
MINIMAL RAMSEY GRAPHS FOR CYCLICITY

DAMIAN REDING AND ANUSCH TARAZ

Abstract. We study graphs with the property that every edge-colouring admits a
monochromatic cycle (the length of which may depend freely on the colouring) and
describe those graphs that are minimal with this property. We show that every member
in this class reduces recursively to one of the base graphs K5 ´ e or K4 _ K4 (two
copies of K4 identified at an edge), which implies that an arbitrary n-vertex graph with
epGq ě 2n ´ 1 must contain one of those as a minor. We also describe three explicit
constructions governing the reverse process. As an application we are able to establish
Ramsey infiniteness for each of the three possible chromatic subclasses χ “ 2, 3, 4, the
unboundedness of maximum degree within the class as well as Ramsey separability of the
family of cycles of length ď l from any of its proper subfamilies.

§1. Introduction and results

By an r-Ramsey graph for H we mean a graph G with the property that every r-edge-
colouring of G admits a monochromatic copy of H. Wo focus on the Ramsey graphs
that are minimal with respect to the subgraph relation, i.e. no proper subgraph is a
Ramsey graph for H. As a consequence of Ramsey’s theorem [22] such graphs always exist.
Minimal Ramsey graphs, their constructions, number on a fixed vertex set, connectivity
as well as extent of chromatic number and maximum degree have been investigated by
Burr, Erdős and Lovász [7], Nešetřil and Rödl [20], Burr, Faudree and Schelp [8] as well as
Burr, Nešetřil, Rödl [6] and others. More recently, the question of the minimum degree of
minimal Ramsey graphs initiated by Burr, Erdős, Lovász [7] was picked up again by Fox,
Lin [12] and Szabó, Zumstein and Zürcher [24]. Subsequently Fox, Grinshpun, Liebenau,
Person and Szabó [10] have employed the parameter in a proof of Ramsey non-equivalence
(or separability) [10] and also obtained some generalizations to multiple colours [11].

However, a persistent obstacle is that the structure of (minimal) Ramsey graphs for
a specific graph H is difficult to characterize, essentially because it requires a practical
description of how graphs edge-decompose into H-free subgraphs. Indeed, few exact
characterizations are known other than some simple ones for stars and collections of
such [7].

The obstacle turns out to be a lesser one if H is relaxed to be a graph property. We say
that a graph G is an r-Ramsey graph for a graph property P (which is closed under taking
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2 DAMIAN REDING AND ANUSCH TARAZ

supergraphs), if every r edge-colouring of G admits a monochromatic copy of a member of
P. The choice of the member is thus allowed to depend freely on the choice of colouring.
We denote that class by RrpPq and the subclass of minimal ones by MrpPq Ă RrpPq.

Indeed, this is not a far-fetched definition. Results on the corresponding notion of Ramsey
numbers for graph properties appear across the literature both in and outside the context of
Ramsey theory, e.g. connectivity [18], minimum degree [16], planarity [4], the contraction
clique number [25] or, more recently, embeddability in the plane [13]. For a small number
of such properties, the minimal order RrpPq of a Ramsey graph for P is known exactly,
e.g. Rrpχ ě kq “ pk ´ 1qr ` 1 [17]. Most notable, however, is the characterization of the
chromatic Ramsey number of H as the Ramsey number for the graph property HompHq
by Burr, Erdős and Lovász [7]. The notion also connects naturally to classical graph
parameters. Indeed, for every number r ě 2 of colours we have that G P RrpCoddq, where
Codd denotes the property of containing an odd cycle, if and only if χpGq ě 2r ` 1 (for
the if -direction, note that if G R RrpCoddq, then G edge-decomposes into ď r bipartite
graphs, whence a proper 2r-colouring of V pGq is given by the r-tuples of 0’s and 1’s. The
only if -direction follows by a simple inductive argument on r ě 1). Consequently we have
that G P MrpCoddq if and only if G is minimal subject to χpGq ě 2r ` 1, so the study of
MrpCoddq is precisely the study of the well-known notion of p2r ` 1q-critical graphs.

The property we focus on in this paper is the property C of containing an arbitrary cycle.
Indeed we have the following useful characterization of RrpCq (and hence of MrpCq) in
terms of local edge-densities of subgraphs.

Proposition 1.1. For every integer r ě 2, we have that G P RrpCq if and only if epHq´1
vpHq´1 ě r

for some subgraph H Ď G, and consequently we have that G P MrpCq if and only if both
epGq´1
vpGq´1 “ r and epHq´1

vpHq´1 ă r for every proper subgraph H Ă G.

Since the graphs in RrpCq are precisely those which do not edge-decompose into r forests,
one obtains Proposition 1.1 as a direct translation of the following well-known theorem.

Theorem 1.2. (Nash-Williams’ Arboricity Theorem [19]) Every graph G admits an edge-
decomposition into rarpGqs many forests, where arpGq :“ maxJĎG,vJą1

eJ

vJ´1 .

