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ON THE MOTIVIC CLASS OF AN ALGEBRAIC GROUP

FEDERICO SCAVIA

Abstract. Let F be a field of characteristic zero admitting a biquadratic field
extension. We give an example of a torus G over F whose classifying stack
BG is stably rational and such that {BG} 6= {G}−1 in the Grothendieck ring
of algebraic stacks over F . We also give an example of a finite étale group
scheme A over F such that BA is stably rational and {BA} 6= 1.

1. Introduction

Let F be a field. The Grothendieck ring of algebraic stacks K0(StacksF ) was
introduced by Ekedahl in [8], following up on earlier works [1], [14], [20]. It is a
variant of the Grothendieck ring of varieties K0(VarF ). By definition, K0(StacksF )
is generated as an abelian group by the equivalence classes {X} of all algebraic
stacks X of finite type over F with affine stabilizers. These classes are subject to
the scissor relations {X} = {Y } + {X \ Y } for every closed substack Y ⊆ X , and
the relations {E} = {An ×X} for every vector bundle E of rank n over X . The
product is defined by {X} · {Y } := {X × Y }, and extended by linearity.

Given a group scheme G over F , we may consider the class {BG} of its classifying
stack inK0(StacksF ). The problem of computing {BG} appears to be related to the
problem of the stable rationality of BG, although no direct implications are known.
Recall that BG is stably rational if for one (equivalently, every) generically free
representation V of G, the rational quotient V/G is stably rational. An equivalent
terminology is that the Noether problem for stable rationality has a positive solution
for G; see [12, §3]. The case of a finite (constant) group G was considered in [7]:
it frequently happens that {BG} = 1 (notably for the symmetric groups, see [7,
Theorem 4.3]), although there are examples of finite groups G for which {BG} 6= 1;
see [7, Corollary 5.2, Corollary 5.8]. Further work on the triviality of {BG} for
finite groups G has been done in [16] and [17]. So far, all the known examples of
finite group schemes G for which {BG} 6= 1 are such that BG is not stably rational.
This suggests the following question.

Question 1.1. (cf. [7, §6]) Is it true that, for a finite group scheme G, the following
two conditions are equivalent?

• BG is stably rational;
• {BG} = 1 in K0(StacksF ).

We will answer Question 1.1 in the negative in Theorem 1.6.
Now let G be a connected linear algebraic group. Recall that G is special if every

G-torsor is Zariski-locally trivial. For example, GLn, SLn and Spn are special; see
[5]. It was shown by Ekedahl that if P → S is a torsor under the special group
G, then {P} = {G}{S}. This is immediate if S is a scheme, but less obvious
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when S is a stack; see [3, Corollary 2.4]. Applying this to the universal G-torsor
SpecF → BG, one obtains {BG}{G} = 1.

The equality {BG} = {G}−1 appears to be the analogue for connected groups of
the relation {BG} = 1 for finite group schemes. In [3], these equalities are referred
to as expected class formulas, and there is a sense in which they are “almost” true.
In [8, §2] Ekedahl defines a generalized Euler characteristic

χc : K0(StacksF ) → K0(CohF )

taking values in a Grothendieck ring K0(CohF ) of Galois representations over F . If
G is a finite group scheme, the equality χc({BG}) = 1 always holds [7, Proposition
3.1]. On the other hand, if G is connected, then χc({BG}{G}) = 1; see [3, §2.2].
Since {BG} 6= 1 for some finite groups G, the following question naturally arises.

Question 1.2. Let F be a field. Is it true that

(1.3) {BG} = {G}−1

in K0(StacksF ) for every connected group G?

