] with d = 16,
q = 0 are well known. Du and Gao [10] show that if the canonical map is an abelian cover
of P2, then these are the only possibilities for d > 8. More recently the third author has
given examples with d = 16, q = 2 [15] and d = 24, q = 0 [14]. There is a paper [17]
claiming the existence of the case d = 36, but, to our knowledge, the proof is not correct.

In this paper we consider the problem of finding product-quotient surfaces (A×B)/G
with at most canonical singularities having canonical map of maximum degree. For these
surfaces K2 ≤ 8χ (see [1]), equality holding if and only if the quotient model (A × B)/G
is smooth, i .e. the action of G is free. Here Beauville’s argument gives

d ≤ 32− 8q if q ≤ 3,

equality holding if and only if G acts freely, pg = 3 and the canonical system is base point
free. In order to be able to understand this system, we restrict our study to abelian groups
G. Such surfaces are then abelian coverings of the product (A/G) × (B/G), and we can
use Pardini’s [11] formulas to understand their canonical curves.

We give an algorithm that, for a given value of the geometric genus pg and some n ∈ N,
computes all regular product-quotient surfaces with abelian group G that have at most
canonical singularities and have canonical system with at most n base points. Applying
it to the case K2 = 32, we get exactly two families of surfaces with pg = 3, q = 0 and

2010 Mathematics Subject Classification: Primary: 14J29 Secondary: 14J10

Keywords: Surface of general type; Product-quotient surface; Canonical map

1

http://arxiv.org/abs/1807.11854v2


canonical map of degree K2 = 32 onto P
2. We describe these surfaces as (Z/2)4-coverings

of P1 × P
1 in Section 3.

We have also found a family of product-quotient surfaces with pg = 3, q = 1 and
canonical map of degree K2 = 24 onto P

2. We give the construction as a (Z/2)3-covering
of E × P

1 in Section 4, where E is an elliptic curve. One can show that this is the unique
such family with group G = (Z/2)3, we give the idea for the proof of this fact in Remark
4.1.

For product-quotient surfaces with pg ≥ 4 and q ≤ 3, Beauville’s proof gives the
inequality

d ≤ 8

(
1 +

3− q

pg − 2

)
≤ 20.

Strangely enough the output of our algorithm for pg = 4 does not contain any quotient
(A × B)/G with G acting freely, and therefore there exists no product-quotient surface
(A×B)/G with G abelian and canonical map of degree 20. We show that the maximum
degree for regular such surfaces is 12. The value pg = 4 is a surprising gap. Indeed
Catanese constructed in [9] regular product-quotient surfaces with pg = 5 and 6 of the
form (A × B)/G with G abelian acting freely and canonical system without base points.
Catanese’s examples, having canonical map of degree 1 and φ(S) of very high degree, have
been an important source of inspiration for this paper.

To keep the paper as simple as possible, for the convenience of the readers, we describe
our examples directly as abelian covers of (A/G)×(B/G) instead of as quotients (A×B)/G.
We refer the interested reader to [2,3] and the references therein for the theory of product-
quotient surfaces in the general case of arbitrary singularities.

An implementation of our algorithm as MAGMA script may be downloaded at
http://www.science.unitn.it/~pignatel/papers/CanonicalMapProg.magma
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2 (Z/2)r-coverings and canonical systems

The following result is taken from [8, Proposition 6.6] (see also [11]).

Proposition 2.1. A normal finite G ∼= (Z/2)r-covering Y → X of a smooth variety X is
completely determined by the datum of

1. reduced effective divisors Dσ, ∀σ ∈ G, with no common components;
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2. divisor linear equivalence classes L1, . . . , Lr, for χ1, . . . , χr a basis of the dual group
of characters G∨, such that

2Li ≡
∑

χi(σ)=1

Dσ.

Conversely, given (1) and (2), one obtains a normal scheme Y with a finite G ∼= (Z/2)r-
covering Y → X, with branch curves the divisors Dσ.

