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KODAIRA DIMENSIONS OF ALMOST COMPLEX MANIFOLDS I

HAOJIE CHEN AND WEIYI ZHANG

Abstract. This is the first of a series of papers, in which we study the plurigen-
era, the Kodaira dimension and more generally the Iitaka dimension on compact
almost complex manifolds.

Based on the Hodge theory on almost complex manifolds, we introduce the
plurigenera, Kodaira dimension and Iitaka dimension on compact almost complex
manifolds. We show that the plurigenera and the Kodaira dimension as well as
the irregularity are birational invariants in almost complex category, at least in
dimension 4, where a birational morphism is defined to be a degree one pseudo-
holomorphic map. However, they are no longer deformation invariants, even in
dimension 4 or under tameness assumption. On the way to establish the bira-
tional invariance, we prove the Hartogs extension theorem in the almost complex
setting by the foliation-by-disks technique.

Some interesting phenomena of these invariants are shown through examples.
In particular, we construct non-integrable compact almost complex manifolds
with large Kodaira dimensions. Hodge numbers and plurigenera are computed
for the standard almost complex structure on the six sphere S6, which are different
from the data of a hypothetical complex structure.
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1. Introduction

The Iitaka dimension for a holomorphic line bundle L over a compact complex
manifold is a numerical invariant to measure the size of the space of holomorphic

1

http://arxiv.org/abs/1808.00885v2


2 HAOJIE CHEN AND WEIYI ZHANG

sections. It could be equivalently defined as the growth rate of the dimension of the
spaceH0(X,L⊗d), or the maximal image dimension of the rational map to projective
space determined by powers of L, or 1 less than the dimension of the section ring of
L. The Iitaka dimension of the canonical bundle KX of a compact complex manifold
X is called its Kodaira dimension and H0(X,K⊗d

X ) is called the d-th plurigenus.
The Kodaira dimension, plurigenera and the canonical section ring are birational

invariants. They play important roles in the study of complex manifolds. In par-
ticular, the Kodaira dimension is used to give a rough birational classification of
complex manifolds. It is known that Kodaira dimension is a deformation invariant
for compact complex surfaces, although it is no longer true for complex (non-Kähler)
3-folds [28]. Siu [32], [33] shows that plurigenera, and thus also the Kodaira dimen-
sion, are invariant with respect to projective deformations of algebraic varieties.
Birkar-Cascini-Hacon-McKernan [1] shows that the canonical ring of a smooth pro-
jective variety is finitely generated, which implies that there is a unique canonical
model for every variety of general type.

The theory of complex manifolds lies in the more general framework of almost
complex manifolds. In [39], intersection theory of almost complex manifolds is
introduced. As a consequence, pseudoholomorphic degree one maps are considered
as birational morphisms in the almost complex category. An important step to
develop birational geometry for almost complex manifolds is to introduce and study
birational invariants.

In this series of papers, we will generalize the notions of Kodaira dimension,
plurigenera as well as the space of holomorphic p-forms to compact almost complex
manifolds. The crucial initial step is to have generalizations of holomorphic line
bundle and its holomorphic sections. We have two equivalent versions.

The first is from differential geometry. A pseudoholomorphic structure on a com-
plex vector bundle E over an almost complex manifold X is a differential operator
∂̄E acting on smooth sections which satisfies the Leibniz rule (Definition 3.2). In par-
ticular, the canonical bundle has a natural pseudoholomorphic structure inherited
from the almost complex structure on X. By Koszul-Malgrange theorem, ∂̄2E = 0 on
a complex manifold is equivalent to a holomorphic structure on the complex bundle
E. Our generalized version of holomorphic sections is just the smooth sections in
the kernel of ∂̄E .

To show these generalized holomorphic sections are of finite dimenstion, we apply
the method of Hodge theory. Hodge theory is well developed on compact complex
manifolds and on general compact Riemannian manifolds. On the way of making
sense of the counting of pseudoholomorphic sections and defining plurigenera for
almost complex manifolds, we develop the Hodge theory for Hermitian bundles over
compact almost complex manifolds in details and show the following theorem.

Theorem 1.1. Let E be a complex vector bundle with a pseudoholomorphic struc-
ture over a compact almost complex manifold (X,J). Then H0(X,E) is finite di-
mensional. In particular, H0(X,K⊗m) is finite dimensional and an invariant of
J .
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This result gives us a good base to count pseudoholomorphic sections. In fact,

we are able to define Dolbeault harmonic forms H
(p,q)

∂̄E
(X,E) which give Dolbeault

type cohomology groups when q = 0. The vector space H0(X,E) is simply the case
of p = q = 0. When E is the trivial bundle, the space of harmonic forms of type
(p, q) has been defined in [17]. The Problem 20 in Hirzebruch’s list [17], raised by
Kodaira and Spencer, asks whether their dimensions are independent of the choice
of the Hermitian structure.1 Our discussion gives affirmative answer to this problem
when q = 0 or, by Serre duality (Proposition 3.7), q = dimCX.

The second description of pseudoholomorphic sections is more geometric. There
are special almost complex structures on the total space of the complex vector bun-
dle E, called bundle almost complex structures, introduced by De Bartolomeis-Tian
in [8]. The authors show that there is a bijection between bundle almost complex
structures and the pseudoholomorphic structures on E (also see Proposition 4.1).
We further observe, in Corollary 4.2, that a section in the kernel of a pseudoholo-
morphic structure ∂̄E is exactly a pseudoholomorphic section with respect to the
bundle almost complex structure J corresponding to ∂̄E.

With these two equivalent descriptions understood, we are able to give our defi-
nition of (E,J )-genus and the definition of Iitaka dimension, as well as their special
cases - the plurigenera and the Kodaira dimension in the end of Section 4.

Definition 1.2. Let E be a complex vector bundle with bundle almost complex
structure J over an almost complex manifold (X,J). The (E,J )-genus is defined
as

PE,J := dimH0(X, (E,J )),

where H0(X, (E,J )) denotes the space of (J,J ) pseudoholomorphic sections. The
mth plurigenus of (X,J) is defined to be Pm(X,J) = dimH0(X,K⊗m).

Let L be a complex line bundle with bundle almost complex structure J over
(X,J). The Iitaka dimension κJ (X, (L,J )) is defined as

κJ(X, (L,J )) =











−∞, if PL⊗m,J = 0 for any m ≥ 0

lim supm→∞

log PL⊗m,J

logm
, otherwise.

The Kodaira dimension κJ (X) is defined by choosing L = K and J to be the
bundle almost complex structure induced by ∂̄.

The advantage to have the second description is that the intersection theory
of almost complex submanifolds developed by the second author in [39] can come
into play. The theory works particularly well when the base manifold (X,J) is of
dimension 4. In this situation, the zero locus of a pseudoholomorphic section is a
J-holomorphic curve in the first Chern class of the complex bundle E. With this
understood, the rich theory of pseudoholomorphic curves are in our armory.

As we mentioned above, the plurigenera and thus the Kodaira dimension are
classical birational invariants. We certainly expect it is true for our Pm(X) and

1Recently, this problem is answered negatively in [18].
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κJ(X). As suggested by Theorem 1.5 in [39], a degree one pseudoholomorphic map
is the right notion of birational morphism in the almost complex setting, at least in
dimension 4. The next result, as a combination of Theorems 5.3 and 5.5, confirms
the birational invariance of plurigenera, Kodaira dimension and the irregularity
h1,0(X) := dimH0(X,Ωp(O)).

Theorem 1.3. Let u : (X,JX ) → (Y, JY ) be a degree one pseudoholomorphic map
between closed almost complex 4-manifolds. Then Pm(X,JX ) = Pm(Y, JY ) and thus
κJX (X) = κJY (Y ). Moreover, the Hodge number h1,0(X) = h1,0(Y ).

The most essential ingredient is to establish the desired Hartogs extension theorem
in the almost complex setting, which certainly has its independent interest. It is
only established in dimension 4 by the foliation-by-disks technique (see e.g. [34,39]).
It is Theorem 5.2 which we reproduce in the following.

Theorem 1.4. Let (E,J ) be a complex vector bundle with a bundle almost complex
structure over the almost complex 4-manifold (X,J), and p ∈ X. Then any section
in H0(X \ p, (E,J )|X\p) extends to a section in H0(X, (E,J )).

The next step is to study the property of plurigenera under deformation of almost
complex structures. For projective manifolds, the plurigenera are invariant under
projective deformation. On complex surfaces, the plurigenera (hence the Kodaira
dimension) are even diffeomorphism invariants [13,14], although it is no longer true
when the complex dimension is greater than 2 (see [31]). Moreover, the irregularity
of a complex surface is a homotopy invariant.

By virtue of our Hodge theoretic description of plurigenera, they are upper semi-
continuous functions under smooth deformation. However, it is easy to see that the
dimensions could jump. When we deform an integrable almost complex structure
of a surface of general type, a generic perturbed almost complex structure does not
admit any pseudoholomorphic curve, while as mentioned above the zero locus of a
non-trivial pseudoholomorphic section of a pluricanonical bundle is a pseudoholo-
morphic curve in the class mK. This argument itself does not exclude the possibility
of invariance when the canonical class is torsion. In Section 6, we construct some
explicit deformations on Kodaira-Thurston surface and 4-torus, and show that the
plurigenera, the Kodaira dimension and the irregularity are not constant under
smooth deformation even when the canonical class is trivial.

Also in Section 6, we study the relation between non-integrability of almost com-
plex structures and the Kodaira dimension. Namely, we search the possible values of
Kodaira dimension if the almost complex structure is non-integrable. By applying
the Riemann-Roch formula and the almost complex Künneth formula, we prove the
following result (Theorem 6.10).

Theorem 1.5. For every k ∈ {−∞, 0, 1, · · · , n − 1}, n ≥ 2, there are examples of
compact 2n-dimensional non-integrable almost complex manifolds with κJ = k.

We point out that the above range of Kodaira dimension for non-integrable almost
complex structure is optimal. More precisely, we will show that if the Kodaira
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dimension equals the complex dimension of the manifold, then the almost complex
structure must be integrable. This will appear in the second paper.

In the last section of the paper, we compute the Hodge numbers, the plurigenera
and the Kodaira dimension on the six sphere S6. It is classically known that there
exist almost complex structures on S6 [11]. A standard construction is to use the
cross product of R7 applying to the tangent space of S6. Denote this standard
almost complex structure by J. In Theorem 7.1, we prove that

Theorem 1.6. For the standard almost complex structure J on S6, the following
hold: (1) h1,0 = h2,0 = h2,3 = h1,3 = 0; (2) Pm(S6, J) = 1 for any m ≥ 1 and
κJ = 0.

This calculation is somewhat surprising since it is generally believed that the
Kodaira dimension of a hypothetical complex structure is −∞. Our plurigenera
distinguish J from hypothetical complex structures on S6, since for the latter P1 =
h3,0 = 0.

In paper II, we will interpret the Kodaira dimension through the pluricanonical
map and discuss the significant geometric consequences. We will also investigate its
comparison with the symplectic Kodaira dimension [25] on symplectic 4-manifolds.
Some vanishing theorems on positively-curved almost Hermitian manifolds will also
be proved.

Acknowledgements The authors are kindly informed by Tian-Jun Li that he
has a joint project with Gabriel La Nave on Kodaira dimension for almost Kähler
manifolds with a totally different strategy. The first author would also like to thank
Professors Bo Guan, Jiaping Wang and Fangyang Zheng for their encouragement
and thank Xiaolan Nie for her support.

2. Notations

We start by fixing our notations and explain the natural pseudoholomorphic struc-
ture on the pluricanonical bundles.

Let (X,J) be a 2n-dimensional almost complex manifold. The complexification
of the cotangent bundle of X decomposes as T ∗X ⊗ C = (T ∗X)1,0 ⊕ (T ∗X)0,1

where (T ∗X)1,0 annihilates the subspace in TX ⊗ C where J acts as −i. A (1, 0)-
form is a smooth section of (T ∗X)1,0; similarly for a (0, 1)-form. The splitting of
the cotangent bundle induces a splitting of all exterior powers. Write Λp,qX =
Λp((T ∗X)1,0)⊗ Λq((T ∗X)0,1). Then for any r ≥ 0, we have the decomposition

ΛrT ∗X ⊗ C = ⊕p+q=rΛ
p,qX.

Let πp,q be the projection to Λp,qX. A (p, q)-form is a smooth section of the bundle
Λp,qX. The space of all such sections is denoted Ωp,q(X) = Γ(X,Λp,q).

