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INSIDE FACTORIAL MONOIDS AND THE CALE MONOID OF A SINGLE

DIOPHANTINE EQUATION

PEDRO A. GARCÍA-SÁNCHEZ, ULRICH KRAUSE, AND DAVID LLENA

Abstract. We give a structure theorem for inside factorial domains. As an example we study the
monoid of nonnegative integer solutions of equations of the form a1x1+ · · ·+ar−1xr−1 = arxr, with
a1, . . . , ar positive integers. This set is isomorphic to a simplicial full affine semigroup, and thus it
can be described in terms of its extremal rays and the Apéry sets with respect to the extremal rays.

1. Introduction

The motivation of this manuscript was essentially the extension of Elliott’s results on the sets of
nonnegative integer solutions of equations of the form ax + by = cz, with a, b, c positive integers.
Elliott was able to give parametric solutions to these equations for c up to 10. The set of solutions
of these equations are full affine semigroups, and consequently they can be “parametrized” in terms
of the Apéry sets of the extremal rays. Simplicial full affine semigroups are a particular instance of
Cale monoids, which are always inside factorial. Also every full affine semigroup is isomorphic to a
normal affine semigroup. The normal condition is known as root-closed in multiplicative notation.

We see that for root-closed inside factorial monoids, elements can be expressed uniquely as a linear
combination of the elements in a basis plus an element in the Apéry set of this basis. Thus basis
for inside factorial monoids play the same role as extremal rays in simplicial full affine semigroups.
This motivates the extension of the structure theorem for simplicial full affine semigroups to inside
factorial monoids. It turns out that root-closed inside factorial monoids are of the form G×F with
G a torsion Abelian group and F a free monoid, endowed with an operation that has a “carry” on
the first component.

Cale monoids are a particular case of inside factorial monoids with special bases known as tame
bases. For these monoids we are able to determine the class group and the inner class group. We
see that the inner class group coincides with the Apéry set of the monoid with respect to a tame
base, and actually the Apéry set can be endowed with an operation that makes it isomorphic to the
inner class group.

Going back to the original problem of studying the monoid of nonnegative integer solutions of
a1x1+ · · ·+ ar−1xr = arxr, with all ai positive integers, we particularize the results obtained above
and recover some known results for simplicial affine semigroups. For the particular case of r = 3,
we see that the inner class group is cyclic, and we are able to compute it together with the class
group. We discuss with some examples the uniqueness achieved by Elliott in the description of the
set of solutions for the case r = 3.
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2. Inside factorial monoids

Let M be a cancellative and commutative monoid, and let Q be a set of nonunit elements of M .
We say that M is inside factorial with base Q if

• for each element x ∈ M , there exists a positive integer n(x) and u a unit in M such that
n(x)x ∈ u+ 〈Q〉,

• if n(x)x = u +
∑

q∈Q λqq = v +
∑

q∈Q µqq, for some u, v units of M and λq, µq ∈ N (only

a finite number of them is nonzero; N stands for the set of nonnegative integers), then we
have λq = µq for all q ∈ Q.

The set Q is known as a Cale basis for M .
If we assume that M is unit free (reduced), then M is an inside factorial monoid with base Q if

and only if for every x ∈ M , there exist nonnegative integers n(x), x(q), q ∈ Q, such that

n(x)x =
∑

q∈Q

x(q)q,

with all x(q) equal to zero except for finitely many q ∈ Q, and the elements in Q are Q-linearly
independent.

For a cancellative monoid M we can define the divisibility relation as follows:

a ≤M b if there exists c ∈ M such that a+ c = b.

Given a reduced inside factorial monoid M , we say that q ∈ M is a strong atom if the only
nontrivial divisors of multiples of q are multiples of q. That is, if for some n ∈ Z+ and x ∈ M with
x ≤M nq, then x = mq for some m ∈ Z+. The set of all strong atoms of M is a Cale base for M
(this is a consequence of [3, Lemma 3.3 (4)]).

Let M be an inside factorial monoid with base Q, we define the Apéry set of M with respect to
Q as follows

Ap(M,Q) = M \ (Q+M).

Lemma 1. Let M be a reduced inside factorial monoid with basis Q. Then

{x ∈ M | λ(q, x) < 1 for all q ∈ Q} ⊆ Ap(M,Q),

where for x, y ∈ M , λ(x, y) = sup{m
n
| mx ≤M ny}.

Proof. Assume that λ(q, x) < 1 for all q ∈ Q and suppose that x = q + y for some y ∈ M . Then
q ≤M x, and consequently λ(q, x) ≥ 1, a contradiction. Thus, x ∈ Ap(M,Q). �

Let M be a cancellative monoid. ThenM can be embedded naturally in its quotient group G(M).
We say that M is root closed if whenever nz ∈ M for some positive integer n and some z ∈ G(M),
then z ∈ M .

We see next that if we add the root-closed condition to Lemma 1, then we get an equality.
Clearly (as was already used in Lemma 1), if q ≤M x, then λ(q, x) ≥ 1. The converse holds under
the root-closed condition.

Lemma 2. Let M be a reduced root-closed inside factorial monoid with base Q. For x ∈ M and
q ∈ Q, λ(q, x) ≥ 1 if and only if q ≤M x.