We remark that this is not the first time that Theorem 1.2 finds use in graph Ramsey
theory, see e.g. [21] for an account of how the theorem can be used to establish the relation
arpGq ě r ¨ arpF q for every r-Ramsey graph G of an arbitrary graph F .

For the rest of the paper we focus on the case r “ 2 and also write RpCq :“ R2pCq and
MpCq :“ M2pCq. Given the aforementioned relation between MpCq and 5-critical graphs,
the latter of which are completely described (in the language of constructibility) by the
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well-known Hájos construction [14] originating in the single base graph K5, one might
suspect that a similar reduction to base graphs is possible for MpCq. Indeed, our first
result does just that. Our two base graphs will be K5 ´ e P MpCq and K4 _K4 P MpCq,
the graph obtained by identifying two copies of K4 at an edge; a quick computation based
on Proposition 1.1 shows that these are in MpCq.

Theorem 1.3. For every G P MpCq there exists n P N0 and a sequence Gk of minimal
Ramsey graphs for C such that

tK5 ´ e,K4 _K4u Q G0 ă G1 ă . . . ă Gn “ G,

where ă denotes the minor relation. In fact, for every k P rns one can take Gk´1 to be an
arbitrary minimal Ramsey subgraph (for C) of the Ramsey graph (for C) obtained from Gk

by contracting an arbitrary edge that belongs to at most one triangle in Gk.

As we shall show, the contraction of an edge, which is in at most one triangle, preserves
the Ramsey property of a Ramsey-graph for C, whence a minimal Ramsey-subgraph can
be found. The theorem guarantees that continuing the reduction in this way necessarily
results in K5 ´ e or K4 _K4. By combining 1.1 with 1.3 we therefore obtain:

Corollary 1.4. Every graph G with epGq ě 2vpGq ´ 1 contains one of K5 ´ e, K4 _K4

as a minor.

Upon reinterpretation of Theorem 1.3, every G P MpCq can be obtained by starting
with one of the two base graphs by recursively splitting a vertex of a suitable supergraph.
A concrete description of the process would result in an algorithm constructing all minimal
Ramsey-graphs for C. Traditionally, for graphs H such extensions were done by means of
signal senders, i.e. non-Ramsey graphs G with two special edges e and f , which attain
same (respectively distinct) colours in every H-free colouring, which were then use to
establish infiniteness of MpHq and much more, see e.g. [7] and [6]. However, it follows
from an extension of Theorem 1.2 by Reiher and Sauermann [23] that no (positive) signal
senders for C can exist: indeed, given a graph G that edge-decomposes into two forests, for
any choice of e and f one finds an edge-decomposition with e and f belonging to different
colour classes. Instead, one may prove infiniteness for MpCq by noting (by an argument
similar to that in [1]) that a 4-regular graph of girth g (which is known to exist by [9])
must contain a minimal Ramsey graph for cyclicity, where the monochromatic cycles are
of length ě g.

Our second result provides a much simpler way to make progress towards this aim by
describing three entirely constructive ways to enlarge a graph in MpCq that allow to track
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its structure; note that the first increases the number of vertices by 1, while the other two
increase it by 2.

Theorem 1.5. If G P MpCq, then also G˚ P MpCq, where G˚ is a larger graph obtained
from G by applying one of the following three constructions:

(1) Given a 2-path uvw in G, do the following: Introduce a new vertex x. Join x to
each of u, v and w. Then delete edge vw.

(2) Given an edge vw in G, do the following: Introduce a new vertex x. Join x to both
v and w. Then apply construction (1) to the 2-path xvw.

(3) Given a 2-path uvw in G, do the following: apply construction (1) to uvw and wvu
at the same time, that is: Introduce new vertices x, y. Join both x, y to each of
u, v, w. Then delete edges uv and vw.

Note that one has χpGq ď 4 for every graph G P MpCq or, more generally χpGq ď 2r for
every graph G P MrpCq. Indeed, any n-vertex graph G P MrpCq contains a subgraph H
with δpHq ě χpGq ´ 1, which at the same time satisfies δpHq ď dpHq ď 2rrpn´1q`1s

n
ă 2r,

where dpHq denotes the average degree of H. Our Theorem 1.5 now implies:

Corollary 1.6. Each of the three partition classes of MpCq corresponding to chromatic
number χ “ 2, 3, 4, respectively, consists of infinitely many pairwise non-isomorphic graphs.

In fact, since our first two constructions can be seen to preserve planarity, infinitely
many of the above graphs with χ “ 2, 3 can be chosen planar each. On the other hand, the
smallest bipartite graph G P MpCq is already K3,5 (obtained as K5 ´ e ÝÑ pK2,3q

` ÝÑ

pK2,4q
` ÝÑ K3,5q. Since epGq ą 2vpGq ´ 4, any such must be non-planar.

Note that the fact that χpGq ď 4 for G P MpCq is much unlike the situation for graphs
G P MpHq for H “ K3 or H 3-connected, where χpGq becomes arbitrarily large (see [6])
and hence so does ∆pGq. Despite the boundedness of χpGq we are still able to show:

Corollary 1.7. For every ∆ ě 1 there exists G P MpCq with ∆pGq ě ∆.