In Theorem 1.5, we show that the answer to Question 1.2 is also negative. Com-
putations for non-special G have been carried out for PGL2 and PGL3 in [3], for
SOn and n odd in [6], for SOn and n even and On for any n in [19], and for
Spin7, Spin8 and G2 in [18]. In each of these cases, (1.3) was found to be true. The
expectation was that, for a connected linear algebraic group G over a field F of
characteristic 0, Question 1.4 below should have an affirmative answer. If F is an
algebraically closed field, then there are no examples of connected G where BG is
known not to be stably rational. If F is not assumed to be algebraically closed,
then such examples exist. The following variant of Question 1.1 seems natural in
this context.

Question 1.4. (cf. [19, §1] and [18, Remark 4.1]) Is it true that, for a connected
linear algebraic group G, the following two conditions are equivalent?

• BG is stably rational;
• {BG} = {G}−1 in K0(StacksF ).

Our first result gives a negative answer to Question 1.2 and Question 1.4.

Theorem 1.5. Let F be a field of characteristic zero which admits a biquadratic
field extension K, let E1 and E2 be two distinct quadratic subextensions of K/F ,

and set G := R
(1)
E1×E2/F

(Gm). Then

(a) BG is stably rational, and
(b) {BG} 6= {G}−1 in K0(StacksF ).

The torus G is an example of a norm-one torus; see Section 2 for the definition.
It follows from Theorem 1.5 that counterexamplesH to (1.3) exist in any dimension
dimH ≥ 3: consider for example H := G×Gr

m for r ≥ 0.
The key ingredient in the proof of Theorem 1.5 is the refined Euler characteristic

of Ekedahl, introduced in [8, §6, 3]; see Section 4.
Our second result gives a negative answer to Question 1.1.

Theorem 1.6. Let F be a field of characteristic zero which admits a biquadratic
field extension K, and let E1 and E2 be two distinct quadratic subextensions of

K/F . Define G := R
(1)
E1×E2/F

(Gm), and let A := G[2] be the 2-torsion subgroup of

G. Then
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(a) BA is stably rational, and
(b) {BA} 6= 1 in K0(StacksF ).

Questions 1.1, 1.2 and 1.4 remain open in the case, where the base field F is
assumed to be algebraically closed. Our arguments do not shed any new light in
this setting.

The remainder of this paper is structured as follows. In Section 2 we review well
known computations of motivic classes for non-split tori. In Section 3 we obtain
explicit formulas for the motivic classes of G and BG, and in Section 4 we give
the required background on the refined Euler characteristic. In Section 5 we prove
Theorem 1.5, and in Section 6 we prove Theorem 1.6.

2. Preliminaries

Let F be a field. We will write L for the class {A1} in K0(VarF ) or K0(StacksF ).
If E is an étale algebra over F , we will denote by {E} the class {SpecE} in
K0(VarF ) or K0(StacksF ). If X is a quasi-projective scheme over E, we will denote
by RE/F (X) the Weil restriction of X to F . By definition, for every F -scheme S
one has RE/F (X)(S) = X(SE). We refer the reader to [21, §3.12] for an account
of the main properties of the Weil restriction.

Let G be a linear algebraic group over F , and α ∈ H1(F,G) be represented by
a G-torsor P → SpecF . For every quasi-projective F -scheme Z, we denote by αZ
the twist of Z by P , that is,

αZ := (Y × P )/G,

where G acts diagonally. We refer the reader to [10, Section 2] for the definition
and the basic properties of the twisting operation.

We will write C2 for the cyclic group of two elements, and Sn for the symmetric
group on n symbols.

The following observations will be repeatedly used in the sequel.

Lemma 2.1. Let X be a scheme over F , E an étale algebra of degree n over F ,
α ∈ H1(F, Sn) the class corresponding to E/F .

(a) Let Sn act on the disjoint union ∐n
i=1X by permuting the n copies of X.

Then
α(∐n

i=1X) ∼= XE .

(b) Let Sn act on Xn by permuting the n factors. Then
α(Xn) ∼= RE/F (X).