The ∂̄ and ∂ operator can be defined by:

∂̄ = πp,q+1 ◦ d : Ωp,q(X) → Ωp,q+1(X)

∂ = πp+1,q ◦ d : Ωp,q(X) → Ωp+1,q(X),
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where d is the exterior differential. Both ∂̄ and ∂ satisfy the Leibniz rule, but in
general ∂̄2 and ∂2 may not be zero. They contain important information of almost
complex structures. Apply ∂̄ to Λp,0 and in particular K = Λn,0, we have

∂̄ : Λp,0 → Λp,1 ∼= (T ∗X)0,1 ⊗ Λp,0,

∂̄ : K → Λn,1 ∼= (T ∗X)0,1 ⊗K.

Here we write K (or any vector bundle) in short for any smooth sections of K (the
vector bundle). We can extend the ∂̄ to an operator ∂̄m : K⊗m → (T ∗X)0,1 ⊗K⊗m

for m ≥ 2 inductively by the product rule

∂̄m(s1 ⊗ s2) = ∂̄s1 ⊗ s2 + s1 ⊗ ∂̄m−1s2.

It satisfies the Leibniz rule ∂̄m(fs) = ∂̄f ⊗ s + f ∂̄ms for any section s of K⊗m and
Λp,0.

Definition 2.1. The space of holomorphic sections of K⊗m is defined to be

H0(X,K⊗m) = {s ∈ Γ(X,K⊗m) : ∂̄ms = 0}.

Remark 2.2. The space H0(X,K⊗m) is categorical in the almost complex category.
Indeed, if (X ′, J ′) is another almost complex manifold which has a diffeomorphism
F : X ′ → X to (X,J) satisfying dF ◦J ′ = J ◦dF , we say that (X ′, J ′) is pseudoholo-
morphic isomorphic to (X,J). Then F ∗(Ωp,q(X)) = Ωp,q(X ′) and F ∗◦∂̄J = ∂̄J ′ ◦F ∗.
So s ∈ Γ(X,KJ ) satisfying ∂̄s = 0 if and only if ∂̄J ′F ∗s = 0. Similar result holds
on K⊗m

J where F ∗ and ∂̄ are replaced by an isomorphism F ∗
m and the operator ∂̄m.

Therefore, F induces an isomorphism F ∗
m : H0(X,K⊗m

J ) → H0(X ′,K⊗m
J ′ ) for any

m ≥ 1.

3. Hodge theory on almost complex manifolds

In this section, we will define Dolbeault cohomology groups for a complex bun-
dle associated with a pseudoholomorphic structure. We show that they are finite
dimensional when X is compact in Theorem 3.6. As a consequence, H0(X,K⊗m)
is finite dimensional. We will follow the method of Hodge theory to define a formal
adjoint operator of ∂̄m and apply the elliptic theory.

Hodge theory is well developed on compact complex manifolds (see [16], [19], [30],
[40]). The Hodge theory on compact almost complex manifolds was initiated in [17]
for (p, q) forms. To derive our results, we will set up the Hodge theory for (p, q)
forms with value in a Hermitian pseudoholomorphic bundle E. We then apply it to
complex line bundles, in particular the bundle K⊗m and show that H0(X,K⊗m) is
finite dimensional. One of our observations is that for a holomorphic vector bundle
E over a complex manifold, the ∂̄ operator on the holomorphic dual E∗ coincides
with the (0, 1) part of a Hermitian connection on Ē when identifying E∗ with Ē by
a Hermitian metric.

Choose a Riemannian metric g on X compatible with J , namely g(Ju, Jv) =
g(u, v) for any v,w ∈ TX. Then g induces a Hermitian structure h on TX ⊗ C

by h = g − iω, where ω(u, v) = g(Ju, v). Also, h can be extended to Hermitian
structures on the bundles Λp,qX for any (p, q) which we still denote by h. Explicitly,
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assume that {ei} is a local unitary frame in TX⊗C and {φi} is the unitary coframe
so that

h =

n
∑

i=1

φi ⊗ φ̄i.

If α = {i1, i2, · · · , ip}, β = {j1, j2, · · · , jq} is any ordered set of (p, q) multiindices,
denote φα = φi1 ∧φi2 ∧ · · · ∧φip , φ̄β = φ̄j1 ∧ φ̄j2 ∧ · · · ∧ φ̄jp . Then h on Λp,q is defined

by letting {φα ∧ φ̄β} be orthogonal and h(φα ∧ φ̄β, φα ∧ φ̄β) = 2p+q.
The ∗ operator on an almost Hermitian manifold is the unique C-linear operator

∗ : Λp,q → Λn−q,n−p

satisfying

h(ϕ1, ϕ2)dV = ϕ1 ∧ ∗ϕ2(1)

where dV is the volume form of g and ϕ1, ϕ2 ∈ Λp,q.
Using the unitary coframe {φi}, we can write out the ∗ operator directly. Let

α̂, β̂ be the ordered set of the complement multi-indices of α, β in {1, 2, · · · , n}. As

ω = i
∑n

i=1 φi ∧ φ̄i and dV =
ωn

n!
, if we define on the basis

∗(φα ∧ φ̄β) = 2(p+q−n)(−i)nǫ
αββ̂α̂

φ
β̂
∧ φ̄α̂(2)

where ǫ
αββ̂α̂

is the sign of permutation of

(i1, · · · , ip, j1, · · · , jq, ĵ1, · · · , ĵn−q, î1, · · · , în−p) → (1, 1′, 2, 2′ · · · , n, n′),

then the operator of (2) satisfies (1). By uniqueness it gives the ∗ operator.
Define an inner product on Ωp,q(X) by 〈ϕ1, ϕ2〉 =

∫

X
h(ϕ1, ϕ2)dV for ϕ1, ϕ2 ∈

Ωp,q(X). Let
∂̄∗ = − ∗ ∂ ∗ .

Then the following holds
〈∂̄ϕ1, ϕ2〉 = 〈ϕ1, ∂̄

∗ϕ2〉.

The proof is the same with the integrable case, because the Leibniz rule holds and
∂̄ = d acting on A(n,n−1). Indeed, by (1), we have

〈∂̄ϕ1, ϕ2〉 =

∫

X

h(∂̄ϕ1, ϕ2)dV =

∫

X

∂̄ϕ1 ∧ ∗ϕ2

=

∫

X

∂̄(ϕ1 ∧ ∗ϕ2)− (−1)p+q−1

∫

X

ϕ1 ∧ ∂ ∗ ϕ2

=

∫

X

ϕ1 ∧ ∗(∂̄∗ϕ2)

=

∫

X

h(ϕ1, ∂̄
∗ϕ2)dV = 〈ϕ1, ∂̄

∗ϕ2〉,

where we use the Stokes’ theorem in the third line.
The above discussion produces the formal dual operator of ∂̄ on Ωp,q(X). The

next important step is to generalize this operator to any Hermitian bundle E with
a pseudoholomorphic structure.
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Definition 3.1. Let (E, hE) be a Hermitian vector bundle over (X,J). A connection
∇ : Γ(X,E) → Γ(X, (T ∗X ⊗ C)⊗ E) is called a Hermitian connection if

d(hE(s1, s2)) = hE(∇s1, s2) + hE(s1,∇s2),(3)

for any two sections s1, s2 of E.

Definition 3.2. A pseudoholomorphic structure on E is given by a differential
operator ∂̄E : Γ(X,E) → Γ(X, (T ∗X)0,1 ⊗ E) which satisfies the Leibniz rule

∂̄E(fs) = ∂̄f ⊗ s+ f ∂̄Es

where f is a smooth function and s is a section of E.

If the pseudoholomorphic structure ∂̄E satisfying ∂̄2E = 0 on a complex manifold,
it is equivalent to a holomorphic structure on the complex bundle E by Koszul-
Malgrange’s theorem. In particular, any pseudoholomorphic structure on a complex
vector bundle over a Riemann surface S is holomorphic, since (T ∗S)0,2 = 0.

Denote ∇(1,0),∇(0,1) the (1, 0) and (0, 1) components of ∇. We have

Lemma 3.3. For any Hermitian bundle (E, hE) with a pseudoholomorphic structure

∂̄E, there is a unique Hermitian connection ∇ so that ∇(0,1) = ∂̄E.

The lemma is well known when J is integrable and should be known to experts
for general J (see [8]). We include a proof for convenience of readers.

Proof. We first prove the existence. Assume that {Uα} is an open chart covering of
X with partition of unity {ϕα} such that E|Uα

is trivial. For any s ∈ Γ(X,E) and
any connection ∇, ∇s = ∇

∑

α ϕαs =
∑

α ∇(ϕαs). So we only need to define ∇
locally on Uα.

Let {si, 1 ≤ i ≤ N} be a unitary frame of E on Uα. Using summation notation,

denote ∂̄Esi = θji sj, where θ
j
i ∈ T 0,1. Let {s′i, 1 ≤ i ≤ N} be another unitary frames

of E with s′i = f ji sj . As
∑

j f
j
i f̄

j
k = δik, (f

−1)ji = f̄ ij . Denote ∂̄Es
′
i = (θ′)ji s

′
j. We

have
(θ′)ji =

∑

k

(∂̄fki + f liθ
k
l )f̄

k
j .

To define ∇, let ωj
i = θji − θij and ∇si = ωj

i sj. Similarly, for {s′i}, let (ω′)ji =

(θ′)ji − (θ′)ij and ∇s′i = (ω′)ji s
′
j. If {ωj

i } and {(ω′)ji} satisfy the transition equation

(ω′)ji =
∑

k(df
k
i + f liω

k
l )f̄

k
j , they give a well defined connection. This follows by

(ω′)ji = (θ′)ji − (θ′)ij

=
∑

k

((∂̄fki + f liθ
k
l )f̄

k
j − (∂f̄kj + f̄ ljθ

k
l )f

k
i )

=
∑

k

(dfki + f li (θ
k
l − θlk))f̄

k
j =

∑

k

(dfki + f liω
k
l )f̄

k
j

where we use ∂(
∑

k f
k
i f̄

k
j ) = 0 for the third equality. So ∇ is independent of the

frames. From the skew symmetry of ∇, we know that it is a Hermitian connection
compatible with hE .



KODAIRA DIMENSIONS OF ALMOST COMPLEX MANIFOLDS I 9

The uniqueness follows easily if we restrict ∇ to the open chart above. �

Remark 3.4. Recall that the almost Chern connection [12](see also [15]) associated
to g is the unique connection ∇c on the tangent bundle such that ∇cJ = ∇cg = 0
and that the torsion Θ has vanishing (1, 1) part. The ∂̄ operator on (T ∗X)1,0 in-
duces a natural pseudoholomrphic structure. It turns out that the unique Hermitian
connection on (T ∗X)1,0 induced by ∂̄ as in Lemma 3.3 equals ∇c. To see this, as-

sume that ∇cei = ωj
i ej for a unitary frame {ei}. By the first structure equation,

the ith component of Θ is Θi = dφi + ωi
j ∧ φj , where {φi} is the coframe. Also ∇c

acts on (T ∗X)1,0 by ∇cφi = −ωi
jφj. Then Θi has vanishing (1, 1) part if and only

if ∂̄φi + (ωi
j)

0,1 ∧ φj = 0 which is equivalent to (∇c)(0,1) = ∂̄.

Now suppose E is the pluricanonical bundle K⊗m
J with the induced pseudoholo-

morphic structure ∂̄m. Following from the above discussion, the unique Hermitian
connection on K⊗m

J induced by the Chern connection on (T ∗X)1,0 is just the unique
Hermitian connection determined by ∂̄m in Lemma 3.3.

Let (E, hE) be the Hermitian bundle with a pseudoholomorphic structure ∂̄E . We
can define a unique dual pseudoholomorphic structure on E∗:

∂̄E∗ : Γ(X,E∗) → Γ(X, (T ∗X)0,1 ⊗ E∗)

as follows. For any section s∗ ∈ Γ(X,E∗) and any section s′ ∈ Γ(X,E), let

(∂̄E∗(s∗))(s′) = ∂̄(s∗(s′))− s∗(∂̄E(s
′)).(4)

It is easy to verify that ∂̄E∗ satisfies the Leibniz rule, giving a pseudoholomorphic
structure. With the Hermitian structure hE , there exists a natural complex linear
isomorphism E∗ ∼= Ē, where Ē is the conjugate bundle of E. Therefore, ∂̄E∗ induces
a pseudoholomorphic structure on Ē. On the other side, by Lemma 3.3, there is a
unique Hermitian connection ∇ on E determined by ∂̄E and hE . The conjugate of
the (1, 0) part of ∇ induces

∇(1,0) : Ē → (T ∗X)0,1 ⊗ Ē.