The covering ψ : Y → X is embedded in the total space of the direct sum of the line
bundles whose sheaves of sections are the OX(Li), and is there defined by equations

uχi
uχj

= uχi+χj

∏

χi(σ)=χj (σ)=1

xσ,

where xσ is a section such that div(xσ) = Dσ.
The scheme Y is irreducible if {σ|Dσ > 0} generates G.
If the branch locus of ψ is simple normal crossing, then the surface Y is smooth and

its invariants are

χ(OY ) = 2rχ(OX) +
1

2

∑

χ∈G∨∗

(
L2
χ +KXLχ

)
,

pg(Y ) = pg(X) +
∑

χ∈G∨∗

h0(X,OX (KX + Lχ)).

For each σ ∈ G, denote by Rσ ⊂ Y the reduced divisor supported on ψ∗(Dσ). We get
from [11, Proposition 4.1, c)] and [4, Proposition 2.1)] that, if X is Gorenstein, for any χ,

(ψ∗ωY )
(χ) ∼= ωX(Lχ).

Combining with the Hurwitz formula,

KY = ψ∗(KX) +
∑

σ∈G∗

Rσ,

we obtain that the canonical linear system of Y is generated by

ψ∗|KX + Li|
∑

χi(σ)=0

Rσ, i ∈ J, (1)

where J := {j : |KX + Lj| 6= ∅}.

3 The families with deg(φ) = 32

Let f, g be the rational fibrations of X := P
1 × P

1, and let F1, . . . , F6 be distinct fibres of
f and E1, . . . , E6 be distinct fibres of g. Denote by e1, . . . , e4 the generators of (Z/2)4. We
set ei1···ir := ei1 + · · ·+ eir .

3.1 Building data 2× (1, 1, 1, 1, 1, 1)

Consider the (Z/2)4-covering
ψ : Y → X

given by

De1 := F1, De2 := F2, De3 := F3, De4 := F4, De13 := F5, De24 := F6,
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De234 := E1, De134 := E2, De124 := E3, De123 := E4, De14 := E5, De23 := E6.

For i, j, k, l ∈ Z/2, let χijkl denote the character which takes the value i, j, k, l on
e1, e2, e3, e4, respectively. There exist divisors Lijkl such that

2Lijkl ≡
∑

χijkl(σ)=1

Dσ,

thus the covering ψ is well defined. Since there is no 2-torsion in the Picard group of X,
then ψ is uniquely determined. The surface Y is smooth because the curves De1 , . . . ,De234

are smooth with pairwise transverse intersections only.
We have

L1100 ≡ L0011 ≡ L1111 ≡ 2F + 2E,

where F is a fibre of f and E is a fibre of g. For the remaining cases we have

Lijkl ≡ F + 2E or 2F +E.

This implies that

χ(OY ) = 16 +
1

2

∑(
L2
ijkl +KXLijkl

)
= 4

and
pg(Y ) = 0 +

∑
h0(X,OX (KX + Lijkl)) = 3.

We get from (1) that KY is generated by the following divisors, respectively associated
to the characters χ0011, χ1100 and χ1111:

F̂1 + F̂2 + Ê1 + Ê2, F̂3 + F̂4 + Ê3 + Ê4, F̂5 + F̂6 + Ê5 + Ê6,

where F̂i :=
1
2ψ

∗(Fi) and Êi :=
1
2ψ

∗(Ei).

The fact F̂iÊj = 4 implies K2
Y = 32.

By looking to their images on X, one verifies that the above three divisors have no
common intersection. Thus |KY | is base-point free and then K2

Y > 0 implies that the
canonical map of Y is not composed with a pencil. Hence its image is P

2, a surface of
degree 1, therefore the degree formula implies that the canonical map of Y is of degree
K2

Y = 32.

3.2 Building data 2× (2, 1, 1, 1, 1)

Here we only give the building data of the covering, the verifications are analogous to the
ones in the previous section.

De1 := F1, De134 := F2, De123 := F3 + F4, De13 := F5, De14 := F6,

De2 := E1, De234 := E2, De124 := E3 + E4, De23 := E5, De24 := E6.