Indeed, Corollary 1.7 is a special case of a much more general theorem, which as an
exhaustive application of 1.5 asserts that the structure of MpCq is actually quite rich.

By a forest of cycles we refer to a graph F obtained, with disregard to isolated vertices,
by starting with a cycle and then recursively adjoining a further cycle by identifying at
most one of its vertices with a vertex on already existing cycles. Clearly there are forests of
cycles of arbitrarily large maximum degree. Note that thanks to every edge of F belonging
to precisely one cycle, we can 2-edge-colour a forest of cycles F in such a way that every
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cycle in F is monochromatic while choosing each cycle’s colour independently of that of
any other cycle. Call any such colouring cycle-monochromatic.

Theorem 1.8. For every forest of cycles F and every integer n ě 5 satisfying n ě |F |
there exists G P MpCq with the following properties:

(1) |G| “ n

(2) F is a subgraph of G
(3) Every cycle-monochromatic 2-edge-colouring of F extends to a 2-edge-colouring of

G, in which there are no monochromatic cycles other than those already in F .

Note that the condition n ě |F | could be replaced by n “ |F | if the definition of a forest
of cycles were relaxed so as to allow isolated vertices, but this variant would somewhat
undermine the strength of the statement.

Since, as is quickly seen, a forest of cycles F on n (non-isolated) vertices contains
between n and 3

2pn ´ 1q edges, Theorem 1.8 also guarantees that any such F (n ě 5)
extends to some G P MpCq with F as a spanning subgraph by adding only k edges, where
1
2pvpF q ` 1q ď k ď vpF q ´ 1. Finally, we remark on a second corollary of 1.8.

Corollary 1.9. For all l ě 4 the family tC3, . . . , Clu is not Ramsey-equivalent to any
proper subfamily of itself, that is, for every proper F Ă tC3, . . . , Clu there exists a (minimal)
Ramsey-graph for tC3, . . . , Clu, which is not a Ramsey-graph for F .

Corollary 1.9 asserts that for every l ě 3 the cycle family F :“ tC3, . . . , Clu and any
proper subfamily F0 of F are Ramsey-separable (or Ramsey non-equivalent). The concepts
were introduced in [24] and subsequently studied in e.g. [10], [3] and [5]. A central open
problem in the area is whether some two distinct graphs are Ramsey equivalent. The
existence of Ramsey graphs for cycles Ck with girth k (which follows from the Random
Ramsey Theorem, see also [15]) sorts out this question in the case of single cycles and
also cycle families F0 containing the longest cycle Cl of F . In contrast, 1.9 provides
constructively a supply of separating Ramsey graphs for all proper F0.

The organization of the paper is as follows. In each of the following three sections
we provide the proofs of Theorem 1.3, Theorem 1.5 and Theorem 1.8, respectively, and
subsequently discuss the possibility of some generalizations in the concluding remarks.

§2. Proof of theorem 1.3

Our proof of 1.3 relies on three lemmas. We state the elementary one first, which holds
for any number of colours.
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Lemma 2.1. Every G P MrpCq satisfies r ` 1 ď δpGq ď 2r ´ 1 and is also 2-connected.

Proof. An immediate consequence of Proposition 1.1 is that every G P MrpCq has size
epGq “ rvpGq ´ pr ´ 1q and every subgraph H Ď G has average degree dpHq ă 2r, which
implies the upper bound for δpHq (including the case H “ G). For the lower bound for
δpGq suppose that G contains a vertex v of degree at most r. Colour the outgoing edges
with distinct colours; since now no monochromatic cycle can pass through v, it follows
that G ´ v itself must be Ramsey for C, thus contradicting the minimality of G. For
connectivity suppose that G can be disconnected by removing at most one vertex, so G
consists of two proper subgraphs G1, G2 which may or may not have a vertex in common.
Since removing an edge from G1 destroys the Ramsey property of the whole graph, we
can fix an r-edge-colouring of G2 without a monochromatic cycle. It follows that G1 itself
must be Ramsey for C, again contradicting the minimality of G. �

In the following we assume that r “ 2. The following lemma asserts that contraction of
certain edges preserves the Ramsey property for cyclicity.

Lemma 2.2. If G P RpCq, then G{e P RpCq, where G{e is the graph obtained from G by
contracting an arbitrary edge e P EpGq that lies in at most one triangle.

Proof. Let e be as above and fix a 2-edge-colouring of G{e.

Case 1. If e belongs to no triangle in G, then a 2-edge colouring of G{e induces a 2-edge
colouring of G´ e, and any monochromatic cycle in G´ e induces a monochromatic cycle
in G{e. If there is no monochromatic cycle in G´ e, then, by Ramseyness of G, rejoining
e produces a monochromatic cycle irrespective of its colour. So G´ e must contain both a
blue and red path joining the vertices of e. Note that since these are edge-disjoint, at least
one of the paths must have length at least 3, otherwise e would be chord to a four-cycle.
Hence there is a monochromatic cycle in G{e.