Define ∂̄Ē = ∇(1,0). We have

Lemma 3.5. By identifying Ē with E∗, ∂̄Ē = ∂̄E∗ .

Proof. Let s̄ ∈ Ē and s′ ∈ E. The inner product hE on E induces a bilinear paring
between E and Ē which we still denote by hE . Then by (3),

∂̄hE(s
′, s̄) = hE(∇

0,1s′, s̄) + hE(s
′,∇(1,0)s̄) = hE(∂̄Es

′, s̄) + hE(s
′, ∂̄Ē s̄).(5)

Therefore, ∂̄Ē satisfies the product rule (4). Therefore, ∂̄Ē = ∂̄E∗ . �

Next we can extend the ∂̄E operator to Λp,q ⊗ E and ∂̄Ē to Λr,s ⊗ Ē by

∂̄E(ϕ⊗ u) = (∂̄ϕ)⊗ u+ (−1)p+qϕ ∧ ∂̄Eu(6)

∂̄Ē(φ⊗ v) = (∂̄φ)⊗ v + (−1)r+sφ ∧ ∂̄Ēv.
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Then there is a wedge pairing

∧ : (Λp,q ⊗ E) × (Λr,s ⊗ Ē) → Λp+r,q+s

defined by (ϕ1⊗u)∧(ϕ2⊗v) = hE(u, v)ϕ1∧ϕ2. As before, in the situation, hE(u, v)
is denoted to be the C-bilinear product between E and Ē. We have the Leibniz rule
for the wedge pairing

∂̄E(ϕ1 ⊗ u) ∧ (ϕ2 ⊗ v) =(∂̄ϕ1 ⊗ u+ (−1)p+qϕ1 ∧ ∂̄Eu) ∧ (ϕ2 ⊗ v)

=hE(u, v)∂̄ϕ1 ∧ ϕ2 + (−1)2(p+q)hE(∂̄Eu, v) ∧ ϕ1 ∧ ϕ2

=hE(u, v)(∂̄(ϕ1 ∧ ϕ2)− (−1)p+qϕ1 ∧ ∂̄ϕ2)(7)

+ (∂̄hE(u, v)− hE(u, ∂̄Ēv)) ∧ ϕ1 ∧ ϕ2

=∂̄((ϕ1 ⊗ u) ∧ (ϕ2 ⊗ v))− (−1)p+q(ϕ1 ⊗ u) ∧ ∂̄Ē(ϕ2 ⊗ v)

where we use (5) in the third line and h(u, ∂̄Ēv)∧ϕ1 ∧ϕ2 = (−1)p+q+r+s(ϕ1 ⊗ u)∧
(ϕ2 ⊗ ∂̄Ēv) for the fourth line.

Now we are able to find the dual operator ∂̄∗E . Define

∗ : Λp,q ⊗ E → Λn−q,n−p ⊗E

by ∗(ϕ ⊗ u) = (∗ϕ) ⊗ u for any ϕ ∈ Λp,q, u ∈ E. From the definition we have

hE(ϕ1 ⊗ u1, ϕ2 ⊗ u2)dV = ϕ1 ⊗ u1 ∧ ∗(ϕ2 ⊗ u2)

where ϕ1 ⊗ u1, ϕ2 ⊗ u2 ∈ Λp,q ⊗E, hE denotes the original inner product on E and
dV is the volume form of X. The inner product on Γ(X,Λp,q ⊗ E) is given by

〈ϕ1 ⊗ u1, ϕ2 ⊗ u2〉 =

∫

X

hE(ϕ1 ⊗ u1, ϕ2 ⊗ u2)dV.

Define

∂̄∗E = − ∗ ∇(1,0) ∗ .

We have

〈∂̄E(φ⊗ w), ϕ ⊗ u〉 =

∫

X

hE(∂̄E(φ⊗ w), ϕ ⊗ u)dV

=

∫

X

∂̄E(φ⊗ w) ∧ ∗(ϕ⊗ u)

=

∫

X

∂̄(φ⊗ w ∧ ∗(ϕ⊗ u))− (−1)p+q−1(φ⊗ w) ∧ ∂̄Ē(∗(ϕ ⊗ u))

= −

∫

X

(φ⊗w) ∧ (−1)p+q−1∇(1,0) ∗ (ϕ⊗ u)

= 〈φ⊗ w, ∂̄∗E(ϕ⊗ u)〉

for φ ⊗ w ∈ Λp,q−1 ⊗ E,ϕ ⊗ u ∈ Λp,q ⊗ E. We use (7) in the third line and Stokes’
theorem in the fourth line. So ∂̄∗E gives the formal adjoint of ∂̄E .

Define the Laplacian

∆∂̄E
= ∂̄E ∂̄

∗
E + ∂̄∗E ∂̄E .(8)
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As 〈∆∂̄E
s, s〉 = 〈∂̄Es, ∂̄Es〉 + 〈∂̄∗Es, ∂̄

∗
Es〉, ∆∂̄E

s = 0 if and only if ∂̄Es = 0 and

∂̄∗Es = 0. Denote the space of harmonic (p, q) form section of E by:

H
(p,q)

∂̄E
(X,E) = {s ∈ Γ(X,Λp,q ⊗ E)|∆∂̄E

s = 0}.

Theorem 3.6. ∆∂̄E
is an elliptic differential operator and H

(p,q)

∂̄E
(X,E) is finite

dimensional.

When E is the trivial bundle, this was pointed out in [17].

Proof. We first prove the case when E is a trivial line bundle with ∂̄E = ∂̄. We shall
show that ∆∂̄ is elliptic at any point p ∈ X. As it is a local property, it suffices
to discuss in a coordinate chart U . Let (Jc, hc) be the constant almost complex
structure and Hermitian structure on U with Jc(p) = J(p), hc(p) = h(p). Jc is
isomorphic to the canonical complex structure of open set in Cn. Denote ∂̄c the
”dbar” operator of Jc and ∗c the operator corresponding to hc. We have

(∂̄ϕ− ∂̄cϕ)(p) = 0, ∗(ϕ)(p) = ∗c(ϕ)(p)

for any ϕ ∈ Γ(U,Λp,q). So ∂̄ and ∂̄c differ by a differential operator whose coefficients
vanish at p. As the principal symbol is only related to the highest degree differential,
any operator from compositions of ∂̄, ∗, ∂̄ would have the same principal symbol at
p with the operators if we replace them by ∂̄c, ∗c, ∂̄c. In particular, ∆∂̄ has the same
principal symbol with ∆∂̄c

at p. The latter is the flat Laplacian on Cn which is
elliptic. Therefore ∆∂̄ is elliptic at p and hence everywhere.

For a complex vector bundle E. Let {φi} be a local unitary coframe of (T ∗X)1,0

and {uν} a unitary frame of E. Using Einstein summation notation, any section s
of Λp,q ⊗ E can be expressed as:

s = fαβνφα ∧ φ̄β ⊗ uν ,

where (α, β) runs over all multi-indices of (p, q). Then

∂̄Es = ∂̄fαβν ∧ φα ∧ φ̄β ⊗ uν + fαβν ∂̄E(φα ∧ φ̄β ⊗ uν).

The principal symbol is calculated solely from the first term. We use ≃ to mean
operators with the same principal symbol. Let ∂̄ ⊗ id represent the differential
operator determined by ∂̄ ⊗ id(fαβνφα ∧ φ̄β ⊗ uν) := ∂̄(fαβνφα ∧ φ̄β)⊗ uν and the
Leibniz rule (it depends on choice of {uν} and is only defined locally). Let ∆∂̄ ⊗ id
be the operator given by ∆∂̄ ⊗ id(fαβνφα ∧ φ̄β ⊗ uν) := ∆∂̄(f

αβνφα ∧ φ̄β)⊗ uν . We
have

∂̄E ≃ ∂̄ ⊗ id and ∆∂̄E
≃ ∆∂̄ ⊗ id.

We have shown above that ∆∂̄ is elliptic. Then ∆∂̄ ⊗ id is elliptic. Therefore ∆∂̄E
is elliptic.

The second part follows directly from the elliptic theory (e.g. [23]). Explicitly,
there is a Green operator G together with the projection operator H : Ωp,q(X,E) →

H
(p,q)

∂̄E
(X,E) such that ∆∂̄E

◦ G + H = Id. Also, ∆∂̄E
and G are both Fredholm

operators and H
(p,q)

∂̄E
(X,E) is finite dimensional. �
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Moreover, the following Serre duality also holds on compact almost complex man-
ifolds.

Proposition 3.7. For any 0 ≤ p, q ≤ n, H
(p,q)

∂̄E
(X,E) ∼= (H

(n−p,n−q)

∂̄E∗
(X,E∗))∗.

Proof. The argument is essentially the same as the classical case (see for example
Proposition 4.1.15 of [19]), except clarifying the operators on the bundleE∗. We only

need to show that the natural paring between H
(p,q)

∂̄E
(X,E) and H

(n−p,n−q)

∂̄E∗
(X,E∗) is

nondegenerate. For any nonzero s ∈ H
(p,q)

∂̄E
(X,E), since ∂̄Es = ∂̄∗Es = 0, by Lemma

3.5, we have

∂̄E∗(∗s) = ∂̄Ē(∗s) = ∇(1,0) ∗ s = 0,

and
∂̄∗E∗(∗s) = − ∗ ∂̄E ∗ (∗s) = −(−1)(p+q)(n−p−q) ∗ ∂̄Es = 0.

So ∗s ∈ H
(n−p,n−q)

∂̄E∗
(X,E∗). As

∫

X
s∧∗s = ‖s‖2 6= 0, the non-degeneracy stands. �

Since Λp,1 ∼= (T ∗X)0,1⊗Λp,0, the ∂̄ operator induces a natural pseudoholomorphic
structure on Λp,0 for 0 ≤ p ≤ n. Denote Ωp(E) = Λp,0⊗E. The pseudoholomorphic
structures on Λp,0 and E gives a pseudoholomorphic structure on Ωp(E). Identifying
Λp,1 ⊗ E with (T ∗X)0,1 ⊗ Ωp(E) by a permutation sign, the pseudoholomorphic
structure on Ωp(E) coincides with the ∂̄E operator given by (6). Define

H0(X,Ωp(E)) = {s ∈ Γ(X,Ωp(E)) = Ωp,0(X,E) : ∂̄Es = 0}.

We have

Proposition 3.8. Let E be a complex vector bundle with a pseudoholomrphic struc-
ture over a compact almost complex manifold X, then H0(X,Ωp(E)) is finite dimen-
sional for 0 ≤ p ≤ n.

Proof. As ∂̄∗E = 0 on Ωp,0(X,E), ∂̄Es = 0 is equivalent to ∆∂̄E
s = 0. So

H0(X,Ωp(E)) = H
(p,0)

∂̄E
(X,E),

which is finite dimensional. �

Corollary 3.9. H0(X,K⊗m) is finite dimensional.

Proof. Let E = K⊗m with ∂̄E = ∂̄m and p = 0. Then it follows from Proposition
3.8. �

Proposition 3.8 also implies that H
(p,0)

∂̄E
(X,E) is independent of the Hermitian

metric used to define ∆∂̄E
. This should not hold for H

(p,q)

∂̄E
(X,E) for q > 0. However,

it is possible that the dimension of H
(p,q)

∂̄E
(X,E) is independent of the defining Her-

mitian metric. When q = dimCX, Proposition 3.7 implies this is true. In general,
we have the following question as a generalization of Problem 20 (Kodaira-Spencer)
in Hirzebruch’s list [17].

Question 3.10. Does dimH
(p,q)

∂̄E
(X,E) depends only on J and ∂̄E for any 0 < q <

dimCX?
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4. Bundle almost complex structure and Iitaka dimension

Recall that for any holomorphic vector bundle over a complex manifold, the total
space is also a complex manifold so that any smooth section s is ∂̄ closed if and only
if s induces a holomorphic map. For a complex vector bundle E over the almost
complex manifold (X,J), a bundle almost complex structure as in [8] (here we use
the rephrasement from [24]) is an almost complex structure J on TE so that

(i) the projection is (J , J)-holomorphic,
(ii) J induces the standard complex structure on each fiber, i.e. multiplying by i,
(iii) the fiberwise addition α : E ×M E → E and the fiberwise multiplication by a

complex number µ : C×E → E are both pseudoholomorphic.

It is shown in [8] that a bundle almost complex structure J on E determines a
pseudoholomorphic structure ∂̄J , and the map J 7→ ∂̄J is a bijection between the
spaces of bundle almost complex structures and pseudoholomorphic structures on
E. We include here a direct proof for reader’s convenience.