Proof. By hypothesis, there exists two positive integers m and n such that mq ≤M nx, with m ≥ n.
Then nq ≤M mq ≤M nx, which yields nx− nq ∈ M . Hence n(x− q) ∈ M and as M is root closed,
x− q ∈ M , equivalently, q ≤M x.

Now assume that q ≤M x. Then λ(q, x) ≥ 1
1 = 1. �

Lemma 3. Let M be a reduced and root-closed inside factorial monoid with basis Q. Then

Ap(M,Q) = {x ∈ M | λ(q, x) < 1 for all q ∈ Q}.
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Proof. Let x ∈ Ap(M,Q). Then x 6∈ q +M for all q ∈ Q. Assume that λ(q, x) ≥ 1 for some q ∈ Q.
By Lemma 2, x− q ∈ M . But this means that x ∈ q +M , contradicting that x ∈ Ap(M,Q).

The other inclusion was shown in Lemma 1. �

Given x ∈ M , we can define
ν(x) = sup{λ(q, x) | q ∈ Q}.

Notice that the above supremum in our case is a maximum, since for every x only for finitely many
q, λ(q, x) will be nonzero (by [2, Lemma 2 (a)], λ(q, x) = n(x)/x(q)).

Lemma 3 can be restated as follows in terms of ν.

Corollary 1. Let M be a reduced and root-closed inside factorial monoid with basis Q. Then

Ap(M,Q) = ν−1([0, 1)).

With this machinery we can decompose M in terms of Ap(M,Q) and F = 〈Q〉. With this
decomposition, every element in M can be expressed uniquely as a+

∑

q∈Q λqq, with a ∈ Ap(M,Q).
Something similar occurs for simplicial Cohen-Macaulay affine semigroups, if we choose Q to be
the extremal rays of the semigroup, [9, Theorem 1.5]. In contrast, our monoids do not have to be
finitely generated. In the finitely generated case, root-closed forces the Cohen-Macaulay property
[7], so it is not surprising that both families of monoids share this decomposition.

Theorem 1. Let M be a reduced root-closed inside factorial monoid with base Q. Then

M =
˙⋃

a∈Ap(M,Q)
a+ 〈Q〉.

Proof. Let x ∈ M . Then n(x)x =
∑

q∈Q x(q)q. If λ(q, x) < 1 for all q ∈ Q, using Lemma 1 we have

x ∈ Ap(M,Q), and we are done.
If λ(q, x) ≥ 1 for some q, then for all (m,n) such that mq ≤M nx, we have that m ≥ n.

Also q ≤M x by Lemma 2. Thus, the map (m,n) 7→ (m − n, n) is a bijection between the sets
{(m,n) | mq ≤M nx} and {(m,n) | mq ≤M n(x− q)}. This implies that λ(q, x − q) = λ(q, x) − 1.
If λ(q, x − q) ≥ 1, then we repeat the argument and subtract q to x − q. In this way we obtain a
chain of strictly decreasing nonnegative real numbers, which at some point will reach an element
in the interval [0, 1). Thus, there exists k ∈ N such that x − kq ∈ M and x − (k + 1)q 6∈ M . Set
y = x − kq, then x = kq + y, with y − q 6∈ M , or equivalently λ(q, y) < 1. We easily deduce that
k = ⌊λ(q, x)⌋, as 1 > λ(q, y) = λ(q, x− kq) = λ(x, q)− k > 0.

By [2, Lemma 2 (a)], λ(q, x) = x(q)/n(x). Hence there are only finitely many q ∈ Q such that
λ(q, x) 6= 0. This lemma also states that for every q′ ∈ Q, λ(q′, x) = λ(q′, kq+y) = kλ(q′, q)+λ(q′, y).
As a consequence of the definition of inside factorial monoid and [2, Lemma 2], one gets that for
q 6= q′, q(q′) = 0 = q′(q) and thus λ(q, q′) = 0. It follows that λ(q′, y) 6= 0 only for finitely many
q′ ∈ Q. By repeating the argument with y, we end up writing x in the form x =

∑

q∈Q ⌊λ(x, q)⌋q+w,

with w ∈ Ap(M,Q) (notice that ⌊λ(x, q)⌋ are all zero except a finite number of them). �

Compare also the decomposition in Theorem 1 with the Stanley decomposition described in [8,
Section 4.6]. This decomposition can also be stated in terms of the group spanned by the monoid,
as the following corollary shows.

Corollary 2. Let M be a reduced root-closed inside factorial monoid with base Q. Then

G(M) =
˙⋃

a∈Ap(M,Q)
a+G(Q).

Moreover, a+ f ∈ M with a ∈ Ap(M,Q) and f ∈ G(Q) if and only if f ∈ 〈Q〉.