Proof. (a) Let Y := ∐n
i=1X , and let Sn act on Y by permuting the copies of X . By

definition,
αY = (Y × SpecE)/Sn

∼= (Y ×X XE)/Sn,

where Sn acts diagonally. This shows that αY is the twist of XE by the trivial
Sn-torsor Y → X in the category of X-schemes, which implies αY ∼= XE .

(b) See the bottom of page 5 in [11]. �

Lemma 2.2. Let
1 → N → G → H → 1

be an exact sequence of group schemes over F , and assume that G is special. Then

{BN} = {H}/{G}.
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Proof. See [3, Proposition 2.9]. �

Let Fs be a separable closure of F . Recall that a group scheme T over F is called
a torus if TFs

∼= Gn
m,Fs

for some n ≥ 0. The character lattice of T is the finitely

generated Z-free Gal(F )-module HomFs
(TFs

,Gm,Fs
). The character lattice induces

an anti-equivalence between the category of F -tori and the category of Gal(F )-
lattices, i.e., Z-free continuous Gal(F )-modules; see [9, §2]. Similarly, for every
separable finite extension L/F , we have an anti-equivalence between Gal(L/F )-
lattices and F -tori T split by L, i.e., such that TL

∼= G
n
m,L for some n ≥ 0. The

dual torus of T is the torus T ′ whose character lattice is dual to that of T .
Let E be an étale algebra over F . If G is a group scheme over E, then RE/F (G) is

a group scheme over F . The group RE/F (Gm) := RE/F (Gm,E) is an F -torus. Tori
of this kind are called quasi-split. They are special groups, and they correspond to
permutation Gal(F )-lattices, that is, lattices admitting a Z-basis that is permuted
by Gal(F ); see [21, §3.12, Example 19].

Lemma 2.3. Let T be an algebraic torus over F , and let T ′ be its dual. Assume
that T is stably rational. Then

(a) BT ′ is stably rational;
(b) {BT ′}{T } = 1 in K0(StacksF ).

Proof. Since T is stably rational, by [21, §4.7, Theorem 2] there is a short exact
sequence

(2.4) 1 → T1 → T2 → T → 1

where T1 and T2 are quasi-split. Since quasi-split tori are isomorphic to their dual,
the sequence dual to (2.4),

(2.5) 1 → T ′ → T2 → T1 → 1,

shows that T ′ embeds in T2. We may view T2 as a maximal torus inside GLn, where
n = rankT2. This gives a faithful representation of T ′ with quotient birational to
T1. Since quasi-split tori are rational, it follows that BT ′ is stably rational.

Quasi-split tori are special, so we may apply Lemma 2.2 to (2.4) and (2.5). We
obtain {T } = {T2}/{T1} and {BT ′} = {T1}/{T2}, so {BT ′}{T } = 1. �

Let E/F be an étale algebra, and let RE/F (Gm) be the associated quasi-split
torus. The kernel of the norm homomorphism RE/F (Gm) → Gm is called a

norm-one torus, and is denoted by R
(1)
E/F (Gm). Its dual torus is isomorphic to

RE/F (Gm)/Gm.

Lemma 2.6. Assume that charF 6= 2. Let E := F (
√
m) be a separable quadratic

field extension, and let α denote the class of E/F in H1(F,C2). Then:

(a) R
(1)
E/F (Gm) ∼= RE/F (Gm)/Gm.

(b) Let Gal(E/F ) act on P1 via z 7→ z−1. Then
α
P1 ∼= P1.

(c) RE/F (Gm)/Gm is rational and

{RE/F (Gm)/Gm} = {B(RE/F (Gm)/Gm)}−1 = L− {E}+ 1.

(d) {RE/F (Gm)} = {BRE/F (Gm)}−1 = (L− 1)(L− {E}+ 1).

(e) {RE/F (P
1)} = L

2 + {E}L+ 1.
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Proof. (a) Both tori correspond to the unique non-trivial Gal(E/F )-lattice of rank
1. Here Gal(E/F ) ∼= C2.