Proposition 4.1 (De Bartolomeis-Tian). There is a bijection between bundle almost
complex structures and the pseudoholomorphic structures on E.

Proof. Assume that J is a bundle almost complex structure. Let s : X −→ E
be in Γ(X,E) and π : E −→ X be the projection. We have π ◦ s = idX . Define
d′′s : TX −→ TE by d′′s = 1

2(ds+J ◦ds◦J). Then d′′s = 0 if and only if s is a (J,J )

holomorphic map. From d′′s, we will define an element in Γ(X, (T ∗X)(0,1)⊗E). We
have

dπ ◦ d′′s =
1

2
(dπ ◦ ds+ dπ ◦ J ◦ ds ◦ J)

=
1

2
(id + J ◦ dπ ◦ ds ◦ J) =

1

2
(id− id) = 0,

where property i) is used in the second line. So d′′s(TX) ∈ ker(dπ) = V (E)
with V (E) being the vertical tangent bundle of E. For a vector bundle, V (E) is
canonically isomorphic to π∗(E) on E and there is a commutative diagram:

V (E) ∼= π∗(E) E

E X

π∗

π

As π ◦ s = idX , we get a bundle homomorphism π∗ ◦ d′′s : TX −→ E over
id : X −→ X. Define

∂̄Es = π∗ ◦ d′′s|(TX)(0,1) ,(9)
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then ∂̄Es ∈ Γ(X, (T ∗X)(0,1) ⊗ E). To verify that ∂̄E satisfies the Leibniz rule, from
d(fs) = dfs+ fds, we get

d′′(fs) =
1

2
(d(fs) + J ◦ d(fs) ◦ J) =

1

2
(dfs+ fds+ J ◦ (dfs+ fds) ◦ J)

=
1

2
((df + idf ◦ J)s+ f(ds+ J ◦ ds ◦ J))

= ∂̄fs+ fd′′s

where we use property ii) and iii) of J in the second line. Passing to E, we have
∂̄E(fs) = ∂̄f ⊗ s+ f ∂̄Es. So ∂̄E gives a pseudoholomorphic structure on E.

On the other hand, let ∂̄E be a pseudoholomorphic structure and s : X −→ E

in Γ(X,E). Then ∂̄Es ∈ Γ(X, (T ∗X)(0,1) ⊗ E) and ∂̄Es ∈ Γ(X, (T ∗X)(1,0) ⊗ E).

Together they give ∂̄Es + ∂̄Es : TX −→ E. As V (E) ∼= π∗(E) = {(v1, v2) ∈
E × E, π(v1) = π(v2)}, there is an embedding s∗ : E −→ V (E) induced by s given
by

s∗(v) = (sπ(v), v).

Composing it with ∂̄Es+ ∂̄Es, we have s∗ ◦ (∂̄Es+ ∂̄Es) : TX −→ V (E) ⊂ TE. At
each point v of E, from dπ ◦ds = idTX , we get TvE = ds(TX)⊕Vv(E). Then define
the bundle almost complex structure J on TE by letting

J = (−2s∗ ◦ (∂̄Es+ ∂̄Es) + ds) ◦ J ◦ ds−1

on ds(TX) and J = Jst on the vertical tangent space where Jst is the standard
complex structure by multiplying with i. Using the Leibniz rule of ∂̄E , it can be
showed that J is in independent of the smooth sections s and satisfies properties
i), ii), iii). Also, the constructions give the one-to-one correspondence discovered
in [8]. �

Denote ∂̄J the pseudoholomorphic structure determined by a bundle almost com-
plex structure J . We have

Corollary 4.2. For any s ∈ Γ(X,E), ∂̄J s = 0 if and only if s is (J,J ) holomorphic.

Proof. Since the result is used frequently in this note, we offer two separate proofs
which have their own ingredients.

The first proof follows directly from Proposition 4.1. From (9) we have π∗ ◦d′s =

∂̄J s + ∂̄J s. Then ∂̄J s = 0 is equivalent to d′s = 0, which means that s is (J,J )
holomorphic.

The second proof applies a local argument. For each 2-dimensional J-invariant
subspace P in TpX at a point p, we know there is a J-holomorphic disk D pass-
ing through p with the tangent plane P . Then J is integrable on D and E|D is a
holomorphic bundle by dimension reason (see the argument after Definition 3.2).
Restricted on D, it is known that ∂̄J s = 0 is equivalent to that s is (J,J ) holo-
morphic. Since both ∂̄J s = 0 and (J,J ) holomorphic are local conditions and only
depend on the complex directions, we can choose P to be any directions and obtain
the general equivalence. �



KODAIRA DIMENSIONS OF ALMOST COMPLEX MANIFOLDS I 15

We call such a section s a pseudoholomorphic section of (E,J ). The above cor-
respondence builds the bridge to the second author’s paper [39] on the intersections
of almost complex submanifolds, and is used frequently in this paper. In particular,
when E is a complex line bundle over 4-manifold (X,J), the zero locus of a pseudo-
holomorphic section s is a J-holomorphic 1-subvariety in class c1(E) by Corollary
1.3 of [39].

For any (E,J ), define

H0(X, (E,J )) = H0,0
∂̄J

(X,E) = {s ∈ Γ(X,E) : ∂̄J s = 0}.

By Theorem 3.6, it is finite dimensional. The (E,J )-genus of X is defined as
PE,J := dimH0(X, (E,J )). When there is no confusion of the choice of bundle
almost complex structure J , we will simply write it as PE . The bundle almost
complex structure J on E induces bundle almost complex structures on E⊗m, which
is also denoted by J . Thus the notation PE⊗m,J or simply PE⊗m makes sense. When
E = K endowed with the standard bundle almost complex structure, we have the
mth plurigenus of (X,J) is defined to be Pm(X,J) = dimH0(X,K⊗m).

We are now ready to define the Iitaka dimension (and the Kodaira dimension).

Definition 4.3. The Iitaka dimension κJ (X, (L,J )) of a complex line bundle L
with bundle almost complex structure J over (X,J) is defined as

κJ(X, (L,J )) =











−∞, if PL⊗m,J = 0 for any m ≥ 0

lim supm→∞

log PL⊗m,J

logm
, otherwise.

The Kodaira dimension κJ (X) is defined by choosing L = K and J to be the
bundle almost complex structure induced by ∂̄.

5. Birational invariants

As suggested by the results in [39], degree 1 pseudoholomorphic maps are the
right notion of birational morphism in almost complex category. We define two
almost complex manifolds M and N to be birational to each other if there are
almost complex manifolds M1, · · · ,Mn+1 and X1, · · · ,Xn such that M1 = M and
Mn+1 = N , and there are degree one pseudoholomorphic maps fi : Xi → Mi and
gi : Xi →Mi+1, i = 1, · · · , n.

The next natural step is to find birational invariants. In birational geometry,
there are many important birational invariants, including the fundamental group,
the Hodge numbers hp,0, the plurigenera and in particular the Kodaira dimension.
As shown in Theorem 1.5 of [39], X = M#kCP 2 when there is a degree one pseu-
doholomorphic map φ : X → M between 4-dimensional almost complex manifolds.
Hence, the fundamental group is apparently also birationally invariant in the almost
complex category.

We will show in this section that the almost complex Kodaira dimension κJ ,
plurigenera Pm and Hodge numbers hp,0 are birational invariants for 4-dimensional
almost complex manifolds.
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We first show that plurigenera and Kodaira dimension for almost complex 4-
manifolds are non-increasing under pseudoholomorphic maps of non-zero degree.

Lemma 5.1. Let u : (X,J) → (Y, JY ) be a surjective pseudoholomorphic map
between closed almost complex 2n-manifolds. Then Pm(X,J) ≥ Pm(Y, JY ). Hence,
κJ(X) ≥ κJY (Y ).

Proof. Pullback of sections defines

u∗m : H0(Y,K⊗m
Y ) → H0(X,K⊗m

X )

for all m ≥ 1. Combining the argument of Theorem 5.5 and the result of Theorem
3.8 in [39], we know that the singularity subset Su has finite (2n − 2)-dimensional
Hausdorff measure. (Theorem 1.4 of [39] shows that Su supports a J-holomorphic
1-subvariety when n = 2.)

For any s ∈ H0(Y,K⊗m
Y ), if u∗m(s) = 0, then the restriction u∗m(s)|X\Su

= 0 would

imply s|Y \u(Su) = 0. Since s is smooth and Y \ u(Su) = Y , we know s = 0. Hence
u∗m is injective, which implies the inequalities. �

For any pseudoholomorphic structure ∂̄E of a complex vector bundle E, it also
induces a pseudoholomorphic structure on E|D for any non-compact embedded J-
holomorphic curve D ⊂ X. By Koszul-Malgrange theorem, it is holomorphic. Since
D is Stein, by Oka’s principle, any holomorphic bundle is isomorphic to the product
D × Ck.

Let s be a smooth section of E over a compact almost complex manifold X.
Then for any point x ∈ X and a J-holomorphic disk D passing through it, we
could write s|D as a vector valued complex function s′ : D → Ck. In fact, s′ is

the composition of s with the projection from D × Ck to Ck. Since the projection
is holomorphic, s is (J,J )-holomorphic if and only if s′ is holomorphic. In other
words, s′ is a holomorphic function. Later, we will simply write s instead of s′ by
abuse of notation.

Since there is no local complex coordinate system for a general almost complex
manifold, we use the J-fiber-diffeomorphism [34] to play such a role.

We start with any point x ∈ M , and want to choose an open neighborhood U
of x. Without loss of generality, as in [34, 39], we can assume the almost complex
structure J is on C2. It agrees with the standard almost complex structure J0 at
the origin, but typically nowhere else.

Denote a family of holomorphic disks Dw := {(ξ, w)||ξ| < ρ}, where w ∈ D. What
we get from [34], mainly Lemma 5.4, is a diffeomorphism f : D ×D → C2 onto its
image U , where D ⊂ C is the disk of radius ρ, such that:

• For all w ∈ D, f(Dw) is a J-holomorphic submanifold containing (0, w).
• For all w ∈ D, dist((ξ, w); f(ξ, w)) ≤ z · ρ · |ξ|. Here z depends only on Ω
and J .

• For all w ∈ D, the derivatives of order m of f are bounded by zm · ρ, where
zm depends only on Ω and J .
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We call such a diffeomorphism J-fiber-diffeomorphism. We have freedom to
choose the “direction” of these disks by rotating the Gaussian coordinate system.
As in [2,34,39], we are also able to choose the center f(0×D) to be J-holomorphic.

With these preparations, we are able to derive the following version of Hartogs’
extension theorem for almost complex manifolds.

Theorem 5.2. Let (E,J ) be a complex vector bundle with a bundle almost complex
structure over the almost complex 4-manifold (X,J), and p ∈ X. Then any section
in H0(X \ p, (E,J )|X\p) extends to a section in H0(X, (E,J )).

Proof. Near p, as in [39], we choose a J-fiber-diffeomorphism of a neighborhood U
of p, f : D × D → U , such that f(0 × D) and f(D × w),∀w ∈ D are embedded
J-holomorphic disks. By possibly shrinking U , our complex vector bundle (E,J )
could be trivialized such that each section of it (on a subset of U) restricts to f(Dw)
and f(0×D) are complex vector valued functions. We can achieve it by first choose
the trivialization along f(0×D) and then fiberwise along each f(Dw).

Let s ∈ H0(X \ p, (E,J )|X\p). By choosing the above trivialization and the
previous discussion, s is a vector valued holomorphic function along each Dw when
w 6= 0, (D \{0})×0 and 0× (D \{0}). We use Cauchy integration formula to define

aj(z2) =
1

2πi

∫

|ξ|=ρ

s(ξ, z2)

ξj+1
dξ, ∀j ∈ Z.

It is a smooth (vector valued) function and a0(z2) = s(0, z2) when z2 6= 0. Hence, in
particular, a0(z2) is holomorphic onD\{0}. We let aj(0) = limz2→0 aj(z2). Since for
fixed z2 6= 0, s(ξ, z2) is holomorphic for ξ ∈ D, we know a−j(z2) = 0 for j > 0. By
the continuity of s, we know a−j(0) = 0,∀j > 0. Hence, s(ξ, 0) =

∑∞
j=−∞ aj(0)ξ

j =
∑∞

j=0 aj(0)ξ
j is also holomorphic at ξ = 0 with value a0(0) at ξ = 0. In particular,

a0(0) =
1
2πi

∫

|ξ|=ρ
s(ξ,0)

ξ
dξ. Since a0(z2) = s(0, z2) is holomorphic when z2 6= 0, the

partial derivative

∂

∂z̄2
a0(z2) =

1

2πi

∫

|ξ|=ρ

∂
∂z̄2
s(ξ, z2)

ξ
dξ = 0.