Proof. Let z ∈ G(M). Then z = u − v for some u, v ∈ M . By Theorem 1, there exist a, b ∈
Ap(M,Q) and f, g ∈ 〈Q〉 such that u = a + f and v = b + g. Thus z = (a − b) + (f − g).
But −b = (n(b) − 1)b −

∑

b(q)q. Hence z = (a + (n(b) − 1)b) + (f − g −
∑

b(q)q). Observe



4 PEDRO A. GARCÍA-SÁNCHEZ, ULRICH KRAUSE, AND DAVID LLENA

that a + (n(b) − 1)b ∈ M , and consequently there exists c ∈ Ap(M,Q) and h ∈ 〈Q〉 such that
a+(n(b)− 1)b = c+h (Theorem 1). It follows that z = c+(f − g+h−

∑

b(q)q) ∈ c+G(Q). This
proves one inclusion, and the other is trivial.

Now assume that a ∈ Ap(M,Q) and f ∈ G(Q) are such that a + f ∈ M . Then by Theorem 1,
there exists b ∈ Ap(M,Q) and g ∈ 〈Q〉 such that a+f = b+g. Write f = f ′−f ′′ with f ′, f ′′ ∈ 〈Q〉.
Then a+f ′ = b+(g+f ′′), and by Theorem 1 this implies that a = b and f ′ = g+f ′′. In particular,
f = f ′ − f ′′ = g ∈ 〈Q〉. �

Corollary 3. Let M be a reduced root-closed inside factorial monoid with base Q. Assume that M
has beside the strong atoms in Q two more atoms, say u and v. Then each x ∈ M has a unique
parametrized representation

x =
∑

q∈Q

λqq +mu+ nv,

with λq ∈ N and parameters m,n ∈ N restricted by

mλ(q, u) + nλ(q, v) < 1,

for all q ∈ Q.

Proof. From Theorem 1, we have that x has a unique representation x =
∑

q∈Q λqq + y, with

y ∈ Ap(M,Q).
First, we show that y = mu+ nv, where m,n ∈ N are uniquely determined. That y is written in

this way follows from the fact that the only atoms that are not in Q are u and v. For uniqueness,
suppose that mu + nv = m′u + n′v for some m′, n′ ∈ N. Assume without loss of generality that
m ≥ m′. Therefore (m − m′)u = (n′ − n)v. If m − m′ ≥ n′ − n, then ((m − m′) − (n′ − n))u =
(n′ − n)(v − u) ∈ M . But M is root-closed, and consequently v − u ∈ M , contradicting that u and
v are atoms. If n′ − n ≥ m−m′, we argue in the same way.

By Lemma 3, λ(q, y) < 1, and we already know that λ is additive on the second argument. Thus
mλ(q, u) + nλ(q, v) < 1. �

On Ap(M,Q) we can define the following binary operation. For a, b ∈ Ap(M,Q), a+ b = c+ f ,
with c ∈ Ap(M,Q) and f ∈ 〈Q〉 (c and f are unique; Theorem 1). Since f is unique we will denote
it by I(a, b) (following [10]). We set a⊕ b = c. The same construction can be performed when M is
a Cohen-Macaulay simplicial affine semigroup, [10, Proposition 4].

Thus, with the above notation
a+ b = a⊕ b+ I(a, b).

Let a ∈ Ap(M,Q) and let n be a nonnegative integer. We denote na as the unique element in
Ap(M,Q) such that na ∈ na + 〈Q〉. The existence of such element is once more guaranteed by
Theorem 1. Observe that

na = na+

n−1
∑

i=1

I(a, ia),

and that na = a⊕
n
· · · ⊕a. This notation is motivated by the fact that ⊕ is just + modulo 〈Q〉.

Also notice that the inverse of a with respect to ⊕ is (n(a)− 1)a, since from the definition of
Cale monoid n(a)a ∈ 〈Q〉.

Let us see some of the basic properties I has. They are very similar to those for the case of
Cohen-Macaulay simplicial affine semigroups [10]; and those were abstracted from the concept of
Tamura’s N -semigroups [12].

Proposition 1. Let M be a reduced root-closed with Cale basis Q, and let I be defined as above.

(1) For all a, b ∈ Ap(M,Q), I(a, b) = I(b, a).
(2) For all a ∈ Ap(M,Q), I(a, 0) = 0.
(3) For every a, b, c ∈ Ap(M,Q), I(a, b) + I(a⊕ b, c) = I(b, c) + I(a, b⊕ c).
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(4) If a, b ∈ Ap(M,Q), a 6= 0 and a⊕ b = 0, then I(a, b) 6∈ Q ∪ {0}.

(5) For all a ∈ Ap(M,Q) \ {0},
∑n(a)−1

i=1 I(a, ia) 6= n(a)f for any f ∈ 〈Q〉.

(6) For every positive integer n, every a ∈ Ap(M,Q) and every f ∈ G(Q),
∑n−1

i=1 I(a, ia)+nf ∈
〈Q〉 implies f ∈ 〈Q〉.

Proof. The first and second assertions follow easily from the definition. The third reflects the fact
that ⊕ is associative.

a+ (b+ c) = a+ (b⊕ c+ I(b, c)) = a⊕ (b⊕ c) + I(a, b⊕ c) + I(b, c)

and
(a+ b) + c = (a⊕ b+ I(a, b) + c = (a⊕ b)⊕ c+ I(a⊕ b, c) + I(a, b).