(b) The C2-action on P1 has a fixed point z = 1, hence
α
P1 has an F -point. By

Châtelet’s Theorem [13, Theorem 5.1.3], a form of Pn which admits an F -point is
trivial (the case n = 1 is particularly simple, see [13, Remark 1.3.5]). We conclude
that

α
P1 ∼= P1.

(c) Let T := R
(1)
E/F (Gm) ∼= RE/F (Gm)/Gm. The open embedding Gm →֒ P1,

as the complement of Z := {0,∞}, is equivariant under the C2-action on Gm and
P1 given by z 7→ z−1. Twisting by α, we obtain by (b) an open embedding of T
in P1 as the complement of αZ. In particular, T is rational. By Lemma 2.1(a),
αZ ∼= SpecE, so

{T } = {P1} − {αZ} = L+ 1− {E}.
Now (c) follows from Lemma 2.3(b).

(d) The first equality holds because RE/F (Gm) is special. Consider the short
exact sequence

1 → Gm → RE/F (Gm) → T → 1.

Since RE/F (Gm) is special, Lemma 2.2 yields

{RE/F (Gm)} = (L− 1){BT }−1,

thus (d) follows from (c).
(e) Write P1 = A1 ∪ {∞}, and consider the C2-equivariant decomposition

(P1)2 = (A1)2 ∐ (A1 × {∞} ∪ {∞} × A
1) ∐ {(∞,∞)}.

By Hilbert’s Theorem 90 and Lemma 2.1(a), twisting by α gives

RE/F (P
1) = A

2 ∐ A
1
E ∐ SpecF,

thus {RE/F (P
1)} = L2 + {E}L+ 1. �

3. The classes of G and BG

Let F be a field of characteristic not 2, and assume that there exists a biquadratic
extension

K := F (
√
m1,

√
m2)

of F . Let

E1 := F (
√
m1), E2 := F (

√
m2), E12 := F (

√
m1m2), E := E1 × E2,

and let Γ := Gal(K/F ) ∼= C2
2 be the Galois group of K/F . We define the torus

G := R
(1)
E/F (Gm)

and let

G′ := RE/F (Gm)/Gm

be the dual torus of G. By definition, we have a short exact sequence

(3.1) 1 → G → RE/F (Gm)
N−→ Gm → 1,

where N is the norm homomorphism.
The purpose of this section is the proof of Proposition 3.7, which expresses {BG}

and {G} as rational functions in L, with coefficients classes of étale algebras.
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Let σ1 and σ2 be generators for Γ such that E1 = Kσ1 and E2 = Kσ2 . Consider
the Γ-action on G2

m, where σ1(u, v) = (v−1, u−1) and σ2(u, v) = (v, u), and set

(3.2) T :=
α
(G2

m),

where α ∈ H1(F,Γ) corresponds to the extension K/F .

Lemma 3.3. We have

{T } = L
2 + ({E12} − {K})L+ {K} − {E1} − {E2}+ 1.

Proof. The embedding of Gm in P
1 as the complement of Z := {0,∞} gives an

open embedding G2
m →֒ (P1)2 such that the Γ-action on G2

m extends to (P1)2. By
definition

α
(P1)2 = ((P1)2 × SpecK)/Γ,

where Γ = 〈σ1, σ2〉 acts diagonally. We first take the quotient by the subgroup
〈σ1σ2〉. Since σ1σ2(u, v) = (u−1, v−1) and E12 = Kσ1σ2 , by Lemma 2.6(b)

α
(P1)2 = ((P1)2 × SpecE12)/C2,

where C2 acts on (P1)2 by switching the two factors. Here we are using the fact
that every automorphism of (P1)2 must respect the ruling (because it respects
the intersection form), and so Aut((P1)2) = (Aut(P1))2 ⋊ C2, where C2 switches
the two factors. By Lemma 2.1(b) we deduce that

α
(P1)2 ∼= RE12/F (P

1), so by
Lemma 2.6(e)

(3.4) {α(P1)2} = L
2 + {E12}L+ 1.