This extends to z2 = 0 since s is smooth. Hence, a0(z2) = s(0, z2) is also holomorphic
at z2 = 0.

To summarize, what we have proved in the above is that the extensions of holo-
morphic functions s(0, z2) and s(z1, 0) on 0×(D\{0}) and (D\{0})×0 to (0, 0) have
the same value a0(0), and are holomorphic at both disks 0×D and D0. As in [39],
we can choose the center f(0 × D) of the J-fiber diffeomorphism (that transverse
to f(D0)) to be (a subdisk of) any given J-holomorphic disk. Moreover, we can
also choose a family of disks passing through p whose complex tangent directions
at p form a disk around a given direction κ in CP 1. Moreover, each of them is the
D0 fiber of a J-fiber diffeomorphism (see Lemma 5.8 of [34] or Lemma 3.10 of [39]).
Since CP 1 is compact, we can choose finite many such families such that their union
covers a neighborhood of p, and their tangent directions cover CP 1.
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We choose J-fiber diffeomorphisms around p whose fiber passing through p lying
in the above union of families and take the center of the foliation to be either f(0×D)
or f(D0) in our above construction. By this process, we know all the disks in the
above union of families have the same extended value at p, and are holomorphic at
all the directions. Hence, our section s ∈ H0(X \ p, (E,J )|X\p) is extended over p

to a section in H0(X, (E,J )). �

We are ready to show the Kodaira dimension κJ is a birational invariant for
almost complex 4-manifolds.

Theorem 5.3. Let u : (X,J) → (Y, JY ) be a degree one pseudoholomorphic map
between closed almost complex 4-manifolds. Then Pm(X,J) = Pm(Y, JY ) and thus
κJ(X) = κJY (Y ).

Proof. First, by Corollary 4.2, we know that any element in H0(X,K⊗m
X ) is (J,JJ)-

holomorphic where JJ is the bundle almost complex structure corresponding to
∂̄m.

By Lemma 5.1, we only need to show u∗m is surjective. By Theorem 1.5 of [39],
we know there is a finite set Y1 ⊂ Y such that

u : X \ u−1(Y1) → Y \ Y1

is a diffeomorphism. For σ ∈ H0(X,K⊗m
X ), we could pull it back by u−1|Y \Y1

to get

(u−1)∗(σ) ∈ H0(Y \ Y1,K
⊗m
Y \Y1

). By Theorem 5.2, we could extend point-by-point

over Y1 to get a unique element in H0(Y,K⊗m
Y ).

Hence, u∗m is surjective and we complete the proof. �

There are also other birational invariants. Since Λp,1 ∼= (T ∗X)0,1 ⊗ Λp,0, the ∂̄
operator induces a natural pseudoholomorphic structure on Λp,0 for 0 ≤ p ≤ n.

By Proposition 3.8, H0(X,Ωp
X) := H0(X,Ωp(O)) = H

(p,0)

∂̄
(X,O) is finite dimen-

sional. We denote hp,0(X) := dimH0(X,Ωp(O)). For a pseudoholomorphic map u :
(X,J) → (Y, JY ) between closed almost complex 2n-manifolds and any 0 ≤ p ≤ n,
pullback of sections defines u∗ : H0(Y,Ωp

Y ) → H0(X,Ωp
X). When u is surjective, by

the same argument as Lemma 5.1, we have

Lemma 5.4. Let u : (X,J) → (Y, JY ) be a surjective pseudoholomorphic map
between closed almost complex 2n-manifolds. Then u∗ : H0(Y,Ωp

Y ) → H0(X,Ωp
X) is

injective and hp,0(X) ≥ hp,0(Y ) for any 0 ≤ p ≤ n.

We can also show that hp,0 are birational invariants in dimension 4. In fact, the
only one which does not follow from Theorem 5.3 is the irregularity h1,0.

Theorem 5.5. Let u : (X,J) → (Y, JY ) be a degree one pseudoholomorphic map
between closed almost complex 4-manifolds. Then hp,0(X) = hp,0(Y ) for any 0 ≤
p ≤ 2.

Proof. First, by Corollary 4.2, we know that any element in H0(X,Ωp
X) is (J,JJ)-

holomorphic where JJ is the bundle almost complex structure on Λp,0 corresponding
to he natural pseudoholmorphic structure induced by ∂̄.
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By Lemma 5.4, we only need to show u∗ is surjective. By Theorem 1.5 of [39],
we know there is a finite set Y1 ⊂ Y such that

u : X \ u−1(Y1) → Y \ Y1

is a diffeomorphism. For σ ∈ H0(X,Ωp
X ), we could pull it back by u−1|Y \Y1

to

get (u−1)∗(σ) ∈ H0(Y \ Y1,Ω
p
Y \Y1

), which are the pseudoholomorphic sections of

Λp,0(Y ) over Y \ Y1. By Theorem 5.2, we could extend it point-by-point over Y1
to get a unique element in H0(Y,Ωp

Y ). Hence, u
∗ is surjective and we complete the

proof. �

We would like to remark that the dimension of the J-anti-invariant cohomology
H−

J (X,R) defined in [26] is also a birational invariant as shown in [2].

6. Examples

In this section, we give some explicit examples on the calculation of the almost
complex plurigenera, the Kodaira dimension κJ and the irregularity. As we have
seen in Section 5, all of them are birational invariant on 4-manifolds. However,
different from the integrable case, they are no longer deformation invariants. This
is easy to see by deforming an integrable almost complex structure of a surface of
general type as shown in the introduction. This argument does not quite extend
to the case when the canonical class is torsion. Our first two examples study such
explicit deformations on Kodaira-Thurston surface and 4-torus.

In Section 6.3, we show that there are examples of compact 2n-dimensional non-
integrable almost complex manifolds with Kodaira dimension {−∞, 0, 1, · · · , n− 1}
for n ≥ 2 (Theorem 6.10).

6.1. The Kodaira-Thurston surface. Consider the Kodaira-Thurston surface
X = S1 × (Γ\Nil3), where Nil3 is the Heisenberg group

Nil3 = {A ∈ GL(3,R)|A =







1 x z

0 1 y

0 0 1






}

and Γ is the subgroup in Nil3 consisting of element with integer entries, acting by left
multiplication (see [35]). X is homogeneous and has trivial tangent and cotangent
bundle. An invariant frame of the tangent bundle is given by

∂

∂t
,

∂

∂x
,

∂

∂y
+ x

∂

∂z
,

∂

∂z
,

where t is the coordinate of S1. The corresponding dual invariant coframe is given
by

dt, dx, dy, dz − xdy.

For any a 6= 0 ∈ R, define the almost complex structures Ja by:

Ja(
∂

∂t
) =

∂

∂x
, Ja(

∂

∂x
) = −

∂

∂t
, Ja(

∂

∂y
+ x

∂

∂z
) =

1

a

∂

∂z
, Ja(

∂

∂z
) = −a(

∂

∂y
+ x

∂

∂z
).
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We can compute the Nijenhuis tensor to get N( ∂
∂x
, ∂
∂z
) = a2( ∂

∂y
+ x ∂

∂z
) 6= 0. There-

fore Ja is not integrable by the Newlander-Nirenberg theorem [29]. As (T ∗X)1,0 is
spanned by φ1 = dt+ idx, φ2 = dy + ia(dz − xdy), any section of K can be written
as s = fφ1 ∧ φ2. Since

dφ2 = −iadx ∧ dy = −
a

4
(φ1 ∧ φ̄2 − φ̄1 ∧ φ2 + φ̄1 ∧ φ̄2 − φ1 ∧ φ2),

we have

∂̄(φ1 ∧ φ2) = −φ1 ∧ ∂̄φ2 =
a

4
φ1 ∧ (φ1 ∧ φ̄2 − φ̄1 ∧ φ2)

=
a

4
φ̄1 ∧ φ1 ∧ φ2.

So ∂̄s = 0 if and only if

∂̄f +
a

4
fφ̄1 = 0.(10)

Let w = t + ix, ∂
∂w̄

= 1
2 (

∂
∂t

+ i ∂
∂x

) and V = 1
2((

∂
∂y

+ x ∂
∂z
) + i 1

a
∂
∂z
). Then ∂

∂w̄
, V are

dual vectors of φ̄1, φ̄2. From (10) we have

∂f

∂w̄
+
a

4
f = 0(11)

V (f) = 0.(12)

Let f = f1 + if2, where f1, f2 are smooth real functions on X. From (12) we get
that V̄ V f = 0 where V̄ is the conjugate of V . As V̄ V = 1

4 ((
∂
∂y

+ x ∂
∂z
)2 + ( 1

a
∂
∂z
)2),

we obtain

∂2f1
∂y2

+ 2x
∂2f1
∂y∂z

+ (x2 +
1

a2
)
∂2f1
∂z2

= 0,(13)

∂2f2
∂y2

+ 2x
∂2f2
∂y∂z

+ (x2 +
1

a2
)
∂2f2
∂z2

= 0(14)

Consider the fibration ρ : X → T 2 = R2/Z2 given by

ρ([t, x, y, z]) = [t, x].

The fiber of ρ is a torus with coordinate (y, z). (13), (14) is strictly elliptic without
zero order term when viewing f as a function of y, z. As the fiber is compact, by the
maximum principle f is constant in each fiber. We can push down f to a function
on the base T 2 with (t, x) coordinate. To solve the equation (11) on T 2, consider
the Fourier series

F(f) =
∑

(k,l)∈Z2

fk,le
2πi(kt+lx), fk,l =

∫

T 2

f(t, x)e−2πi(kt+lx)dtdx.

For smooth function f , f = 0 if and only if fk,l = 0,∀(k, l) ∈ Z2 by the completion

of the series {e2πi(kt+lx)}. Apply F to (11), we get
∑

(k,l)∈Z2

(
a

4
+ π(ik − l))fk,le

2πi(kt+lx) = 0.
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If a /∈ 4πZ, then a
4 + π(k − il) 6= 0 for any (k, l) ∈ Z2. So fk,l = 0 and f = 0. If

a = 4lπ for some l ∈ Z\{0}, then f = Ce2πilx are the solutions. Therefore we get

P1(X,Ja) =







0, a /∈ 4πZ

1, a ∈ 4πZ
.

For m ≥ 2, assume that s = f(φ1 ∧ φ2)
⊗m is a holomorphic section of K⊗m. Then

∂̄ms = (∂̄f +
ma

4
fφ̄1)(φ1 ∧ φ2)

⊗m = 0.

The same computation from above shows that f is constant on (y, z) and satisfying

∂f

∂w̄
+
ma

4
f = 0.

Using Fourier transform, we get that if a /∈ 4
m
πZ, then f = 0; if a = 4lπ

m
for some

l ∈ Z\{0}, then f = Ce2πilx. So

(15) Pm(X,Ja) =







0, a /∈ 4
m
πZ

1, a ∈ 4
m
πZ.

To compute the irregularity h1,0(X), assume that γ = g1φ1 + g2φ2 ∈ H0(X,ΩX).
As dφ1 = 0 and ∂̄φ2 = −a

4φ1 ∧ φ̄2 +
a
4 φ̄1 ∧ φ2, from ∂̄γ = 0 we obtain

∂̄g1 +
a

4
g2φ̄2 = 0(16)

∂̄g2 −
a

4
g2φ̄1 = 0(17)

(17) is in the same form with (10). So we have V (g2) = 0 and then g2 is independent
of y, z. (16) is equivalent to

∂g1
∂w̄

= 0(18)

V (g1) +
a

4
g2 = 0(19)

From (18) we have that g1 is independent of t, x. As g2 is independent of y, z,
composing V̄ to (19) we get that V̄ V (g1) = 0. Therefore, g1 is a constant. Returning
to (19) we get that g2 = 0. Therefore γ = cφ1 for some constant c and h1,0(X) = 1.

In conclusion, we have

Proposition 6.1. For any a 6= 0 ∈ R, there is a nonintegrable almost complex
structure Ja on X = S1 × (Γ\Nil3) such that h1,0(X) = 1 and

κJa(X) =







−∞, a /∈ πQ

0, a ∈ πQ\{0}

Proof. As
⋃

m∈Z+

4
m
πZ = πQ, we have that if a /∈ πQ, Pm = 0 for all m; if a ∈ πQ,

then Pm = 1 for some m. �
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If we choose a = 4π, 2π, 43π, · · · ,
4
n
π, · · · , then the first nonzero plurigenera are

P1, P2, P3, · · · , Pn, · · · . Therefore they are not birationally equivalent though with
κJ = 0.