By Theorem 1, a⊕ (b⊕ c) = (a⊕ b)⊕ c and I(a, b⊕ c) + I(b, c) = I(a⊕ b, c) + I(a, b).
Now assume that a ⊕ b = 0 for some a, b ∈ Ap(M,Q). This implies that a + b = I(a, b). If

I(a, b) = 0, then a + b = 0, and as M is reduced, we obtain a = b = 0, a contradiction. If
I(a, b) = q′ ∈ Q, then q′ = a+b. We have n(a)n(b)q′ = n(a)n(b)(a+b) =

∑

q∈Q(n(a)b(q)+n(b)a(q))q

thus a(q) = 0 = b(q) for all q ∈ Q \ {q′}, and n(a)n(b) = n(a)b(q′) + n(b)a(q′).
Recall that λ(q′, a) = n(a)/a(q′) < 1 and λ(q′, b) = n(b)/b(q′) < 1 since a, b ∈ Ap(M,Q) (Lemma

3). Hence n(a)n(b) > 2n(a)n(b), a contradiction. This proves the fourth assertion.

Let a ∈ Ap(M,Q). Assume that there exists f ∈ 〈Q〉 such that n(a)f =
∑n(a)−1

i=1 I(a, ia). As

n(a)a = 0, n(a)a =
∑n(a)−1

i=1 I(a, ia) = n(a)f . Hence a = f , as M is root closed. This can only be
the case if a = 0 = f . The fifth assertion now follows easily.

Finally, suppose that we have n, a, f under the hypothesis of the last statement. Then a + f ∈
G(M), and n(a+ f) = na+ nf = na+

∑n−1
i=1 I(a, ia) + nf ∈ M . As M is root closed, a+ f ∈ M ,

which means that f ∈ 〈Q〉 (Corollary 2). �

This inspires the following structure theorem for reduced inside factorial monoids.

Theorem 2. Let G be a torsion Abelian group and let F be the free monoid on a set Q. Let I be
a map I : G×G → F fulfilling the following conditions:

(1) for all a, b ∈ G, I(a, b) = I(b, a),
(2) for all a ∈ G, I(a, 0) = 0,
(3) for every a, b, c ∈ G, I(a, b) + I(a+ b, c) = I(b, c) + I(a, b+ c),
(4) if a ∈ G \ {0}, then I(a,−a) 6∈ Q ∪ {0}.

On G×F define the operation (a, f)+I (b, g) = (a+ b, f + g+ I(a, b)). Then G×F with this binary
operation is a reduced inside factorial monoid with basis {0}×Q. Moreover, all elements in {0}×Q
are irreducible, and Ap(G× F, {0} ×Q) = G× {0}.

If in addition,

(5) for every positive integer n, every a ∈ G and every f ∈ G(F ),
∑n−1

i=1 I(a, ia) + nf ∈ F
implies f ∈ F ,

then G× F is root-closed.

Proof. The first three assertions are telling us that G × F with this binary operation is a monoid
with identity element (0, 0).

Assume that (a, f)+I (c, h) = (b, g)+I (c, h). Then a+c = b+c and f+h+I(a, c) = g+h+I(b, c).
As G is a group, we get a = b, and thus f + h+ I(a, c) = g+ h+ I(a, c). Now, by using that F is a
free monoid, we deduce that f = g. Thus, G× F is cancellative.

Let us see now that G×F is reduced. If (a, f)+I (b, g) = (0, 0), then b = −a and f+g+I(a, b) = 0.
But F is free, whence f = g = I(a,−a) = 0. Property (4) of I ensures that a = 0. Hence
(a, f) = (0, 0) = (b, g).

Now take any (a, f) ∈ G× F . Then ord(a)(a, f) = (0, ord(a)f +
∑ord(a)−1

i=1 I(a, ia)) ∈ 〈{0} ×Q〉.
If (0,

∑

q∈Q λqq) = (0,
∑

q∈Q µqq) with λq, µq ∈ N and all zero except finitely many of them, then
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as F is free over Q, this implies that λq = µq for all q ∈ Q. This proves that G × F is an inside
factorial monoid with basis Q.

Let (a, f), (b, g) ∈ G × F such that (a, f) +I (b, g) = (0, q) with q ∈ Q. Then a + b = 0 and
f + g + I(a, b) = q. By (4), I(a, b) 6= q, and as F is free over Q, this implies that I(a, b) = 0 and
that either f = 0 and g = q, or f = q and g = 0. In any case, by (4) again, a = 0 = b, and (0, q) is
an atom.

Now let (a, 0) ∈ G× {0}. If (a, 0) = (0, q) +I (b, f) for some (0, q) ∈ {0} ×Q and (b, f) ∈ G× F ,
then a = b and 0 = q + f , which is impossible. Thus, G × {0} ⊆ Ap(G × F, {0} × Q). For the
other inclusion, let (a, f) ∈ Ap(G × F, {0} ×Q). If f 6= 0, then f − q ∈ F for some q ∈ Q. Hence
(a, f) = (0, q) +I (a, f − q) ∈ G× F , contradicting that (a, f) ∈ Ap(G× F, {0} ×Q).