We may partition (P1)2 \G2
m in two strata

Z1 := Z × Z, Z2 := (Z ×Gm) ∐ (Gm×Z).

The Γ-action on Z1 has two orbits, and Γ acts on Z2 by transitively permuting
the components as the Klein subgroup of S4. By Lemma 2.1(a), αZ1 = SpecE1 ∐
SpecE2 and αZ2 = Gm× SpecK. By (3.4)

{T } = {α(P1)2} − {αZ1} − {αZ2}
= L

2 + {E12}L+ 1− {E1} − {E2} − {K}(L− 1)

= L
2 + ({E12} − {K})L+ {K} − {E1} − {E2}+ 1. �

Proposition 3.5. There is a short exact sequence of tori

1 → Gm → G → T → 1,

where T is the torus of (3.2).

Proof. Let P , M and Z be the character lattices of RE/F (Gm), G and Gm, respec-
tively. We may view P as the Γ-lattice with a basis e1, e2, e3, e4, such that σ1 acts
by switching e1 with e2 and fixing e3 and e4, and σ2 switches e3 with e4 and fixes
e1 and e2. The sequence of Γ-lattices dual to (3.1) identifies M with the cokernel
of the Γ-homomorphism Z → P given by 1 7→ e1 + e2 + e3 + e4; denote by ei ∈ M
the projection of ei. Following Kunyavskĭı [15, §3, Proposition 1(b)], we consider
an exact sequence of Γ-lattices

(3.6) 0 → N → M
π−→ Z → 0.

The map π is defined by π(
∑

aiei) = a1 + a2 − a3 − a4, and N := Kerπ. A basis
for N is given by v1 := e1+ e3 and v2 := e1+ e4. With respect to the basis (v1, v2),
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the Γ-action on N is given by σ1(a, b) = (−b,−a) and σ2(a, b) = (b, a). It is now
clear that N is the character lattice of the torus T of (3.2), hence the proof is
complete. �

Proposition 3.7. (a) BG is stably rational.
(b) {BG}{G′} = 1 in K0(StacksF ).

Proof. Consider the sequence

(3.8) 1 → Gm → G′ → (RE1/F (Gm)/Gm)× (RE2/F (Gm)/Gm) → 1,

which exhibits G′ as a Gm-torsor over a rational variety, by Lemma 2.6(c). We
deduce that G′ is rational, and now (a) and (b) follow from Lemma 2.3. �

Proposition 3.9. We have

(3.10) {G} = (L− 1)(L2 + ({E12} − {K})L+ {K} − {E1} − {E2}+ 1)

and

(3.11) {BG}−1 = (L− 1)(L− {E1}+ 1)(L− {E2}+ 1)

in K0(StacksF ).

Proof. By Proposition 3.5, G is a Gm-torsor over T . Since Gm is special, {G} =
(L− 1){T }. The class of T was determined in Lemma 3.3.

By Proposition 3.7(b), {BG}−1 = {G′}. Since Gm is special, by (3.8), {G′} =

(L− 1){R(1)
E1/F

(Gm)}{R(1)
E2/F

(Gm)}. Now (3.11) follows from Lemma 2.6(c). �

4. The refined Euler characteristic

Let F be a field of characteristic zero. Using the computations of the previous
section, we will reduce Theorem 1.5(b) to the assertion that a certain polynomial
in L with coefficients motivic classes of étale algebras is a non-zero element of
K0(VarF ). To prove the assertion, we will use a simplified version of the refined
Euler characteristic, introduced by Ekedahl in [8].

Fix a prime number p, and let G be a profinite group. The representation ring
ap(G) of G is the Grothendieck ring of continuous G-representations [M ] of finite
dimension over Fp, subject to the relations [M ⊕ N ] = [M ] + [N ]. Note that no
relations for non-split short exact sequences are imposed. The product structure
on ap(G) is given by tensor product of representations. The next observation is well
known when G is assumed to be finite; see [2, §5.1].