As in the previous case, setting F̂i :=
1
2ψ

∗(Fi) and Êi :=
1
2ψ

∗(Ei), KY is generated

by the divisors F̂1 + F̂2 + Ê1 + Ê2, F̂3 + F̂4 + Ê3 + Ê4, F̂5 + F̂6 + Ê5 + Ê6, respectively
associated to the characters χ0011, χ1100 and χ1111.
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4 A family with deg(φ) = 24, q = 1

Let
X := E × F,

with F ∼= P
1 and E a smooth elliptic curve. Let E1, . . . , E6 ⊂ X be distinct elliptic fibres

and F1, F2, F3 ⊂ X be distinct rational fibres. Since the sum of two points in an elliptic
curve is divisible by 2 in the Picard Group, there are fibres Fij such that 2Fij ≡ Fi + Fj ,
i, j ∈ {1, 2, 3}.

Let e1, e2, e3 be the generators of (Z/2)3, set ei1···ir := ei1 + · · ·+ eir and consider the
divisors

De1 := E1 + E2, De2 := E3 + E4, De3 := E5 + E6,

De23 := F1, De13 := F2, De12 := F3,

L100 := E + F23, L010 := E + F13, L001 := E + F12.

For i, j, k ∈ Z/2, let χijk denote the character which takes the value i, j, k on e1, e2, e3,
respectively. The above data satisfies

2Lijk ≡
∑

χijk(σ)=1

Dσ,

thus from Proposition 2.1 it defines a (Z/2)3-covering

ψ : Y −→ X.

Note that there are four different possible choices for each Fij : a different choice produces
a different Y . The surface Y is smooth because the curves De1 , . . . ,De23 are smooth with
pairwise transverse intersections only.

The fact
Lχ+η ≡ Lχ + Lη −

∑

χ(σ)=η(σ)=1

Dσ

implies that
L111 ≡ 3E + T,

L110 ≡ 2E + F ′

12, L101 ≡ 2E + F ′

13, L011 ≡ 2E + F ′

23,

where
T := F12 + F13 + F23 − F1 − F2 − F3

and F ′

ij is a fibre linearly equivalent to Fij + T .
We notice that the divisor class 2T is trivial. We choose the Fij so that the divisor

class T is not trivial, so T is a 2-torsion element of the Picard group.
Since KX ≡ −2E, we have that

χ(OY ) = 0 +
1

2

∑(
L2
ijk +KXLijk

)
= 3,

pg(Y ) = 0 +
∑

h0(X,OX (KX + Lijk)) = 3,

and then q(Y ) = 1.
We get from (1) that KY is generated by the following divisors:

Ê5 + Ê6 + F̂3 + F̃ ′

12, Ê3 + Ê4 + F̂2 + F̃ ′

13, Ê1 + Ê2 + F̂1 + F̃ ′

23,
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corresponding respectively to the characters χ110, χ101 and χ011, where Êi :=
1
2ψ

∗(Ei),

F̂i :=
1
2ψ

∗(Fi), F̃ij := ψ∗(Fij) and F̃
′

ij := ψ∗(F ′

ij).

The facts ÊiF̂j = 2 and ÊiF̃ij = 4 imply K2
Y = 24.

The fibres Ei, Fj , F
′

kl are distinct with the only possible exceptions F ′

ij = 2Fk,
{i, j, k} = {1, 2, 3}. Then the above three divisors have no common intersection since
their images on X have no common intersection. Thus |KY | is base-point free and then,
arguing as in Section 3, the canonical map of Y is of degree K2

Y = 24.

Remark 4.1. We have a proof that these are the only irregular product-quotient surfaces
of the form (A×B)/(Z/2)3 with canonical map of degree 24. We quickly sketch here the
main point of the proof.

Such surfaces S are (Z/2)3−covers of E × F (E elliptic, F rational) branched on an
union of elliptic fibres Ei and rational fibres Fj . Since the action of (Z/2)3 on A × B is
free, each Dσ is either of the form

∑
Ei or of the form

∑
Fj .

By (1) the canonical system is generated by three divisors corresponding to three
characters. If these characters are linearly independent we can assume w.l.o.g. that they
are χ100, χ010 and χ001. Then h0(E × F,KE×F + L100) = 1. It is easy to prove that the
class of KE×F +L100 can’t be trivial, so it is the class of a rational fibre F1, and analogous
statement holds for KE×F + L010 and KE×F + L001. Then all the three divisors contain
the pull-back of a rational fibre Fi. Then ∀i ∈ {1, 2, 3}, Dei cannot contain any elliptic
fibre Ej or there would be a base point of KS on Êj . By Hurwitz formula one deduces
Deij ≡ E, De123 ≡ 2E. Since there is at least a rational fibre F0 in the branch locus,
w.l.o.g. F0 ≤ De1 and one finds a base point of KS on F0 ∩De23 , a contradiction.