Finally assume that (5) holds. We first show that G(G × F ) = G × G(F ) with the operation
(a, f)+I (b, g) = (a+ b, f + g+ I(a, b)). The inverse of (a, f) is (−a,−f − I(a,−a)). If (a, f) ∈ G×
G(F ), then f = g−h for some g, h ∈ F , and (a, f) = (a, g)+I (−(0, h)). Hence (a, f) ∈ G(G×F ). For
the other inclusion, take (a, f) ∈ G(G×F ). Then (a, f) = (b, g)+I (−(c, h)) for some (b, g), (c, h) ∈
G×F , that is, a+c = b and g = f+h+I(a, c). Consequently (a, f) = (a, g−h−I(a, c)) ∈ G×G(F ).

If for some positive integer n and some (a, f) ∈ G × G(F ) we have n(a, f) ∈ G × F , then

(na, nf +
∑n−1

i=1 I(a, ia)) ∈ G× F . In particular, this implies that nf +
∑n−1

i=1 I(a, ia) ∈ G(F ), and
by (5), this yields f ∈ F . Thus, (a, f) ∈ G× F , and G× F is root-closed. �

3. The inner class group of a Cale monoid

Let M be a reduced inside factorial monoid with Cale base Q. We say that Q is a tame base if
for every q ∈ Q, there exists a positive integer ℓ(q) such that ℓ(q)λ(q, x) ∈ N for all x ∈ M (see
[3]; we take ℓ(q) to be the least positive integer fulfilling this condition). We say that M is a Cale
monoid if it is inside factorial with a tame base.

By [2, Lemma 2 (b)] (and with our additive notation), we know that λ(q, x+y) = λ(q, x)+λ(q, y)
for all x, y ∈ M . For each q ∈ Q, the map fq(x) = ℓ(q)λ(q, x) defines a monoid morphism of M into
(N,+). Recall that by [3, Lemma 2.1 (i)], fq(x) = ℓ(q)x(q)/n(x).

Let ϕ : M → N(Q) defined as ϕ(x)(q) = fq(x). Then ϕ is injective. If x, y ∈ M are such that

fq(x) = fq(y) for all q ∈ Q, then x(q)/n(x) = y(q)/n(y) for all q ∈ Q. Hence x =
∑

q∈Q
x(q)
n(x)q =

∑

q∈Q
y(q)
n(y)q = y.

Let G(M) be the quotient group of M . Then ϕ extends to the group morphism ϕ : G(M) → Z(Q),
by defining ϕ(a− b) = ϕ(a)− ϕ(b).

For a cancellative monoid S and a submonoid T of S, we can define the following binary relation:
a ∼T b, a, b ∈ S if b− a ∈ G(T ). This relation is a congruence, and thus S/ ∼T , denoted as S/T , is
a monoid, called the quotient of S modulo T . It follows that S/T is isomorphic to G(S)/G(T ).

The quotient Cl(M) = N(Q)/ϕ(M) is the (outer) class group of M . The inner clase group of M
is defined as inCl(M) = ϕ(M)/ϕ(F ), with F = 〈Q〉.

Hence,

Cl(M) =
Z(Q)

ϕ(G(M))
, inCl(M) =

ϕ(G(M))

ϕ(G(F ))
∼=

M

F
.

Thus, by the third isomorphy theorem,

(1) Cl(M) =
Z(Q)/ϕ(G(F ))

inCl(M)
.

From ϕ(q) = ℓ(q)eq, for q ∈ Q (where eq is the function that maps everything to 0 except q which
is sent to 1), one obtains

(2)
Z(Q)

ϕ(G(F ))
=

⊕

q∈Q

Zℓ(q).
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As a consequence of this we obtain the following corollary.

Corollary 4. Let M be a reduced root-closed Cale monoid with (finite) Cale basis Q. Then
∏

q∈Q

ℓ(q) = |Cl(M)| · |inCl(M)|.

From Theorem 1, we obtain another interesting consequence.

Corollary 5. Let M be a reduced root-closed Cale monoid with Cale basis Q. Then

inCl(M) ∼= (Ap(M,Q),⊕)

Also Theorem 1 and the last corollary offer a new way to see M . We can define on the cartesian
product Ap(M,Q)×F the following binary operation: (a, f)+ (b, g) = (a⊕ b, f + g+I(a, b)). With
this operation Ap(M,Q) × F is a monoid isomorphic to M .

Theorem 3. Let M be a reduced root-closed Cale monoid with basis Q. Then M is isomorphic to
Ap(M,Q)× 〈Q〉 endowed with the operation (a, f) + (b, g) = (a⊕ b, f + g + I(a, b)).

Remark 1. Let q ∈ Q and x ∈ M . Then by Theorem 1, there exist unique a ∈ Ap(M,Q) and f ∈
〈Q〉 such that x = a + f . We know that λ is additive in the second argument, and so λ(q, x) =
λ(q, a) + λ(q, f). It also follows that λ(q, f) ∈ N (it is actually f(q)), and by Lemma 3, λ(q, a) < 1.
Thus if we want to compute ℓ(q) we only have to deal with λ(q, a) for all a ∈ Ap(M,Q). As a
consequence of Corollary 5, we only have to look for least integer k such kλ(q, a) ∈ N for all a in a
minimal generating set of (Ap(M,Q),⊕). This integer will be ℓ(q).