Lemma 4.1. As an abelian group, ap(G) is freely generated by the set of isomor-
phism classes of indecomposable representations.

Proof. It is clear that ap(G) is generated by isomorphism classes of indecomposable
representations. Assume that

∑
ai[Mi]−

∑
bj [Nj] = 0 in ap(G), for some positive

integers ai, bj and some pairwise non-isomorphic indecomposable G-representations
Mi and Nj .

As a group, ap(G) is the quotient group F/I, where F is the free abelian group
with one generator 〈P 〉 for every isomorphism class of G-representations P , and I is
the subgroup generated by all elements of the form 〈P ⊕Q〉− 〈P 〉− 〈Q〉. It follows
that we may find a G-representation X such that

(⊕iM
⊕ai

i )⊕X ∼= (⊕jN
⊕bj
j )⊕X.
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Let G0 be a finite quotient of G such that G acts on Mi, Nj and X through G0.
Then M ⊕ X ∼= N ⊕ X as G0-representations. By the Krull-Schmidt Theorem
applied to the group algebra Fp[G0], this implies M ∼= N as G0-modules, hence as
G-modules. This is impossible, because the indecomposable representationsMi and
Nj are pairwise non-isomorphic. �

Proposition 4.2. Let F be a field of characteristic zero, let Gal(F ) be the absolute
Galois group of F , and let Rp := ap(Gal(F )). There is a ring homomorphism

µ : K0(VarF ) → Rp[t]

such that for every smooth complete variety X we have µ(X) =
∑

i[H
i(X ét,Fp)]t

i.

Proof. See the proof of [8, Proposition 3.2(i)]. To show that µ is well-defined,
one needs to assume that charF = 0 in order to invoke Bittner’s presentation of
K0(VarF ); see [4, Theorem 3.1]. �

5. Proof of Theorem 1.5

Theorem 1.5(a) was proved in Proposition 3.7(b), so we will focus on Theo-
rem 1.5(b). We maintain the notation given at the beginning of Section 3.

Proof of Theorem 1.5(b). Assume by contradiction that G = R
(1)
E/F (Gm) satisfies

(1.3). Then by Proposition 3.9 we have

(L− 1)(L− {E1}+ 1)(L− {E2}+ 1) =

= (L− 1)(L2 + ({E12} − {K})L+ {K} − {E1} − {E2}+ 1)

in K0(StacksF ). Since L− 1 is invertible in K0(StacksF ), we may divide by L− 1
on both sides. Subtracting L2 on the left and on the right, we arrive to

(2−{E1}−{E2})L+(1−{E1})(1−{E2}) = ({E12}−{K})L+{K}−{E1}−{E2}+1,

that is

({K} − {E1} − {E2} − {E12}+ 2)L = 0

in K0(StacksF ).
Recall that K0(StacksF ) is the localization of K0(VarF ) at L and the cyclotomic

polynomials in L; see [8, Theorem 1.2]. It follows that

(5.1) ({K} − {E1} − {E2} − {E12}+ 2)f(L) = 0

in K0(VarF ), where f(x) ∈ Z[x] is a monic polynomial of some degree n.
In order to obtain a contradiction, we now want to apply the homomorphism

µ of (4.2), with respect to the prime p = 2. If L/F is an étale algebra of degree
n, µ({L}) consists of the permutation representation of Gal(F ) associated to L,
concentrated in degree 0. Since we have chosen p = 2, µ({P1}) consists of one copy
of the trivial representation in degree 0 and 2 (in the case p > 2 one would need a
Tate twist in degree 2). Since L = {P1} − 1, we deduce that µ(L) = t2, and hence
µ(f(L)) = f(t2).