Case 2. If e belongs to one triangle in G, then a 2-edge-colouring of G{e induces a
2-edge colouring of G´ e with the other two triangle edges in the same colour. If G´ e
has no monochromatic cycle, proceed as above. Suppose G´ e has a monochromatic cycle.
If it does not use both of the other edges of the triangle containing e, then it induces a
monochromatic in G{e. If the cycle does use both, so e is a chord to the cycle, then it
must be of length at least 5 since e is not chord to a four-cycle. But then again there is a
path of length at least 3 joining the vertices of e. Hence there is a monochromatic cycle in
G{e. This completes the proof. �
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Consequently, for graphs with every edge in at most one triangle, e.g. such with girth
ě 4, the property of being Ramsey for cyclicity is stable under arbitrary edge-contractions.
Note that we could have dealt with case 2 computationally by invoking Proposition 1.1
(thus even obtaining that for e in one triangle the Ramsey-graph G{e is minimal whenever
G is) but a constructive proof sheds more light on the subject matter.

Lemma 2.3. Any 2-connected graph G with every edge contained in at least two triangles
satisfies epGq ě 2vpGq, unless vpGq ď 6.

Proof. We start with two simple observations:

(1) Since every edge of G is chord to a 4-cycle, we must have δpGq ě 3. Note that wlog.
we can assume that equality holds, because if δpGq ě 4, then epGq ě 2vpGq follows by the
Handshaking Lemma. Suppose therefore that there is v P G with dpvq “ 3.

(2) Observe further that every vertex v P G with dpvq “ 3 necessarily lies in a K4 in G.
This is because each of the three edges incident to v must be a chord of a C4, which due to
dpvq “ 3 is necessarily spanned by the other two.

Now fix both a v P G with dpvq “ 3 and a K: “ K4 Ă G with v P K.

Remark. At this stage it is clear that the two base graphs K5 ´ e and K4 _K4 are the
only graphs G with vpGq ă 7, δpGq “ 3 and every edge chord of a 4-cycle: this is clear
when vpGq “ 5, and also when vpGq “ 6, since then K4 Ă G with precisely 5 more edges to
built a further K4 housing the remaining two vertices. (Hence, the two graphs also prove
the lemma false when vpGq ă 7.)

Suppose K is strongly attached in G, that is, that some vertex z, say, outside of K in G
is adjacent to at least two vertices u,w in K. We choose the reduction of G so that G1

also satisfies the hypothesis of the lemma with vpG1q “ vpGq ´ 1 and epG1q ď epGq ´ 2:
Obviously v is not adjacent to z, so v ‰ u and v ‰ w. Let t denote the fourth vertex in K;
it may or may not be adjacent to z. Obtain G1 from G by deleting v and its three incident
edges, and also add the edge between t and z, if it does not exist already, so as to ensure
that every edge of G1 is in at least two triangles. Note that G1 remains 2-connected since
clearly none of its vertices is a cutvertex.
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Else, if K is weakly attached in G, that is, if every vertex of G outside K is adjacent to
at most one vertex in the K, consider the following.

If K does not contract to a cutvertex, then G1 :“ G{K clearly satisfies the hypothesis of
the lemma with vpG1q “ vpGq ´ 3 and epG1q “ epGq ´ 6.

If K does contract to a cutvertex v in G{K, let V1, . . . , Vk denote the vertex classes of
the k ě 2 connected components of G{K ´ v. Note that since K is weakly attached we
have that ni :“ |Vi| ě 3 and that each of the subgraphs Gi :“ GrVi Y V pKqs satisfies the
hypothesis of the lemma with ni ` 4 “ |Vi Y V pKq| ă vpGq, so by induction we obtain

epGq “ epG1q ` . . .` epGkq ´ pk ´ 1qepKq ě 2pn1 ` 4q ` . . . 2pnk ` 4q ´ 6k ` 6

“ 2pn1 ` . . .` nkq ` 8k ´ 6k ` 6 “ 2pvpGq ´ 4q ` 2k ` 6 ě 2vpGq

Note that the result now easily follows by induction on vpGq, provided it holds true in
the cases vpGq “ 7, 8, 9:

For the cases vpGq “ 8, 9, consider as before a K :“ K4 Ă G. If K can be chosen strongly
attached, we successfully reduce to the cases vpGq “ 7, 8. If not, then contracting a weakly
attached K necessarily results in either K5 ´ e or K4 _K4, with the contraction having
occurred at one of its high degree vertices (else a strongly attached K4 in the reduced graph
must have already been strongly attached in G). Since each of the low degree vertices in
the reduced graph is contained in a K4 as well, the same K4’s must have existed in G prior
contraction of K or K could not have been weakly attached. Consequently, K intersects
one of those K4 at a cutvertex, thus contradicting 2-connectedness.