Remark 6.2. Let J be the almost complex structure given by

J(
∂

∂t
) =

∂

∂z
, J(

∂

∂x
) =

∂

∂y
+ x

∂

∂z
.

Then J is integrable and induces the usual complex structure on X. In this case, K
is holomorphically trivial with a closed section (dt + i(dz − xdy)) ∧ (dy + idx). So
Pm(X,J) = 1 for any m ≥ 1 and κJ(X) = 0.

From (15), we see that both plurigenera and Kodaira dimension are not defor-
mation invariant. However, we still have upper semi-continuity. Assume that ∆ is
an open set in C and {J(t), t ∈ ∆} is a family of almost complex structures on a
compact smooth manifold, depending smoothly on t. Let Pm(t), hp,0(t) be the m-th
plurigenus and (p, 0) Hodge number of J(t). We have

Proposition 6.3. Pm(t) and hp,0(t) are upper semi-continuous function of t.

Proof. As all sections in H0(X,K(t)⊗m) and H0(X,Ωp(t)) are exactly the harmonic
sections, by the properties of elliptic operators (Theorem 4.3 in [22], see also [9]),
Pm(t) and hp,0(t) are upper semi-continuous. �

6.2. 4-torus. We offer another example on the four torus. Consider the four torus
X = T 4 = R4/Z4 with coordinates (x1, x2, x3, x4). We study the almost complex
structure J introduced in [7] given by

J =











0 −1 α β

1 0 −β α

0 0 0 1

0 0 −1 0











.

We assume that α, β are any two real smooth functions on T 4 satisfying ∂2(β+iα)
∂x2

1
+

∂2(β+iα)
∂x2

2
6= 0 in a dense open set. For example, α = cos 2π(x1 +x2), β = sin 2π(x1 +

x2). Direct computation shows that J is integrable if and only if α, β are independent
of x1, x2 (see [7]). Therefore, J is not integrable by our assumption. Let

φ1 = dx1 + i(dx2 − αdx3 − βdx4), φ2 = dx3 − idx4.

Then (T ∗X)1,0 is spanned by φ1, φ2. Assume that s = fφ1 ∧ φ2 is a smooth section
of K. Let w = x1 + ix2,

∂
∂w

= 1
2(

∂
∂x1

− i ∂
∂x2

), we have ∂̄s = 0 if and only if

∂̄f +
1

2

∂(β + iα)

∂w
fφ̄2 = 0(20)
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It is equivalent to

∂f

∂w̄
= 0(21)

∂f

∂x3
+ α

∂f

∂x2
− i(

∂f

∂x4
+ β

∂f

∂x2
) +

∂(β + iα)

∂w
f = 0(22)

As T 4 is compact, from (21) we get that f is constant in the (x1, x2) direction. Then
(22) become

∂f

∂x3
− i

∂f

∂x4
+
∂(β + iα)

∂w
f = 0.(23)

Apply ∂
∂w̄

to (23) to get

∂2(β + iα)

∂w∂w̄
f = 0.(24)

By the assumption of α, β, we have f = 0 and s = 0. Similarly, for K⊗m,m ≥ 2, if
s = f(φ1 ∧ φ2)

⊗m is holomorphic, then

∂̄f +
m

2

∂(β + iα)

∂w
fφ̄2 = 0.

The same argument gives that s = 0. Therefore, Pm(X,J) = 0,m ≥ 1 and
κJ(X) = −∞.

For the irregularity, assume that γ = g1φ1 + g2φ2 ∈ H0(X,ΩX). Then from
∂̄γ = 0 we get that

∂̄g1 +
1

2

∂(β + iα)

∂w
g1φ̄2 = 0(25)

∂̄g2 +
1

2

∂(β − iα)

∂w̄
g1φ̄1 = 0.(26)

(25) is the same with (20), so we get that g1 = 0. Putting it to (26), we deduce that
g2 is a constant. So γ = cφ2 and h1,0 = 1.

For any t = t1 + it2 ∈ C, let

J(t) =











0 −1 t1α t2β

1 0 −t2β t1α

0 0 0 1

0 0 −1 0











.

J(0) is the standard complex structure on T 4 and J(1 + i) = J . By the above
calculation, for any m ≥ 1, t ∈ C, we have

Pm(t) =







0, t 6= 0

1, t = 0
, h1,0(t) =







1, t 6= 0

2, t = 0
.

This gives an example where the plurigenera, the Kodaira dimension and the
irregularity are not constant under smooth deformation even when K = 0.
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6.3. Non-integrable almost complex manifolds with large Kodaira dimen-

sion. Although a generic almost complex structure does not have any pseudoholo-
morphic curve, which forces Kodaira dimension to be −∞ or 0, we still have inter-
esting non-integrable examples with large Kodaira dimension. In this subsection, we
give examples of non-integrable almost complex structures on 2n-manifolds with Ko-
daira dimension lying among −∞, 0, 1, · · · , n−1. First, we construct non-integrable
almost complex 4-manifolds with κJ = 1.

Let S be a compact Riemann surface with genus g ≥ 2. We shall define a
nonintegrable almost complex structure on X = T 2 × S.
Denote the two projections by

π1 : T
2 × S −→ T 2, π2 : T

2 × S −→ S.

Assume that T 2 = R2/Z2 has coordinate (x, y), then ∂
∂x
, ∂
∂y

is a global frame on T 2.

The tangent bundle of X has a splitting TX = TT 2 × TS. Let JS be the complex
structure on S with local holomorphic coordinate w and h = h(w) be a smooth
real nonconstant function on S. h is pulled back by π2 to be a function on X (we
still denote it by h which is constant on (x, y) direction). Define an almost complex
structure on X by

J(
∂

∂x
) = −h

∂

∂x
+

∂

∂y
, J(

∂

∂y
) = −(1 + h2)

∂

∂x
+ h

∂

∂y

J |TS = JS

Then J2 = −id and (TX)1,0 =< V, ∂
∂w

>, where V = ∂
∂x

+ i(h ∂
∂x

− ∂
∂y
). As

[V,
∂

∂w
] = −i

∂h

∂w

∂

∂x
= −

i

2

∂h

∂w
(V + V̄ ),

J is not integrable by Newlander-Nirenberg’s theorem since ∂h
∂w

6= 0.

We have J(dx) = −(hdx + (1 + h2)dy). Let α = dx + i(hdx + (1 + h2)dy). Then
locally

(T ∗X)1,0 =< α, dw > and K⊗m
J =< (α ∧ dw)⊗m >

for any m ≥ 1. There is an embedding

π∗2 : Γ(S,K⊗m
S ) −→ Γ(X,K⊗m

J )

given by π∗2(γ) = (α)⊗m ∧ γ for any γ ∈ Γ(S,K⊗m
S ). Defining the (0, 1) form

β = −i(h+i)
2(h−i) ∂̄h, we get

Lemma 6.4. π∗2(γ) ∈ H0(X,K⊗m) if and only if ∂̄γ +mβ ∧ γ = 0.
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Proof. Assume locally that γ = f(w)dw⊗m. Then π∗2(γ) = (α)⊗m∧γ = f(α∧dw)⊗m.
We have

∂̄J(α ∧ dw) = (dα ∧ dw)2,1

=
i

2

∂h

∂w̄
(1−

2h(i + h)

1 + h2
)dw̄ ∧ α ∧ dw

=
−i(h+ i)

2(h− i)

∂h

∂w̄
dw̄ ∧ α ∧ dw.

Let b = −i(h+i)
2(h−i)

∂h
∂w̄

and β = −i(h+i)
2(h−i) ∂̄h. As f depends only on w, we have

∂̄J(π
∗
2(γ)) = (

∂f

∂w̄
+mbf)dw̄(α ∧ dw)⊗m.

So ∂̄J(π
∗
2(γ)) = 0 is equivalent to ∂f

∂w̄
+mbf = 0 which gives ∂̄γ +mβ ∧ γ = 0. �

Denote

H0
h(S,K

⊗m
S ) = {γ ∈ Γ(S,K⊗m

S ), ∂̄γ +mβ ∧ γ = 0}.

When h = 0, then β = 0 and the group is the ordinary holomorphic pluricanonical
section group of K⊗m

S . From Lemma 6.4, we get an injective map

π∗2 : H0
h(S,K

⊗m
S ) −→ H0(X,K⊗m).

We can compute the dimension of H0
h(S,K

⊗m
S ) explicitly when m > 1. Notice

that the operator ∂̄h = ∂̄ + mβ ∧ satisfies the Leibniz rule and then gives a
deformed holomorphic structure of K⊗

S as dimS = 1. For the holomorphic line

bundle (K⊗m
S , ∂̄h),

deg(K⊗m
S , ∂̄h) = deg(K⊗m

S , ∂̄) = 2m(g − 1)

by the deformation invariance of c1. Also,

H0(S,KS ⊗ (mKS , ∂̄h)
∗) = 0

for m > 1 since the degree is negative. Applying the Riemann-Roch formula to
(K⊗m

S , ∂̄h), we have

dimH0
h(S,K

⊗m
S ) = dimH0

h(S,K
⊗m
S )− dimH0(S,KS ⊗ (K⊗m

S , ∂̄h)
∗)

= deg(K⊗m
S , ∂̄h)− g + 1

= (2m− 1)(g − 1)(27)

for m > 1. When m = 1, as deg(KS ⊗ (KS , ∂̄h)
∗) = 0, we have dimH0(S,KS ⊗

(KS , ∂̄h)
∗) ≤ 1. Applying the Riemann-Roch formula we obtain

g − 1 ≤ dimH0
h(S,KS) ≤ g.

Next, we show that π∗2 is surjective.

Lemma 6.5. For any s ∈ H0(X,K⊗m), s = π∗2(γ) for some γ ∈ H0
h(S,K

⊗m
S ).
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Proof. We offer two different proofs. The first follows from direct calculation. The
second proof applies the results of intersection theory built in [39] which can be
generalized to other cases (Theorem 6.7 below).

Assume that s = g(α ∧ dw)m locally. As ∂̄α = β ∧ α, we have ∂̄ms = (∂̄g +
mgβ)(α ∧ dw)m. So ∂̄g +mgβ = 0, which is equivalent to

V̄ (g) = 0(28)

(
∂g

∂w̄
+mbg)dw̄ = 0(29)

Using the same technique in example 6.1, from (28) we get that g is independent of
x, y. So we can define γ = g(dw)⊗m ∈ H0

h(S,K
⊗m
S ), and s = π∗2(γ).

The second approach is more topological. Define a deformation

Jt(
∂

∂x
) = −(th)

∂

∂x
+

∂

∂y
, Jt(

∂

∂y
) = −(1 + t2h2)

∂

∂x
+ (th)

∂

∂y

Jt|TS = JS , 0 ≤ t ≤ 1.

Then J1 = J and J0 is the product complex structure on X. By the homotopy
invariance of the Chern classes, we have c1(KJ) = c1(KJ0) = (2g − 2)[T 2], where
[T 2] is the cohomology class of the fiber of π2. Also, each fiber T 2 is a J-holomorphic
curve by definition.

Let z0 = (t0, w0) be any point in X where t0 ∈ T 2, w0 ∈ S and s ∈ H0(X,K⊗m)
a nontrivial section. First assume that s(z0) = 0. By Corollary 4.2, s induces a
holomorphic map. Therefore, s−1(0) supports a pseudoholomorphic 1-subvariety in
X (Corollary 1.3 in [39]). By the positive intersection of pseudoholomorphic curves
(see [39]), either T 2 × {w0} ⊂ s−1(0) or T 2 × {w0} has positive intersection with
s−1(0). As

[s−1(0)] = m · c1(KJ ) = m(2g − 2)[T 2]

and [T 2] · [T 2] = 0, the latter case cannot be possible. So s|T 2×{w0} = 0.

Next, assume that s(z0) 6= 0. Denote H1
h(S,K

⊗m
S − {w0}) the first sheaf coho-

mology group of the tensor bundle (K⊗m
S , ∂̄h)⊗ (−{w0}). By the Kodaira vanishing

theorem, when m > 1,
H1

h(S,K
⊗m
S − {w0}) = 0

as deg(K
⊗(m−1)
S , ∂̄h) ≥ 2. From the exact sequence

0 −→ K⊗m
S − {w0} −→ K⊗m

S −→ K⊗m
S |w0 −→ 0,

we get the exact sequence of cohomology groups ( [16]) :

0 −→ H0
h(S,K

⊗m
S −{w0}) −→ H0

h(S,K
⊗m
S ) −→ K⊗m

S |w0 −→ H1
h(S,K

⊗m
S −{w0}) = 0.