So, the three characters are linearly dependent. The rest of the proof uses similar
arguments.

5 The algorithm

In this section we describe our algorithm, producing all regular product-quotient surfaces
whose quotient model Y := (A × B)/G has G abelian, at most rational double points as
singularities, and canonical system with at most isolated base points.

By [1, Remark 2.5] every singular point y ∈ Y is then of type Any , ny ∈ N.

Lemma 5.1. Let Y := (A × B)/G be the quotient model of a product-quotient surface
with only canonical singularities such that G is abelian. Set g(A), g(B) for the genus of
the curve A,B, respectively, and assume w.l.o.g. g(A) ≥ g(B). Set also χ := χ(O(Y )).
Then

g(B) ≤ 1 + 2χ+ 2
√
χ2 + 2χ , g(A) ≤ 4χ

g(B) + 1

g(B) − 1
+ 1 .

Proof. According to [13, Proposition 3.10],

χ =
(g(A) − 1)(g(B) − 1)

|G|
+

1

12

∑

y∈Sing Y

n2y − 1

ny
≥

(g(A) − 1)(g(B) − 1)

|G|
.

Since G is abelian, we have |G| ≤ 4g(B) + 4 by [7, Corollary 9.6], which implies

χ(4g(B) + 4) ≥ χ|G| ≥ (g(A) − 1)(g(B) − 1) ≥ (g(B)− 1)2 .

In particular
g(B)2 − (4χ+ 2)g(B) + 1− 4χ ≤ 0.
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We assume Y regular, then E := A/G ∼= F := B/G ∼= P
1. Since G is abelian, then the

finite map ψ : Y → E×F ∼= P
1×P

1 is a Galois cover with Galois group G. The branching
locus of ψ is the union of the lines Ei := E × qi, Fj := pj ×F , where pj are the branching
points of A→ E and qi are the branching points of B → F . The cover A→ E associates
naturally to each point pj its local monodromy, an element gj of G, that is also the local
monodromy of Fj for ψ. The element gj is the image of a small loop around pj for the
map in [1, page 1002], not depending on the choice of the loop since G is abelian. In the
notation of [11], Fj is a component of the divisor DH,η with H = 〈gj〉 and η ∈ H∗ defined

by η(gj) = e
2πi
mj where mj is the order of gj in G.

By the Riemann Existence Theorem, the local monodromies give a bijection among
the Galois covers of P1 and the maps {pj} → G such that pj is a finite subset of P1 and
the image is a set of generators of G that is spherical, i.e. such that the sum of the images
of the pj is zero. So we produce regular product-quotient surfaces by producing two sets
of spherical generators of G and then choosing freely the points pj, qi.

The type of the set of generators is the multiset (a set whose elements are allowed to
have a multiplicity in N) of the orders mj of the local monodromies of the pj. See [1] for
details.

Fix now pg(Y ) ∈ N. The algorithm is the following:

1st Step: Since χ = pg(Y )+1, Lemma 5.1 determines finitely many possible pairs of
genera (g(A), g(B)) and so finitely many possible orders of the group |G| ≤ 4g(B)+4.
The inequalities in [7, Theorem 9.1, Corollary 9.6] and [13, Proposition 3.6] limit the
types T1 and T2 of the coverings A → E and B → F to finitely many possibilities.
Our program lists first all possible 5−tuples [g(A), g(B), |G|, T1 , T2].

2nd Step: For each resulting 5−tuple [g(A), g(B), |G|, T1 , T2], the program searches
among all groups of order |G| for pairs of systems of spherical generators of respective
types T1 and T2. For each such pairs it computes the singularities of the resulting
surface (A × B)/G using [2, Proposition 1.17] (or the equivalent [11, Proposition
3.3]) and discards all pairs giving singularities not canonical.