4. The equation

Let a1, . . . , ar be positive integers. Let N = {(x1, . . . , xr) ∈ Nr | a1x1 + · · · + ar−1xr−1 = arxr}.
In light of [3, Proposition 5.6], N is a Cale monoid.

Instead of considering N = {x ∈ Nr | a1x1 + · · ·+ ar−1xr−1 = arxr}, we will consider M = {x ∈
Nr−1 | a1x1 + · · · + ar−1xr−1 ≡ 0 (mod ar)}, which as we see next is isomorphic to N . With this
rephrasement we can apply the results in [11].

Lemma 4. The semigroups N and M are isomorphic.

Proof. Let π : N → M be projection on the first r − 1 coordinates. Clearly π is a monoid epimor-
phism. If π(x) = π(x′), with x, x′ ∈ N , we get arxr = a1x1+· · ·+ar−1xr−1 = a1x

′

1+· · ·+ar−1x
′

r−1 =
arx

′

r. Hence arxr = arx
′

r and consequently xr = x′r. Thus π is a monoid isomorphism. �

The inverse of π is π−1(x1, . . . , xr−1) =
(

x1, . . . , xr−1,
1
ar

∑r−1
i=1 xi

)

.

One of the side effects of this lemma is that M is simplicial, with extremal rays {q1, . . . , qr−1},
with qi = ar

gcd(ai,ar)
ei for all i ∈ {1, . . . , r − 1} (in this context, ei denotes the ith row of the

(r − 1)× (r − 1) identity matrix).
Now [7] can be used in combination with [9]. It also follows easily that M is a Cale monoid with

basis Q = {q1, . . . , qr−1}. This has also another advantage. We may consider now the ai modulo
ar.

The monoid M is a full affine semigroup, and it is generated by the set of minimal nonzero
elements in M with respect to the usual partial ordering in Nr−1. This set is known in the literature
as a Hilbert basis of M .

The following result implicitly appears in [11, Theorem 10].

Lemma 5. Under the standing hypothesis,

Ap(M,Q) = M ∩
∏r−1

i=1
[0, ar/ gcd(ai, ar)).
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Proof. Let x ∈ Ap(M,Q), and assume that for some i, xi ≥ ar/ gcd(ai, ar). Then x − qi ∈ Nr−1,
but this means that x− qi ∈ M , contradicting that x ∈ Ap(M, qi).

The other inclusion is clear, since for every x ∈ M with xi < ar/ gcd(ai, ar) for all i one cannot
have x− qi ∈ M . �

As a consequence of the above lemma and Theorem 1, we obtain the following consequence.

Corollary 6. Let a1, . . . , ar be positive integers, with r > 2. Let M be the set of nonnegative integer
solutions of a1x1 + · · · + ar−1xr−1 ≡ 0 (mod ar). Set F = 〈 ar

gcd(a1,ar)
e1, . . . ,

ar
gcd(ar−1,ar)

er−1〉, and

let A = Ap(M,Q). Then

M =
⋃

a∈A

a+ F,

and this union is disjoint.

Corollary 7. Let a1, . . . , ar be positive integers, with r > 2. Let M be the set of nonnegative integer
solutions of a1x1 + · · ·+ ar−1xr−1 ≡ 0 (mod ar). Assume that the Hilbert basis of M is of the form
{ ar
gcd(a1,ar)

e1, . . . ,
ar

gcd(ar−1,ar)
er−1, u, v}, for some u, v. Then each x ∈ M has a unique parametrized

representation

x =

r−1
∑

i=1

λi
ar

gcd(ai, ar)
ei +mu+ nv,

with λi ∈ N and parameters m,n ∈ N restricted to

mui + nvi <
ar

gcd(ai, ar)
,

for all i ∈ {1, . . . , r − 1}.

Proof. Apply Corollary 3 and the particular shape of A = Ap(M,Q) in Corollary 6. �

Remark 2. Notice that both Corollaries 3 and 7 hold if the Hilbert basis consists in the extreme
rays plus an extra element, say u. The decomposition and restrictions of the parameters will be the
same suppressing the terms in v.

Example 1. Let N be the set of nonnegative integer solutions of 4x+ 5y = 7z. Then we know that
M is the set of nonnegative integer solutions of 4x+ 5y ≡ 0 (mod 7). The extremal rays of M are
(7, 0) and (0, 7), that is, the Cale base of M is Q = {(7, 0), (0, 7)}. Since M is also a full affine
semigroup, Ap(M,Q) = M ∩ [0, 6]2. The elements in this set are

{(0, 0), (1, 2), (2, 4), (3, 6), (4, 1), (5, 3), (6, 5)}.

In order to obtain the Hilbert basis of M it suffices to take (7, 0), (0, 7) and the minimal nonzero
elements of M ∩ [0, 6]2: (1, 2) and (4, 1). Thus H = {(7, 0), (0, 7), (1, 2), (4, 1)} is a Hilbert basis of
M .

By Corollary 7, with u = (1, 2) and v = (4, 1), the unique representation of any element x ∈ M
is

x = λ1(7, 0) + λ2(0, 7) +m(1, 2) + n(4, 1),

with λ1, λ2 ∈ N and parameters m,n ∈ N restricted by

m+ 4n < 7 and 2m+ n < 7.