Therefore, there is a γ̃ ∈ H0
h(S,K

⊗m
S ) such that γ̃(w0) 6= 0 when m > 1. Then

π∗2(γ̃)(z0) 6= 0. Since s(z0) 6= 0, there is some k 6= 0 such that (s− kπ∗2(γ̃))(z0) = 0.
As s− kπ∗2(γ̃) ∈ H0(X,K⊗m), by the same argument as in the first case,

(s− kπ∗2(γ̃))|T 2×{w0} = 0.

So s = kπ∗2(γ̃) on T
2 × {w0}.
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Therefore, in either case, s is constant on the fiber of π2. Then we can push down
s through π2 to get a section γ ∈ Γ(S,K⊗m

S ) such that s = π∗2(γ). By Lemma 6.4,

γ ∈ H0
h(S,K

⊗m
S ). �

Combining Lemma 6.4, Lemma 6.5 and (27), we have

Proposition 6.6. π∗2 : H0
h(S,K

⊗m
S ) −→ H0(X,K⊗m) is an isomorphism. There-

fore, Pm(X,J) = dimH0
h(S,K

⊗m
S ) = (2m−1)(g−1) for m > 1, g−1 ≤ P1(X,J) ≤ g

and κJ(X) = 1.

To compute the irregularity of X, assume that τ ∈ H0(X,ΩX). Locally write
τ = g1α+ g2dw. From ∂̄τ = 0 we get

∂̄g1 + g1β = 0(30)

∂̄g2 = 0.(31)

From (30) we get that

V̄ (g1) = 0(32)

∂g1
∂w̄

+ bg1 = 0.(33)

Then (32) gives that g1 is independent of x, y as before. (33) can be interpreted as
follows. The ∂̄h = ∂̄+β∧ also induces a deformed complex structure on the trivial
line bundle. Define H0

h(S,O) = {g ∈ C∞(S), ∂̄hg = 0}. Then (33) is equivalent to
g1 ∈ H0

h(S,O). As degO = 0, we have dimH0
h(S,O) ≤ 1. From (31) we get that

V̄ g2 = 0,
∂g2
∂w̄

= 0.

which implies that g2 is constant. Therefore τ = g1α + cdw, with g1 ∈ H0
h(S,O).

As h1,0(S) = g, we obtain
g ≤ h1,0(X) ≤ g + 1,

The case h1,0(X) = g+1 corresponds to dimH0
h(S,O) = 1 which implies that (O, ∂̄h)

is holomorphic trivial. The case h1,0(X) = g corresponds to dimH0
h(S,O) = 0.

We can generalize the calculation to the case where X admits a smooth pseudo-
holomorphic elliptic fibration.

Theorem 6.7. If (X4, J) admits a smooth pseudoholomorphic elliptic fibration over
a Riemann surface of genus greater than 1 with J tamed, then κJ = 1.

Proof. Let π : X → S be the pseudoholomorphic elliptic fibration. By [34], the
canonical class K is represented by J-holomorphic 1-subvariety Θ. For the fiber
class T , we have T ·T = 0. Hence K ·T = 0 by adjunction formula. By positivity of
intersection, any component of Θ is contained in a fiber. Since each fiber is smooth,
we have K = bT . On the other hand, any section of KX pushed down to a section
of KS by integrate out the fiber. Hence K = (2g − 2)T .

In other words, as complex bundles, π∗(K⊗m
S ) = K⊗m

X . We notice that ∂̄m maps

π∗Γ(S,K⊗m
S ) to π∗Γ(S,K⊗m

S ⊗ T ∗S). We thus denote ∂̄mπ
∗(fγ) = π∗(∂̄π(γ)) where
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∂̄π is an operator mapping Γ(S,K⊗m
S ) to Γ(S,K⊗m

S ⊗ T ∗S). Hence, for any smooth
function f on S, by the Leibniz rule of ∂̄m, we have

π∗(∂̄π(fγ)) = ∂̄mπ
∗(fγ) = ∂̄π∗f ∧ π∗γ + π∗f · ∂̄mπ

∗γ = π∗(∂̄πf ∧ γ + f ∂̄πγ).

That is to say ∂̄π also satisfies the Leibniz rule and hence it is a pseudoholomorphic
structure on K⊗m

S . Since S is a Riemann surface, it defines a holomorphic structure

on it. To summarize, π∗(γ) ∈ H0(X,K⊗m) if and only if γ ∈ H0
π(S,K

⊗m
S ), where

H0
π(S,K

⊗m
S ) = {γ ∈ Γ(S,K⊗m

S ), ∂̄πγ = 0}.
Since any section s ∈ H0(X,K⊗m) would have zero locus a J-holomorphic 1-

subvariety in class mK = m(2g − 2)T , Lemma 6.5 (or the argument in the first
paragraph) still applies and we know any section s ∈ H0(X,K⊗m) is of the form
π∗(γ) for some γ ∈ H0

π(S,K
⊗m
S ).

Therefore, Pm(X,J) = dimH0
π(S,K

⊗m
S ) = (2m−1)(g−1) form > 1 and κJ(X) =

1. �

We remark that the only place we use tameness is that it guarantees the existence
of pseudoholomorphic 1-subvariety in the (pluri)canonical class.

In fact, the examples in Section 6.1 (as well as Section 6.2) are smooth pseudo-
holomorphic elliptic fibrations over T 2. In these cases, (K⊗m, ∂̄π) are holomorphic
line bundle of degree 0. These bundles are holomorphically trivial if and only if
Pm = 1.

With those 4-manifolds with κJ = 1, we can construct more nonintegrable almost
complex manifolds with large Kodaira dimensions. First, we derive the Künneth
formula for pluricanonical sections of almost complex manifolds. For two almost
complex manifolds (X1, J1) and (X2, J2), the product map J1×J2 induces an almost
complex structure on X1 ×X2. We have

Proposition 6.8. Pm(X1 ×X2, J1 × J2) = Pm(X1, J1)Pm(X2, J2) for m ≥ 1.

Proof. We apply the harmonic theory in section 3 to derive the formula, similar to
the argument in the integrable case (see [16]). Let

p1 : X1 ×X2 −→ X1, p2 : X1 ×X2 −→ X2

be the two projections. We have KX1×X2 = p∗1(KX1) ∧ p
∗
2(KX2). Choose Hermitian

metrics g1 and g2 on X1,X2 respectively. Then g1 × g2 gives a Hermitian metric
on X1 × X2. A form φ ∈ Γ(X1 × X2,KX1×X2) is called decomposable if φ =
p∗1(φ1) ∧ p∗2(φ2). Similar arguments as those in Page 104 in [16] show that the
decomposable smooth forms are dense in the Hilbert space L2(X1 ×X2,KX1×X2).

Denote ∆J1 ,∆J2 the Laplacian operators associated to ∂̄J1 , ∂̄J2 as given in (8).
By the definition, they are both semi-positive operators. Let ϕ1, ϕ2, · · · , be the
eigenforms of ∆J1 in Γ(X1,KX1) with eigenvalues λ1, λ2, · · · and ψ1, ψ2, · · · , be the
eigenforms of ∆J2 in Γ(X2,KX2) with eigenvalues µ1, µ2, · · · . Then λi ≥ 0, µi ≥ 0
for any i. Let ∆J1×J2 be the Laplacian operator associated to J1 × J2 and g1 × g2.
From the definition, we directly get ∆J1×J2 = ∆J1 +∆J2 . Also,

∆J1×J2(p
∗
1(ϕi) ∧ p

∗
2(ψj)) = (λi + µj)p

∗
1(ϕi) ∧ p

∗
2(ψj).
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So we have ∆J1×J2(p
∗
1(ϕi) ∧ p

∗
2(ψj)) = 0 if and only if λi = µj = 0. As {ϕi}, {ψi}

give Hilbert bases for L2(X1,KX1) and L
2(X2,KX2) respectively, {p

∗
1(ϕi) ∧ p

∗
2(ψj)}

gives a Hilbert basis of L2(X1 × X2,KX1×X2) by the denseness of decomposable
forms. Therefore, we get Ker(∆J1×J2) =< p∗1(ϕi) ∧ p∗2(ψj) > with λi = µj = 0.
Namely,

H0(X1 ×X2,KX1×X2) = H0(X1,KX1)⊗H0(X2,KX2).

This shows that P1(X1 × X2, J1 × J2) = P1(X1, J1)P1(X2, J2). Similar argument
gives that

H0(X1 ×X2,K
⊗m
X1×X2

) = H0(X1,K
⊗m
X1

)⊗H0(X2,K
⊗m
X2

)

and Pm(X1 ×X2, J1 × J2) = Pm(X1, J1)Pm(X2, J2) for any m > 1. �

From the definition of Kodaira dimension we have

Corollary 6.9. κJ1×J2(X1 ×X2) = κJ1(X1)+ κJ2(X2) for any two compact almost
complex manifolds (X1, J1), (X2, J2).

Theorem 6.10. There are examples of compact 2n-dimensional nonintegrable al-
most complex manifolds with Kodaira dimension lying among {−∞, 0, 1, · · · , n− 1}
for n ≥ 2.

Proof. By taking direct products of the Kodaira-Thurston surface with copies of
two torus T 2, we can get compact 2n-manifolds with nonintegrable almost complex
structure and κJ = −∞ or 0.

By taking direct products of the 4-manifold X = T 2 × S as in Proposition 6.6
with copies of 2-torus T 2 or the Riemann surface Σ with g > 1, we get compact 2n-
manifolds with nonintegrable almost complex structures and κJ = 1, 2, · · · , n−1. �

7. The six sphere

By a result of Borel and Serre [3], the only spheres which admit almost complex
structures are S2 and S6. The standard way to construct an almost complex struc-
ture on S6 is to use the cross product of R7 applying to the tangent space of S6.
In this section, we will compute the Hodge numbers, the plurigenera and Kodaira
dimension of the standard almost complex structure. Our method is to consider S6

as a homogeneous space of the exceptional Lie group G2 and apply an explicit real
representation of the Lie algebra g2.

First, we review some definitions following [6]. Let e1, e2, · · · , e7 be the standard
basis of R7 and e1, e2, · · · , e7 be the dual basis. Denote eijk the wedge product
ei ∧ ej ∧ ek and define

Φ = e123 + e145 + e167 + e246 − e257 − e347 − e356

Then Φ induces a unique bilinear mapping, the cross product: × : R7 × R7 −→ R7

by (u × v) · w = Φ(u, v, w), where · is the Euclidean metric on R7. It follows that
u× v = −v × u and

(u× v) · u = 0.(34)
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Also, further discussion (see [6]) shows that

u× (u× v) = (u · v)u− (u · u)v.(35)

We remark that the cross product × differs from the cross product induced by
Cayley’s table of Octonion multiplication, though they are isomorphic. For example,
here e1 × e6 = e7.

The six sphere S6 = {u ∈ R7, u · u = ||u|| = 1}. The tangent space at u ∈ S6 is
TuS

6 = {v ∈ R7|u · v = 0}. Let Ju = u× be the cross product operator of u. Then
by (34),(35), Ju(TuS

6) ⊂ TuS
6 and J2

u = −id on TuS
6. In particular, when u = e1,

we have

Je1(e2) = e3, Je1(e3) = −e2, Je1(e4) = e5,

Je1(e5) = −e4, Je1(e6) = e7, Je1(e7) = −e6.(36)

Let J = {Ju, u ∈ S6}. Then J gives an almost complex structure on S6 which is the
standard almost complex structure we consider. It is shown [10] [12] that J is not
integrable since the Nijenhuis tensor of J is nowhere vanishing.

On the other side, denote

G2 = {g ∈ GL(7,R)|g∗(Φ) = Φ},(37)

where G2 is the simple Lie group of type G2 which is compact, connected and simply
connected with real dimension 14 (see [4]). G2 preserves the inner product · and the
cross product × and acts transitively on S6. Let G2 × S6 −→ S6 be the transitive
action and p : G2 −→ S6 the induced map given by p(g) = g(e1). The map p is a
submersion with p−1(e1) = {g ∈ G2|g(e1) = e1} ∼= SU(3). This makes G2 into a
principle right SU(3) bundle over S6.