The case vpGq “ 7 is more involved as we cannot reduce it to a smaller graph as in the
previous cases: Suppose there exists a 2-connected graph G on 7 vertices, with every edge
occurring as the chord to a 4-cycle, which satisfies epGq ă 2vpGq “ 14. We now force a
contradiction in several steps:

Fix a K :“ K4 in G and let v, u1, u2 denote the 3 vertices of G, which are not vertices of
K. Since G is 2-connected, at least 2 vertices of K are incident to edges not in K, hence
have degree ě 4 in G. If any of these vertices has degree ě 5, then the degree sum of G is
ě 5 ¨ 3` 4` 5 “ 24. If, however, all of these have degree “ 4, then there must be at least
3 vertices of degree “ 4 (since we cannot have an odd number of odd degree vertices), in
which case the degree sum of G is ě 4 ¨ 3` 3 ¨ 4 “ 24. In any case, G has at least 12 edges.
Hence, as epGq ď 13, G is obtained from K Y tv, u1, u2u by adding 6 or 7 edges.

Note that since the degrees of v, u1, u2 are all ě 3, but only ě 7 edges can join v, u1, u2

to the vertices of K, the induced subgraph H of G on vertices v, u1, u2 contains at least
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2 edges. Wlog. suppose the edges are u1v and vu2 and further let w be a vertex of K
adjacent to v. Note that at this stage there are at most 4 more edges to add.

We claim that u1, u2, v, w must form the vertices of a further K4 in G. In that case, G
is obtained by adding at most one edge to the graph obtained by identifying K with a
further copy of K4 at vertex w. This is a contradiction because if we do not add the edge,
G will not be 2-connected, but if we do add the edge, it will not be chord to a 4-cycle
because its end vertices will only have w as a common neighbour.

If dpvq “ 3, we are done, because v is then contained in a K4 with the remaining vertices
necessarily given by the neighbours u1, u2, w of v. If dpvq ě 4, note that we must have
dpu1q “ 3 and dpu2q “ 3. This follows since 2 of u1, u2, v must have degree 3, otherwise
epG´Kq ě p3` 4` 4q ´ epHq ě p3` 4` 4q ´ 3 ą 7, a contradiction.

Hence, both u1 and u2 must lie in a K4 (containing v) in G. Note that they must lie in
the same K4, otherwise the K4 of u1 and v would take up ě 3 of our remaining edges, thus
leaving ď 1 to be incident to u2, in which case dpu2q ď 2, a contradiction. Hence u1, u2, v

lie in a K4 in G, in particular u1 and u2 are adjacent. This leaves ď 3 edges to build up G.
Assume, towards the final contradiction, that w is not the fourth vertex of that K4.

Then, as dpu1q “ 3 and dpu2q “ 3, w cannot be adjacent to u1 or u2. Since, however, the
edge wv is chord to a 4-cycle, there must be two further vertices in K that are adjacent to
v. But then there remains at most one further edge to be incident to one of u1 or u2, in
which case either dpu1q “ 2 or dpu2q “ 2, a contradiction. �

We are now ready to prove Theorem 1.3.

Proof. Given G P MpCq, apply Lemma to a suitable edge and take a minimal Ramsey-
subgraph of the resulting Ramsey-graph. Repeat this process until you end up with a graph
G0 with the property that every edge of G is in at least two triangles. Since G0 P MpCq,
so epG0q “ 2vpG0q ´ 1, we must have vpG0q ď 6 by Lemma 2.3. The only such possibilities
allowing no further contractions are K5 ´ e and K4 _ K4 (the other such graphs on 6
vertices all reduce to K5-e as remarked above). �

§3. Proof of theorem 1.5

We partition Theorem 1.5 into three lemmas, each governing the effect of the respective
operations on a graph in MpCq, then show how they jointly imply Corollary 1.6.

Lemma 3.1. If G P MpCq, then G˚ P MpCq, where G˚ is the graph obtained from G by
applying construction (1) to an arbitrary 2-path in G.

Proof. The construction increases the number of vertices by 1 and the number of edges by
2, so G` retains the correct global density in order to be in MpCq. Now, let H` Ă G`
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be a proper subgraph and suppose wlog. that it uses the new vertex, so it uses at most
two new edges. Then there exists a proper subgraph H Ă G with epH`q ď epHq ` 2 and
vpH`q “ vpHq ` 1, so

epH`q ´ 1
vpH`q ´ 1 ď

pepHq ` 2q ´ 1
pvpHq ` 1q ´ 1 “

pepHq ´ 1q ` 2
vpHq

ă
2pvpHq ´ 1q ` 2

vpHq
“ 2.

�

Note that Lemma alone provides a constructive proof for the existence of infinitely many
non-isomorphic minimal Ramsey-graphs for cyclicity. Indeed, applying this to K5´e in one
of two possible ways (up to isomorphism), results in two further minimal Ramsey-graphs
on 6 vertices, one of which is the edge-maximal planar graph with one edge removed.

Lemma 3.2. If G P MpCq, then G˚ P MpCq, where G˚ is the graph obtained from G by
applying construction (2) to an arbitrary edge in G.