The latter restrictions are equivalent to (m,n) ∈ {0, 1, 2} × {0, 1} ∪ {(3, 0)}, and the integers λ1,
λ2, n, m are unique (compare with [5], page 368). If we do not put restrictions on n and m, then
we loose uniqueness.

Set q1 = (7, 0) and q2 = (0, 7). As 7(1, 2) = (7, 0) + 2(0, 7), we obtain λ(q1, (1, 2)) = 1
7 and

λ(q2, (1, 2)) = 2
7 . In a similar way we can compute λ(qi, a) for i ∈ {1, 2} and a ∈ Ap(M,Q). It
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follows that ℓ(q1) = ℓ(q2) = 7. By Corollary 5, inCl(M) is isomorphic to Ap(M,Q) endowed with
the operation ⊕. This group is isomorphic to Z7.

In our setting Z(Q) = Z2 and ϕ : M → Z2, ϕ(x) = (7λ(q1, x), 7λ(q2, x)). Also ϕ(G(M)) =
G(ϕ(M)) = G(ϕ(H)), so we can describe ϕ(G(M)) by computing the images of the elements in H
via ϕ and then taking the group spanned by them. A quick calculation shows that ϕ((7, 0)) = (7, 0),
ϕ((0, 7)) = (0, 7), ϕ((1, 2)) = (1, 2), ϕ((4, 1)) = (4, 1), and consequently ϕ is just the inclusion of
M inside N2. The group spanned by {(7, 0), (0, 7), (1, 2), (4, 1)} equals the group G((1, 2), (3,−1))
with invariant factors 1, 7. Thus Cl(M) ∼= Z7.

5. The two dimensional case

In this section we focus in the case ax+ by = cz, or equivalently, ax+ by ≡ 0 (mod c). We may
assume that gcd(a, b, c) = 1 (if not, we divide the equation by this amount).

Lemma 6. Let c be a positive integer and let a, b ∈ {1, . . . , c−1} with gcd(a, b, c) = 1. Let M be the
set of nonnegative integer solutions of ax+by ≡ 0 (mod c). Let Q = {( c

gcd(a,c) , 0), (0,
c

gcd(b,c))}.Then

Ap(M,Q) =

{(

gcd(b, c)i,−ida mod

(

c

gcd(b, c)

))
∣

∣

∣

∣

i ∈

{

0, . . . ,
c

gcd(a, c) gcd(b, c)
− 1

}}

,

where d = (b/ gcd(b, c))−1 mod (c/ gcd(b, c)).

Proof. We already know by Lemma 5 that

Ap(M, {(c/ gcd(a, c), 0), (0, c/ gcd(b, c)}) = M ∩ [0, c/ gcd(a, c)) × [0, c/ gcd(b, c)).

We are going to prove that

Ap(M, {(c/ gcd(a, c), 0), (0, c/ gcd(b, c)}) =

{

(i, j)

∣

∣

∣

∣

i ∈ {0, . . . , c/ gcd(a, c) − 1} ∩ gcd(b, c)N,
j = −da(i/ gcd(b, c)) mod (c/ gcd(b, c))

}

,

and then the rest of the proof follows by a change of indices.
Observe that if (i, j), (k, l) ∈ M ∩ [0, c/ gcd(a, c))× [0, c/ gcd(b, c)), with (i, j) 6= (k, l), then i 6= k

and j 6= l. Assume to the contrary and without loss of generality that i = k and j > l. Then
(0, j − l) ∈ M , or equivalently (j − l)b ≡ 0 (mod c). But then j − l is a multiple of c/ gcd(b, c) in
[0, c/ gcd(b, c)), which implies j − l = 0, a contradiction.

Let us see for which i ∈ {0, . . . , c/ gcd(a, c) − 1} there is j ∈ {0, . . . , c/ gcd(b, c) − 1} such that
ai + bj ≡ 0 (mod c). The equation in j, bj ≡ −ai (mod c), has a solution if and only if gcd(b, c)
divides −ai, but gcd(gcd(b, c), a) = gcd(a, b, c) = 1, and so this occurs if and only if gcd(b, c) | i.

Thus, for each i ∈ {0, . . . , c/ gcd(a, c)−1}∩gcd(b, c)N there exists a unique j ∈ {0, . . . , c/ gcd(b, c)−
1} such that (i, j) ∈ M .

If (i, j) ∈ M , we already know that gcd(b, c) | i. Also there must exist r ∈ N such that ai +
bj = rc. Dividing by gcd(b, c), we have ai/ gcd(b, c) + b/ gcd(b, c)j = rc/ gcd(b, c), or equivalently
ai/ gcd(b, c) + b/ gcd(b, c)j ≡ 0 (mod c/ gcd(b, c)). From here, we obtain that j can be expressed as
j = −(b/ gcd(b, c))−1ai/ gcd(b, c) mod (c/ gcd(b, c)). �

Theorem 4. Let c be a positive integer and let a, b ∈ {1, . . . , c− 1} with gcd(a, b, c) = 1. Let M be
the set of nonnegative integer solutions of ax+ by ≡ 0 (mod c). Then

inCl(M) ∼= Cl(M) ∼= Z c
gcd(a,c) gcd(b,c)

.