Next, we give the explicit representation of the Lie algebra g2 of G2 and define
a left invariant almost complex structure on it. Let ǫijk be skew-symmetric unit

indices such that Φ = 1
6ǫijke

ijk. For example, ǫ123 = −ǫ132 = ǫ231 = 1. By the
characterization in [5] (section 2.5 there), a skew-symmetric matric A = (ajk) is in

g2 if and only if
∑7

j,k=1 ǫijkajk = 0 for all 1 ≤ i ≤ 7. Let ~x = (x1, x2, x3, x4, x5, x6) ∈

R6, ~y = (y1, y2, · · · , y8) ∈ R8. Direct calculation gives that a general element A in
g2 ⊂ gl(7,R) has the following form

A = {~x, ~y} :=



























0 x1 −x2 x3 −x4 x5 −x6

−x1 0 y1 −x6 + y4 x5 + y3 x4 − y6 −x3 − y5

x2 −y1 0 −y3 y4 y5 −y6

−x3 x6 − y4 y3 0 −y1 + y2 −x2 − y8 x1 − y7

x4 −x5 − y3 −y4 y1 − y2 0 y7 −y8

−x5 −x4 + y6 −y5 x2 + y8 −y7 0 −y2

x6 x3 + y5 y6 −x1 + y7 y8 y2 0



























Here {·, ·} denotes an operation {·, ·} : R6 × R8 −→ g2 whose definition is stated
above. The above expression is chosen so that it suits our later discussion on S6.
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Denote ~αi, i = 1, · · · , 6, the i-th unit vector in R6 and ~βj , j = 1, · · · , 8, the

j-th unit vector in R8. Define fi = {~αi,~0}, hj = {~0, ~βj}. For example, f1 =

{(1, 0, 0, 0, 0, 0),~0}, h2 = {~0, (0, 1, 0, 0, 0, 0, 0, 0)}. Then {fi, hj ; 1 ≤ i ≤ 6, 1 ≤ j ≤ 8}
forms a basis of g2. The Lie brackets between fi and hj are computed in the
appendix. Let

m = span{f1, · · · , f6}, h = span{h1, · · · , h8}.

Then g2 = m ⊕ h, [h, h] ⊂ h and h ∼= su(3). A Cartan subalgebra of g2 is given by
the span of h1, h2. The corresponding decomposition of g2 into root spaces can be
also calculated. For the projection p : G2 −→ S6, we have

ker dp = h, dp(fi) = (−1)iei+1.

Define an almost complex structure J̃ on g2 by

J̃(f1) = −f2, J̃(f3) = −f4, J̃(f5) = −f6,

J̃(h1) = −h2, J̃(h3) = −h4, J̃(h5) = −h6, J̃(h7) = −h8.

J̃ induces a left invariant almost complex structure on G2 which is still denoted by
J̃ . By (36), the following holds at 1G2 ,

dp ◦ J̃ = J ◦ dp.(38)

Since both J̃ and J are G2-invariant, (38) holds globally on G2. In other words, p

is a (J̃ , J)-pseudoholomorphic map.

With the construction of J̃ , we prove the following

Theorem 7.1. For the standard almost complex structure J on S6, h1,0 = h2,0 =
h2,3 = h1,3 = 0, Pm(S6, J) = 1 for any m ≥ 1 and κJ = 0.

We would like to thank several people, including Huijun Fan, Valentino Tosatti,
Jiaping Wang and Bo Yang for encouraging us to proceed the calculation.

Proof. Compute the plurigenera Pm(S6, J) first. Denote (T ∗S6)1,0 the bundle of

(1, 0) forms on S6 and p∗ the pull back map of forms. As p is (J̃ , J)-pseudoholomorphic,
we have p∗((T ∗S6)1,0) ⊂ (T ∗G2)

1,0 = (g∗2)
1,0. p∗ is injective since p is a submer-

sion. Denote {f i, hj} the basis in g∗2, dual to {fi, hj}. Then (g∗2)
1,0 is generated by

{φ1, · · · , φ7}, where

φ1 = f1 − if2, φ2 = f3 − if4, φ3 = f5 − if6,

φ4 = h1 − ih2, φ5 = h3 − ih4, φ6 = h5 − ih6, φ7 = h7 − ih8.
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As [h, h] ⊂ h, using the Lie brackets in the appendix, we get

df1 = −f2 ∧ h1 − 2f3 ∧ f6 + f3 ∧ h4 − 2f4 ∧ f5 − f4 ∧ h3 − f5 ∧ h6 + f6 ∧ h5,

df2 = f3 ∧ h3 + f4 ∧ h4 − f5 ∧ h5 − f6 ∧ h6 + f1 ∧ h1,

df3 = −f1 ∧ h4 + 2f1 ∧ f6 + f2 ∧ f5 − f2 ∧ h3 + f4 ∧ h1 − f4 ∧ h2 − f5 ∧ h8 + f6 ∧ h7,

df4 = f1 ∧ f5 + f1 ∧ h3 − f2 ∧ h4 − f3 ∧ h1 + f3 ∧ h2 − f5 ∧ h7 − f6 ∧ h8,

df5 = −f1 ∧ f4 + f1 ∧ h6 − f2 ∧ f3 + f2 ∧ h5 + f3 ∧ h8 + f4 ∧ h7 + f6 ∧ h2,

df6 = −2f1 ∧ f3 − f1 ∧ h5 + f2 ∧ h6 − f3 ∧ h7 + f4 ∧ h8 − f5 ∧ h2.

Therefore, the definition of ∂̄ gives

∂̄φ1 = −
i

2
φ1 ∧ φ̄4 − iφ2 ∧ φ̄5 + iφ3 ∧ φ̄6,

∂̄φ2 = −
i

2
φ1 ∧ φ̄3 −

1− i

2
φ2 ∧ φ̄4 + iφ3 ∧ φ̄7,(39)

∂̄φ3 =
i

2
φ1 ∧ φ̄2 −

i

2
φ2 ∧ φ̄1 +

1

2
φ3 ∧ φ̄4.

Then

∂̄(φ1 ∧ φ2 ∧ φ3) = ∂̄φ1 ∧ φ2 ∧ φ3 − φ1 ∧ ∂̄φ2 ∧ φ3 + φ1 ∧ φ2 ∧ ∂̄φ3 = 0.

By the arguments in [6] (equation (2.11) in [6]), φ1 ∧ φ2 ∧ φ3 induces a nowhere-
vanishing G2-invariant (3, 0)-form Φ on S6. As p is pseudoholomorphic and p∗ is
injective, ∂̄Φ = 0.

Assume s ∈ H0(S6,KJ), then s = fΦ, where f is a smooth function on S6. From
∂̄s = 0 we get that ∂̄f = 0. Since S6 is compact, the maximum principle gives that
f is a constant. Therefore, P1(S

6, J) = h3,0 = 1 with Φ being a generator. Similarly,
we get Pm(S6, J) = 1 for m ≥ 2, with Φm being a generator of H0(S6,K⊗m

J
). So

κJ = 0.
Next, we compute the Hodge numbers h1,0 and h2,0. Assume that s ∈ H1,0(S6).

Then p∗s is in the span space of {φ1, φ2, φ3}, satisfying ∂̄(p∗s) = 0. Let p∗s =
k1φ

1 + k2φ
2 + k3φ

3, where ki are smooth functions on G2. From (39) we get that

∂̄k3 = ik1φ̄
6 + ik2φ̄

7 +
1

2
k3φ̄

4.(40)

Let Xi, 1 ≤ i ≤ 7, be the dual complex vector of φi. Namely, X1 = 1
2(f1 +

if2), · · · ,X7 = 1
2(h7 + ih8). From the Appendix, the following Lie brackets hold

[X̄1, X̄2] = −iX3 +
i

2
X̄5, [X̄3, X̄5] =

i

2
h1, [X3, X̄3] =

i

2
h2.(41)

Equation (40) gives us that

X̄1(k3) = X̄2(k3) = X̄3(k3) = X̄5(k3) = 0.

From (41), we have X3(k3) = 0 and h1(k3) = 0. Then by the last relation in (41),
h2(k3) = 0. So X̄4(k3) = 0. Evaluate X̄4 to (40) we get that k3 = 0. Then (40)
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directly gives that k1 = k2 = 0. Therefore, p∗s = 0. As p∗ is injective, we get s = 0.
Hence, H1,0(S6) = 0 and h1,0 = 0.

To calculate h2,0, assume that σ ∈ H2,0(S6). Then p∗σ satisfies ∂̄(p∗σ) = 0. Let
p∗σ = l1φ

1 ∧ φ2 + l2φ
2 ∧ φ3 + l3φ

3 ∧ φ1, where li are smooth functions on G2. From
(39) we get

∂̄(φ1 ∧ φ2) =
1

2
φ1 ∧ φ2 ∧ φ̄4 + iφ2 ∧ φ3 ∧ φ̄6 − iφ1 ∧ φ3 ∧ φ̄7,

∂̄(φ2 ∧ φ3) =
i

2
φ1 ∧ φ3 ∧ φ̄3 −

i

2
φ2 ∧ φ3 ∧ φ̄4 +

i

2
φ1 ∧ φ2 ∧ φ̄2,

∂̄(φ3 ∧ φ1) = −
i

2
φ1 ∧ φ2 ∧ φ̄1 +

1− i

2
φ1 ∧ φ3 ∧ φ̄4 − iφ2 ∧ φ3 ∧ φ̄5.

So ∂̄(p∗σ) = 0 gives that

∂̄l2 = −il1φ̄
6 +

i

2
l2φ̄

4 + il3φ̄
5.(42)

Then X̄1(l2) = X̄2(l2) = X̄3(l2) = X̄7(l2) = 0. By the Appendix, the following hold

[X̄1, X̄7] = −
i

2
h2, [X̄2, X̄7] = iX̄6, [X̄2, X̄6] =

i

2
(h1 + h2).(43)

From (43), we have h1(l2) = h2(l2) = 0. Then X̄4(l2) = 0. Putting it back to (42),
we derive l1 = l2 = l3 = 0. So p∗σ = 0. By the injectivity, σ = 0. Therefore,
H2,0(S6) = 0 and h2,0 = 0.

By the Serre duality (Proposition 3.7), we have h1,3(S6) = h2,3(S6) = 0. �

On the other hand, for a hypothetical complex structure on S6, P1 = h3,0 = 0.
The key point is a ∂̄-closed (3, 0) form is also d-closed on a complex 3-fold.

8. Appendix

Direct calculation gives the following Lie brackets of g2:

[f1, f2] = h1 + h2, [f1, f3] = 2f6, [f1, f4] = f5, [f1, f5] = −f4,

[f1, f6] = −2f3, [f1, h1] = −(f2 − h8), [f1, h2] = −h8,

[f1, h3] = −(f4 + h6), [f1, h4] = f3, [f1, h5] = f6,

[f1, h6] = −f5 + h3, [f1, h7] = 0, [f1, h8] = h2

[f2, f3] = f5 − h3, [f2, f4] = −h4, [f2, f5] = −f3 + h5,

[f2, f6] = h6, [f2, h1] = f1 + h7, [f2, h2] = −h7,

[f2, h3] = f3 − h5, [f2, h4] = f4, [f2, h5] = −f5 + h3,

[f2, h6] = −f6, [f2, h7] = h2, [f2, h8] = 0

[f3, f4] = h2, [f3, f5] = h8, [f3, f6] = 2f1, [f3, h1] = f4 + h6,

[f3, h2] = −f4, [f3, h3] = −(f2 − h8), [f3, h4] = −f1, [f3, h5] = 0,

[f3, h6] = −(h1 + h2), [f3, h7] = f6, [f3, h8] = −f5,
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[f4, f5] = 2(f1 + h7), [f4, f6] = h8, [f4, h1] = h5 − f3,

[f4, h2] = f3, [f4, h3] = f1 + h7, [f4, h4] = −f2,

[f4, h5] = −(h1 + h2), [f4, h6] = 0, [f4, h7] = −f5, [f4, h8] = −f6,

[f5, f6] = −h2, [f5, h1] = h4, [f5, h2] = f6,

[f5, h3] = 0, [f5, h4] = −h1, [f5, h5] = f2 − h8,

[f5, h6] = f1 + h7, [f5, h7] = f4, [f5, h8] = f3,

[f6, h1] = h3, [f6, h2] = −f5, [f6, h3] = −h1, [f6, h4] = 0,

[f6, h5] = −f1, [f6, h6] = f2, [f6, h7] = −f3, [f6, h8] = f4,

[h1, h2] = 0, [h1, h3] = −2h4, [h2, h3] = h4, [h1, h4] = 2h3,

[h2, h4] = −h3, [h1, h5] = [h2, h5] = −h6, [h1, h6] = [h2, h6] = h5,

[h1, h7] = h8, [h2, h7] = −2h8, [h1, h8] = −h7, [h2, h8] = 2h7.
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