Proof. While Lemma could be proved similarly to Lemma via Proposition 1.1, it is possible
to provide an exhaustive graph-chasing proof, which may be of independent interest as it
works in more generality. Note that the effect of construction (2) is the replacement of an
edge by the diamond graph with the non-adjacent vertices taking the place of the ends of
the original edge. We prove the lemma with the diamond replaced by any graph D, which
admits two non-adjacent contact vertices c, d with the property that in any 2-edge-colouring
of D without a monochromatic cycle there is a monochromatic path joining c and d (note
that a graph in MpCq with an edge cd removed already has this property). In particular,
we prove the following claim.

Claim. If G P RpCq, then G˚ P RpCq, where graph G˚ is obtained from G via parallel
composition of G´ e with D (that is, its contact edges taking the place of the ends of e).
What’s more, if G P MpCq and D is edge-minimal with the above property (given fixed
contact vertices), then G˚ P MpCq as well.

Proof of Claim. Fix a blue-red colouring of the edges of G˚. This restricts to a colouring
of G ´ e; if this admits a monochromatic cycle, then so does G``. Otherwise, since
G P RpCq, there is both a red and a blue path in G ´ e joining the contact vertices.
One of these forms a monochromatic cycle in G˚ along with the monochromatic path in
D, which must exist by definition whenever there is not already a monochromatic cycle inD.

Now suppose that both G and D are chosen minimal, in which case both clearly have
minimal degree at least 2. Given any edge f of G˚ (so f ‰ e), we show that in some
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colouring of G˚´ f there is no monochromatic cycle. If f is an edge of D, such a colouring
is obtained by fixing both a cycle-free colouring of G ´ e and a cycle-free colouring of
D ´ f without a monochromatic path joining the contact vertices, and then inserting the
coloured D´ f into the coloured G´ e. If f is an edge of G, fix both a cycle-free colouring
of G´ f and a cycle-free colouring of D with precisely one monochromatic path joining
the contact vertices. If the path does not have the colour of e in G, switch the colours in
D. Now remove e from the coloured G ´ f and insert the coloured D. In the colouring
of G˚ thus obtained there cannot be a monochromatic cycle. Suppose otherwise; then
any monochromatic cycle would need to contain the whole monochromatic path in D (as
G´f ´ e is coloured cycle-free) and since the contact vertices are non-adjacent, they would
need to be joined by a path in G ´ f ´ e of the colour of the path in D, and of length
at least 2. But along with e any such path would form a monochromatic cycle in G´ f .
Contradiction. �

Lemma 3.3. If G P MpCq, then G˚ P MpCq, where G˚ is the graph obtained from G by
applying construction (3) to an arbitrary 2-path in G.

Proof. Let G˚ be the graph obtained from G P MpCq by applying construction (3) to
some path uvw. Since epG˚q “ epGq ` 4 and vpG˚q “ vpGq ` 2, we have G P RpCq. To
prove minimality, suppose that an edge e is removed from G˚. Suppose that e R EpGq.
In either case if e is adjacent to u or w or if it is adjacent to v, proceed analogously as
in the respective case in the proof of the previous lemma. Otherwise, if e P EpGq, put a
2-colouring on EpG´ eq and consider the colours of uv and vw. Give the edges ux, xv the
colour of uv and uy the other colour. Also, give the edges vy, yw the colour of vw and xw
the other colour. If the 2-colouring of EpG ´ eq admits no monochromatic cycles, then
neither does the so obtained 2-colouring of EpG˚ ´ eq. �

Finally, we are able to prove Corollary 1.6.

Proof. In order to obtain infinitely many graphs G P MpCq with χpGq “ 4 fix a copy of
K4 in K5 ´ e and let e be an edge not belonging to that copy; now simply replace e by a
diamond, then replace an edge of that diamond by a diamond and so on. In order to obtain
infinitely many G P MpCq with χpGq “ 3 note that replacing every edge of any graph in
MpCq results in precisely those graphs required. Finally, in order to obtain infinitely many
graphs G P MpCq with χpGq “ 2 start with G0 :“ K3,5 P MpCq and repeatedly apply the
following extension: apply construction (3) to some path uvw in Gi and let x, y denote the
two new vertices. Now apply construction (3) to the path xvy, thus producing two further
vertices x1, y1. Note that the resulting graph Gi`1 P MpCq is bipartite: Given a 2-colouring
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on V pGiq, give x, y the colour of v and x1, y1 the other colour. (Alternatively note that
any odd cycle, which may arise in the intermediate graph, must be using one of the edges
xv, yv and is thus destroyed in the construction of Gi`1.) �

§4. Proof of theorem 1.8

Proof. The proof is by induction on n ě 5 and makes heavy use of constructions (1) and
(2) as in 1.5. For n “ 5 the result needs to be verified manually, and indeed G “ K5 ´ e

works for all forests of cycles F with 3 ď vpF q ď 5.
Let x, y denote the non-adjacent vertices of K5 ´ e and let a, b, c denote the other three.
(1) If w.l.o.g. F is the red-coloured triangle abc, colour the edges ay and cx red and

the remaining path a´ x´ b´ y ´ c blue.
(2) If w.l.o.g. F is the red-coloured 4-cycle a´ b´ c´ x, colour edge cy red and the

remaining path x´ b´ y ´ a´ c blue.
(3) If w.l.o.g. F is a red-coloured C5, colour the remaining 4-path blue.
(4) If F is a bowtie and the two triangles are of the same colour, colour the remaining

3-path with the opposite colour.
(5) If F is a bowtie and the two triangles are of distinct colours, colour the remaining

edges using each colour at least once.
The aim in the induction step is to carefully build graphs in MpCq containing some

prescribed forests of cycles from those containing some suitable smaller forest of cycles
as provided by the induction hypothesis, while maintaining the possibility to extend the
edge-colouring without creating new monochromatic cycles.