If X is a finite Gal(F )-set, we denote by F2[X ] the permutation representation
over F2 associated to X . Recall from Section 3 that we denote Gal(K/F ) by
Γ = 〈σ1, σ2〉. Applying µ to (5.1) and looking at degree 2n, we obtain

[F2[Γ]]− [F2[Γ/ 〈σ1〉]]− [F2[Γ/ 〈σ2〉]]− [F2[Γ/ 〈σ12〉]] + 2[F2] = 0
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in R2. This is a non-trivial relation of linear dependence in R2 among classes of
indecomposable representations. This is in contradiction with Lemma 4.1, hence
{BG} 6= {G}−1, as desired. �

Remark 5.2. By [21, §4.9, Example 7] every torus of rank 2 is rational, so by
Proposition 3.5 the torus G is rational. By Lemma 2.3, BG′ is stably rational and
{BG′} = {G}−1. By Proposition 3.7(b) we have {BG} = {G′}−1, so {BG′}{G′} =
{BG}−1{G}−1. Since {BG}{G} 6= 1, the conclusions of Theorem 1.5(a) and (b)
hold for G′ as well.

6. Proof of Theorem 1.6

We maintain the notation of Section 3.

Proof of Theorem 1.6. Let Γ := Gal(K/F ), let M be the character lattice of G,
so that M/2M is the character module of A, and let P be the character lattice
of RE/F (Gm). As in the proof of Proposition 3.5, we view P as the lattice freely
generated by e1, e2, e3, e4, such that σ1 acts by switching e1 with e2, and σ2 by
switching e3 with e4. Using (3.1), we may construct a commutative diagram of
Γ-modules

(6.1)

0 Z P M 0

0 N P M/2M 0.

ι

ϕ

with exact rows. Here Z denotes the trivial one-dimensional Γ-lattice, ι(1) :=
e1 + e2 + e3 + e4, and N is the kernel of ϕ, that is,

N = {
4∑

i=1

aiei : a1 ≡ a2 ≡ a3 ≡ a4 (mod 2)}.

Applying the snake lemma to (6.1), we obtain a short exact sequence

0 → Z
ι−→ N → M → 0.

Define π : N → Z by sending
∑

aiei to (a1 + a2)/2. Then π is a Γ-homomorphism
and ι is a section of π. Therefore, we have an isomorphism N ∼= Z⊕M .

Let S be an F -torus with character lattice N . Since N ∼= Z ⊕ M , we have
S ∼= Gm ×G. The bottom row of (6.1) corresponds to the short exact sequence of
group schemes

1 → A → RE/F (Gm) → Gm ×G → 1.

By Lemma 2.2, we have {BA} = {Gm}{G}/{RE/F (Gm)}. Applying Lemma 2.2
to (3.1), we see that {BG} = {Gm}/{RE/F (Gm)}. Therefore, {BA} = {BG}{G}.
By Theorem 1.6 we have {BG} 6= {G}−1, hence {BA} 6= 1, as desired. �
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[15] B. È. Kunyavskĭı. Three-dimensional algebraic tori. In Investigations in number theory (Rus-
sian), pages 90–111. Saratov. Gos. Univ., Saratov, 1987. Translated in Selecta Math. Soviet.
9 (1990), no. 1, 1–21.

[16] Ivan Martino. The Ekedahl invariants for finite groups. Journal of Pure and Applied Algebra,
220(4):1294–1309, 2016.

[17] Ivan Martino. Introduction to the Ekedahl Invariants. Mathematica scandinavica, 120(2):211–

224, 2017.
[18] Roberto Pirisi and Mattia Talpo. On the motivic class of the classifying stack of G2 and

the spin groups. To appear in International Mathematics Research Notices. arXiv preprint
arXiv:0903.3143.

[19] Mattia Talpo and Angelo Vistoli. The motivic class of the classifying stack of the special
orthogonal group. Bulletin of the London Mathematical Society, 49(5):818–823, 2017.
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