3rd Step: Finally the program discards, among the surfaces produced by Step 2,
those whose canonical system has a 1-dimensional base component, as follows. Since
the singularities of Y are Gorenstein, we can use Pardini’s formula ( [11, Proposition
4.1, c)] and [4, Proposition 2.1)] ) for splitting its canonical system as in (1). More
precisely we obtain subsystems of the form ψ∗|Mχ| + Φχ, χ ∈ G∗, generating the
canonical system, where |Mχ| is a (possibly empty) complete linear system on P

1×P
1

and Φχ is an effective divisor supported on the union of the Ei and the Fj . Since
every complete linear system on P

1×P
1 is base point free, then the canonical system

of the product-quotient surface has at most isolated base points if and only if the
divisors Φχ such that |Mχ| 6= ∅ meet only at a finite number of points.

The program returns: the group G, the types Ti, a pair of generating vectors, the
systems Mχ that are not empty, the singularities of Y , and the number of base points of
the canonical system.

Remark 5.2. By Beauville’s argument,

deg φ ≤
8(pg + 1)− b− 2

3

∑
y∈Sing Y

n2
y−1

ny

pg − 2
,
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where b is the number of base points. The equality holds if and only if φ(S) ⊂ P
pg−1 is a

surface of minimal degree pg − 2.

Running the program for pg = 3, we obtain the following result.

Proposition 5.3. There are exactly 2 families of regular product-quotient surfaces
(A× B)/G with G abelian acting freely, pg = 3 and canonical system base point free, the
families described in Section 3.

There are further 17 families of regular product-quotient surfaces (A × B)/G with G
abelian, pg = 3, canonical system base point free whose quotient model has only canonical
singularities.

We notice that the two families are distinct even as families in the Gieseker moduli
space of surfaces of general type. Indeed by [5, Theorem 1.3] a surface in one family is
not even deformation equivalent to any surface in the other family.

The degrees of the canonical maps of the surfaces in the 17 further families form the
set {2, 4, 6, 8, 16}.

6 The case pg = 4

Running the program for pg = 4 we get:

Proposition 6.1. There are no regular product-quotient surfaces (A×B)/G with G abelian
acting freely, pg = 4 and canonical system base point free.

There are 60 families of regular product-quotient surfaces (A × B)/G with G abelian,
pg = 4, canonical system base point free whose quotient model has only canonical singu-
larities.

The highest degree realized by the 60 families in Proposition 6.1 is 12, realized by a
family with group G = (Z/3)2. The branching divisor is the union of 8 lines, 4 for each
ruling: E1 + E2 + E3 + E4 + F1 + F2 + F3 + F4, with local monodromies

E1 7→(1, 1, 2) E2 7→(2, 2, 0) E3 7→(1, 2, 1) E4 7→(2, 1, 0)

F1 7→(2, 1, 1) F2 7→(0, 1, 2) F3 7→(1, 2, 1) F4 7→(0, 2, 2)

The surface has 9 singular points of type A2 and K2 = 24. There are 4 characters χ with
|Mχ| 6= ∅, here are the respective Φχ:

Φ(0,1,0) =Ê1 + Ê4 + F̂1 + F̂2 Φ(1,0,1) =2Ê1 + 2F̂1

Φ(0,2,0) =Ê2 + Ê3 + F̂3 + F̂4 Φ(2,2,2) =2Ê4 + 2F̂2

with Êi =
1
3ψ

∗(Ei), F̂i =
1
3ψ

∗(Fi).
Recall that since the canonical system is base point free and has positive self-intersection,

the canonical map is not composed with a pencil. Since 2Φ(0,1,0) = Φ(1,0,1) + Φ(0,2,0), the
image of the canonical map is contained in a quadric cone and therefore is the quadric cone.
More precisely, one can choose sections x0, x1, x2, x3 of H0(S,KS) with respective divisors
Φ(0,1,0), Φ(1,0,1), Φ(0,2,0), Φ(2,2,2) such that the canonical image is the quadric x20 = x1x2.

There are three more families of surfaces in our list of 60 with K2
S ≥ 24: one with

K2 = 36 and two with K2 = 32. We can show that their canonical image is not contained
in a quadric, and therefore the maximal canonical degree we can reach for pg = 4 is 12.
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