Step 1 (Creating new space). To begin with, we reduce the proof from n ě |F | to n “ |F |.
Fix F and suppose G P MpCq with vpGq “ vpF q is as in the statement of the theorem.
We want to increase G by one vertex while maintaining the containment of F and the
colouring extension property: Pick a vertex v P G with dpvq “ 3. Since vpGq “ vpF q, such
lies on precisely one cycle C in F . Hence it is incident to an edge vw, which is not part of
C (even though w may be); if v is not in F , pick vw R EpF q, too. Further pick u P C such
that uv is an edge of C. Apply (1) to the path u´ v ´ w, thus deleting the edge vw and
creating a new vertex x incident to all of u, v, w. Note that by removing the edge vw we
have not destroyed any cycle of F since thanks to dpvq “ 3, vw is not an edge of F . Now
given any 2-edge-colouring of G´ F (or G´ F ´ vw, respectively) as in the statement of
the theorem, extend it by giving xu and xw arbitrary opposite colours and give xv the
colour opposite to that of C. If we have thus created a new monochromatic cycle, it has to
pass through x, and hence, by choice of colouring, through v. This, however, is impossible
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since v has maintained dpvq “ 3 throughout the construction. For the rest of the proof
we can assume that F is a spanning subgraph of the minimal Ramsey graph that contains it.

Step 2 (Growing new trees). We show how to extend the result for F to that for F with
a disjoint triangle. Let G P MpCq with F Ă G and as in the statement of the theorem,
and now without loss of generality vpF q “ vpGq. Create new space in G as in step 1, thus
obtaining G1 with vpG1q “ vpGq ` 1 and the colouring property with respect to F and fix
the special edge-colouring of G1 ´ F . Consider, as in step 1, the edge xv: Replace it by a
diamond graph D as in extension (2). Give the remaining so far uncoloured triangle in D,
which is disjoint from F , a monochromatic colouring (this triangle is the new tree). If this
is the colour of xv, give the two edges in D now incident to v distinct colours. If this is
not the colour of xv, give the two edges in D now incident to v the colour of xv.

What we have so far achieved is that it suffices to prove the result for spanning trees of
cycles. Note that any such can be obtained recursively by (1) starting with a triangle (2)
enlarging it to required size (while it is a ’leaf’ of the tree of cycles) (3) creating a required
number of branches (that is, pairwise disjoint triangles) and repeating the procedure for
any of the new branch triangles in turn. To complete the proof it therefore merely suffices
to show how to enlarge cycles in F irrespective of their distribution of attached branches,
how to create a new triangle at a given vertex of degree 2 in F (extending an existing
branch), and finally, how to create a new triangle at a vertex, which is already used by
more than one triangle (creating a new branch).

Step 3 (Enlarging existing cycles). Let C be a cycle in F to be enlarged and let G P MpCq
be for F as in the statement of the theorem. Let u ´ v ´ w be any 2-path in C. Apply
extension (1) as in Theorem 1.5, thus producing a new vertex x adjacent to all of u, v, w.
The cycle C is now enlarged in the resulting graph G` since vw has been replaced by the
2-path v´x´w. Any cycle-monochromatic 2-edge-colouring c of the enlarged forest F` now
induces a cycle-monochromatic 2-edge-colouring of F ; pick a respective 2-edge-colouring of
G´ F and extend it to a respective colouring of G` ´ F` by giving edge xu the colour
opposite of that of xv in c.

Step 4 (Extending existing branches). Let F Ă G be as before, and suppose that at
v P F with dpvq “ 2 in F a new triangle branch is to be created. Let vw denote an edge
not in F . Replace it by a diamond D, as before, and give the two edges in D incident to w
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distinct colours. Verifying the colouring property is now analogous to Step 2.