Proof. The equality Cl(M) ∼= Z c
gcd(a,c) gcd(b,c)

is a consequence of [1, Theorem 1.3]. By Corollary 5

and Lemma 6, we get that inCl(M) is a cyclic group of size c/(gcd(a, c) gcd(b, c)) and thus it is
isomorphic to Cl(M). �
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Remark 3. For a, b, c positive integers with gcd(a, b, c) = 1 we have that the set of solutions of
ax + by ≡ 0 mod c is a Cale monoid with tame basis {q1 = (c/ gcd(a, c), 0), q2 = (0, c/ gcd(b, c))}.
Also by Lemma 6, the group Ap(M,Q) (with the operation ⊕) is generated by an element of the
form (gcd(b, c), k) with k a positive integer less than c/ gcd(b, c). By Remark 1, in order to compute
ℓ(q1) and ℓ(q2) we only have to look at the denominators of the rational number λ(q1, (gcd(b, c), k))
and λ(q2, (1, k)). From c

gcd(b,c)(1, k) = gcd(a, c)q1 + kq2, λ(q1, (1, k)) = gcd(a, c) gcd(b, c)/c =

1/(c/ gcd(a, c) gcd(b, c)), and thus ℓ(q1) = c/(gcd(a, c) gcd(b, c)). But now Corollary 4 states that
ℓ(q1)ℓ(q2) = |Cl(M)||inCl(M)| and we know by Theorem 4 that the equalities |Cl(M)| = |inCl(M)| =
c/(gcd(a, c) gcd(b, c)) hold. Therefore ℓ(q2) = c/(gcd(a, c) gcd(b, c)).

Example 2. Let us go back to Example 1, now applying Lemma 6. We have a = 4, b = 5 and c = 7.
Then b−1 mod c = 3. Thus by Lemma 6, the elements in Ap(M, {(c, 0), (0, c)}) are of the form

(i,−3 × 4× i (mod 7))

for i ∈ {0, . . . , c − 1}. For i = 0, we get (0, 0), for i = 1, we obtain (1,−12 mod 7) = (1, 2), and so
on.

Then to obtain a Hilbert basis we filtered the set obtained, looking for the second coordinate less
than the last second coordinate obtained, i.e. as the set obtained using the algorithm is

{(0, 7), (1, 2), (2, 4), (3, 6), (4, 1), (5, 3), (6, 5), (7, 0)}.

We construct the Hilbert basis starting with {(0, 7), (1, 2)}, the point (2, 4) has second coordinate
bigger than 2 (the second coordinate of the last point added, then we do not need it, as well (3, 6)).
However (4, 1) has the second coordinate less than 2, so we add it. Finally (5, 3) and (6, 5) have
second coordinate bigger than 1 so we ignore them. Adding (7, 0) we construct the Hilbert basis
H = {(0, 7), (1, 2), (4, 1), (7, 0)}.

Note that multiplying by 2 ≡ 4−1 mod 7 both a and b we obtain the same Apéry set and the
same conclusions, that is, the equation x+ 3y ≡ 0 mod 7 is equivalent to the above.

Observe that Corollary 6 and Lemma 6 provide a way to express any solution of ax + by = cz
(equivalently ax + by ≡ 0 (mod c)) in a unique way as a + λq1 + µq2, with a in the Apéry set of
{q1, q2}, and λ, µ ∈ N. However this is not the approach given by Elliott; he was looking for a
(unique) description of the solutions of the form γ1a1 + · · · + γtat + λq1 + µq2, with λ, µ ∈ N and
γi ⊂ Ji, with Ji an interval of nonnegative integers. We gave such a description in Example 1. Next
we present a family of equations where we can provide a “unique” description of the solutions in
Elliott’s sense.

Example 3. Consider the equation ax+y ≡ 0 (mod 2a+1) with a ∈ Z+. We have gcd(a, 2a+1) = 1.
It is no difficult to see that the Hilbert basis is H = {(0, 2a + 1), (1, a + 1), (2, 1), (2a + 1, 0)}, and
also

Ap(M, {(2a + 1, 0), (0, 2a + 1)}) ={(2i, i) | i ∈ {0, . . . , a− 1}}

∪ {(2i + 1, a + i+ 1) | i ∈ {0, . . . , a− 1}}.

We apply Corollary 7 with u = (1, a+1) and v = (2, 1). It follows that any solution of ax+y ≡ 0
(mod 2a + 1) is expressed (uniquely) as λ1(0, 2a + 1) + λ2(2a + 1, 0) +m(1, a + 1) + n(2, 1), with
λi ∈ N and m,n ∈ N parameters restricted to m+ 2a < 2a+ 1 and m(a+ 1) + n < 2a + 1. These
restrictions are equivalent to (m,n) ∈ {0} × [0, a] ∪ {1} × [0, a − 1].

Recall that Example 2 corresponds to the equation x+ by ≡ 0 (mod 2b+1) by taking b = 3; this
case is dual to the above example and can be worked out in a similar way.

Another useful algorithm to find the set of minimal solution, or Hilbert basis, for this type
of equations can be found in [6, Figure 3], which computes all minimal solutions by means of
geometrical tools. The authors called it slopes algorithm because it calculates the slopes of the lines
containing the minimal solutions.
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