Step 5 (Creating new branches). Suppose that u is a vertex of F Ă G, which lies in at
least two triangles in F , and that a further triangle containing u is to be created. Fix one
of the triangles, which without loss of generality is a leaf to the tree of cycles, and label its
remaining vertices v and w. Apply (1) to u´ v ´ w, thus destroying(!) one of the already
existing triangles by removing edge vw, but instead creating the two new triangles uvx and
uwx, sharing edge xu. Apply now (1) again to the path u´ v´ x, thus destroying triangle
uvx by removing edge vx, but creating the new triangle uvx1, which is edge-disjoint from
triangle uwx, and the extra edge xx1. Any cycle-monochromatic 2-edge-colouring c of
the enlarged forest F` now induces a cycle-monochromatic 2-edge-colouring of F ; pick a
corresponding special 2-edge-colouring of G ´ F and extend it to a special colouring of
G` ´ F` by giving edge xx1 the colour opposite to that of the triangles uwx and uvx1 if
these are monochromatic in c, and an arbitrary otherwise. This completes the proof. �

§5. Concluding Remarks

In 1.3 we proved that every G P MpCq can be obtained by starting with one of two base
graphs by recursively splitting a vertex of a suitable supergraph. Any such description
would shed light on how to constructively increase the girth while maintaining Ramseyness.
This may be regarded as a first step towards the construction of Ramsey graphs for fixed
length cycles Ck with girth precisely k (see e.g. [15], but to the best of our knowledge no
explicit construction is known). We therefore raise the weaker question:

Question 5.1. For any g ě 3, does there exist G P MpCq with girth g?

We also note also how Lemma 2.3 implies that no minimal Ramsey-graph for K3 is a
minimial Ramsey-graph for C (since in the former every edge is in at least two triangles). It
would be therefore interesting to work out what additional conditions on G P RpCq ensure
that G P RpK3q. This might be possibly achieved by approximating the class RpK3q by the
classes RpCďlq for fixed l ě 3. Constructing graphs which are minimal with this property
is probably hard as removing an edge and taking a good colouring gives rise to highly
chromatic high-girth girth graphs (for which a non-recursive hypergraph-free construction
was given only recently [2]). Note that similarly our remark in the introduction allows for
a simple construction for G P RrpCoddďlq, just take χpGq ě 2r ` 1 and gpGq ě l.

Another line of study relates to the fact that a 2-edge-colouring of a Ramsey-graph for
K3 admits multiple monochromatic copies of K3. As a step in this direction it therefore
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seems plausible to consider graphs with the approximative property that every 2-edge-
colouring admits either two disjoint monochromatic copies of K3 in the same colour or
a monochromatic cycle of length ě 4. It is easy to see by case distinction that G`, the
graph obtained from some G P RpCq by joining a new vertex to every vertex of G, has
this property.

With regard to the existence of multiple monochromatic cycles, we observe that thanks
to a known decomposition result into pseudoforests, see e.g. [21], one could in principle
work out a theorem similar to ours for graphs, for which every 2-edge-colouring admits a
monochromatic connected graph containing at least two cycles. More generally, for k ě 1
set Ck :“ tG : G is connected and contains at least k cyclesu and mkpGq :“ epGq´1

vpGq`k´2 ,
excluding the trivial graphs. It is then easy to see that if G contains a subgraph H with
mkpHq ě r, then G is r-Ramsey for Ck, and that if G is minimal r-Ramsey for Ck, then
mkpHq ă r for every proper subgraph H Ă G.

Crucial, however, to the characterization of graphs in MpCkq is the validity of the
converse, which we do know about for k ě 3. Indeed, with three available cycles allowing
for circular arrangements, thus create new cycles, more complicated configuration may be
needed in order for the Ramsey-property to be broken by the removal of any single edge.
Instead, it seems more conceivable that the `k in the density parameter is replaced by a
larger quantity fpkq. To make this precise, for every k P N let fpkq denote the smallest
natural number, if one exists, with the property that, for every integer r ě 1, any graph G
satisfying epGq ď rpvpGq ` fpkq ´ 2q edge-decomposes into at most r subgraphs containing
strictly less than k (not necessarily edge-disjoint) cycles each. Note that f is required to
depend on k only.

If fpkq exist, then its are given by (the ceiling integer part of) the maximum of epGq
rkpGq

´

vpGq`2 taken over all graphs, where rkpGq denotes the size of a smallest edge-decomposition
of G into subgraphs with at most k ´ 1 cycles. By the above, we know that fp1q “ 1 and
fp2q “ 2. For k ě 3 note that fpkq ě k holds by considering the chain of k ´ 1 copies of
triangles with two consecutive ones each identified at a vertex. We observe that for every
k the following are then equivalent:

(1) fpkq :“ max
!

epGq
rkpGq

´ vpGq ` 2 : vpGq ě 1
)

ă 8

(2) @r P Nr t1u: RrpCkq “ tG : DH Ď G : mfpkqpHq ě ru

(3) @r P Nr t1u: MrpCkq “ tG : mfpkqpGq “ r, @H Ă G,H ‰ G : mfpkqpHq ă ru

Question 5.2. For any k ě 3, does fpkq exists, that is, is fpkq ă 8? If so, what is fpkq?
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Finally, we remark that cyclicity and 2-connectivity are Ramsey equivalent and also
that odd cyclicity and 3-chromaticity are Ramsey equivalent. Undoubtedly, our results
could therefore be generalized to both higher connectivity and chromaticity as well as to
multiple colours.

We thank Dennis Clemens and Matthias Schacht for helpful comments.
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